3 ;;;; KLUDGE: comment from original CMU CL source:
4 ;;;; Be careful when modifying code. A lot of the structure of the
5 ;;;; code is affected by the fact that compiler transforms use the
6 ;;;; lower level support functions. If transforms are written for
7 ;;;; some sequence operation, note how the END argument is handled
8 ;;;; in other operations with transforms.
10 ;;;; This software is part of the SBCL system. See the README file for
11 ;;;; more information.
13 ;;;; This software is derived from the CMU CL system, which was
14 ;;;; written at Carnegie Mellon University and released into the
15 ;;;; public domain. The software is in the public domain and is
16 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
17 ;;;; files for more information.
19 (in-package "SB!IMPL")
23 (defun %check-generic-sequence-bounds
(seq start end
)
24 (let ((length (sb!sequence
:length seq
)))
25 (if (<= 0 start
(or end length
) length
)
27 (sequence-bounding-indices-bad-error seq start end
))))
29 (eval-when (:compile-toplevel
:load-toplevel
:execute
)
31 (defparameter *sequence-keyword-info
*
32 ;; (name default supplied-p adjustment new-type)
36 (null (1- most-positive-fixnum
))
37 (fixnum (max 0 count
))
38 (integer (if (minusp count
)
40 (1- most-positive-fixnum
))))
41 (mod #.sb
!xc
:most-positive-fixnum
))
42 ,@(mapcan (lambda (names)
43 (destructuring-bind (start end length sequence
) names
48 (if (<= 0 ,start
,length
)
50 (sequence-bounding-indices-bad-error ,sequence
,start
,end
))
55 (if (or (null ,end
) (<= ,start
,end
,length
))
56 ;; Defaulting of NIL is done inside the
57 ;; bodies, for ease of sharing with compiler
60 ;; FIXME: defend against non-number non-NIL
63 (sequence-bounding-indices-bad-error ,sequence
,start
,end
))
65 '((start end length sequence
)
66 (start1 end1 length1 sequence1
)
67 (start2 end2 length2 sequence2
)))
70 (and key
(%coerce-callable-to-fun key
))
74 (%coerce-callable-to-fun test
)
78 (and test-not
(%coerce-callable-to-fun test-not
))
82 (sb!xc
:defmacro define-sequence-traverser
(name args
&body body
)
83 (multiple-value-bind (body declarations docstring
)
84 (parse-body body
:doc-string-allowed t
)
85 (collect ((new-args) (new-declarations) (adjustments))
88 ;; FIXME: make this robust. And clean.
91 (adjustments '(length (length sequence
)))
92 (new-declarations '(type index length
)))
95 (adjustments '(length1 (length sequence1
)))
96 (new-declarations '(type index length1
)))
99 (adjustments '(length2 (length sequence2
)))
100 (new-declarations '(type index length2
)))
101 ((function predicate
)
103 (adjustments `(,arg
(%coerce-callable-to-fun
,arg
))))
104 (t (let ((info (cdr (assoc arg
*sequence-keyword-info
*))))
106 (destructuring-bind (default supplied-p adjuster type
) info
107 (new-args `(,arg
,default
,@(when supplied-p
(list supplied-p
))))
108 (adjustments `(,arg
,adjuster
))
109 (new-declarations `(type ,type
,arg
))))
110 (t (new-args arg
)))))))
111 `(defun ,name
,(new-args)
112 ,@(when docstring
(list docstring
))
114 (let* (,@(adjustments))
115 (declare ,@(new-declarations))
118 ;;; SEQ-DISPATCH does an efficient type-dispatch on the given SEQUENCE.
120 ;;; FIXME: It might be worth making three cases here, LIST,
121 ;;; SIMPLE-VECTOR, and VECTOR, instead of the current LIST and VECTOR.
122 ;;; It tends to make code run faster but be bigger; some benchmarking
123 ;;; is needed to decide.
124 (sb!xc
:defmacro seq-dispatch
125 (sequence list-form array-form
&optional other-form
)
126 `(if (listp ,sequence
)
127 (let ((,sequence
(truly-the list
,sequence
)))
128 (declare (ignorable ,sequence
))
131 `((if (arrayp ,sequence
)
132 (let ((,sequence
(truly-the vector
,sequence
)))
133 (declare (ignorable ,sequence
))
136 `((let ((,sequence
(truly-the vector
,sequence
)))
137 (declare (ignorable ,sequence
))
140 (sb!xc
:defmacro %make-sequence-like
(sequence length
)
142 "Return a sequence of the same type as SEQUENCE and the given LENGTH."
143 `(seq-dispatch ,sequence
145 (make-array ,length
:element-type
(array-element-type ,sequence
))
146 (sb!sequence
:make-sequence-like
,sequence
,length
)))
148 (sb!xc
:defmacro bad-sequence-type-error
(type-spec)
149 `(error 'simple-type-error
151 :expected-type
'(satisfies is-a-valid-sequence-type-specifier-p
)
152 :format-control
"~S is a bad type specifier for sequences."
153 :format-arguments
(list ,type-spec
)))
155 (sb!xc
:defmacro sequence-type-length-mismatch-error
(type length
)
156 `(error 'simple-type-error
158 :expected-type
(cond ((array-type-p ,type
)
159 `(eql ,(car (array-type-dimensions ,type
))))
160 ((type= ,type
(specifier-type 'null
))
164 (t (bug "weird type in S-T-L-M-ERROR")))
165 ;; FIXME: this format control causes ugly printing. There's
166 ;; probably some ~<~@:_~> incantation that would make it
167 ;; nicer. -- CSR, 2002-10-18
168 :format-control
"The length requested (~S) does not match the type restriction in ~S."
169 :format-arguments
(list ,length
(type-specifier ,type
))))
171 (sb!xc
:defmacro sequence-type-too-hairy
(type-spec)
172 ;; FIXME: Should this be a BUG? I'm inclined to think not; there are
173 ;; words that give some but not total support to this position in
174 ;; ANSI. Essentially, we are justified in throwing this on
175 ;; e.g. '(OR SIMPLE-VECTOR (VECTOR FIXNUM)), but maybe not (by ANSI)
176 ;; on '(CONS * (CONS * NULL)) -- CSR, 2002-10-18
178 ;; On the other hand, I'm not sure it deserves to be a type-error,
179 ;; either. -- bem, 2005-08-10
180 `(error 'simple-program-error
181 :format-control
"~S is too hairy for sequence functions."
182 :format-arguments
(list ,type-spec
)))
185 (defun is-a-valid-sequence-type-specifier-p (type)
186 (let ((type (specifier-type type
)))
187 (or (csubtypep type
(specifier-type 'list
))
188 (csubtypep type
(specifier-type 'vector
)))))
190 ;;; It's possible with some sequence operations to declare the length
191 ;;; of a result vector, and to be safe, we really ought to verify that
192 ;;; the actual result has the declared length.
193 (defun vector-of-checked-length-given-length (vector declared-length
)
194 (declare (type vector vector
))
195 (declare (type index declared-length
))
196 (let ((actual-length (length vector
)))
197 (unless (= actual-length declared-length
)
198 (error 'simple-type-error
200 :expected-type
`(vector ,declared-length
)
202 "Vector length (~W) doesn't match declared length (~W)."
203 :format-arguments
(list actual-length declared-length
))))
205 (defun sequence-of-checked-length-given-type (sequence result-type
)
206 (let ((ctype (specifier-type result-type
)))
207 (if (not (array-type-p ctype
))
209 (let ((declared-length (first (array-type-dimensions ctype
))))
210 (if (eq declared-length
'*)
212 (vector-of-checked-length-given-length sequence
213 declared-length
))))))
215 (declaim (ftype (function (sequence index
) nil
) signal-index-too-large-error
))
216 (defun signal-index-too-large-error (sequence index
)
217 (let* ((length (length sequence
))
218 (max-index (and (plusp length
)
220 (error 'index-too-large-error
222 :expected-type
(if max-index
223 `(integer 0 ,max-index
)
224 ;; This seems silly, is there something better?
227 (defun sequence-bounding-indices-bad-error (sequence start end
)
228 (let ((size (length sequence
)))
229 (error 'bounding-indices-bad-error
230 :datum
(cons start end
)
231 :expected-type
`(cons (integer 0 ,size
)
232 (integer ,start
,size
))
235 (defun array-bounding-indices-bad-error (array start end
)
236 (let ((size (array-total-size array
)))
237 (error 'bounding-indices-bad-error
238 :datum
(cons start end
)
239 :expected-type
`(cons (integer 0 ,size
)
240 (integer ,start
,size
))
243 (defun elt (sequence index
)
244 #!+sb-doc
"Return the element of SEQUENCE specified by INDEX."
245 (seq-dispatch sequence
246 (do ((count index
(1- count
))
247 (list sequence
(cdr list
)))
250 (signal-index-too-large-error sequence index
)
252 (declare (type (integer 0) count
)))
254 (when (>= index
(length sequence
))
255 (signal-index-too-large-error sequence index
))
256 (aref sequence index
))
257 (sb!sequence
:elt sequence index
)))
259 (defun %setelt
(sequence index newval
)
260 #!+sb-doc
"Store NEWVAL as the component of SEQUENCE specified by INDEX."
261 (seq-dispatch sequence
262 (do ((count index
(1- count
))
264 ((= count
0) (rplaca seq newval
) newval
)
265 (declare (fixnum count
))
267 (signal-index-too-large-error sequence index
)
268 (setq seq
(cdr seq
))))
270 (when (>= index
(length sequence
))
271 (signal-index-too-large-error sequence index
))
272 (setf (aref sequence index
) newval
))
273 (setf (sb!sequence
:elt sequence index
) newval
)))
275 (defun length (sequence)
276 #!+sb-doc
"Return an integer that is the length of SEQUENCE."
277 (seq-dispatch sequence
280 (sb!sequence
:length sequence
)))
282 (defun make-sequence (type length
&key
(initial-element nil iep
))
284 "Return a sequence of the given TYPE and LENGTH, with elements initialized
286 (declare (fixnum length
))
287 (let* ((adjusted-type
290 ((eq type
'string
) '(vector character
))
291 ((eq type
'simple-string
) '(simple-array character
(*)))
294 ((eq (car type
) 'string
) `(vector character
,@(cdr type
)))
295 ((eq (car type
) 'simple-string
)
296 `(simple-array character
,(if (cdr type
)
301 (type (specifier-type adjusted-type
)))
302 (cond ((csubtypep type
(specifier-type 'list
))
304 ((type= type
(specifier-type 'list
))
305 (make-list length
:initial-element initial-element
))
306 ((eq type
*empty-type
*)
307 (bad-sequence-type-error nil
))
308 ((type= type
(specifier-type 'null
))
311 (sequence-type-length-mismatch-error type length
)))
313 (multiple-value-bind (min exactp
)
314 (sb!kernel
::cons-type-length-info type
)
316 (unless (= length min
)
317 (sequence-type-length-mismatch-error type length
))
318 (unless (>= length min
)
319 (sequence-type-length-mismatch-error type length
)))
320 (make-list length
:initial-element initial-element
)))
321 ;; We'll get here for e.g. (OR NULL (CONS INTEGER *)),
322 ;; which may seem strange and non-ideal, but then I'd say
323 ;; it was stranger to feed that type in to MAKE-SEQUENCE.
324 (t (sequence-type-too-hairy (type-specifier type
)))))
325 ((csubtypep type
(specifier-type 'vector
))
327 (;; is it immediately obvious what the result type is?
328 (typep type
'array-type
)
330 (aver (= (length (array-type-dimensions type
)) 1))
331 (let* ((etype (type-specifier
332 (array-type-specialized-element-type type
)))
333 (etype (if (eq etype
'*) t etype
))
334 (type-length (car (array-type-dimensions type
))))
335 (unless (or (eq type-length
'*)
336 (= type-length length
))
337 (sequence-type-length-mismatch-error type length
))
338 ;; FIXME: These calls to MAKE-ARRAY can't be
339 ;; open-coded, as the :ELEMENT-TYPE argument isn't
340 ;; constant. Probably we ought to write a
341 ;; DEFTRANSFORM for MAKE-SEQUENCE. -- CSR,
344 (make-array length
:element-type etype
345 :initial-element initial-element
)
346 (make-array length
:element-type etype
)))))
347 (t (sequence-type-too-hairy (type-specifier type
)))))
348 ((and (csubtypep type
(specifier-type 'sequence
))
349 (find-class adjusted-type nil
))
350 (let* ((class (find-class adjusted-type nil
)))
351 (unless (sb!mop
:class-finalized-p class
)
352 (sb!mop
:finalize-inheritance class
))
354 (sb!sequence
:make-sequence-like
355 (sb!mop
:class-prototype class
) length
356 :initial-element initial-element
)
357 (sb!sequence
:make-sequence-like
358 (sb!mop
:class-prototype class
) length
))))
359 (t (bad-sequence-type-error (type-specifier type
))))))
363 ;;;; The support routines for SUBSEQ are used by compiler transforms,
364 ;;;; so we worry about dealing with END being supplied or defaulting
365 ;;;; to NIL at this level.
367 (defun string-subseq* (sequence start end
)
368 (with-array-data ((data sequence
)
372 :check-fill-pointer t
)
373 (declare (optimize (speed 3) (safety 0)))
374 (string-dispatch ((simple-array character
(*))
375 (simple-array base-char
(*))
378 (subseq data start end
))))
380 (defun vector-subseq* (sequence start end
)
381 (declare (type vector sequence
))
382 (declare (type index start
)
383 (type (or null index
) end
))
384 (with-array-data ((data sequence
)
387 :check-fill-pointer t
389 (let* ((copy (%make-sequence-like sequence
(- end start
)))
390 (setter (!find-data-vector-setter copy
))
391 (reffer (!find-data-vector-reffer data
)))
392 (declare (optimize (speed 3) (safety 0)))
393 (do ((old-index start
(1+ old-index
))
394 (new-index 0 (1+ new-index
)))
395 ((= old-index end
) copy
)
396 (declare (index old-index new-index
))
397 (funcall setter copy new-index
398 (funcall reffer data old-index
))))))
400 (defun list-subseq* (sequence start end
)
401 (declare (type list sequence
)
402 (type unsigned-byte start
)
403 (type (or null unsigned-byte
) end
))
405 (sequence-bounding-indices-bad-error sequence start end
)))
406 (let ((pointer sequence
))
407 (unless (zerop start
)
408 ;; If START > 0 the list cannot be empty. So CDR down to
409 ;; it START-1 times, check that we still have something, then
410 ;; CDR the final time.
412 ;; If START was zero, the list may be empty if END is NIL or
415 (setf pointer
(nthcdr (1- start
) pointer
)))
420 (let ((n (- end start
)))
421 (declare (integer n
))
425 (let* ((head (list nil
))
427 (macrolet ((pop-one ()
428 `(let ((tmp (list (pop pointer
))))
432 (loop until
(fixnump n
)
435 ;; Fixnum case, but leave last element, so we should
436 ;; still have something left in the sequence.
443 ;; OK, pop the last one.
447 collect
(pop pointer
))))))
449 (defun subseq (sequence start
&optional end
)
451 "Return a copy of a subsequence of SEQUENCE starting with element number
452 START and continuing to the end of SEQUENCE or the optional END."
453 (seq-dispatch sequence
454 (list-subseq* sequence start end
)
455 (vector-subseq* sequence start end
)
456 (sb!sequence
:subseq sequence start end
)))
460 (defun copy-seq (sequence)
461 #!+sb-doc
"Return a copy of SEQUENCE which is EQUAL to SEQUENCE but not EQ."
462 (seq-dispatch sequence
463 (list-copy-seq* sequence
)
464 (vector-subseq* sequence
0 nil
)
465 (sb!sequence
:copy-seq sequence
)))
467 (defun list-copy-seq* (sequence)
468 (!copy-list-macro sequence
:check-proper-list t
))
472 (defun list-fill* (sequence item start end
)
473 (declare (type list sequence
)
474 (type unsigned-byte start
)
475 (type (or null unsigned-byte
) end
))
477 (sequence-bounding-indices-bad-error sequence start end
)))
478 (let ((pointer sequence
))
479 (unless (zerop start
)
480 ;; If START > 0 the list cannot be empty. So CDR down to it
481 ;; START-1 times, check that we still have something, then CDR
484 ;; If START was zero, the list may be empty if END is NIL or
487 (setf pointer
(nthcdr (1- start
) pointer
)))
492 (let ((n (- end start
)))
493 (declare (integer n
))
498 do
(setf pointer
(cdr (rplaca pointer item
))))))
500 do
(setf pointer
(cdr (rplaca pointer item
))))))))
502 (defun vector-fill* (sequence item start end
)
503 (with-array-data ((data sequence
)
507 :check-fill-pointer t
)
508 (let ((setter (!find-data-vector-setter data
)))
509 (declare (optimize (speed 3) (safety 0)))
510 (do ((index start
(1+ index
)))
511 ((= index end
) sequence
)
512 (declare (index index
))
513 (funcall setter data index item
)))))
515 (defun string-fill* (sequence item start end
)
516 (declare (string sequence
))
517 (with-array-data ((data sequence
)
521 :check-fill-pointer t
)
523 `(locally (declare (optimize (safety 0) (speed 3)))
524 (do ((i start
(1+ i
)))
527 (setf (aref data i
) item
)))))
530 ((simple-array character
(*))
531 (let ((item (locally (declare (optimize (safety 3)))
532 (the character item
))))
534 ((simple-array base-char
(*))
535 (let ((item (locally (declare (optimize (safety 3)))
536 (the base-char item
))))
539 (defun fill (sequence item
&key
(start 0) end
)
541 "Replace the specified elements of SEQUENCE with ITEM."
542 (seq-dispatch sequence
543 (list-fill* sequence item start end
)
544 (vector-fill* sequence item start end
)
545 (sb!sequence
:fill sequence item
547 :end
(%check-generic-sequence-bounds sequence start end
))))
551 (eval-when (:compile-toplevel
:execute
)
553 ;;; If we are copying around in the same vector, be careful not to copy the
554 ;;; same elements over repeatedly. We do this by copying backwards.
555 (sb!xc
:defmacro mumble-replace-from-mumble
()
556 `(if (and (eq target-sequence source-sequence
) (> target-start source-start
))
557 (let ((nelts (min (- target-end target-start
)
558 (- source-end source-start
))))
559 (do ((target-index (+ (the fixnum target-start
) (the fixnum nelts
) -
1)
561 (source-index (+ (the fixnum source-start
) (the fixnum nelts
) -
1)
563 ((= target-index
(the fixnum
(1- target-start
))) target-sequence
)
564 (declare (fixnum target-index source-index
))
565 ;; disable bounds checking
566 (declare (optimize (safety 0)))
567 (setf (aref target-sequence target-index
)
568 (aref source-sequence source-index
))))
569 (do ((target-index target-start
(1+ target-index
))
570 (source-index source-start
(1+ source-index
)))
571 ((or (= target-index
(the fixnum target-end
))
572 (= source-index
(the fixnum source-end
)))
574 (declare (fixnum target-index source-index
))
575 ;; disable bounds checking
576 (declare (optimize (safety 0)))
577 (setf (aref target-sequence target-index
)
578 (aref source-sequence source-index
)))))
580 (sb!xc
:defmacro list-replace-from-list
()
581 `(if (and (eq target-sequence source-sequence
) (> target-start source-start
))
582 (let ((new-elts (subseq source-sequence source-start
583 (+ (the fixnum source-start
)
585 (min (- (the fixnum target-end
)
586 (the fixnum target-start
))
587 (- (the fixnum source-end
)
588 (the fixnum source-start
))))))))
589 (do ((n new-elts
(cdr n
))
590 (o (nthcdr target-start target-sequence
) (cdr o
)))
591 ((null n
) target-sequence
)
593 (do ((target-index target-start
(1+ target-index
))
594 (source-index source-start
(1+ source-index
))
595 (target-sequence-ref (nthcdr target-start target-sequence
)
596 (cdr target-sequence-ref
))
597 (source-sequence-ref (nthcdr source-start source-sequence
)
598 (cdr source-sequence-ref
)))
599 ((or (= target-index
(the fixnum target-end
))
600 (= source-index
(the fixnum source-end
))
601 (null target-sequence-ref
) (null source-sequence-ref
))
603 (declare (fixnum target-index source-index
))
604 (rplaca target-sequence-ref
(car source-sequence-ref
)))))
606 (sb!xc
:defmacro list-replace-from-mumble
()
607 `(do ((target-index target-start
(1+ target-index
))
608 (source-index source-start
(1+ source-index
))
609 (target-sequence-ref (nthcdr target-start target-sequence
)
610 (cdr target-sequence-ref
)))
611 ((or (= target-index
(the fixnum target-end
))
612 (= source-index
(the fixnum source-end
))
613 (null target-sequence-ref
))
615 (declare (fixnum source-index target-index
))
616 (rplaca target-sequence-ref
(aref source-sequence source-index
))))
618 (sb!xc
:defmacro mumble-replace-from-list
()
619 `(do ((target-index target-start
(1+ target-index
))
620 (source-index source-start
(1+ source-index
))
621 (source-sequence (nthcdr source-start source-sequence
)
622 (cdr source-sequence
)))
623 ((or (= target-index
(the fixnum target-end
))
624 (= source-index
(the fixnum source-end
))
625 (null source-sequence
))
627 (declare (fixnum target-index source-index
))
628 (setf (aref target-sequence target-index
) (car source-sequence
))))
632 ;;;; The support routines for REPLACE are used by compiler transforms, so we
633 ;;;; worry about dealing with END being supplied or defaulting to NIL
636 (defun list-replace-from-list* (target-sequence source-sequence target-start
637 target-end source-start source-end
)
638 (when (null target-end
) (setq target-end
(length target-sequence
)))
639 (when (null source-end
) (setq source-end
(length source-sequence
)))
640 (list-replace-from-list))
642 (defun list-replace-from-vector* (target-sequence source-sequence target-start
643 target-end source-start source-end
)
644 (when (null target-end
) (setq target-end
(length target-sequence
)))
645 (when (null source-end
) (setq source-end
(length source-sequence
)))
646 (list-replace-from-mumble))
648 (defun vector-replace-from-list* (target-sequence source-sequence target-start
649 target-end source-start source-end
)
650 (when (null target-end
) (setq target-end
(length target-sequence
)))
651 (when (null source-end
) (setq source-end
(length source-sequence
)))
652 (mumble-replace-from-list))
654 (defun vector-replace-from-vector* (target-sequence source-sequence
655 target-start target-end source-start
657 (when (null target-end
) (setq target-end
(length target-sequence
)))
658 (when (null source-end
) (setq source-end
(length source-sequence
)))
659 (mumble-replace-from-mumble))
662 (defun simple-character-string-replace-from-simple-character-string*
663 (target-sequence source-sequence
664 target-start target-end source-start source-end
)
665 (declare (type (simple-array character
(*)) target-sequence source-sequence
))
666 (when (null target-end
) (setq target-end
(length target-sequence
)))
667 (when (null source-end
) (setq source-end
(length source-sequence
)))
668 (mumble-replace-from-mumble))
670 (define-sequence-traverser replace
671 (sequence1 sequence2
&rest args
&key start1 end1 start2 end2
)
673 "The target sequence is destructively modified by copying successive
674 elements into it from the source sequence."
675 (declare (dynamic-extent args
))
676 (let* (;; KLUDGE: absent either rewriting FOO-REPLACE-FROM-BAR, or
677 ;; excessively polluting DEFINE-SEQUENCE-TRAVERSER, we rebind
678 ;; these things here so that legacy code gets the names it's
679 ;; expecting. We could use &AUX instead :-/.
680 (target-sequence sequence1
)
681 (source-sequence sequence2
)
682 (target-start start1
)
683 (source-start start2
)
684 (target-end (or end1 length1
))
685 (source-end (or end2 length2
)))
686 (seq-dispatch target-sequence
687 (seq-dispatch source-sequence
688 (list-replace-from-list)
689 (list-replace-from-mumble)
690 (apply #'sb
!sequence
:replace sequence1 sequence2 args
))
691 (seq-dispatch source-sequence
692 (mumble-replace-from-list)
693 (mumble-replace-from-mumble)
694 (apply #'sb
!sequence
:replace sequence1 sequence2 args
))
695 (apply #'sb
!sequence
:replace sequence1 sequence2 args
))))
699 (eval-when (:compile-toplevel
:execute
)
701 (sb!xc
:defmacro vector-reverse
(sequence)
702 `(let ((length (length ,sequence
)))
703 (declare (fixnum length
))
704 (do ((forward-index 0 (1+ forward-index
))
705 (backward-index (1- length
) (1- backward-index
))
706 (new-sequence (%make-sequence-like sequence length
)))
707 ((= forward-index length
) new-sequence
)
708 (declare (fixnum forward-index backward-index
))
709 (setf (aref new-sequence forward-index
)
710 (aref ,sequence backward-index
)))))
712 (sb!xc
:defmacro list-reverse-macro
(sequence)
714 ((endp ,sequence
) new-list
)
715 (push (pop ,sequence
) new-list
)))
719 (defun reverse (sequence)
721 "Return a new sequence containing the same elements but in reverse order."
722 (seq-dispatch sequence
723 (list-reverse* sequence
)
724 (vector-reverse* sequence
)
725 (sb!sequence
:reverse sequence
)))
729 (defun list-reverse* (sequence)
730 (list-reverse-macro sequence
))
732 (defun vector-reverse* (sequence)
733 (vector-reverse sequence
))
737 (eval-when (:compile-toplevel
:execute
)
739 (sb!xc
:defmacro vector-nreverse
(sequence)
740 `(let ((length (length (the vector
,sequence
))))
742 (do ((left-index 0 (1+ left-index
))
743 (right-index (1- length
) (1- right-index
)))
744 ((<= right-index left-index
))
745 (declare (type index left-index right-index
))
746 (rotatef (aref ,sequence left-index
)
747 (aref ,sequence right-index
))))
750 (sb!xc
:defmacro list-nreverse-macro
(list)
751 `(do ((1st (cdr ,list
) (if (endp 1st
) 1st
(cdr 1st
)))
759 (defun list-nreverse* (sequence)
760 (list-nreverse-macro sequence
))
762 (defun vector-nreverse* (sequence)
763 (vector-nreverse sequence
))
765 (defun nreverse (sequence)
767 "Return a sequence of the same elements in reverse order; the argument
769 (seq-dispatch sequence
770 (list-nreverse* sequence
)
771 (vector-nreverse* sequence
)
772 (sb!sequence
:nreverse sequence
)))
776 (defmacro sb
!sequence
:dosequence
((e sequence
&optional return
) &body body
)
777 (multiple-value-bind (forms decls
) (parse-body body
:doc-string-allowed nil
)
779 (sequence (gensym "SEQUENCE")))
781 (let ((,sequence
,s
))
782 (seq-dispatch ,sequence
783 (dolist (,e
,sequence
,return
) ,@body
)
784 (dovector (,e
,sequence
,return
) ,@body
)
785 (multiple-value-bind (state limit from-end step endp elt
)
786 (sb!sequence
:make-sequence-iterator
,sequence
)
787 (do ((state state
(funcall step
,sequence state from-end
)))
788 ((funcall endp
,sequence state limit from-end
)
790 ,@(filter-dolist-declarations decls
)
793 (let ((,e
(funcall elt
,sequence state
)))
798 (eval-when (:compile-toplevel
:execute
)
800 (sb!xc
:defmacro concatenate-to-list
(sequences)
801 `(let ((result (list nil
)))
802 (do ((sequences ,sequences
(cdr sequences
))
804 ((null sequences
) (cdr result
))
805 (let ((sequence (car sequences
)))
806 (sb!sequence
:dosequence
(e sequence
)
807 (setq splice
(cdr (rplacd splice
(list e
)))))))))
809 (sb!xc
:defmacro concatenate-to-mumble
(output-type-spec sequences
)
810 `(do ((seqs ,sequences
(cdr seqs
))
814 (do ((sequences ,sequences
(cdr sequences
))
815 (lengths lengths
(cdr lengths
))
817 (result (make-sequence ,output-type-spec total-length
)))
818 ((= index total-length
) result
)
819 (declare (fixnum index
))
820 (let ((sequence (car sequences
)))
821 (sb!sequence
:dosequence
(e sequence
)
822 (setf (aref result index
) e
)
824 (let ((length (length (car seqs
))))
825 (declare (fixnum length
))
826 (setq lengths
(nconc lengths
(list length
)))
827 (setq total-length
(+ total-length length
)))))
831 (defun concatenate (output-type-spec &rest sequences
)
833 "Return a new sequence of all the argument sequences concatenated together
834 which shares no structure with the original argument sequences of the
835 specified OUTPUT-TYPE-SPEC."
836 (let ((type (specifier-type output-type-spec
)))
838 ((csubtypep type
(specifier-type 'list
))
840 ((type= type
(specifier-type 'list
))
841 (apply #'concat-to-list
* sequences
))
842 ((eq type
*empty-type
*)
843 (bad-sequence-type-error nil
))
844 ((type= type
(specifier-type 'null
))
845 (if (every (lambda (x) (or (null x
)
846 (and (vectorp x
) (= (length x
) 0))))
849 (sequence-type-length-mismatch-error
851 ;; FIXME: circular list issues.
852 (reduce #'+ sequences
:key
#'length
))))
854 (multiple-value-bind (min exactp
)
855 (sb!kernel
::cons-type-length-info type
)
856 (let ((length (reduce #'+ sequences
:key
#'length
)))
858 (unless (= length min
)
859 (sequence-type-length-mismatch-error type length
))
860 (unless (>= length min
)
861 (sequence-type-length-mismatch-error type length
)))
862 (apply #'concat-to-list
* sequences
))))
863 (t (sequence-type-too-hairy (type-specifier type
)))))
864 ((csubtypep type
(specifier-type 'vector
))
865 (apply #'concat-to-simple
* output-type-spec sequences
))
866 ((and (csubtypep type
(specifier-type 'sequence
))
867 (find-class output-type-spec nil
))
868 (coerce (apply #'concat-to-simple
* 'vector sequences
) output-type-spec
))
870 (bad-sequence-type-error output-type-spec
)))))
873 ;;; FIXME: These are weird. They're never called anywhere except in
874 ;;; CONCATENATE. It seems to me that the macros ought to just
875 ;;; be expanded directly in CONCATENATE, or in CONCATENATE-STRING
876 ;;; and CONCATENATE-LIST variants. Failing that, these ought to be local
877 ;;; functions (FLET).
878 (defun concat-to-list* (&rest sequences
)
879 (concatenate-to-list sequences
))
880 (defun concat-to-simple* (type &rest sequences
)
881 (concatenate-to-mumble type sequences
))
883 ;;;; MAP and MAP-INTO
885 ;;; helper functions to handle arity-1 subcases of MAP
886 (declaim (ftype (function (function sequence
) list
) %map-list-arity-1
))
887 (declaim (ftype (function (function sequence
) simple-vector
)
888 %map-simple-vector-arity-1
))
889 (defun %map-to-list-arity-1
(fun sequence
)
890 (let ((reversed-result nil
)
891 (really-fun (%coerce-callable-to-fun fun
)))
892 (sb!sequence
:dosequence
(element sequence
)
893 (push (funcall really-fun element
)
895 (nreverse reversed-result
)))
896 (defun %map-to-simple-vector-arity-1
(fun sequence
)
897 (let ((result (make-array (length sequence
)))
899 (really-fun (%coerce-callable-to-fun fun
)))
900 (declare (type index index
))
901 (sb!sequence
:dosequence
(element sequence
)
902 (setf (aref result index
)
903 (funcall really-fun element
))
906 (defun %map-for-effect-arity-1
(fun sequence
)
907 (let ((really-fun (%coerce-callable-to-fun fun
)))
908 (sb!sequence
:dosequence
(element sequence
)
909 (funcall really-fun element
)))
912 (declaim (maybe-inline %map-for-effect
))
913 (defun %map-for-effect
(fun sequences
)
914 (declare (type function fun
) (type list sequences
))
915 (let ((%sequences sequences
)
916 (%iters
(mapcar (lambda (s)
921 (sb!sequence
:make-sequence-iterator s
))))
923 (%apply-args
(make-list (length sequences
))))
924 ;; this is almost efficient (except in the general case where we
925 ;; trampoline to MAKE-SEQUENCE-ITERATOR; if we had DX allocation
926 ;; of MAKE-LIST, the whole of %MAP would be cons-free.
927 (declare (type list %sequences %iters %apply-args
))
929 (do ((in-sequences %sequences
(cdr in-sequences
))
930 (in-iters %iters
(cdr in-iters
))
931 (in-apply-args %apply-args
(cdr in-apply-args
)))
932 ((null in-sequences
) (apply fun %apply-args
))
933 (let ((i (car in-iters
)))
934 (declare (type (or list index
) i
))
936 ((listp (car in-sequences
))
938 (return-from %map-for-effect nil
)
939 (setf (car in-apply-args
) (car i
)
940 (car in-iters
) (cdr i
))))
942 (let ((v (the vector
(car in-sequences
))))
943 (if (>= i
(length v
))
944 (return-from %map-for-effect nil
)
945 (setf (car in-apply-args
) (aref v i
)
946 (car in-iters
) (1+ i
)))))
948 (destructuring-bind (state limit from-end step endp elt
&rest ignore
)
950 (declare (type function step endp elt
)
952 (let ((s (car in-sequences
)))
953 (if (funcall endp s state limit from-end
)
954 (return-from %map-for-effect nil
)
956 (setf (car in-apply-args
) (funcall elt s state
))
957 (setf (caar in-iters
) (funcall step s state from-end
)))))))))))))
958 (defun %map-to-list
(fun sequences
)
959 (declare (type function fun
)
960 (type list sequences
))
962 (flet ((f (&rest args
)
963 (declare (dynamic-extent args
))
964 (push (apply fun args
) result
)))
965 (declare (dynamic-extent #'f
))
966 (%map-for-effect
#'f sequences
))
968 (defun %map-to-vector
(output-type-spec fun sequences
)
969 (declare (type function fun
)
970 (type list sequences
))
972 (flet ((f (&rest args
)
973 (declare (dynamic-extent args
))
974 (declare (ignore args
))
976 (declare (dynamic-extent #'f
))
977 (%map-for-effect
#'f sequences
))
978 (let ((result (make-sequence output-type-spec min-len
))
980 (declare (type (simple-array * (*)) result
))
981 (flet ((f (&rest args
)
982 (declare (dynamic-extent args
))
983 (setf (aref result i
) (apply fun args
))
985 (declare (dynamic-extent #'f
))
986 (%map-for-effect
#'f sequences
))
988 (defun %map-to-sequence
(result-type fun sequences
)
989 (declare (type function fun
)
990 (type list sequences
))
992 (flet ((f (&rest args
)
993 (declare (dynamic-extent args
))
994 (declare (ignore args
))
996 (declare (dynamic-extent #'f
))
997 (%map-for-effect
#'f sequences
))
998 (let ((result (make-sequence result-type min-len
)))
999 (multiple-value-bind (state limit from-end step endp elt setelt
)
1000 (sb!sequence
:make-sequence-iterator result
)
1001 (declare (ignore limit endp elt
))
1002 (flet ((f (&rest args
)
1003 (declare (dynamic-extent args
))
1004 (funcall setelt
(apply fun args
) result state
)
1005 (setq state
(funcall step result state from-end
))))
1006 (declare (dynamic-extent #'f
))
1007 (%map-for-effect
#'f sequences
)))
1010 ;;; %MAP is just MAP without the final just-to-be-sure check that
1011 ;;; length of the output sequence matches any length specified
1013 (defun %map
(result-type function first-sequence
&rest more-sequences
)
1014 (let ((really-fun (%coerce-callable-to-fun function
))
1015 (type (specifier-type result-type
)))
1016 ;; Handle one-argument MAP NIL specially, using ETYPECASE to turn
1017 ;; it into something which can be DEFTRANSFORMed away. (It's
1018 ;; fairly important to handle this case efficiently, since
1019 ;; quantifiers like SOME are transformed into this case, and since
1020 ;; there's no consing overhead to dwarf our inefficiency.)
1021 (if (and (null more-sequences
)
1023 (%map-for-effect-arity-1 really-fun first-sequence
)
1024 ;; Otherwise, use the industrial-strength full-generality
1025 ;; approach, consing O(N-ARGS) temporary storage (which can have
1026 ;; DYNAMIC-EXTENT), then using O(N-ARGS * RESULT-LENGTH) time.
1027 (let ((sequences (cons first-sequence more-sequences
)))
1029 ((eq type
*empty-type
*) (%map-for-effect really-fun sequences
))
1030 ((csubtypep type
(specifier-type 'list
))
1031 (%map-to-list really-fun sequences
))
1032 ((csubtypep type
(specifier-type 'vector
))
1033 (%map-to-vector result-type really-fun sequences
))
1034 ((and (csubtypep type
(specifier-type 'sequence
))
1035 (find-class result-type nil
))
1036 (%map-to-sequence result-type really-fun sequences
))
1038 (bad-sequence-type-error result-type
)))))))
1040 (defun map (result-type function first-sequence
&rest more-sequences
)
1047 ;;; KLUDGE: MAP has been rewritten substantially since the fork from
1048 ;;; CMU CL in order to give reasonable performance, but this
1049 ;;; implementation of MAP-INTO still has the same problems as the old
1050 ;;; MAP code. Ideally, MAP-INTO should be rewritten to be efficient in
1051 ;;; the same way that the corresponding cases of MAP have been
1052 ;;; rewritten. Instead of doing it now, though, it's easier to wait
1053 ;;; until we have DYNAMIC-EXTENT, at which time it should become
1054 ;;; extremely easy to define a reasonably efficient MAP-INTO in terms
1055 ;;; of (MAP NIL ..). -- WHN 20000920
1056 (defun map-into (result-sequence function
&rest sequences
)
1058 (and (arrayp result-sequence
)
1059 (array-has-fill-pointer-p result-sequence
)))
1062 (array-dimension result-sequence
0)
1063 (length result-sequence
))
1064 (mapcar #'length sequences
))))
1067 (setf (fill-pointer result-sequence
) len
))
1069 (let ((really-fun (%coerce-callable-to-fun function
)))
1070 (dotimes (index len
)
1071 (setf (elt result-sequence index
)
1073 (mapcar (lambda (seq) (elt seq index
))
1079 ;;; We borrow the logic from (MAP NIL ..) to handle iteration over
1080 ;;; arbitrary sequence arguments, both in the full call case and in
1081 ;;; the open code case.
1082 (macrolet ((defquantifier (name found-test found-result
1083 &key doc
(unfound-result (not found-result
)))
1085 ;; KLUDGE: It would be really nice if we could simply
1086 ;; do something like this
1087 ;; (declaim (inline ,name))
1088 ;; (defun ,name (pred first-seq &rest more-seqs)
1090 ;; (flet ((map-me (&rest rest)
1091 ;; (let ((pred-value (apply pred rest)))
1092 ;; (,found-test pred-value
1093 ;; (return-from ,name
1094 ;; ,found-result)))))
1095 ;; (declare (inline map-me))
1096 ;; (apply #'map nil #'map-me first-seq more-seqs)
1097 ;; ,unfound-result))
1098 ;; but Python doesn't seem to be smart enough about
1099 ;; inlining and APPLY to recognize that it can use
1100 ;; the DEFTRANSFORM for MAP in the resulting inline
1101 ;; expansion. I don't have any appetite for deep
1102 ;; compiler hacking right now, so I'll just work
1103 ;; around the apparent problem by using a compiler
1104 ;; macro instead. -- WHN 20000410
1105 (defun ,name
(pred first-seq
&rest more-seqs
)
1107 (flet ((map-me (&rest rest
)
1108 (let ((pred-value (apply pred rest
)))
1109 (,found-test pred-value
1112 (declare (inline map-me
))
1113 (apply #'map nil
#'map-me first-seq more-seqs
)
1115 ;; KLUDGE: It would be more obviously correct -- but
1116 ;; also significantly messier -- for PRED-VALUE to be
1117 ;; a gensym. However, a private symbol really does
1118 ;; seem to be good enough; and anyway the really
1119 ;; obviously correct solution is to make Python smart
1120 ;; enough that we can use an inline function instead
1121 ;; of a compiler macro (as above). -- WHN 20000410
1123 ;; FIXME: The DEFINE-COMPILER-MACRO here can be
1124 ;; important for performance, and it'd be good to have
1125 ;; it be visible throughout the compilation of all the
1126 ;; target SBCL code. That could be done by defining
1127 ;; SB-XC:DEFINE-COMPILER-MACRO and using it here,
1128 ;; moving this DEFQUANTIFIER stuff (and perhaps other
1129 ;; inline definitions in seq.lisp as well) into a new
1130 ;; seq.lisp, and moving remaining target-only stuff
1131 ;; from the old seq.lisp into target-seq.lisp.
1132 (define-compiler-macro ,name
(pred first-seq
&rest more-seqs
)
1133 (let ((elements (make-gensym-list (1+ (length more-seqs
))))
1134 (blockname (gensym "BLOCK")))
1135 (once-only ((pred pred
))
1138 (lambda (,@elements
)
1139 (let ((pred-value (funcall ,pred
,@elements
)))
1140 (,',found-test pred-value
1141 (return-from ,blockname
1145 ,',unfound-result
)))))))
1146 (defquantifier some when pred-value
:unfound-result nil
:doc
1147 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1148 possibly to those with index 1, and so on. Return the first
1149 non-NIL value encountered, or NIL if the end of any sequence is reached.")
1150 (defquantifier every unless nil
:doc
1151 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1152 possibly to those with index 1, and so on. Return NIL as soon
1153 as any invocation of PREDICATE returns NIL, or T if every invocation
1155 (defquantifier notany when nil
:doc
1156 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1157 possibly to those with index 1, and so on. Return NIL as soon
1158 as any invocation of PREDICATE returns a non-NIL value, or T if the end
1159 of any sequence is reached.")
1160 (defquantifier notevery unless t
:doc
1161 "Apply PREDICATE to 0-indexed elements of the sequences, then
1162 possibly to those with index 1, and so on. Return T as soon
1163 as any invocation of PREDICATE returns NIL, or NIL if every invocation
1168 (eval-when (:compile-toplevel
:execute
)
1170 (sb!xc
:defmacro mumble-reduce
(function
1177 `(do ((index ,start
(1+ index
))
1178 (value ,initial-value
))
1179 ((>= index
,end
) value
)
1180 (setq value
(funcall ,function value
1181 (apply-key ,key
(,ref
,sequence index
))))))
1183 (sb!xc
:defmacro mumble-reduce-from-end
(function
1190 `(do ((index (1- ,end
) (1- index
))
1191 (value ,initial-value
)
1192 (terminus (1- ,start
)))
1193 ((<= index terminus
) value
)
1194 (setq value
(funcall ,function
1195 (apply-key ,key
(,ref
,sequence index
))
1198 (sb!xc
:defmacro list-reduce
(function
1205 `(let ((sequence (nthcdr ,start
,sequence
)))
1206 (do ((count (if ,ivp
,start
(1+ ,start
))
1208 (sequence (if ,ivp sequence
(cdr sequence
))
1210 (value (if ,ivp
,initial-value
(apply-key ,key
(car sequence
)))
1211 (funcall ,function value
(apply-key ,key
(car sequence
)))))
1212 ((>= count
,end
) value
))))
1214 (sb!xc
:defmacro list-reduce-from-end
(function
1221 `(let ((sequence (nthcdr (- (length ,sequence
) ,end
)
1222 (reverse ,sequence
))))
1223 (do ((count (if ,ivp
,start
(1+ ,start
))
1225 (sequence (if ,ivp sequence
(cdr sequence
))
1227 (value (if ,ivp
,initial-value
(apply-key ,key
(car sequence
)))
1228 (funcall ,function
(apply-key ,key
(car sequence
)) value
)))
1229 ((>= count
,end
) value
))))
1233 (define-sequence-traverser reduce
(function sequence
&rest args
&key key
1234 from-end start end
(initial-value nil ivp
))
1235 (declare (type index start
))
1236 (declare (dynamic-extent args
))
1238 (end (or end length
)))
1239 (declare (type index start end
))
1240 (seq-dispatch sequence
1242 (if ivp initial-value
(funcall function
))
1244 (list-reduce-from-end function sequence key start end
1246 (list-reduce function sequence key start end
1247 initial-value ivp
)))
1249 (if ivp initial-value
(funcall function
))
1253 (setq end
(1- (the fixnum end
)))
1254 (setq initial-value
(apply-key key
(aref sequence end
))))
1255 (mumble-reduce-from-end function sequence key start end
1256 initial-value aref
))
1259 (setq initial-value
(apply-key key
(aref sequence start
)))
1260 (setq start
(1+ start
)))
1261 (mumble-reduce function sequence key start end
1262 initial-value aref
))))
1263 (apply #'sb
!sequence
:reduce function sequence args
))))
1267 (eval-when (:compile-toplevel
:execute
)
1269 (sb!xc
:defmacro mumble-delete
(pred)
1270 `(do ((index start
(1+ index
))
1273 ((or (= index
(the fixnum end
)) (= number-zapped count
))
1274 (do ((index index
(1+ index
)) ; Copy the rest of the vector.
1275 (jndex jndex
(1+ jndex
)))
1276 ((= index
(the fixnum length
))
1277 (shrink-vector sequence jndex
))
1278 (declare (fixnum index jndex
))
1279 (setf (aref sequence jndex
) (aref sequence index
))))
1280 (declare (fixnum index jndex number-zapped
))
1281 (setf (aref sequence jndex
) (aref sequence index
))
1283 (incf number-zapped
)
1286 (sb!xc
:defmacro mumble-delete-from-end
(pred)
1287 `(do ((index (1- (the fixnum end
)) (1- index
)) ; Find the losers.
1291 (terminus (1- start
)))
1292 ((or (= index terminus
) (= number-zapped count
))
1293 (do ((losers losers
) ; Delete the losers.
1294 (index start
(1+ index
))
1296 ((or (null losers
) (= index
(the fixnum end
)))
1297 (do ((index index
(1+ index
)) ; Copy the rest of the vector.
1298 (jndex jndex
(1+ jndex
)))
1299 ((= index
(the fixnum length
))
1300 (shrink-vector sequence jndex
))
1301 (declare (fixnum index jndex
))
1302 (setf (aref sequence jndex
) (aref sequence index
))))
1303 (declare (fixnum index jndex
))
1304 (setf (aref sequence jndex
) (aref sequence index
))
1305 (if (= index
(the fixnum
(car losers
)))
1308 (declare (fixnum index number-zapped terminus
))
1309 (setq this-element
(aref sequence index
))
1311 (incf number-zapped
)
1312 (push index losers
))))
1314 (sb!xc
:defmacro normal-mumble-delete
()
1317 (not (funcall test-not item
(apply-key key
(aref sequence index
))))
1318 (funcall test item
(apply-key key
(aref sequence index
))))))
1320 (sb!xc
:defmacro normal-mumble-delete-from-end
()
1321 `(mumble-delete-from-end
1323 (not (funcall test-not item
(apply-key key this-element
)))
1324 (funcall test item
(apply-key key this-element
)))))
1326 (sb!xc
:defmacro list-delete
(pred)
1327 `(let ((handle (cons nil sequence
)))
1328 (do ((current (nthcdr start sequence
) (cdr current
))
1329 (previous (nthcdr start handle
))
1330 (index start
(1+ index
))
1332 ((or (= index
(the fixnum end
)) (= number-zapped count
))
1334 (declare (fixnum index number-zapped
))
1336 (rplacd previous
(cdr current
))
1337 (incf number-zapped
))
1339 (setq previous
(cdr previous
)))))))
1341 (sb!xc
:defmacro list-delete-from-end
(pred)
1342 `(let* ((reverse (nreverse (the list sequence
)))
1343 (handle (cons nil reverse
)))
1344 (do ((current (nthcdr (- (the fixnum length
) (the fixnum end
)) reverse
)
1346 (previous (nthcdr (- (the fixnum length
) (the fixnum end
)) handle
))
1347 (index start
(1+ index
))
1349 ((or (= index
(the fixnum end
)) (= number-zapped count
))
1350 (nreverse (cdr handle
)))
1351 (declare (fixnum index number-zapped
))
1353 (rplacd previous
(cdr current
))
1354 (incf number-zapped
))
1356 (setq previous
(cdr previous
)))))))
1358 (sb!xc
:defmacro normal-list-delete
()
1361 (not (funcall test-not item
(apply-key key
(car current
))))
1362 (funcall test item
(apply-key key
(car current
))))))
1364 (sb!xc
:defmacro normal-list-delete-from-end
()
1365 '(list-delete-from-end
1367 (not (funcall test-not item
(apply-key key
(car current
))))
1368 (funcall test item
(apply-key key
(car current
))))))
1372 (define-sequence-traverser delete
1373 (item sequence
&rest args
&key from-end test test-not start
1376 "Return a sequence formed by destructively removing the specified ITEM from
1377 the given SEQUENCE."
1378 (declare (fixnum start
))
1379 (declare (dynamic-extent args
))
1380 (let ((end (or end length
)))
1381 (declare (type index end
))
1382 (seq-dispatch sequence
1384 (normal-list-delete-from-end)
1385 (normal-list-delete))
1387 (normal-mumble-delete-from-end)
1388 (normal-mumble-delete))
1389 (apply #'sb
!sequence
:delete item sequence args
))))
1391 (eval-when (:compile-toplevel
:execute
)
1393 (sb!xc
:defmacro if-mumble-delete
()
1395 (funcall predicate
(apply-key key
(aref sequence index
)))))
1397 (sb!xc
:defmacro if-mumble-delete-from-end
()
1398 `(mumble-delete-from-end
1399 (funcall predicate
(apply-key key this-element
))))
1401 (sb!xc
:defmacro if-list-delete
()
1403 (funcall predicate
(apply-key key
(car current
)))))
1405 (sb!xc
:defmacro if-list-delete-from-end
()
1406 '(list-delete-from-end
1407 (funcall predicate
(apply-key key
(car current
)))))
1411 (define-sequence-traverser delete-if
1412 (predicate sequence
&rest args
&key from-end start key end count
)
1414 "Return a sequence formed by destructively removing the elements satisfying
1415 the specified PREDICATE from the given SEQUENCE."
1416 (declare (fixnum start
))
1417 (declare (dynamic-extent args
))
1418 (let ((end (or end length
)))
1419 (declare (type index end
))
1420 (seq-dispatch sequence
1422 (if-list-delete-from-end)
1425 (if-mumble-delete-from-end)
1427 (apply #'sb
!sequence
:delete-if predicate sequence args
))))
1429 (eval-when (:compile-toplevel
:execute
)
1431 (sb!xc
:defmacro if-not-mumble-delete
()
1433 (not (funcall predicate
(apply-key key
(aref sequence index
))))))
1435 (sb!xc
:defmacro if-not-mumble-delete-from-end
()
1436 `(mumble-delete-from-end
1437 (not (funcall predicate
(apply-key key this-element
)))))
1439 (sb!xc
:defmacro if-not-list-delete
()
1441 (not (funcall predicate
(apply-key key
(car current
))))))
1443 (sb!xc
:defmacro if-not-list-delete-from-end
()
1444 '(list-delete-from-end
1445 (not (funcall predicate
(apply-key key
(car current
))))))
1449 (define-sequence-traverser delete-if-not
1450 (predicate sequence
&rest args
&key from-end start end key count
)
1452 "Return a sequence formed by destructively removing the elements not
1453 satisfying the specified PREDICATE from the given SEQUENCE."
1454 (declare (fixnum start
))
1455 (declare (dynamic-extent args
))
1456 (let ((end (or end length
)))
1457 (declare (type index end
))
1458 (seq-dispatch sequence
1460 (if-not-list-delete-from-end)
1461 (if-not-list-delete))
1463 (if-not-mumble-delete-from-end)
1464 (if-not-mumble-delete))
1465 (apply #'sb
!sequence
:delete-if-not predicate sequence args
))))
1469 (eval-when (:compile-toplevel
:execute
)
1471 ;;; MUMBLE-REMOVE-MACRO does not include (removes) each element that
1472 ;;; satisfies the predicate.
1473 (sb!xc
:defmacro mumble-remove-macro
(bump left begin finish right pred
)
1474 `(do ((index ,begin
(,bump index
))
1476 (do ((index ,left
(,bump index
))
1477 (result (%make-sequence-like sequence length
)))
1478 ((= index
(the fixnum
,begin
)) result
)
1479 (declare (fixnum index
))
1480 (setf (aref result index
) (aref sequence index
))))
1484 ((or (= index
(the fixnum
,finish
))
1485 (= number-zapped count
))
1486 (do ((index index
(,bump index
))
1487 (new-index new-index
(,bump new-index
)))
1488 ((= index
(the fixnum
,right
)) (%shrink-vector result new-index
))
1489 (declare (fixnum index new-index
))
1490 (setf (aref result new-index
) (aref sequence index
))))
1491 (declare (fixnum index new-index number-zapped
))
1492 (setq this-element
(aref sequence index
))
1493 (cond (,pred
(incf number-zapped
))
1494 (t (setf (aref result new-index
) this-element
)
1495 (setq new-index
(,bump new-index
))))))
1497 (sb!xc
:defmacro mumble-remove
(pred)
1498 `(mumble-remove-macro 1+ 0 start end length
,pred
))
1500 (sb!xc
:defmacro mumble-remove-from-end
(pred)
1501 `(let ((sequence (copy-seq sequence
)))
1502 (mumble-delete-from-end ,pred
)))
1504 (sb!xc
:defmacro normal-mumble-remove
()
1507 (not (funcall test-not item
(apply-key key this-element
)))
1508 (funcall test item
(apply-key key this-element
)))))
1510 (sb!xc
:defmacro normal-mumble-remove-from-end
()
1511 `(mumble-remove-from-end
1513 (not (funcall test-not item
(apply-key key this-element
)))
1514 (funcall test item
(apply-key key this-element
)))))
1516 (sb!xc
:defmacro if-mumble-remove
()
1517 `(mumble-remove (funcall predicate
(apply-key key this-element
))))
1519 (sb!xc
:defmacro if-mumble-remove-from-end
()
1520 `(mumble-remove-from-end (funcall predicate
(apply-key key this-element
))))
1522 (sb!xc
:defmacro if-not-mumble-remove
()
1523 `(mumble-remove (not (funcall predicate
(apply-key key this-element
)))))
1525 (sb!xc
:defmacro if-not-mumble-remove-from-end
()
1526 `(mumble-remove-from-end
1527 (not (funcall predicate
(apply-key key this-element
)))))
1529 ;;; LIST-REMOVE-MACRO does not include (removes) each element that satisfies
1531 (sb!xc
:defmacro list-remove-macro
(pred reverse?
)
1532 `(let* ((sequence ,(if reverse?
1533 '(reverse (the list sequence
))
1535 (%start
,(if reverse?
'(- length end
) 'start
))
1536 (%end
,(if reverse?
'(- length start
) 'end
))
1538 (results (do ((index 0 (1+ index
))
1539 (before-start splice
))
1540 ((= index
(the fixnum %start
)) before-start
)
1541 (declare (fixnum index
))
1543 (cdr (rplacd splice
(list (pop sequence
))))))))
1544 (do ((index %start
(1+ index
))
1547 ((or (= index
(the fixnum %end
)) (= number-zapped count
))
1548 (do ((index index
(1+ index
)))
1551 '(nreverse (the list
(cdr results
)))
1553 (declare (fixnum index
))
1554 (setq splice
(cdr (rplacd splice
(list (pop sequence
)))))))
1555 (declare (fixnum index number-zapped
))
1556 (setq this-element
(pop sequence
))
1558 (setq number-zapped
(1+ number-zapped
))
1559 (setq splice
(cdr (rplacd splice
(list this-element
))))))))
1561 (sb!xc
:defmacro list-remove
(pred)
1562 `(list-remove-macro ,pred nil
))
1564 (sb!xc
:defmacro list-remove-from-end
(pred)
1565 `(list-remove-macro ,pred t
))
1567 (sb!xc
:defmacro normal-list-remove
()
1570 (not (funcall test-not item
(apply-key key this-element
)))
1571 (funcall test item
(apply-key key this-element
)))))
1573 (sb!xc
:defmacro normal-list-remove-from-end
()
1574 `(list-remove-from-end
1576 (not (funcall test-not item
(apply-key key this-element
)))
1577 (funcall test item
(apply-key key this-element
)))))
1579 (sb!xc
:defmacro if-list-remove
()
1581 (funcall predicate
(apply-key key this-element
))))
1583 (sb!xc
:defmacro if-list-remove-from-end
()
1584 `(list-remove-from-end
1585 (funcall predicate
(apply-key key this-element
))))
1587 (sb!xc
:defmacro if-not-list-remove
()
1589 (not (funcall predicate
(apply-key key this-element
)))))
1591 (sb!xc
:defmacro if-not-list-remove-from-end
()
1592 `(list-remove-from-end
1593 (not (funcall predicate
(apply-key key this-element
)))))
1597 (define-sequence-traverser remove
1598 (item sequence
&rest args
&key from-end test test-not start
1601 "Return a copy of SEQUENCE with elements satisfying the test (default is
1602 EQL) with ITEM removed."
1603 (declare (fixnum start
))
1604 (declare (dynamic-extent args
))
1605 (let ((end (or end length
)))
1606 (declare (type index end
))
1607 (seq-dispatch sequence
1609 (normal-list-remove-from-end)
1610 (normal-list-remove))
1612 (normal-mumble-remove-from-end)
1613 (normal-mumble-remove))
1614 (apply #'sb
!sequence
:remove item sequence args
))))
1616 (define-sequence-traverser remove-if
1617 (predicate sequence
&rest args
&key from-end start end count key
)
1619 "Return a copy of sequence with elements satisfying PREDICATE removed."
1620 (declare (fixnum start
))
1621 (declare (dynamic-extent args
))
1622 (let ((end (or end length
)))
1623 (declare (type index end
))
1624 (seq-dispatch sequence
1626 (if-list-remove-from-end)
1629 (if-mumble-remove-from-end)
1631 (apply #'sb
!sequence
:remove-if predicate sequence args
))))
1633 (define-sequence-traverser remove-if-not
1634 (predicate sequence
&rest args
&key from-end start end count key
)
1636 "Return a copy of sequence with elements not satisfying PREDICATE removed."
1637 (declare (fixnum start
))
1638 (declare (dynamic-extent args
))
1639 (let ((end (or end length
)))
1640 (declare (type index end
))
1641 (seq-dispatch sequence
1643 (if-not-list-remove-from-end)
1644 (if-not-list-remove))
1646 (if-not-mumble-remove-from-end)
1647 (if-not-mumble-remove))
1648 (apply #'sb
!sequence
:remove-if-not predicate sequence args
))))
1650 ;;;; REMOVE-DUPLICATES
1652 ;;; Remove duplicates from a list. If from-end, remove the later duplicates,
1653 ;;; not the earlier ones. Thus if we check from-end we don't copy an item
1654 ;;; if we look into the already copied structure (from after :start) and see
1655 ;;; the item. If we check from beginning we check into the rest of the
1656 ;;; original list up to the :end marker (this we have to do by running a
1657 ;;; do loop down the list that far and using our test.
1658 (defun list-remove-duplicates* (list test test-not start end key from-end
)
1659 (declare (fixnum start
))
1660 (let* ((result (list ())) ; Put a marker on the beginning to splice with.
1663 (end (or end
(length list
)))
1664 (hash (and (> (- end start
) 20)
1668 (or (eql test
#'eql
)
1671 (eql test
#'equalp
))
1672 (make-hash-table :test test
:size
(- end start
)))))
1673 (do ((index 0 (1+ index
)))
1675 (declare (fixnum index
))
1676 (setq splice
(cdr (rplacd splice
(list (car current
)))))
1677 (setq current
(cdr current
)))
1679 (do ((index start
(1+ index
)))
1680 ((or (and end
(= index
(the fixnum end
)))
1682 (declare (fixnum index
))
1683 ;; The hash table contains links from values that are
1684 ;; already in result to the cons cell *preceding* theirs
1685 ;; in the list. That is, for each value v in the list,
1686 ;; v and (cadr (gethash v hash)) are equal under TEST.
1687 (let ((prev (gethash (car current
) hash
)))
1690 (setf (gethash (car current
) hash
) splice
)
1691 (setq splice
(cdr (rplacd splice
(list (car current
))))))
1693 (let* ((old (cdr prev
))
1696 (let ((next-val (car next
)))
1697 ;; (assert (eq (gethash next-val hash) old))
1698 (setf (cdr prev
) next
1699 (gethash next-val hash
) prev
1700 (gethash (car current
) hash
) splice
1701 splice
(cdr (rplacd splice
(list (car current
))))))
1702 (setf (car old
) (car current
)))))))
1703 (setq current
(cdr current
)))
1704 (do ((index start
(1+ index
)))
1705 ((or (and end
(= index
(the fixnum end
)))
1707 (declare (fixnum index
))
1708 (if (or (and from-end
1710 (member (apply-key key
(car current
))
1711 (nthcdr (1+ start
) result
)
1714 (member (apply-key key
(car current
))
1715 (nthcdr (1+ start
) result
)
1719 (not (do ((it (apply-key key
(car current
)))
1720 (l (cdr current
) (cdr l
))
1721 (i (1+ index
) (1+ i
)))
1722 ((or (atom l
) (and end
(= i
(the fixnum end
))))
1724 (declare (fixnum i
))
1726 (not (funcall test-not
1728 (apply-key key
(car l
))))
1729 (funcall test it
(apply-key key
(car l
))))
1731 (setq splice
(cdr (rplacd splice
(list (car current
))))))
1732 (setq current
(cdr current
))))
1735 (setq splice
(cdr (rplacd splice
(list (car current
)))))
1736 (setq current
(cdr current
)))
1739 (defun vector-remove-duplicates* (vector test test-not start end key from-end
1740 &optional
(length (length vector
)))
1741 (declare (vector vector
) (fixnum start length
))
1742 (when (null end
) (setf end
(length vector
)))
1743 (let ((result (%make-sequence-like vector length
))
1746 (declare (fixnum index jndex
))
1749 (setf (aref result index
) (aref vector index
))
1750 (setq index
(1+ index
)))
1753 (setq elt
(aref vector index
))
1754 (unless (or (and from-end
1756 (position (apply-key key elt
) result
1757 :start start
:end jndex
1758 :test-not test-not
:key key
)
1759 (position (apply-key key elt
) result
1760 :start start
:end jndex
1761 :test test
:key key
)))
1764 (position (apply-key key elt
) vector
1765 :start
(1+ index
) :end end
1766 :test-not test-not
:key key
)
1767 (position (apply-key key elt
) vector
1768 :start
(1+ index
) :end end
1769 :test test
:key key
))))
1770 (setf (aref result jndex
) elt
)
1771 (setq jndex
(1+ jndex
)))
1772 (setq index
(1+ index
)))
1775 (setf (aref result jndex
) (aref vector index
))
1776 (setq index
(1+ index
))
1777 (setq jndex
(1+ jndex
)))
1778 (%shrink-vector result jndex
)))
1780 (define-sequence-traverser remove-duplicates
1781 (sequence &rest args
&key test test-not start end from-end key
)
1783 "The elements of SEQUENCE are compared pairwise, and if any two match,
1784 the one occurring earlier is discarded, unless FROM-END is true, in
1785 which case the one later in the sequence is discarded. The resulting
1786 sequence is returned.
1788 The :TEST-NOT argument is deprecated."
1789 (declare (fixnum start
))
1790 (declare (dynamic-extent args
))
1791 (seq-dispatch sequence
1793 (list-remove-duplicates* sequence test test-not
1794 start end key from-end
))
1795 (vector-remove-duplicates* sequence test test-not start end key from-end
)
1796 (apply #'sb
!sequence
:remove-duplicates sequence args
)))
1798 ;;;; DELETE-DUPLICATES
1800 (defun list-delete-duplicates* (list test test-not key from-end start end
)
1801 (declare (fixnum start
))
1802 (let ((handle (cons nil list
)))
1803 (do ((current (nthcdr start list
) (cdr current
))
1804 (previous (nthcdr start handle
))
1805 (index start
(1+ index
)))
1806 ((or (and end
(= index
(the fixnum end
))) (null current
))
1808 (declare (fixnum index
))
1809 (if (do ((x (if from-end
1810 (nthcdr (1+ start
) handle
)
1813 (i (1+ index
) (1+ i
)))
1815 (and (not from-end
) end
(= i
(the fixnum end
)))
1818 (declare (fixnum i
))
1820 (not (funcall test-not
1821 (apply-key key
(car current
))
1822 (apply-key key
(car x
))))
1824 (apply-key key
(car current
))
1825 (apply-key key
(car x
))))
1827 (rplacd previous
(cdr current
))
1828 (setq previous
(cdr previous
))))))
1830 (defun vector-delete-duplicates* (vector test test-not key from-end start end
1831 &optional
(length (length vector
)))
1832 (declare (vector vector
) (fixnum start length
))
1833 (when (null end
) (setf end
(length vector
)))
1834 (do ((index start
(1+ index
))
1837 (do ((index index
(1+ index
)) ; copy the rest of the vector
1838 (jndex jndex
(1+ jndex
)))
1840 (shrink-vector vector jndex
))
1841 (setf (aref vector jndex
) (aref vector index
))))
1842 (declare (fixnum index jndex
))
1843 (setf (aref vector jndex
) (aref vector index
))
1844 (unless (if test-not
1845 (position (apply-key key
(aref vector index
)) vector
:key key
1846 :start
(if from-end start
(1+ index
))
1847 :end
(if from-end jndex end
)
1849 (position (apply-key key
(aref vector index
)) vector
:key key
1850 :start
(if from-end start
(1+ index
))
1851 :end
(if from-end jndex end
)
1853 (setq jndex
(1+ jndex
)))))
1855 (define-sequence-traverser delete-duplicates
1856 (sequence &rest args
&key test test-not start end from-end key
)
1858 "The elements of SEQUENCE are examined, and if any two match, one is
1859 discarded. The resulting sequence, which may be formed by destroying the
1860 given sequence, is returned.
1862 The :TEST-NOT argument is deprecated."
1863 (declare (dynamic-extent args
))
1864 (seq-dispatch sequence
1866 (list-delete-duplicates* sequence test test-not
1867 key from-end start end
))
1868 (vector-delete-duplicates* sequence test test-not key from-end start end
)
1869 (apply #'sb
!sequence
:delete-duplicates sequence args
)))
1873 (defun list-substitute* (pred new list start end count key test test-not old
)
1874 (declare (fixnum start end count
))
1875 (let* ((result (list nil
))
1878 (list list
)) ; Get a local list for a stepper.
1879 (do ((index 0 (1+ index
)))
1881 (declare (fixnum index
))
1882 (setq splice
(cdr (rplacd splice
(list (car list
)))))
1883 (setq list
(cdr list
)))
1884 (do ((index start
(1+ index
)))
1885 ((or (= index end
) (null list
) (= count
0)))
1886 (declare (fixnum index
))
1887 (setq elt
(car list
))
1896 (funcall test-not old
(apply-key key elt
)))
1897 (funcall test old
(apply-key key elt
))))
1898 (if (funcall test
(apply-key key elt
)))
1899 (if-not (not (funcall test
(apply-key key elt
)))))
1903 (setq list
(cdr list
)))
1906 (setq splice
(cdr (rplacd splice
(list (car list
)))))
1907 (setq list
(cdr list
)))
1910 ;;; Replace old with new in sequence moving from left to right by incrementer
1911 ;;; on each pass through the loop. Called by all three substitute functions.
1912 (defun vector-substitute* (pred new sequence incrementer left right length
1913 start end count key test test-not old
)
1914 (declare (fixnum start count end incrementer right
))
1915 (let ((result (%make-sequence-like sequence length
))
1917 (declare (fixnum index
))
1920 (setf (aref result index
) (aref sequence index
))
1921 (setq index
(+ index incrementer
)))
1923 ((or (= index end
) (= count
0)))
1924 (setq elt
(aref sequence index
))
1925 (setf (aref result index
)
1929 (not (funcall test-not old
(apply-key key elt
)))
1930 (funcall test old
(apply-key key elt
))))
1931 (if (funcall test
(apply-key key elt
)))
1932 (if-not (not (funcall test
(apply-key key elt
)))))
1933 (setq count
(1- count
))
1936 (setq index
(+ index incrementer
)))
1939 (setf (aref result index
) (aref sequence index
))
1940 (setq index
(+ index incrementer
)))
1943 (eval-when (:compile-toplevel
:execute
)
1945 (sb!xc
:defmacro subst-dispatch
(pred)
1946 `(seq-dispatch sequence
1948 (nreverse (list-substitute* ,pred
1951 (- (the fixnum length
)
1953 (- (the fixnum length
)
1955 count key test test-not old
))
1956 (list-substitute* ,pred
1957 new sequence start end count key test test-not
1960 (vector-substitute* ,pred new sequence -
1 (1- (the fixnum length
))
1961 -
1 length
(1- (the fixnum end
))
1962 (1- (the fixnum start
))
1963 count key test test-not old
)
1964 (vector-substitute* ,pred new sequence
1 0 length length
1965 start end count key test test-not old
))
1966 ;; FIXME: wow, this is an odd way to implement the dispatch. PRED
1967 ;; here is (QUOTE [NORMAL|IF|IF-NOT]). Not only is this pretty
1968 ;; pointless, but also LIST-SUBSTITUTE* and VECTOR-SUBSTITUTE*
1969 ;; dispatch once per element on PRED's run-time identity.
1971 ((normal) `(apply #'sb
!sequence
:substitute new old sequence args
))
1972 ((if) `(apply #'sb
!sequence
:substitute-if new predicate sequence args
))
1973 ((if-not) `(apply #'sb
!sequence
:substitute-if-not new predicate sequence args
)))))
1976 (define-sequence-traverser substitute
1977 (new old sequence
&rest args
&key from-end test test-not
1978 start count end key
)
1980 "Return a sequence of the same kind as SEQUENCE with the same elements,
1981 except that all elements equal to OLD are replaced with NEW."
1982 (declare (fixnum start
))
1983 (declare (dynamic-extent args
))
1984 (let ((end (or end length
)))
1985 (declare (type index end
))
1986 (subst-dispatch 'normal
)))
1988 ;;;; SUBSTITUTE-IF, SUBSTITUTE-IF-NOT
1990 (define-sequence-traverser substitute-if
1991 (new predicate sequence
&rest args
&key from-end start end count key
)
1993 "Return a sequence of the same kind as SEQUENCE with the same elements
1994 except that all elements satisfying the PRED are replaced with NEW."
1995 (declare (dynamic-extent args
))
1996 (declare (fixnum start
))
1997 (let ((end (or end length
))
2001 (declare (type index length end
))
2002 (subst-dispatch 'if
)))
2004 (define-sequence-traverser substitute-if-not
2005 (new predicate sequence
&rest args
&key from-end start end count key
)
2007 "Return a sequence of the same kind as SEQUENCE with the same elements
2008 except that all elements not satisfying the PRED are replaced with NEW."
2009 (declare (dynamic-extent args
))
2010 (declare (fixnum start
))
2011 (let ((end (or end length
))
2015 (declare (type index length end
))
2016 (subst-dispatch 'if-not
)))
2020 (define-sequence-traverser nsubstitute
2021 (new old sequence
&rest args
&key from-end test test-not
2022 end count key start
)
2024 "Return a sequence of the same kind as SEQUENCE with the same elements
2025 except that all elements equal to OLD are replaced with NEW. SEQUENCE
2026 may be destructively modified."
2027 (declare (fixnum start
))
2028 (declare (dynamic-extent args
))
2029 (let ((end (or end length
)))
2030 (seq-dispatch sequence
2032 (let ((length (length sequence
)))
2033 (nreverse (nlist-substitute*
2034 new old
(nreverse (the list sequence
))
2035 test test-not
(- length end
) (- length start
)
2037 (nlist-substitute* new old sequence
2038 test test-not start end count key
))
2040 (nvector-substitute* new old sequence -
1
2041 test test-not
(1- end
) (1- start
) count key
)
2042 (nvector-substitute* new old sequence
1
2043 test test-not start end count key
))
2044 (apply #'sb
!sequence
:nsubstitute new old sequence args
))))
2046 (defun nlist-substitute* (new old sequence test test-not start end count key
)
2047 (declare (fixnum start count end
))
2048 (do ((list (nthcdr start sequence
) (cdr list
))
2049 (index start
(1+ index
)))
2050 ((or (= index end
) (null list
) (= count
0)) sequence
)
2051 (declare (fixnum index
))
2053 (not (funcall test-not old
(apply-key key
(car list
))))
2054 (funcall test old
(apply-key key
(car list
))))
2056 (setq count
(1- count
)))))
2058 (defun nvector-substitute* (new old sequence incrementer
2059 test test-not start end count key
)
2060 (declare (fixnum start incrementer count end
))
2061 (do ((index start
(+ index incrementer
)))
2062 ((or (= index end
) (= count
0)) sequence
)
2063 (declare (fixnum index
))
2065 (not (funcall test-not
2067 (apply-key key
(aref sequence index
))))
2068 (funcall test old
(apply-key key
(aref sequence index
))))
2069 (setf (aref sequence index
) new
)
2070 (setq count
(1- count
)))))
2072 ;;;; NSUBSTITUTE-IF, NSUBSTITUTE-IF-NOT
2074 (define-sequence-traverser nsubstitute-if
2075 (new predicate sequence
&rest args
&key from-end start end count key
)
2077 "Return a sequence of the same kind as SEQUENCE with the same elements
2078 except that all elements satisfying PREDICATE are replaced with NEW.
2079 SEQUENCE may be destructively modified."
2080 (declare (fixnum start
))
2081 (declare (dynamic-extent args
))
2082 (let ((end (or end length
)))
2083 (declare (fixnum end
))
2084 (seq-dispatch sequence
2086 (let ((length (length sequence
)))
2087 (nreverse (nlist-substitute-if*
2088 new predicate
(nreverse (the list sequence
))
2089 (- length end
) (- length start
) count key
)))
2090 (nlist-substitute-if* new predicate sequence
2091 start end count key
))
2093 (nvector-substitute-if* new predicate sequence -
1
2094 (1- end
) (1- start
) count key
)
2095 (nvector-substitute-if* new predicate sequence
1
2096 start end count key
))
2097 (apply #'sb
!sequence
:nsubstitute-if new predicate sequence args
))))
2099 (defun nlist-substitute-if* (new test sequence start end count key
)
2100 (declare (fixnum end
))
2101 (do ((list (nthcdr start sequence
) (cdr list
))
2102 (index start
(1+ index
)))
2103 ((or (= index end
) (null list
) (= count
0)) sequence
)
2104 (when (funcall test
(apply-key key
(car list
)))
2106 (setq count
(1- count
)))))
2108 (defun nvector-substitute-if* (new test sequence incrementer
2109 start end count key
)
2110 (do ((index start
(+ index incrementer
)))
2111 ((or (= index end
) (= count
0)) sequence
)
2112 (when (funcall test
(apply-key key
(aref sequence index
)))
2113 (setf (aref sequence index
) new
)
2114 (setq count
(1- count
)))))
2116 (define-sequence-traverser nsubstitute-if-not
2117 (new predicate sequence
&rest args
&key from-end start end count key
)
2119 "Return a sequence of the same kind as SEQUENCE with the same elements
2120 except that all elements not satisfying PREDICATE are replaced with NEW.
2121 SEQUENCE may be destructively modified."
2122 (declare (fixnum start
))
2123 (declare (dynamic-extent args
))
2124 (let ((end (or end length
)))
2125 (declare (fixnum end
))
2126 (seq-dispatch sequence
2128 (let ((length (length sequence
)))
2129 (nreverse (nlist-substitute-if-not*
2130 new predicate
(nreverse (the list sequence
))
2131 (- length end
) (- length start
) count key
)))
2132 (nlist-substitute-if-not* new predicate sequence
2133 start end count key
))
2135 (nvector-substitute-if-not* new predicate sequence -
1
2136 (1- end
) (1- start
) count key
)
2137 (nvector-substitute-if-not* new predicate sequence
1
2138 start end count key
))
2139 (apply #'sb
!sequence
:nsubstitute-if-not new predicate sequence args
))))
2141 (defun nlist-substitute-if-not* (new test sequence start end count key
)
2142 (declare (fixnum end
))
2143 (do ((list (nthcdr start sequence
) (cdr list
))
2144 (index start
(1+ index
)))
2145 ((or (= index end
) (null list
) (= count
0)) sequence
)
2146 (when (not (funcall test
(apply-key key
(car list
))))
2150 (defun nvector-substitute-if-not* (new test sequence incrementer
2151 start end count key
)
2152 (do ((index start
(+ index incrementer
)))
2153 ((or (= index end
) (= count
0)) sequence
)
2154 (when (not (funcall test
(apply-key key
(aref sequence index
))))
2155 (setf (aref sequence index
) new
)
2158 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
2160 (defun effective-find-position-test (test test-not
)
2161 (effective-find-position-test test test-not
))
2162 (defun effective-find-position-key (key)
2163 (effective-find-position-key key
))
2165 ;;; shared guts of out-of-line FIND, POSITION, FIND-IF, and POSITION-IF
2166 (macrolet (;; shared logic for defining %FIND-POSITION and
2167 ;; %FIND-POSITION-IF in terms of various inlineable cases
2168 ;; of the expression defined in FROB and VECTOR*-FROB
2170 `(seq-dispatch sequence-arg
2171 (frob sequence-arg from-end
)
2172 (with-array-data ((sequence sequence-arg
:offset-var offset
)
2175 :check-fill-pointer t
)
2176 (multiple-value-bind (f p
)
2177 (macrolet ((frob2 () '(if from-end
2179 (frob sequence nil
))))
2182 ((simple-array character
(*)) (frob2))
2183 ((simple-array base-char
(*)) (frob2))
2184 (t (vector*-frob sequence
))))
2185 (declare (type (or index null
) p
))
2186 (values f
(and p
(the index
(- p offset
)))))))))
2187 (defun %find-position
(item sequence-arg from-end start end key test
)
2188 (macrolet ((frob (sequence from-end
)
2189 `(%find-position item
,sequence
2190 ,from-end start end key test
))
2191 (vector*-frob
(sequence)
2192 `(%find-position-vector-macro item
,sequence
2193 from-end start end key test
)))
2195 (defun %find-position-if
(predicate sequence-arg from-end start end key
)
2196 (macrolet ((frob (sequence from-end
)
2197 `(%find-position-if predicate
,sequence
2198 ,from-end start end key
))
2199 (vector*-frob
(sequence)
2200 `(%find-position-if-vector-macro predicate
,sequence
2201 from-end start end key
)))
2203 (defun %find-position-if-not
(predicate sequence-arg from-end start end key
)
2204 (macrolet ((frob (sequence from-end
)
2205 `(%find-position-if-not predicate
,sequence
2206 ,from-end start end key
))
2207 (vector*-frob
(sequence)
2208 `(%find-position-if-not-vector-macro predicate
,sequence
2209 from-end start end key
)))
2213 (item sequence
&rest args
&key from-end
(start 0) end key test test-not
)
2214 (declare (dynamic-extent args
))
2215 (seq-dispatch sequence
2216 (nth-value 0 (%find-position
2217 item sequence from-end start end
2218 (effective-find-position-key key
)
2219 (effective-find-position-test test test-not
)))
2220 (nth-value 0 (%find-position
2221 item sequence from-end start end
2222 (effective-find-position-key key
)
2223 (effective-find-position-test test test-not
)))
2224 (apply #'sb
!sequence
:find item sequence args
)))
2226 (item sequence
&rest args
&key from-end
(start 0) end key test test-not
)
2227 (declare (dynamic-extent args
))
2228 (seq-dispatch sequence
2229 (nth-value 1 (%find-position
2230 item sequence from-end start end
2231 (effective-find-position-key key
)
2232 (effective-find-position-test test test-not
)))
2233 (nth-value 1 (%find-position
2234 item sequence from-end start end
2235 (effective-find-position-key key
)
2236 (effective-find-position-test test test-not
)))
2237 (apply #'sb
!sequence
:position item sequence args
)))
2239 (defun find-if (predicate sequence
&rest args
&key from-end
(start 0) end key
)
2240 (declare (dynamic-extent args
))
2241 (seq-dispatch sequence
2242 (nth-value 0 (%find-position-if
2243 (%coerce-callable-to-fun predicate
)
2244 sequence from-end start end
2245 (effective-find-position-key key
)))
2246 (nth-value 0 (%find-position-if
2247 (%coerce-callable-to-fun predicate
)
2248 sequence from-end start end
2249 (effective-find-position-key key
)))
2250 (apply #'sb
!sequence
:find-if predicate sequence args
)))
2252 (predicate sequence
&rest args
&key from-end
(start 0) end key
)
2253 (declare (dynamic-extent args
))
2254 (seq-dispatch sequence
2255 (nth-value 1 (%find-position-if
2256 (%coerce-callable-to-fun predicate
)
2257 sequence from-end start end
2258 (effective-find-position-key key
)))
2259 (nth-value 1 (%find-position-if
2260 (%coerce-callable-to-fun predicate
)
2261 sequence from-end start end
2262 (effective-find-position-key key
)))
2263 (apply #'sb
!sequence
:position-if predicate sequence args
)))
2266 (predicate sequence
&rest args
&key from-end
(start 0) end key
)
2267 (declare (dynamic-extent args
))
2268 (seq-dispatch sequence
2269 (nth-value 0 (%find-position-if-not
2270 (%coerce-callable-to-fun predicate
)
2271 sequence from-end start end
2272 (effective-find-position-key key
)))
2273 (nth-value 0 (%find-position-if-not
2274 (%coerce-callable-to-fun predicate
)
2275 sequence from-end start end
2276 (effective-find-position-key key
)))
2277 (apply #'sb
!sequence
:find-if-not predicate sequence args
)))
2278 (defun position-if-not
2279 (predicate sequence
&rest args
&key from-end
(start 0) end key
)
2280 (declare (dynamic-extent args
))
2281 (seq-dispatch sequence
2282 (nth-value 1 (%find-position-if-not
2283 (%coerce-callable-to-fun predicate
)
2284 sequence from-end start end
2285 (effective-find-position-key key
)))
2286 (nth-value 1 (%find-position-if-not
2287 (%coerce-callable-to-fun predicate
)
2288 sequence from-end start end
2289 (effective-find-position-key key
)))
2290 (apply #'sb
!sequence
:position-if-not predicate sequence args
)))
2292 ;;;; COUNT-IF, COUNT-IF-NOT, and COUNT
2294 (eval-when (:compile-toplevel
:execute
)
2296 (sb!xc
:defmacro vector-count-if
(notp from-end-p predicate sequence
)
2297 (let ((next-index (if from-end-p
'(1- index
) '(1+ index
)))
2298 (pred `(funcall ,predicate
(apply-key key
(aref ,sequence index
)))))
2299 `(let ((%start
,(if from-end-p
'(1- end
) 'start
))
2300 (%end
,(if from-end-p
'(1- start
) 'end
)))
2301 (do ((index %start
,next-index
)
2303 ((= index
(the fixnum %end
)) count
)
2304 (declare (fixnum index count
))
2305 (,(if notp
'unless
'when
) ,pred
2306 (setq count
(1+ count
)))))))
2308 (sb!xc
:defmacro list-count-if
(notp from-end-p predicate sequence
)
2309 (let ((pred `(funcall ,predicate
(apply-key key
(pop sequence
)))))
2310 `(let ((%start
,(if from-end-p
'(- length end
) 'start
))
2311 (%end
,(if from-end-p
'(- length start
) 'end
))
2312 (sequence ,(if from-end-p
'(reverse sequence
) 'sequence
)))
2313 (do ((sequence (nthcdr %start
,sequence
))
2314 (index %start
(1+ index
))
2316 ((or (= index
(the fixnum %end
)) (null sequence
)) count
)
2317 (declare (fixnum index count
))
2318 (,(if notp
'unless
'when
) ,pred
2319 (setq count
(1+ count
)))))))
2324 (define-sequence-traverser count-if
2325 (pred sequence
&rest args
&key from-end start end key
)
2327 "Return the number of elements in SEQUENCE satisfying PRED(el)."
2328 (declare (fixnum start
))
2329 (declare (dynamic-extent args
))
2330 (let ((end (or end length
))
2331 (pred (%coerce-callable-to-fun pred
)))
2332 (declare (type index end
))
2333 (seq-dispatch sequence
2335 (list-count-if nil t pred sequence
)
2336 (list-count-if nil nil pred sequence
))
2338 (vector-count-if nil t pred sequence
)
2339 (vector-count-if nil nil pred sequence
))
2340 (apply #'sb
!sequence
:count-if pred sequence args
))))
2342 (define-sequence-traverser count-if-not
2343 (pred sequence
&rest args
&key from-end start end key
)
2345 "Return the number of elements in SEQUENCE not satisfying TEST(el)."
2346 (declare (fixnum start
))
2347 (declare (dynamic-extent args
))
2348 (let ((end (or end length
))
2349 (pred (%coerce-callable-to-fun pred
)))
2350 (declare (type index end
))
2351 (seq-dispatch sequence
2353 (list-count-if t t pred sequence
)
2354 (list-count-if t nil pred sequence
))
2356 (vector-count-if t t pred sequence
)
2357 (vector-count-if t nil pred sequence
))
2358 (apply #'sb
!sequence
:count-if-not pred sequence args
))))
2360 (define-sequence-traverser count
2361 (item sequence
&rest args
&key from-end start end
2362 key
(test #'eql test-p
) (test-not nil test-not-p
))
2364 "Return the number of elements in SEQUENCE satisfying a test with ITEM,
2365 which defaults to EQL."
2366 (declare (fixnum start
))
2367 (declare (dynamic-extent args
))
2368 (when (and test-p test-not-p
)
2369 ;; ANSI Common Lisp has left the behavior in this situation unspecified.
2371 (error ":TEST and :TEST-NOT are both present."))
2372 (let ((end (or end length
)))
2373 (declare (type index end
))
2374 (let ((%test
(if test-not-p
2376 (not (funcall test-not item x
)))
2378 (funcall test item x
)))))
2379 (seq-dispatch sequence
2381 (list-count-if nil t %test sequence
)
2382 (list-count-if nil nil %test sequence
))
2384 (vector-count-if nil t %test sequence
)
2385 (vector-count-if nil nil %test sequence
))
2386 (apply #'sb
!sequence
:count item sequence args
)))))
2390 (eval-when (:compile-toplevel
:execute
)
2392 (sb!xc
:defmacro match-vars
(&rest body
)
2393 `(let ((inc (if from-end -
1 1))
2394 (start1 (if from-end
(1- (the fixnum end1
)) start1
))
2395 (start2 (if from-end
(1- (the fixnum end2
)) start2
))
2396 (end1 (if from-end
(1- (the fixnum start1
)) end1
))
2397 (end2 (if from-end
(1- (the fixnum start2
)) end2
)))
2398 (declare (fixnum inc start1 start2 end1 end2
))
2401 (sb!xc
:defmacro matchify-list
((sequence start length end
) &body body
)
2402 (declare (ignore end
)) ;; ### Should END be used below?
2403 `(let ((,sequence
(if from-end
2404 (nthcdr (- (the fixnum
,length
) (the fixnum
,start
) 1)
2405 (reverse (the list
,sequence
)))
2406 (nthcdr ,start
,sequence
))))
2407 (declare (type list
,sequence
))
2412 (eval-when (:compile-toplevel
:execute
)
2414 (sb!xc
:defmacro if-mismatch
(elt1 elt2
)
2415 `(cond ((= (the fixnum index1
) (the fixnum end1
))
2416 (return (if (= (the fixnum index2
) (the fixnum end2
))
2419 (1+ (the fixnum index1
))
2420 (the fixnum index1
)))))
2421 ((= (the fixnum index2
) (the fixnum end2
))
2422 (return (if from-end
(1+ (the fixnum index1
)) index1
)))
2424 (if (funcall test-not
(apply-key key
,elt1
) (apply-key key
,elt2
))
2425 (return (if from-end
(1+ (the fixnum index1
)) index1
))))
2426 (t (if (not (funcall test
(apply-key key
,elt1
)
2427 (apply-key key
,elt2
)))
2428 (return (if from-end
(1+ (the fixnum index1
)) index1
))))))
2430 (sb!xc
:defmacro mumble-mumble-mismatch
()
2431 `(do ((index1 start1
(+ index1
(the fixnum inc
)))
2432 (index2 start2
(+ index2
(the fixnum inc
))))
2434 (declare (fixnum index1 index2
))
2435 (if-mismatch (aref sequence1 index1
) (aref sequence2 index2
))))
2437 (sb!xc
:defmacro mumble-list-mismatch
()
2438 `(do ((index1 start1
(+ index1
(the fixnum inc
)))
2439 (index2 start2
(+ index2
(the fixnum inc
))))
2441 (declare (fixnum index1 index2
))
2442 (if-mismatch (aref sequence1 index1
) (pop sequence2
))))
2444 (sb!xc
:defmacro list-mumble-mismatch
()
2445 `(do ((index1 start1
(+ index1
(the fixnum inc
)))
2446 (index2 start2
(+ index2
(the fixnum inc
))))
2448 (declare (fixnum index1 index2
))
2449 (if-mismatch (pop sequence1
) (aref sequence2 index2
))))
2451 (sb!xc
:defmacro list-list-mismatch
()
2452 `(do ((sequence1 sequence1
)
2453 (sequence2 sequence2
)
2454 (index1 start1
(+ index1
(the fixnum inc
)))
2455 (index2 start2
(+ index2
(the fixnum inc
))))
2457 (declare (fixnum index1 index2
))
2458 (if-mismatch (pop sequence1
) (pop sequence2
))))
2462 (define-sequence-traverser mismatch
2463 (sequence1 sequence2
&rest args
&key from-end test test-not
2464 start1 end1 start2 end2 key
)
2466 "The specified subsequences of SEQUENCE1 and SEQUENCE2 are compared
2467 element-wise. If they are of equal length and match in every element, the
2468 result is NIL. Otherwise, the result is a non-negative integer, the index
2469 within SEQUENCE1 of the leftmost position at which they fail to match; or,
2470 if one is shorter than and a matching prefix of the other, the index within
2471 SEQUENCE1 beyond the last position tested is returned. If a non-NIL
2472 :FROM-END argument is given, then one plus the index of the rightmost
2473 position in which the sequences differ is returned."
2474 (declare (fixnum start1 start2
))
2475 (declare (dynamic-extent args
))
2476 (let* ((end1 (or end1 length1
))
2477 (end2 (or end2 length2
)))
2478 (declare (type index end1 end2
))
2480 (seq-dispatch sequence1
2481 (seq-dispatch sequence2
2482 (matchify-list (sequence1 start1 length1 end1
)
2483 (matchify-list (sequence2 start2 length2 end2
)
2484 (list-list-mismatch)))
2485 (matchify-list (sequence1 start1 length1 end1
)
2486 (list-mumble-mismatch))
2487 (apply #'sb
!sequence
:mismatch sequence1 sequence2 args
))
2488 (seq-dispatch sequence2
2489 (matchify-list (sequence2 start2 length2 end2
)
2490 (mumble-list-mismatch))
2491 (mumble-mumble-mismatch)
2492 (apply #'sb
!sequence
:mismatch sequence1 sequence2 args
))
2493 (apply #'sb
!sequence
:mismatch sequence1 sequence2 args
)))))
2495 ;;; search comparison functions
2497 (eval-when (:compile-toplevel
:execute
)
2499 ;;; Compare two elements and return if they don't match.
2500 (sb!xc
:defmacro compare-elements
(elt1 elt2
)
2502 (if (funcall test-not
(apply-key key
,elt1
) (apply-key key
,elt2
))
2505 (if (not (funcall test
(apply-key key
,elt1
) (apply-key key
,elt2
)))
2509 (sb!xc
:defmacro search-compare-list-list
(main sub
)
2510 `(do ((main ,main
(cdr main
))
2511 (jndex start1
(1+ jndex
))
2512 (sub (nthcdr start1
,sub
) (cdr sub
)))
2513 ((or (endp main
) (endp sub
) (<= end1 jndex
))
2515 (declare (type (integer 0) jndex
))
2516 (compare-elements (car sub
) (car main
))))
2518 (sb!xc
:defmacro search-compare-list-vector
(main sub
)
2519 `(do ((main ,main
(cdr main
))
2520 (index start1
(1+ index
)))
2521 ((or (endp main
) (= index end1
)) t
)
2522 (compare-elements (aref ,sub index
) (car main
))))
2524 (sb!xc
:defmacro search-compare-vector-list
(main sub index
)
2525 `(do ((sub (nthcdr start1
,sub
) (cdr sub
))
2526 (jndex start1
(1+ jndex
))
2527 (index ,index
(1+ index
)))
2528 ((or (<= end1 jndex
) (endp sub
)) t
)
2529 (declare (type (integer 0) jndex
))
2530 (compare-elements (car sub
) (aref ,main index
))))
2532 (sb!xc
:defmacro search-compare-vector-vector
(main sub index
)
2533 `(do ((index ,index
(1+ index
))
2534 (sub-index start1
(1+ sub-index
)))
2535 ((= sub-index end1
) t
)
2536 (compare-elements (aref ,sub sub-index
) (aref ,main index
))))
2538 (sb!xc
:defmacro search-compare
(main-type main sub index
)
2539 (if (eq main-type
'list
)
2541 (search-compare-list-list ,main
,sub
)
2542 (search-compare-list-vector ,main
,sub
)
2543 ;; KLUDGE: just hack it together so that it works
2544 (return-from search
(apply #'sb
!sequence
:search sequence1 sequence2 args
)))
2546 (search-compare-vector-list ,main
,sub
,index
)
2547 (search-compare-vector-vector ,main
,sub
,index
)
2548 (return-from search
(apply #'sb
!sequence
:search sequence1 sequence2 args
)))))
2554 (eval-when (:compile-toplevel
:execute
)
2556 (sb!xc
:defmacro list-search
(main sub
)
2557 `(do ((main (nthcdr start2
,main
) (cdr main
))
2558 (index2 start2
(1+ index2
))
2559 (terminus (- end2
(the (integer 0) (- end1 start1
))))
2561 ((> index2 terminus
) last-match
)
2562 (declare (type (integer 0) index2
))
2563 (if (search-compare list main
,sub index2
)
2565 (setq last-match index2
)
2568 (sb!xc
:defmacro vector-search
(main sub
)
2569 `(do ((index2 start2
(1+ index2
))
2570 (terminus (- end2
(the (integer 0) (- end1 start1
))))
2572 ((> index2 terminus
) last-match
)
2573 (declare (type (integer 0) index2
))
2574 (if (search-compare vector
,main
,sub index2
)
2576 (setq last-match index2
)
2581 (define-sequence-traverser search
2582 (sequence1 sequence2
&rest args
&key
2583 from-end test test-not start1 end1 start2 end2 key
)
2584 (declare (fixnum start1 start2
))
2585 (declare (dynamic-extent args
))
2586 (let ((end1 (or end1 length1
))
2587 (end2 (or end2 length2
)))
2588 (seq-dispatch sequence2
2589 (list-search sequence2 sequence1
)
2590 (vector-search sequence2 sequence1
)
2591 (apply #'sb
!sequence
:search sequence1 sequence2 args
))))
2593 ;;; FIXME: this was originally in array.lisp; it might be better to
2594 ;;; put it back there, and make DOSEQUENCE and SEQ-DISPATCH be in
2595 ;;; a new early-seq.lisp file.
2596 (defun fill-data-vector (vector dimensions initial-contents
)
2598 (labels ((frob (axis dims contents
)
2600 (setf (aref vector index
) contents
)
2603 (unless (typep contents
'sequence
)
2604 (error "malformed :INITIAL-CONTENTS: ~S is not a ~
2605 sequence, but ~W more layer~:P needed."
2607 (- (length dimensions
) axis
)))
2608 (unless (= (length contents
) (car dims
))
2609 (error "malformed :INITIAL-CONTENTS: Dimension of ~
2610 axis ~W is ~W, but ~S is ~W long."
2611 axis
(car dims
) contents
(length contents
)))
2612 (sb!sequence
:dosequence
(content contents
)
2613 (frob (1+ axis
) (cdr dims
) content
))))))
2614 (frob 0 dimensions initial-contents
))))