Merged sbcl-1.0.14 with the sb-simd 1.3 patches
[sbcl/simd.git] / src / code / seq.lisp
blobb49f616ae61fd6f7cdd6f4a9cbb3757a16ce0a7b
1 ;;;; generic SEQUENCEs
2 ;;;;
3 ;;;; KLUDGE: comment from original CMU CL source:
4 ;;;; Be careful when modifying code. A lot of the structure of the
5 ;;;; code is affected by the fact that compiler transforms use the
6 ;;;; lower level support functions. If transforms are written for
7 ;;;; some sequence operation, note how the END argument is handled
8 ;;;; in other operations with transforms.
10 ;;;; This software is part of the SBCL system. See the README file for
11 ;;;; more information.
12 ;;;;
13 ;;;; This software is derived from the CMU CL system, which was
14 ;;;; written at Carnegie Mellon University and released into the
15 ;;;; public domain. The software is in the public domain and is
16 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
17 ;;;; files for more information.
19 (in-package "SB!IMPL")
21 ;;;; utilities
23 (defun %check-generic-sequence-bounds (seq start end)
24 (let ((length (sb!sequence:length seq)))
25 (if (<= 0 start (or end length) length)
26 (or end length)
27 (sequence-bounding-indices-bad-error seq start end))))
29 (eval-when (:compile-toplevel :load-toplevel :execute)
31 (defparameter *sequence-keyword-info*
32 ;; (name default supplied-p adjustment new-type)
33 `((count nil
34 nil
35 (etypecase count
36 (null (1- most-positive-fixnum))
37 (fixnum (max 0 count))
38 (integer (if (minusp count)
40 (1- most-positive-fixnum))))
41 (mod #.sb!xc:most-positive-fixnum))
42 ,@(mapcan (lambda (names)
43 (destructuring-bind (start end length sequence) names
44 (list
45 `(,start
47 nil
48 (if (<= 0 ,start ,length)
49 ,start
50 (sequence-bounding-indices-bad-error ,sequence ,start ,end))
51 index)
52 `(,end
53 nil
54 nil
55 (if (or (null ,end) (<= ,start ,end ,length))
56 ;; Defaulting of NIL is done inside the
57 ;; bodies, for ease of sharing with compiler
58 ;; transforms.
60 ;; FIXME: defend against non-number non-NIL
61 ;; stuff?
62 ,end
63 (sequence-bounding-indices-bad-error ,sequence ,start ,end))
64 (or null index)))))
65 '((start end length sequence)
66 (start1 end1 length1 sequence1)
67 (start2 end2 length2 sequence2)))
68 (key nil
69 nil
70 (and key (%coerce-callable-to-fun key))
71 (or null function))
72 (test #'eql
73 nil
74 (%coerce-callable-to-fun test)
75 function)
76 (test-not nil
77 nil
78 (and test-not (%coerce-callable-to-fun test-not))
79 (or null function))
82 (sb!xc:defmacro define-sequence-traverser (name args &body body)
83 (multiple-value-bind (body declarations docstring)
84 (parse-body body :doc-string-allowed t)
85 (collect ((new-args) (new-declarations) (adjustments))
86 (dolist (arg args)
87 (case arg
88 ;; FIXME: make this robust. And clean.
89 ((sequence)
90 (new-args arg)
91 (adjustments '(length (length sequence)))
92 (new-declarations '(type index length)))
93 ((sequence1)
94 (new-args arg)
95 (adjustments '(length1 (length sequence1)))
96 (new-declarations '(type index length1)))
97 ((sequence2)
98 (new-args arg)
99 (adjustments '(length2 (length sequence2)))
100 (new-declarations '(type index length2)))
101 ((function predicate)
102 (new-args arg)
103 (adjustments `(,arg (%coerce-callable-to-fun ,arg))))
104 (t (let ((info (cdr (assoc arg *sequence-keyword-info*))))
105 (cond (info
106 (destructuring-bind (default supplied-p adjuster type) info
107 (new-args `(,arg ,default ,@(when supplied-p (list supplied-p))))
108 (adjustments `(,arg ,adjuster))
109 (new-declarations `(type ,type ,arg))))
110 (t (new-args arg)))))))
111 `(defun ,name ,(new-args)
112 ,@(when docstring (list docstring))
113 ,@declarations
114 (let* (,@(adjustments))
115 (declare ,@(new-declarations))
116 ,@body)))))
118 ;;; SEQ-DISPATCH does an efficient type-dispatch on the given SEQUENCE.
120 ;;; FIXME: It might be worth making three cases here, LIST,
121 ;;; SIMPLE-VECTOR, and VECTOR, instead of the current LIST and VECTOR.
122 ;;; It tends to make code run faster but be bigger; some benchmarking
123 ;;; is needed to decide.
124 (sb!xc:defmacro seq-dispatch
125 (sequence list-form array-form &optional other-form)
126 `(if (listp ,sequence)
127 (let ((,sequence (truly-the list ,sequence)))
128 (declare (ignorable ,sequence))
129 ,list-form)
130 ,@(if other-form
131 `((if (arrayp ,sequence)
132 (let ((,sequence (truly-the vector ,sequence)))
133 (declare (ignorable ,sequence))
134 ,array-form)
135 ,other-form))
136 `((let ((,sequence (truly-the vector ,sequence)))
137 (declare (ignorable ,sequence))
138 ,array-form)))))
140 (sb!xc:defmacro %make-sequence-like (sequence length)
141 #!+sb-doc
142 "Return a sequence of the same type as SEQUENCE and the given LENGTH."
143 `(seq-dispatch ,sequence
144 (make-list ,length)
145 (make-array ,length :element-type (array-element-type ,sequence))
146 (sb!sequence:make-sequence-like ,sequence ,length)))
148 (sb!xc:defmacro bad-sequence-type-error (type-spec)
149 `(error 'simple-type-error
150 :datum ,type-spec
151 :expected-type '(satisfies is-a-valid-sequence-type-specifier-p)
152 :format-control "~S is a bad type specifier for sequences."
153 :format-arguments (list ,type-spec)))
155 (sb!xc:defmacro sequence-type-length-mismatch-error (type length)
156 `(error 'simple-type-error
157 :datum ,length
158 :expected-type (cond ((array-type-p ,type)
159 `(eql ,(car (array-type-dimensions ,type))))
160 ((type= ,type (specifier-type 'null))
161 '(eql 0))
162 ((cons-type-p ,type)
163 '(integer 1))
164 (t (bug "weird type in S-T-L-M-ERROR")))
165 ;; FIXME: this format control causes ugly printing. There's
166 ;; probably some ~<~@:_~> incantation that would make it
167 ;; nicer. -- CSR, 2002-10-18
168 :format-control "The length requested (~S) does not match the type restriction in ~S."
169 :format-arguments (list ,length (type-specifier ,type))))
171 (sb!xc:defmacro sequence-type-too-hairy (type-spec)
172 ;; FIXME: Should this be a BUG? I'm inclined to think not; there are
173 ;; words that give some but not total support to this position in
174 ;; ANSI. Essentially, we are justified in throwing this on
175 ;; e.g. '(OR SIMPLE-VECTOR (VECTOR FIXNUM)), but maybe not (by ANSI)
176 ;; on '(CONS * (CONS * NULL)) -- CSR, 2002-10-18
178 ;; On the other hand, I'm not sure it deserves to be a type-error,
179 ;; either. -- bem, 2005-08-10
180 `(error 'simple-program-error
181 :format-control "~S is too hairy for sequence functions."
182 :format-arguments (list ,type-spec)))
183 ) ; EVAL-WHEN
185 (defun is-a-valid-sequence-type-specifier-p (type)
186 (let ((type (specifier-type type)))
187 (or (csubtypep type (specifier-type 'list))
188 (csubtypep type (specifier-type 'vector)))))
190 ;;; It's possible with some sequence operations to declare the length
191 ;;; of a result vector, and to be safe, we really ought to verify that
192 ;;; the actual result has the declared length.
193 (defun vector-of-checked-length-given-length (vector declared-length)
194 (declare (type vector vector))
195 (declare (type index declared-length))
196 (let ((actual-length (length vector)))
197 (unless (= actual-length declared-length)
198 (error 'simple-type-error
199 :datum vector
200 :expected-type `(vector ,declared-length)
201 :format-control
202 "Vector length (~W) doesn't match declared length (~W)."
203 :format-arguments (list actual-length declared-length))))
204 vector)
205 (defun sequence-of-checked-length-given-type (sequence result-type)
206 (let ((ctype (specifier-type result-type)))
207 (if (not (array-type-p ctype))
208 sequence
209 (let ((declared-length (first (array-type-dimensions ctype))))
210 (if (eq declared-length '*)
211 sequence
212 (vector-of-checked-length-given-length sequence
213 declared-length))))))
215 (declaim (ftype (function (sequence index) nil) signal-index-too-large-error))
216 (defun signal-index-too-large-error (sequence index)
217 (let* ((length (length sequence))
218 (max-index (and (plusp length)
219 (1- length))))
220 (error 'index-too-large-error
221 :datum index
222 :expected-type (if max-index
223 `(integer 0 ,max-index)
224 ;; This seems silly, is there something better?
225 '(integer 0 (0))))))
227 (defun sequence-bounding-indices-bad-error (sequence start end)
228 (let ((size (length sequence)))
229 (error 'bounding-indices-bad-error
230 :datum (cons start end)
231 :expected-type `(cons (integer 0 ,size)
232 (integer ,start ,size))
233 :object sequence)))
235 (defun array-bounding-indices-bad-error (array start end)
236 (let ((size (array-total-size array)))
237 (error 'bounding-indices-bad-error
238 :datum (cons start end)
239 :expected-type `(cons (integer 0 ,size)
240 (integer ,start ,size))
241 :object array)))
243 (defun elt (sequence index)
244 #!+sb-doc "Return the element of SEQUENCE specified by INDEX."
245 (seq-dispatch sequence
246 (do ((count index (1- count))
247 (list sequence (cdr list)))
248 ((= count 0)
249 (if (endp list)
250 (signal-index-too-large-error sequence index)
251 (car list)))
252 (declare (type (integer 0) count)))
253 (progn
254 (when (>= index (length sequence))
255 (signal-index-too-large-error sequence index))
256 (aref sequence index))
257 (sb!sequence:elt sequence index)))
259 (defun %setelt (sequence index newval)
260 #!+sb-doc "Store NEWVAL as the component of SEQUENCE specified by INDEX."
261 (seq-dispatch sequence
262 (do ((count index (1- count))
263 (seq sequence))
264 ((= count 0) (rplaca seq newval) newval)
265 (declare (fixnum count))
266 (if (atom (cdr seq))
267 (signal-index-too-large-error sequence index)
268 (setq seq (cdr seq))))
269 (progn
270 (when (>= index (length sequence))
271 (signal-index-too-large-error sequence index))
272 (setf (aref sequence index) newval))
273 (setf (sb!sequence:elt sequence index) newval)))
275 (defun length (sequence)
276 #!+sb-doc "Return an integer that is the length of SEQUENCE."
277 (seq-dispatch sequence
278 (length sequence)
279 (length sequence)
280 (sb!sequence:length sequence)))
282 (defun make-sequence (type length &key (initial-element nil iep))
283 #!+sb-doc
284 "Return a sequence of the given TYPE and LENGTH, with elements initialized
285 to INITIAL-ELEMENT."
286 (declare (fixnum length))
287 (let* ((adjusted-type
288 (typecase type
289 (atom (cond
290 ((eq type 'string) '(vector character))
291 ((eq type 'simple-string) '(simple-array character (*)))
292 (t type)))
293 (cons (cond
294 ((eq (car type) 'string) `(vector character ,@(cdr type)))
295 ((eq (car type) 'simple-string)
296 `(simple-array character ,(if (cdr type)
297 (cdr type)
298 '(*))))
299 (t type)))
300 (t type)))
301 (type (specifier-type adjusted-type)))
302 (cond ((csubtypep type (specifier-type 'list))
303 (cond
304 ((type= type (specifier-type 'list))
305 (make-list length :initial-element initial-element))
306 ((eq type *empty-type*)
307 (bad-sequence-type-error nil))
308 ((type= type (specifier-type 'null))
309 (if (= length 0)
310 'nil
311 (sequence-type-length-mismatch-error type length)))
312 ((cons-type-p type)
313 (multiple-value-bind (min exactp)
314 (sb!kernel::cons-type-length-info type)
315 (if exactp
316 (unless (= length min)
317 (sequence-type-length-mismatch-error type length))
318 (unless (>= length min)
319 (sequence-type-length-mismatch-error type length)))
320 (make-list length :initial-element initial-element)))
321 ;; We'll get here for e.g. (OR NULL (CONS INTEGER *)),
322 ;; which may seem strange and non-ideal, but then I'd say
323 ;; it was stranger to feed that type in to MAKE-SEQUENCE.
324 (t (sequence-type-too-hairy (type-specifier type)))))
325 ((csubtypep type (specifier-type 'vector))
326 (cond
327 (;; is it immediately obvious what the result type is?
328 (typep type 'array-type)
329 (progn
330 (aver (= (length (array-type-dimensions type)) 1))
331 (let* ((etype (type-specifier
332 (array-type-specialized-element-type type)))
333 (etype (if (eq etype '*) t etype))
334 (type-length (car (array-type-dimensions type))))
335 (unless (or (eq type-length '*)
336 (= type-length length))
337 (sequence-type-length-mismatch-error type length))
338 ;; FIXME: These calls to MAKE-ARRAY can't be
339 ;; open-coded, as the :ELEMENT-TYPE argument isn't
340 ;; constant. Probably we ought to write a
341 ;; DEFTRANSFORM for MAKE-SEQUENCE. -- CSR,
342 ;; 2002-07-22
343 (if iep
344 (make-array length :element-type etype
345 :initial-element initial-element)
346 (make-array length :element-type etype)))))
347 (t (sequence-type-too-hairy (type-specifier type)))))
348 ((and (csubtypep type (specifier-type 'sequence))
349 (find-class adjusted-type nil))
350 (let* ((class (find-class adjusted-type nil)))
351 (unless (sb!mop:class-finalized-p class)
352 (sb!mop:finalize-inheritance class))
353 (if iep
354 (sb!sequence:make-sequence-like
355 (sb!mop:class-prototype class) length
356 :initial-element initial-element)
357 (sb!sequence:make-sequence-like
358 (sb!mop:class-prototype class) length))))
359 (t (bad-sequence-type-error (type-specifier type))))))
361 ;;;; SUBSEQ
362 ;;;;
363 ;;;; The support routines for SUBSEQ are used by compiler transforms,
364 ;;;; so we worry about dealing with END being supplied or defaulting
365 ;;;; to NIL at this level.
367 (defun string-subseq* (sequence start end)
368 (with-array-data ((data sequence)
369 (start start)
370 (end end)
371 :force-inline t
372 :check-fill-pointer t)
373 (declare (optimize (speed 3) (safety 0)))
374 (string-dispatch ((simple-array character (*))
375 (simple-array base-char (*))
376 (vector nil))
377 data
378 (subseq data start end))))
380 (defun vector-subseq* (sequence start end)
381 (declare (type vector sequence))
382 (declare (type index start)
383 (type (or null index) end))
384 (with-array-data ((data sequence)
385 (start start)
386 (end end)
387 :check-fill-pointer t
388 :force-inline t)
389 (let* ((copy (%make-sequence-like sequence (- end start)))
390 (setter (!find-data-vector-setter copy))
391 (reffer (!find-data-vector-reffer data)))
392 (declare (optimize (speed 3) (safety 0)))
393 (do ((old-index start (1+ old-index))
394 (new-index 0 (1+ new-index)))
395 ((= old-index end) copy)
396 (declare (index old-index new-index))
397 (funcall setter copy new-index
398 (funcall reffer data old-index))))))
400 (defun list-subseq* (sequence start end)
401 (declare (type list sequence)
402 (type unsigned-byte start)
403 (type (or null unsigned-byte) end))
404 (flet ((oops ()
405 (sequence-bounding-indices-bad-error sequence start end)))
406 (let ((pointer sequence))
407 (unless (zerop start)
408 ;; If START > 0 the list cannot be empty. So CDR down to
409 ;; it START-1 times, check that we still have something, then
410 ;; CDR the final time.
412 ;; If START was zero, the list may be empty if END is NIL or
413 ;; also zero.
414 (when (> start 1)
415 (setf pointer (nthcdr (1- start) pointer)))
416 (if pointer
417 (pop pointer)
418 (oops)))
419 (if end
420 (let ((n (- end start)))
421 (declare (integer n))
422 (when (minusp n)
423 (oops))
424 (when (plusp n)
425 (let* ((head (list nil))
426 (tail head))
427 (macrolet ((pop-one ()
428 `(let ((tmp (list (pop pointer))))
429 (setf (cdr tail) tmp
430 tail tmp))))
431 ;; Bignum case
432 (loop until (fixnump n)
433 do (pop-one)
434 (decf n))
435 ;; Fixnum case, but leave last element, so we should
436 ;; still have something left in the sequence.
437 (let ((m (1- n)))
438 (declare (fixnum m))
439 (loop repeat m
440 do (pop-one)))
441 (unless pointer
442 (oops))
443 ;; OK, pop the last one.
444 (pop-one)
445 (cdr head)))))
446 (loop while pointer
447 collect (pop pointer))))))
449 (defun subseq (sequence start &optional end)
450 #!+sb-doc
451 "Return a copy of a subsequence of SEQUENCE starting with element number
452 START and continuing to the end of SEQUENCE or the optional END."
453 (seq-dispatch sequence
454 (list-subseq* sequence start end)
455 (vector-subseq* sequence start end)
456 (sb!sequence:subseq sequence start end)))
458 ;;;; COPY-SEQ
460 (defun copy-seq (sequence)
461 #!+sb-doc "Return a copy of SEQUENCE which is EQUAL to SEQUENCE but not EQ."
462 (seq-dispatch sequence
463 (list-copy-seq* sequence)
464 (vector-subseq* sequence 0 nil)
465 (sb!sequence:copy-seq sequence)))
467 (defun list-copy-seq* (sequence)
468 (!copy-list-macro sequence :check-proper-list t))
470 ;;;; FILL
472 (defun list-fill* (sequence item start end)
473 (declare (type list sequence)
474 (type unsigned-byte start)
475 (type (or null unsigned-byte) end))
476 (flet ((oops ()
477 (sequence-bounding-indices-bad-error sequence start end)))
478 (let ((pointer sequence))
479 (unless (zerop start)
480 ;; If START > 0 the list cannot be empty. So CDR down to it
481 ;; START-1 times, check that we still have something, then CDR
482 ;; the final time.
484 ;; If START was zero, the list may be empty if END is NIL or
485 ;; also zero.
486 (unless (= start 1)
487 (setf pointer (nthcdr (1- start) pointer)))
488 (if pointer
489 (pop pointer)
490 (oops)))
491 (if end
492 (let ((n (- end start)))
493 (declare (integer n))
494 (when (minusp n)
495 (oops))
496 (when (plusp n)
497 (loop repeat n
498 do (setf pointer (cdr (rplaca pointer item))))))
499 (loop while pointer
500 do (setf pointer (cdr (rplaca pointer item))))))))
502 (defun vector-fill* (sequence item start end)
503 (with-array-data ((data sequence)
504 (start start)
505 (end end)
506 :force-inline t
507 :check-fill-pointer t)
508 (let ((setter (!find-data-vector-setter data)))
509 (declare (optimize (speed 3) (safety 0)))
510 (do ((index start (1+ index)))
511 ((= index end) sequence)
512 (declare (index index))
513 (funcall setter data index item)))))
515 (defun string-fill* (sequence item start end)
516 (declare (string sequence))
517 (with-array-data ((data sequence)
518 (start start)
519 (end end)
520 :force-inline t
521 :check-fill-pointer t)
522 (macrolet ((frob ()
523 `(locally (declare (optimize (safety 0) (speed 3)))
524 (do ((i start (1+ i)))
525 ((= i end) sequence)
526 (declare (index i))
527 (setf (aref data i) item)))))
528 (etypecase data
529 #!+sb-unicode
530 ((simple-array character (*))
531 (let ((item (locally (declare (optimize (safety 3)))
532 (the character item))))
533 (frob)))
534 ((simple-array base-char (*))
535 (let ((item (locally (declare (optimize (safety 3)))
536 (the base-char item))))
537 (frob)))))))
539 (defun fill (sequence item &key (start 0) end)
540 #!+sb-doc
541 "Replace the specified elements of SEQUENCE with ITEM."
542 (seq-dispatch sequence
543 (list-fill* sequence item start end)
544 (vector-fill* sequence item start end)
545 (sb!sequence:fill sequence item
546 :start start
547 :end (%check-generic-sequence-bounds sequence start end))))
549 ;;;; REPLACE
551 (eval-when (:compile-toplevel :execute)
553 ;;; If we are copying around in the same vector, be careful not to copy the
554 ;;; same elements over repeatedly. We do this by copying backwards.
555 (sb!xc:defmacro mumble-replace-from-mumble ()
556 `(if (and (eq target-sequence source-sequence) (> target-start source-start))
557 (let ((nelts (min (- target-end target-start)
558 (- source-end source-start))))
559 (do ((target-index (+ (the fixnum target-start) (the fixnum nelts) -1)
560 (1- target-index))
561 (source-index (+ (the fixnum source-start) (the fixnum nelts) -1)
562 (1- source-index)))
563 ((= target-index (the fixnum (1- target-start))) target-sequence)
564 (declare (fixnum target-index source-index))
565 ;; disable bounds checking
566 (declare (optimize (safety 0)))
567 (setf (aref target-sequence target-index)
568 (aref source-sequence source-index))))
569 (do ((target-index target-start (1+ target-index))
570 (source-index source-start (1+ source-index)))
571 ((or (= target-index (the fixnum target-end))
572 (= source-index (the fixnum source-end)))
573 target-sequence)
574 (declare (fixnum target-index source-index))
575 ;; disable bounds checking
576 (declare (optimize (safety 0)))
577 (setf (aref target-sequence target-index)
578 (aref source-sequence source-index)))))
580 (sb!xc:defmacro list-replace-from-list ()
581 `(if (and (eq target-sequence source-sequence) (> target-start source-start))
582 (let ((new-elts (subseq source-sequence source-start
583 (+ (the fixnum source-start)
584 (the fixnum
585 (min (- (the fixnum target-end)
586 (the fixnum target-start))
587 (- (the fixnum source-end)
588 (the fixnum source-start))))))))
589 (do ((n new-elts (cdr n))
590 (o (nthcdr target-start target-sequence) (cdr o)))
591 ((null n) target-sequence)
592 (rplaca o (car n))))
593 (do ((target-index target-start (1+ target-index))
594 (source-index source-start (1+ source-index))
595 (target-sequence-ref (nthcdr target-start target-sequence)
596 (cdr target-sequence-ref))
597 (source-sequence-ref (nthcdr source-start source-sequence)
598 (cdr source-sequence-ref)))
599 ((or (= target-index (the fixnum target-end))
600 (= source-index (the fixnum source-end))
601 (null target-sequence-ref) (null source-sequence-ref))
602 target-sequence)
603 (declare (fixnum target-index source-index))
604 (rplaca target-sequence-ref (car source-sequence-ref)))))
606 (sb!xc:defmacro list-replace-from-mumble ()
607 `(do ((target-index target-start (1+ target-index))
608 (source-index source-start (1+ source-index))
609 (target-sequence-ref (nthcdr target-start target-sequence)
610 (cdr target-sequence-ref)))
611 ((or (= target-index (the fixnum target-end))
612 (= source-index (the fixnum source-end))
613 (null target-sequence-ref))
614 target-sequence)
615 (declare (fixnum source-index target-index))
616 (rplaca target-sequence-ref (aref source-sequence source-index))))
618 (sb!xc:defmacro mumble-replace-from-list ()
619 `(do ((target-index target-start (1+ target-index))
620 (source-index source-start (1+ source-index))
621 (source-sequence (nthcdr source-start source-sequence)
622 (cdr source-sequence)))
623 ((or (= target-index (the fixnum target-end))
624 (= source-index (the fixnum source-end))
625 (null source-sequence))
626 target-sequence)
627 (declare (fixnum target-index source-index))
628 (setf (aref target-sequence target-index) (car source-sequence))))
630 ) ; EVAL-WHEN
632 ;;;; The support routines for REPLACE are used by compiler transforms, so we
633 ;;;; worry about dealing with END being supplied or defaulting to NIL
634 ;;;; at this level.
636 (defun list-replace-from-list* (target-sequence source-sequence target-start
637 target-end source-start source-end)
638 (when (null target-end) (setq target-end (length target-sequence)))
639 (when (null source-end) (setq source-end (length source-sequence)))
640 (list-replace-from-list))
642 (defun list-replace-from-vector* (target-sequence source-sequence target-start
643 target-end source-start source-end)
644 (when (null target-end) (setq target-end (length target-sequence)))
645 (when (null source-end) (setq source-end (length source-sequence)))
646 (list-replace-from-mumble))
648 (defun vector-replace-from-list* (target-sequence source-sequence target-start
649 target-end source-start source-end)
650 (when (null target-end) (setq target-end (length target-sequence)))
651 (when (null source-end) (setq source-end (length source-sequence)))
652 (mumble-replace-from-list))
654 (defun vector-replace-from-vector* (target-sequence source-sequence
655 target-start target-end source-start
656 source-end)
657 (when (null target-end) (setq target-end (length target-sequence)))
658 (when (null source-end) (setq source-end (length source-sequence)))
659 (mumble-replace-from-mumble))
661 #!+sb-unicode
662 (defun simple-character-string-replace-from-simple-character-string*
663 (target-sequence source-sequence
664 target-start target-end source-start source-end)
665 (declare (type (simple-array character (*)) target-sequence source-sequence))
666 (when (null target-end) (setq target-end (length target-sequence)))
667 (when (null source-end) (setq source-end (length source-sequence)))
668 (mumble-replace-from-mumble))
670 (define-sequence-traverser replace
671 (sequence1 sequence2 &rest args &key start1 end1 start2 end2)
672 #!+sb-doc
673 "The target sequence is destructively modified by copying successive
674 elements into it from the source sequence."
675 (declare (dynamic-extent args))
676 (let* (;; KLUDGE: absent either rewriting FOO-REPLACE-FROM-BAR, or
677 ;; excessively polluting DEFINE-SEQUENCE-TRAVERSER, we rebind
678 ;; these things here so that legacy code gets the names it's
679 ;; expecting. We could use &AUX instead :-/.
680 (target-sequence sequence1)
681 (source-sequence sequence2)
682 (target-start start1)
683 (source-start start2)
684 (target-end (or end1 length1))
685 (source-end (or end2 length2)))
686 (seq-dispatch target-sequence
687 (seq-dispatch source-sequence
688 (list-replace-from-list)
689 (list-replace-from-mumble)
690 (apply #'sb!sequence:replace sequence1 sequence2 args))
691 (seq-dispatch source-sequence
692 (mumble-replace-from-list)
693 (mumble-replace-from-mumble)
694 (apply #'sb!sequence:replace sequence1 sequence2 args))
695 (apply #'sb!sequence:replace sequence1 sequence2 args))))
697 ;;;; REVERSE
699 (eval-when (:compile-toplevel :execute)
701 (sb!xc:defmacro vector-reverse (sequence)
702 `(let ((length (length ,sequence)))
703 (declare (fixnum length))
704 (do ((forward-index 0 (1+ forward-index))
705 (backward-index (1- length) (1- backward-index))
706 (new-sequence (%make-sequence-like sequence length)))
707 ((= forward-index length) new-sequence)
708 (declare (fixnum forward-index backward-index))
709 (setf (aref new-sequence forward-index)
710 (aref ,sequence backward-index)))))
712 (sb!xc:defmacro list-reverse-macro (sequence)
713 `(do ((new-list ()))
714 ((endp ,sequence) new-list)
715 (push (pop ,sequence) new-list)))
717 ) ; EVAL-WHEN
719 (defun reverse (sequence)
720 #!+sb-doc
721 "Return a new sequence containing the same elements but in reverse order."
722 (seq-dispatch sequence
723 (list-reverse* sequence)
724 (vector-reverse* sequence)
725 (sb!sequence:reverse sequence)))
727 ;;; internal frobs
729 (defun list-reverse* (sequence)
730 (list-reverse-macro sequence))
732 (defun vector-reverse* (sequence)
733 (vector-reverse sequence))
735 ;;;; NREVERSE
737 (eval-when (:compile-toplevel :execute)
739 (sb!xc:defmacro vector-nreverse (sequence)
740 `(let ((length (length (the vector ,sequence))))
741 (when (>= length 2)
742 (do ((left-index 0 (1+ left-index))
743 (right-index (1- length) (1- right-index)))
744 ((<= right-index left-index))
745 (declare (type index left-index right-index))
746 (rotatef (aref ,sequence left-index)
747 (aref ,sequence right-index))))
748 ,sequence))
750 (sb!xc:defmacro list-nreverse-macro (list)
751 `(do ((1st (cdr ,list) (if (endp 1st) 1st (cdr 1st)))
752 (2nd ,list 1st)
753 (3rd '() 2nd))
754 ((atom 2nd) 3rd)
755 (rplacd 2nd 3rd)))
757 ) ; EVAL-WHEN
759 (defun list-nreverse* (sequence)
760 (list-nreverse-macro sequence))
762 (defun vector-nreverse* (sequence)
763 (vector-nreverse sequence))
765 (defun nreverse (sequence)
766 #!+sb-doc
767 "Return a sequence of the same elements in reverse order; the argument
768 is destroyed."
769 (seq-dispatch sequence
770 (list-nreverse* sequence)
771 (vector-nreverse* sequence)
772 (sb!sequence:nreverse sequence)))
774 ;;;; CONCATENATE
776 (defmacro sb!sequence:dosequence ((e sequence &optional return) &body body)
777 (multiple-value-bind (forms decls) (parse-body body :doc-string-allowed nil)
778 (let ((s sequence)
779 (sequence (gensym "SEQUENCE")))
780 `(block nil
781 (let ((,sequence ,s))
782 (seq-dispatch ,sequence
783 (dolist (,e ,sequence ,return) ,@body)
784 (dovector (,e ,sequence ,return) ,@body)
785 (multiple-value-bind (state limit from-end step endp elt)
786 (sb!sequence:make-sequence-iterator ,sequence)
787 (do ((state state (funcall step ,sequence state from-end)))
788 ((funcall endp ,sequence state limit from-end)
789 (let ((,e nil))
790 ,@(filter-dolist-declarations decls)
792 ,return))
793 (let ((,e (funcall elt ,sequence state)))
794 ,@decls
795 (tagbody
796 ,@forms))))))))))
798 (eval-when (:compile-toplevel :execute)
800 (sb!xc:defmacro concatenate-to-list (sequences)
801 `(let ((result (list nil)))
802 (do ((sequences ,sequences (cdr sequences))
803 (splice result))
804 ((null sequences) (cdr result))
805 (let ((sequence (car sequences)))
806 (sb!sequence:dosequence (e sequence)
807 (setq splice (cdr (rplacd splice (list e)))))))))
809 (sb!xc:defmacro concatenate-to-mumble (output-type-spec sequences)
810 `(do ((seqs ,sequences (cdr seqs))
811 (total-length 0)
812 (lengths ()))
813 ((null seqs)
814 (do ((sequences ,sequences (cdr sequences))
815 (lengths lengths (cdr lengths))
816 (index 0)
817 (result (make-sequence ,output-type-spec total-length)))
818 ((= index total-length) result)
819 (declare (fixnum index))
820 (let ((sequence (car sequences)))
821 (sb!sequence:dosequence (e sequence)
822 (setf (aref result index) e)
823 (incf index)))))
824 (let ((length (length (car seqs))))
825 (declare (fixnum length))
826 (setq lengths (nconc lengths (list length)))
827 (setq total-length (+ total-length length)))))
829 ) ; EVAL-WHEN
831 (defun concatenate (output-type-spec &rest sequences)
832 #!+sb-doc
833 "Return a new sequence of all the argument sequences concatenated together
834 which shares no structure with the original argument sequences of the
835 specified OUTPUT-TYPE-SPEC."
836 (let ((type (specifier-type output-type-spec)))
837 (cond
838 ((csubtypep type (specifier-type 'list))
839 (cond
840 ((type= type (specifier-type 'list))
841 (apply #'concat-to-list* sequences))
842 ((eq type *empty-type*)
843 (bad-sequence-type-error nil))
844 ((type= type (specifier-type 'null))
845 (if (every (lambda (x) (or (null x)
846 (and (vectorp x) (= (length x) 0))))
847 sequences)
848 'nil
849 (sequence-type-length-mismatch-error
850 type
851 ;; FIXME: circular list issues.
852 (reduce #'+ sequences :key #'length))))
853 ((cons-type-p type)
854 (multiple-value-bind (min exactp)
855 (sb!kernel::cons-type-length-info type)
856 (let ((length (reduce #'+ sequences :key #'length)))
857 (if exactp
858 (unless (= length min)
859 (sequence-type-length-mismatch-error type length))
860 (unless (>= length min)
861 (sequence-type-length-mismatch-error type length)))
862 (apply #'concat-to-list* sequences))))
863 (t (sequence-type-too-hairy (type-specifier type)))))
864 ((csubtypep type (specifier-type 'vector))
865 (apply #'concat-to-simple* output-type-spec sequences))
866 ((and (csubtypep type (specifier-type 'sequence))
867 (find-class output-type-spec nil))
868 (coerce (apply #'concat-to-simple* 'vector sequences) output-type-spec))
870 (bad-sequence-type-error output-type-spec)))))
872 ;;; internal frobs
873 ;;; FIXME: These are weird. They're never called anywhere except in
874 ;;; CONCATENATE. It seems to me that the macros ought to just
875 ;;; be expanded directly in CONCATENATE, or in CONCATENATE-STRING
876 ;;; and CONCATENATE-LIST variants. Failing that, these ought to be local
877 ;;; functions (FLET).
878 (defun concat-to-list* (&rest sequences)
879 (concatenate-to-list sequences))
880 (defun concat-to-simple* (type &rest sequences)
881 (concatenate-to-mumble type sequences))
883 ;;;; MAP and MAP-INTO
885 ;;; helper functions to handle arity-1 subcases of MAP
886 (declaim (ftype (function (function sequence) list) %map-list-arity-1))
887 (declaim (ftype (function (function sequence) simple-vector)
888 %map-simple-vector-arity-1))
889 (defun %map-to-list-arity-1 (fun sequence)
890 (let ((reversed-result nil)
891 (really-fun (%coerce-callable-to-fun fun)))
892 (sb!sequence:dosequence (element sequence)
893 (push (funcall really-fun element)
894 reversed-result))
895 (nreverse reversed-result)))
896 (defun %map-to-simple-vector-arity-1 (fun sequence)
897 (let ((result (make-array (length sequence)))
898 (index 0)
899 (really-fun (%coerce-callable-to-fun fun)))
900 (declare (type index index))
901 (sb!sequence:dosequence (element sequence)
902 (setf (aref result index)
903 (funcall really-fun element))
904 (incf index))
905 result))
906 (defun %map-for-effect-arity-1 (fun sequence)
907 (let ((really-fun (%coerce-callable-to-fun fun)))
908 (sb!sequence:dosequence (element sequence)
909 (funcall really-fun element)))
910 nil)
912 (declaim (maybe-inline %map-for-effect))
913 (defun %map-for-effect (fun sequences)
914 (declare (type function fun) (type list sequences))
915 (let ((%sequences sequences)
916 (%iters (mapcar (lambda (s)
917 (seq-dispatch s
920 (multiple-value-list
921 (sb!sequence:make-sequence-iterator s))))
922 sequences))
923 (%apply-args (make-list (length sequences))))
924 ;; this is almost efficient (except in the general case where we
925 ;; trampoline to MAKE-SEQUENCE-ITERATOR; if we had DX allocation
926 ;; of MAKE-LIST, the whole of %MAP would be cons-free.
927 (declare (type list %sequences %iters %apply-args))
928 (loop
929 (do ((in-sequences %sequences (cdr in-sequences))
930 (in-iters %iters (cdr in-iters))
931 (in-apply-args %apply-args (cdr in-apply-args)))
932 ((null in-sequences) (apply fun %apply-args))
933 (let ((i (car in-iters)))
934 (declare (type (or list index) i))
935 (cond
936 ((listp (car in-sequences))
937 (if (null i)
938 (return-from %map-for-effect nil)
939 (setf (car in-apply-args) (car i)
940 (car in-iters) (cdr i))))
941 ((typep i 'index)
942 (let ((v (the vector (car in-sequences))))
943 (if (>= i (length v))
944 (return-from %map-for-effect nil)
945 (setf (car in-apply-args) (aref v i)
946 (car in-iters) (1+ i)))))
948 (destructuring-bind (state limit from-end step endp elt &rest ignore)
950 (declare (type function step endp elt)
951 (ignore ignore))
952 (let ((s (car in-sequences)))
953 (if (funcall endp s state limit from-end)
954 (return-from %map-for-effect nil)
955 (progn
956 (setf (car in-apply-args) (funcall elt s state))
957 (setf (caar in-iters) (funcall step s state from-end)))))))))))))
958 (defun %map-to-list (fun sequences)
959 (declare (type function fun)
960 (type list sequences))
961 (let ((result nil))
962 (flet ((f (&rest args)
963 (declare (dynamic-extent args))
964 (push (apply fun args) result)))
965 (declare (dynamic-extent #'f))
966 (%map-for-effect #'f sequences))
967 (nreverse result)))
968 (defun %map-to-vector (output-type-spec fun sequences)
969 (declare (type function fun)
970 (type list sequences))
971 (let ((min-len 0))
972 (flet ((f (&rest args)
973 (declare (dynamic-extent args))
974 (declare (ignore args))
975 (incf min-len)))
976 (declare (dynamic-extent #'f))
977 (%map-for-effect #'f sequences))
978 (let ((result (make-sequence output-type-spec min-len))
979 (i 0))
980 (declare (type (simple-array * (*)) result))
981 (flet ((f (&rest args)
982 (declare (dynamic-extent args))
983 (setf (aref result i) (apply fun args))
984 (incf i)))
985 (declare (dynamic-extent #'f))
986 (%map-for-effect #'f sequences))
987 result)))
988 (defun %map-to-sequence (result-type fun sequences)
989 (declare (type function fun)
990 (type list sequences))
991 (let ((min-len 0))
992 (flet ((f (&rest args)
993 (declare (dynamic-extent args))
994 (declare (ignore args))
995 (incf min-len)))
996 (declare (dynamic-extent #'f))
997 (%map-for-effect #'f sequences))
998 (let ((result (make-sequence result-type min-len)))
999 (multiple-value-bind (state limit from-end step endp elt setelt)
1000 (sb!sequence:make-sequence-iterator result)
1001 (declare (ignore limit endp elt))
1002 (flet ((f (&rest args)
1003 (declare (dynamic-extent args))
1004 (funcall setelt (apply fun args) result state)
1005 (setq state (funcall step result state from-end))))
1006 (declare (dynamic-extent #'f))
1007 (%map-for-effect #'f sequences)))
1008 result)))
1010 ;;; %MAP is just MAP without the final just-to-be-sure check that
1011 ;;; length of the output sequence matches any length specified
1012 ;;; in RESULT-TYPE.
1013 (defun %map (result-type function first-sequence &rest more-sequences)
1014 (let ((really-fun (%coerce-callable-to-fun function))
1015 (type (specifier-type result-type)))
1016 ;; Handle one-argument MAP NIL specially, using ETYPECASE to turn
1017 ;; it into something which can be DEFTRANSFORMed away. (It's
1018 ;; fairly important to handle this case efficiently, since
1019 ;; quantifiers like SOME are transformed into this case, and since
1020 ;; there's no consing overhead to dwarf our inefficiency.)
1021 (if (and (null more-sequences)
1022 (null result-type))
1023 (%map-for-effect-arity-1 really-fun first-sequence)
1024 ;; Otherwise, use the industrial-strength full-generality
1025 ;; approach, consing O(N-ARGS) temporary storage (which can have
1026 ;; DYNAMIC-EXTENT), then using O(N-ARGS * RESULT-LENGTH) time.
1027 (let ((sequences (cons first-sequence more-sequences)))
1028 (cond
1029 ((eq type *empty-type*) (%map-for-effect really-fun sequences))
1030 ((csubtypep type (specifier-type 'list))
1031 (%map-to-list really-fun sequences))
1032 ((csubtypep type (specifier-type 'vector))
1033 (%map-to-vector result-type really-fun sequences))
1034 ((and (csubtypep type (specifier-type 'sequence))
1035 (find-class result-type nil))
1036 (%map-to-sequence result-type really-fun sequences))
1038 (bad-sequence-type-error result-type)))))))
1040 (defun map (result-type function first-sequence &rest more-sequences)
1041 (apply #'%map
1042 result-type
1043 function
1044 first-sequence
1045 more-sequences))
1047 ;;; KLUDGE: MAP has been rewritten substantially since the fork from
1048 ;;; CMU CL in order to give reasonable performance, but this
1049 ;;; implementation of MAP-INTO still has the same problems as the old
1050 ;;; MAP code. Ideally, MAP-INTO should be rewritten to be efficient in
1051 ;;; the same way that the corresponding cases of MAP have been
1052 ;;; rewritten. Instead of doing it now, though, it's easier to wait
1053 ;;; until we have DYNAMIC-EXTENT, at which time it should become
1054 ;;; extremely easy to define a reasonably efficient MAP-INTO in terms
1055 ;;; of (MAP NIL ..). -- WHN 20000920
1056 (defun map-into (result-sequence function &rest sequences)
1057 (let* ((fp-result
1058 (and (arrayp result-sequence)
1059 (array-has-fill-pointer-p result-sequence)))
1060 (len (apply #'min
1061 (if fp-result
1062 (array-dimension result-sequence 0)
1063 (length result-sequence))
1064 (mapcar #'length sequences))))
1066 (when fp-result
1067 (setf (fill-pointer result-sequence) len))
1069 (let ((really-fun (%coerce-callable-to-fun function)))
1070 (dotimes (index len)
1071 (setf (elt result-sequence index)
1072 (apply really-fun
1073 (mapcar (lambda (seq) (elt seq index))
1074 sequences))))))
1075 result-sequence)
1077 ;;;; quantifiers
1079 ;;; We borrow the logic from (MAP NIL ..) to handle iteration over
1080 ;;; arbitrary sequence arguments, both in the full call case and in
1081 ;;; the open code case.
1082 (macrolet ((defquantifier (name found-test found-result
1083 &key doc (unfound-result (not found-result)))
1084 `(progn
1085 ;; KLUDGE: It would be really nice if we could simply
1086 ;; do something like this
1087 ;; (declaim (inline ,name))
1088 ;; (defun ,name (pred first-seq &rest more-seqs)
1089 ;; ,doc
1090 ;; (flet ((map-me (&rest rest)
1091 ;; (let ((pred-value (apply pred rest)))
1092 ;; (,found-test pred-value
1093 ;; (return-from ,name
1094 ;; ,found-result)))))
1095 ;; (declare (inline map-me))
1096 ;; (apply #'map nil #'map-me first-seq more-seqs)
1097 ;; ,unfound-result))
1098 ;; but Python doesn't seem to be smart enough about
1099 ;; inlining and APPLY to recognize that it can use
1100 ;; the DEFTRANSFORM for MAP in the resulting inline
1101 ;; expansion. I don't have any appetite for deep
1102 ;; compiler hacking right now, so I'll just work
1103 ;; around the apparent problem by using a compiler
1104 ;; macro instead. -- WHN 20000410
1105 (defun ,name (pred first-seq &rest more-seqs)
1106 #!+sb-doc ,doc
1107 (flet ((map-me (&rest rest)
1108 (let ((pred-value (apply pred rest)))
1109 (,found-test pred-value
1110 (return-from ,name
1111 ,found-result)))))
1112 (declare (inline map-me))
1113 (apply #'map nil #'map-me first-seq more-seqs)
1114 ,unfound-result))
1115 ;; KLUDGE: It would be more obviously correct -- but
1116 ;; also significantly messier -- for PRED-VALUE to be
1117 ;; a gensym. However, a private symbol really does
1118 ;; seem to be good enough; and anyway the really
1119 ;; obviously correct solution is to make Python smart
1120 ;; enough that we can use an inline function instead
1121 ;; of a compiler macro (as above). -- WHN 20000410
1123 ;; FIXME: The DEFINE-COMPILER-MACRO here can be
1124 ;; important for performance, and it'd be good to have
1125 ;; it be visible throughout the compilation of all the
1126 ;; target SBCL code. That could be done by defining
1127 ;; SB-XC:DEFINE-COMPILER-MACRO and using it here,
1128 ;; moving this DEFQUANTIFIER stuff (and perhaps other
1129 ;; inline definitions in seq.lisp as well) into a new
1130 ;; seq.lisp, and moving remaining target-only stuff
1131 ;; from the old seq.lisp into target-seq.lisp.
1132 (define-compiler-macro ,name (pred first-seq &rest more-seqs)
1133 (let ((elements (make-gensym-list (1+ (length more-seqs))))
1134 (blockname (gensym "BLOCK")))
1135 (once-only ((pred pred))
1136 `(block ,blockname
1137 (map nil
1138 (lambda (,@elements)
1139 (let ((pred-value (funcall ,pred ,@elements)))
1140 (,',found-test pred-value
1141 (return-from ,blockname
1142 ,',found-result))))
1143 ,first-seq
1144 ,@more-seqs)
1145 ,',unfound-result)))))))
1146 (defquantifier some when pred-value :unfound-result nil :doc
1147 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1148 possibly to those with index 1, and so on. Return the first
1149 non-NIL value encountered, or NIL if the end of any sequence is reached.")
1150 (defquantifier every unless nil :doc
1151 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1152 possibly to those with index 1, and so on. Return NIL as soon
1153 as any invocation of PREDICATE returns NIL, or T if every invocation
1154 is non-NIL.")
1155 (defquantifier notany when nil :doc
1156 "Apply PREDICATE to the 0-indexed elements of the sequences, then
1157 possibly to those with index 1, and so on. Return NIL as soon
1158 as any invocation of PREDICATE returns a non-NIL value, or T if the end
1159 of any sequence is reached.")
1160 (defquantifier notevery unless t :doc
1161 "Apply PREDICATE to 0-indexed elements of the sequences, then
1162 possibly to those with index 1, and so on. Return T as soon
1163 as any invocation of PREDICATE returns NIL, or NIL if every invocation
1164 is non-NIL."))
1166 ;;;; REDUCE
1168 (eval-when (:compile-toplevel :execute)
1170 (sb!xc:defmacro mumble-reduce (function
1171 sequence
1173 start
1175 initial-value
1176 ref)
1177 `(do ((index ,start (1+ index))
1178 (value ,initial-value))
1179 ((>= index ,end) value)
1180 (setq value (funcall ,function value
1181 (apply-key ,key (,ref ,sequence index))))))
1183 (sb!xc:defmacro mumble-reduce-from-end (function
1184 sequence
1186 start
1188 initial-value
1189 ref)
1190 `(do ((index (1- ,end) (1- index))
1191 (value ,initial-value)
1192 (terminus (1- ,start)))
1193 ((<= index terminus) value)
1194 (setq value (funcall ,function
1195 (apply-key ,key (,ref ,sequence index))
1196 value))))
1198 (sb!xc:defmacro list-reduce (function
1199 sequence
1201 start
1203 initial-value
1204 ivp)
1205 `(let ((sequence (nthcdr ,start ,sequence)))
1206 (do ((count (if ,ivp ,start (1+ ,start))
1207 (1+ count))
1208 (sequence (if ,ivp sequence (cdr sequence))
1209 (cdr sequence))
1210 (value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
1211 (funcall ,function value (apply-key ,key (car sequence)))))
1212 ((>= count ,end) value))))
1214 (sb!xc:defmacro list-reduce-from-end (function
1215 sequence
1217 start
1219 initial-value
1220 ivp)
1221 `(let ((sequence (nthcdr (- (length ,sequence) ,end)
1222 (reverse ,sequence))))
1223 (do ((count (if ,ivp ,start (1+ ,start))
1224 (1+ count))
1225 (sequence (if ,ivp sequence (cdr sequence))
1226 (cdr sequence))
1227 (value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
1228 (funcall ,function (apply-key ,key (car sequence)) value)))
1229 ((>= count ,end) value))))
1231 ) ; EVAL-WHEN
1233 (define-sequence-traverser reduce (function sequence &rest args &key key
1234 from-end start end (initial-value nil ivp))
1235 (declare (type index start))
1236 (declare (dynamic-extent args))
1237 (let ((start start)
1238 (end (or end length)))
1239 (declare (type index start end))
1240 (seq-dispatch sequence
1241 (if (= end start)
1242 (if ivp initial-value (funcall function))
1243 (if from-end
1244 (list-reduce-from-end function sequence key start end
1245 initial-value ivp)
1246 (list-reduce function sequence key start end
1247 initial-value ivp)))
1248 (if (= end start)
1249 (if ivp initial-value (funcall function))
1250 (if from-end
1251 (progn
1252 (when (not ivp)
1253 (setq end (1- (the fixnum end)))
1254 (setq initial-value (apply-key key (aref sequence end))))
1255 (mumble-reduce-from-end function sequence key start end
1256 initial-value aref))
1257 (progn
1258 (when (not ivp)
1259 (setq initial-value (apply-key key (aref sequence start)))
1260 (setq start (1+ start)))
1261 (mumble-reduce function sequence key start end
1262 initial-value aref))))
1263 (apply #'sb!sequence:reduce function sequence args))))
1265 ;;;; DELETE
1267 (eval-when (:compile-toplevel :execute)
1269 (sb!xc:defmacro mumble-delete (pred)
1270 `(do ((index start (1+ index))
1271 (jndex start)
1272 (number-zapped 0))
1273 ((or (= index (the fixnum end)) (= number-zapped count))
1274 (do ((index index (1+ index)) ; Copy the rest of the vector.
1275 (jndex jndex (1+ jndex)))
1276 ((= index (the fixnum length))
1277 (shrink-vector sequence jndex))
1278 (declare (fixnum index jndex))
1279 (setf (aref sequence jndex) (aref sequence index))))
1280 (declare (fixnum index jndex number-zapped))
1281 (setf (aref sequence jndex) (aref sequence index))
1282 (if ,pred
1283 (incf number-zapped)
1284 (incf jndex))))
1286 (sb!xc:defmacro mumble-delete-from-end (pred)
1287 `(do ((index (1- (the fixnum end)) (1- index)) ; Find the losers.
1288 (number-zapped 0)
1289 (losers ())
1290 this-element
1291 (terminus (1- start)))
1292 ((or (= index terminus) (= number-zapped count))
1293 (do ((losers losers) ; Delete the losers.
1294 (index start (1+ index))
1295 (jndex start))
1296 ((or (null losers) (= index (the fixnum end)))
1297 (do ((index index (1+ index)) ; Copy the rest of the vector.
1298 (jndex jndex (1+ jndex)))
1299 ((= index (the fixnum length))
1300 (shrink-vector sequence jndex))
1301 (declare (fixnum index jndex))
1302 (setf (aref sequence jndex) (aref sequence index))))
1303 (declare (fixnum index jndex))
1304 (setf (aref sequence jndex) (aref sequence index))
1305 (if (= index (the fixnum (car losers)))
1306 (pop losers)
1307 (incf jndex))))
1308 (declare (fixnum index number-zapped terminus))
1309 (setq this-element (aref sequence index))
1310 (when ,pred
1311 (incf number-zapped)
1312 (push index losers))))
1314 (sb!xc:defmacro normal-mumble-delete ()
1315 `(mumble-delete
1316 (if test-not
1317 (not (funcall test-not item (apply-key key (aref sequence index))))
1318 (funcall test item (apply-key key (aref sequence index))))))
1320 (sb!xc:defmacro normal-mumble-delete-from-end ()
1321 `(mumble-delete-from-end
1322 (if test-not
1323 (not (funcall test-not item (apply-key key this-element)))
1324 (funcall test item (apply-key key this-element)))))
1326 (sb!xc:defmacro list-delete (pred)
1327 `(let ((handle (cons nil sequence)))
1328 (do ((current (nthcdr start sequence) (cdr current))
1329 (previous (nthcdr start handle))
1330 (index start (1+ index))
1331 (number-zapped 0))
1332 ((or (= index (the fixnum end)) (= number-zapped count))
1333 (cdr handle))
1334 (declare (fixnum index number-zapped))
1335 (cond (,pred
1336 (rplacd previous (cdr current))
1337 (incf number-zapped))
1339 (setq previous (cdr previous)))))))
1341 (sb!xc:defmacro list-delete-from-end (pred)
1342 `(let* ((reverse (nreverse (the list sequence)))
1343 (handle (cons nil reverse)))
1344 (do ((current (nthcdr (- (the fixnum length) (the fixnum end)) reverse)
1345 (cdr current))
1346 (previous (nthcdr (- (the fixnum length) (the fixnum end)) handle))
1347 (index start (1+ index))
1348 (number-zapped 0))
1349 ((or (= index (the fixnum end)) (= number-zapped count))
1350 (nreverse (cdr handle)))
1351 (declare (fixnum index number-zapped))
1352 (cond (,pred
1353 (rplacd previous (cdr current))
1354 (incf number-zapped))
1356 (setq previous (cdr previous)))))))
1358 (sb!xc:defmacro normal-list-delete ()
1359 '(list-delete
1360 (if test-not
1361 (not (funcall test-not item (apply-key key (car current))))
1362 (funcall test item (apply-key key (car current))))))
1364 (sb!xc:defmacro normal-list-delete-from-end ()
1365 '(list-delete-from-end
1366 (if test-not
1367 (not (funcall test-not item (apply-key key (car current))))
1368 (funcall test item (apply-key key (car current))))))
1370 ) ; EVAL-WHEN
1372 (define-sequence-traverser delete
1373 (item sequence &rest args &key from-end test test-not start
1374 end count key)
1375 #!+sb-doc
1376 "Return a sequence formed by destructively removing the specified ITEM from
1377 the given SEQUENCE."
1378 (declare (fixnum start))
1379 (declare (dynamic-extent args))
1380 (let ((end (or end length)))
1381 (declare (type index end))
1382 (seq-dispatch sequence
1383 (if from-end
1384 (normal-list-delete-from-end)
1385 (normal-list-delete))
1386 (if from-end
1387 (normal-mumble-delete-from-end)
1388 (normal-mumble-delete))
1389 (apply #'sb!sequence:delete item sequence args))))
1391 (eval-when (:compile-toplevel :execute)
1393 (sb!xc:defmacro if-mumble-delete ()
1394 `(mumble-delete
1395 (funcall predicate (apply-key key (aref sequence index)))))
1397 (sb!xc:defmacro if-mumble-delete-from-end ()
1398 `(mumble-delete-from-end
1399 (funcall predicate (apply-key key this-element))))
1401 (sb!xc:defmacro if-list-delete ()
1402 '(list-delete
1403 (funcall predicate (apply-key key (car current)))))
1405 (sb!xc:defmacro if-list-delete-from-end ()
1406 '(list-delete-from-end
1407 (funcall predicate (apply-key key (car current)))))
1409 ) ; EVAL-WHEN
1411 (define-sequence-traverser delete-if
1412 (predicate sequence &rest args &key from-end start key end count)
1413 #!+sb-doc
1414 "Return a sequence formed by destructively removing the elements satisfying
1415 the specified PREDICATE from the given SEQUENCE."
1416 (declare (fixnum start))
1417 (declare (dynamic-extent args))
1418 (let ((end (or end length)))
1419 (declare (type index end))
1420 (seq-dispatch sequence
1421 (if from-end
1422 (if-list-delete-from-end)
1423 (if-list-delete))
1424 (if from-end
1425 (if-mumble-delete-from-end)
1426 (if-mumble-delete))
1427 (apply #'sb!sequence:delete-if predicate sequence args))))
1429 (eval-when (:compile-toplevel :execute)
1431 (sb!xc:defmacro if-not-mumble-delete ()
1432 `(mumble-delete
1433 (not (funcall predicate (apply-key key (aref sequence index))))))
1435 (sb!xc:defmacro if-not-mumble-delete-from-end ()
1436 `(mumble-delete-from-end
1437 (not (funcall predicate (apply-key key this-element)))))
1439 (sb!xc:defmacro if-not-list-delete ()
1440 '(list-delete
1441 (not (funcall predicate (apply-key key (car current))))))
1443 (sb!xc:defmacro if-not-list-delete-from-end ()
1444 '(list-delete-from-end
1445 (not (funcall predicate (apply-key key (car current))))))
1447 ) ; EVAL-WHEN
1449 (define-sequence-traverser delete-if-not
1450 (predicate sequence &rest args &key from-end start end key count)
1451 #!+sb-doc
1452 "Return a sequence formed by destructively removing the elements not
1453 satisfying the specified PREDICATE from the given SEQUENCE."
1454 (declare (fixnum start))
1455 (declare (dynamic-extent args))
1456 (let ((end (or end length)))
1457 (declare (type index end))
1458 (seq-dispatch sequence
1459 (if from-end
1460 (if-not-list-delete-from-end)
1461 (if-not-list-delete))
1462 (if from-end
1463 (if-not-mumble-delete-from-end)
1464 (if-not-mumble-delete))
1465 (apply #'sb!sequence:delete-if-not predicate sequence args))))
1467 ;;;; REMOVE
1469 (eval-when (:compile-toplevel :execute)
1471 ;;; MUMBLE-REMOVE-MACRO does not include (removes) each element that
1472 ;;; satisfies the predicate.
1473 (sb!xc:defmacro mumble-remove-macro (bump left begin finish right pred)
1474 `(do ((index ,begin (,bump index))
1475 (result
1476 (do ((index ,left (,bump index))
1477 (result (%make-sequence-like sequence length)))
1478 ((= index (the fixnum ,begin)) result)
1479 (declare (fixnum index))
1480 (setf (aref result index) (aref sequence index))))
1481 (new-index ,begin)
1482 (number-zapped 0)
1483 (this-element))
1484 ((or (= index (the fixnum ,finish))
1485 (= number-zapped count))
1486 (do ((index index (,bump index))
1487 (new-index new-index (,bump new-index)))
1488 ((= index (the fixnum ,right)) (%shrink-vector result new-index))
1489 (declare (fixnum index new-index))
1490 (setf (aref result new-index) (aref sequence index))))
1491 (declare (fixnum index new-index number-zapped))
1492 (setq this-element (aref sequence index))
1493 (cond (,pred (incf number-zapped))
1494 (t (setf (aref result new-index) this-element)
1495 (setq new-index (,bump new-index))))))
1497 (sb!xc:defmacro mumble-remove (pred)
1498 `(mumble-remove-macro 1+ 0 start end length ,pred))
1500 (sb!xc:defmacro mumble-remove-from-end (pred)
1501 `(let ((sequence (copy-seq sequence)))
1502 (mumble-delete-from-end ,pred)))
1504 (sb!xc:defmacro normal-mumble-remove ()
1505 `(mumble-remove
1506 (if test-not
1507 (not (funcall test-not item (apply-key key this-element)))
1508 (funcall test item (apply-key key this-element)))))
1510 (sb!xc:defmacro normal-mumble-remove-from-end ()
1511 `(mumble-remove-from-end
1512 (if test-not
1513 (not (funcall test-not item (apply-key key this-element)))
1514 (funcall test item (apply-key key this-element)))))
1516 (sb!xc:defmacro if-mumble-remove ()
1517 `(mumble-remove (funcall predicate (apply-key key this-element))))
1519 (sb!xc:defmacro if-mumble-remove-from-end ()
1520 `(mumble-remove-from-end (funcall predicate (apply-key key this-element))))
1522 (sb!xc:defmacro if-not-mumble-remove ()
1523 `(mumble-remove (not (funcall predicate (apply-key key this-element)))))
1525 (sb!xc:defmacro if-not-mumble-remove-from-end ()
1526 `(mumble-remove-from-end
1527 (not (funcall predicate (apply-key key this-element)))))
1529 ;;; LIST-REMOVE-MACRO does not include (removes) each element that satisfies
1530 ;;; the predicate.
1531 (sb!xc:defmacro list-remove-macro (pred reverse?)
1532 `(let* ((sequence ,(if reverse?
1533 '(reverse (the list sequence))
1534 'sequence))
1535 (%start ,(if reverse? '(- length end) 'start))
1536 (%end ,(if reverse? '(- length start) 'end))
1537 (splice (list nil))
1538 (results (do ((index 0 (1+ index))
1539 (before-start splice))
1540 ((= index (the fixnum %start)) before-start)
1541 (declare (fixnum index))
1542 (setq splice
1543 (cdr (rplacd splice (list (pop sequence))))))))
1544 (do ((index %start (1+ index))
1545 (this-element)
1546 (number-zapped 0))
1547 ((or (= index (the fixnum %end)) (= number-zapped count))
1548 (do ((index index (1+ index)))
1549 ((null sequence)
1550 ,(if reverse?
1551 '(nreverse (the list (cdr results)))
1552 '(cdr results)))
1553 (declare (fixnum index))
1554 (setq splice (cdr (rplacd splice (list (pop sequence)))))))
1555 (declare (fixnum index number-zapped))
1556 (setq this-element (pop sequence))
1557 (if ,pred
1558 (setq number-zapped (1+ number-zapped))
1559 (setq splice (cdr (rplacd splice (list this-element))))))))
1561 (sb!xc:defmacro list-remove (pred)
1562 `(list-remove-macro ,pred nil))
1564 (sb!xc:defmacro list-remove-from-end (pred)
1565 `(list-remove-macro ,pred t))
1567 (sb!xc:defmacro normal-list-remove ()
1568 `(list-remove
1569 (if test-not
1570 (not (funcall test-not item (apply-key key this-element)))
1571 (funcall test item (apply-key key this-element)))))
1573 (sb!xc:defmacro normal-list-remove-from-end ()
1574 `(list-remove-from-end
1575 (if test-not
1576 (not (funcall test-not item (apply-key key this-element)))
1577 (funcall test item (apply-key key this-element)))))
1579 (sb!xc:defmacro if-list-remove ()
1580 `(list-remove
1581 (funcall predicate (apply-key key this-element))))
1583 (sb!xc:defmacro if-list-remove-from-end ()
1584 `(list-remove-from-end
1585 (funcall predicate (apply-key key this-element))))
1587 (sb!xc:defmacro if-not-list-remove ()
1588 `(list-remove
1589 (not (funcall predicate (apply-key key this-element)))))
1591 (sb!xc:defmacro if-not-list-remove-from-end ()
1592 `(list-remove-from-end
1593 (not (funcall predicate (apply-key key this-element)))))
1595 ) ; EVAL-WHEN
1597 (define-sequence-traverser remove
1598 (item sequence &rest args &key from-end test test-not start
1599 end count key)
1600 #!+sb-doc
1601 "Return a copy of SEQUENCE with elements satisfying the test (default is
1602 EQL) with ITEM removed."
1603 (declare (fixnum start))
1604 (declare (dynamic-extent args))
1605 (let ((end (or end length)))
1606 (declare (type index end))
1607 (seq-dispatch sequence
1608 (if from-end
1609 (normal-list-remove-from-end)
1610 (normal-list-remove))
1611 (if from-end
1612 (normal-mumble-remove-from-end)
1613 (normal-mumble-remove))
1614 (apply #'sb!sequence:remove item sequence args))))
1616 (define-sequence-traverser remove-if
1617 (predicate sequence &rest args &key from-end start end count key)
1618 #!+sb-doc
1619 "Return a copy of sequence with elements satisfying PREDICATE removed."
1620 (declare (fixnum start))
1621 (declare (dynamic-extent args))
1622 (let ((end (or end length)))
1623 (declare (type index end))
1624 (seq-dispatch sequence
1625 (if from-end
1626 (if-list-remove-from-end)
1627 (if-list-remove))
1628 (if from-end
1629 (if-mumble-remove-from-end)
1630 (if-mumble-remove))
1631 (apply #'sb!sequence:remove-if predicate sequence args))))
1633 (define-sequence-traverser remove-if-not
1634 (predicate sequence &rest args &key from-end start end count key)
1635 #!+sb-doc
1636 "Return a copy of sequence with elements not satisfying PREDICATE removed."
1637 (declare (fixnum start))
1638 (declare (dynamic-extent args))
1639 (let ((end (or end length)))
1640 (declare (type index end))
1641 (seq-dispatch sequence
1642 (if from-end
1643 (if-not-list-remove-from-end)
1644 (if-not-list-remove))
1645 (if from-end
1646 (if-not-mumble-remove-from-end)
1647 (if-not-mumble-remove))
1648 (apply #'sb!sequence:remove-if-not predicate sequence args))))
1650 ;;;; REMOVE-DUPLICATES
1652 ;;; Remove duplicates from a list. If from-end, remove the later duplicates,
1653 ;;; not the earlier ones. Thus if we check from-end we don't copy an item
1654 ;;; if we look into the already copied structure (from after :start) and see
1655 ;;; the item. If we check from beginning we check into the rest of the
1656 ;;; original list up to the :end marker (this we have to do by running a
1657 ;;; do loop down the list that far and using our test.
1658 (defun list-remove-duplicates* (list test test-not start end key from-end)
1659 (declare (fixnum start))
1660 (let* ((result (list ())) ; Put a marker on the beginning to splice with.
1661 (splice result)
1662 (current list)
1663 (end (or end (length list)))
1664 (hash (and (> (- end start) 20)
1665 test
1666 (not key)
1667 (not test-not)
1668 (or (eql test #'eql)
1669 (eql test #'eq)
1670 (eql test #'equal)
1671 (eql test #'equalp))
1672 (make-hash-table :test test :size (- end start)))))
1673 (do ((index 0 (1+ index)))
1674 ((= index start))
1675 (declare (fixnum index))
1676 (setq splice (cdr (rplacd splice (list (car current)))))
1677 (setq current (cdr current)))
1678 (if hash
1679 (do ((index start (1+ index)))
1680 ((or (and end (= index (the fixnum end)))
1681 (atom current)))
1682 (declare (fixnum index))
1683 ;; The hash table contains links from values that are
1684 ;; already in result to the cons cell *preceding* theirs
1685 ;; in the list. That is, for each value v in the list,
1686 ;; v and (cadr (gethash v hash)) are equal under TEST.
1687 (let ((prev (gethash (car current) hash)))
1688 (cond
1689 ((not prev)
1690 (setf (gethash (car current) hash) splice)
1691 (setq splice (cdr (rplacd splice (list (car current))))))
1692 ((not from-end)
1693 (let* ((old (cdr prev))
1694 (next (cdr old)))
1695 (if next
1696 (let ((next-val (car next)))
1697 ;; (assert (eq (gethash next-val hash) old))
1698 (setf (cdr prev) next
1699 (gethash next-val hash) prev
1700 (gethash (car current) hash) splice
1701 splice (cdr (rplacd splice (list (car current))))))
1702 (setf (car old) (car current)))))))
1703 (setq current (cdr current)))
1704 (do ((index start (1+ index)))
1705 ((or (and end (= index (the fixnum end)))
1706 (atom current)))
1707 (declare (fixnum index))
1708 (if (or (and from-end
1709 (not (if test-not
1710 (member (apply-key key (car current))
1711 (nthcdr (1+ start) result)
1712 :test-not test-not
1713 :key key)
1714 (member (apply-key key (car current))
1715 (nthcdr (1+ start) result)
1716 :test test
1717 :key key))))
1718 (and (not from-end)
1719 (not (do ((it (apply-key key (car current)))
1720 (l (cdr current) (cdr l))
1721 (i (1+ index) (1+ i)))
1722 ((or (atom l) (and end (= i (the fixnum end))))
1724 (declare (fixnum i))
1725 (if (if test-not
1726 (not (funcall test-not
1728 (apply-key key (car l))))
1729 (funcall test it (apply-key key (car l))))
1730 (return t))))))
1731 (setq splice (cdr (rplacd splice (list (car current))))))
1732 (setq current (cdr current))))
1733 (do ()
1734 ((atom current))
1735 (setq splice (cdr (rplacd splice (list (car current)))))
1736 (setq current (cdr current)))
1737 (cdr result)))
1739 (defun vector-remove-duplicates* (vector test test-not start end key from-end
1740 &optional (length (length vector)))
1741 (declare (vector vector) (fixnum start length))
1742 (when (null end) (setf end (length vector)))
1743 (let ((result (%make-sequence-like vector length))
1744 (index 0)
1745 (jndex start))
1746 (declare (fixnum index jndex))
1747 (do ()
1748 ((= index start))
1749 (setf (aref result index) (aref vector index))
1750 (setq index (1+ index)))
1751 (do ((elt))
1752 ((= index end))
1753 (setq elt (aref vector index))
1754 (unless (or (and from-end
1755 (if test-not
1756 (position (apply-key key elt) result
1757 :start start :end jndex
1758 :test-not test-not :key key)
1759 (position (apply-key key elt) result
1760 :start start :end jndex
1761 :test test :key key)))
1762 (and (not from-end)
1763 (if test-not
1764 (position (apply-key key elt) vector
1765 :start (1+ index) :end end
1766 :test-not test-not :key key)
1767 (position (apply-key key elt) vector
1768 :start (1+ index) :end end
1769 :test test :key key))))
1770 (setf (aref result jndex) elt)
1771 (setq jndex (1+ jndex)))
1772 (setq index (1+ index)))
1773 (do ()
1774 ((= index length))
1775 (setf (aref result jndex) (aref vector index))
1776 (setq index (1+ index))
1777 (setq jndex (1+ jndex)))
1778 (%shrink-vector result jndex)))
1780 (define-sequence-traverser remove-duplicates
1781 (sequence &rest args &key test test-not start end from-end key)
1782 #!+sb-doc
1783 "The elements of SEQUENCE are compared pairwise, and if any two match,
1784 the one occurring earlier is discarded, unless FROM-END is true, in
1785 which case the one later in the sequence is discarded. The resulting
1786 sequence is returned.
1788 The :TEST-NOT argument is deprecated."
1789 (declare (fixnum start))
1790 (declare (dynamic-extent args))
1791 (seq-dispatch sequence
1792 (if sequence
1793 (list-remove-duplicates* sequence test test-not
1794 start end key from-end))
1795 (vector-remove-duplicates* sequence test test-not start end key from-end)
1796 (apply #'sb!sequence:remove-duplicates sequence args)))
1798 ;;;; DELETE-DUPLICATES
1800 (defun list-delete-duplicates* (list test test-not key from-end start end)
1801 (declare (fixnum start))
1802 (let ((handle (cons nil list)))
1803 (do ((current (nthcdr start list) (cdr current))
1804 (previous (nthcdr start handle))
1805 (index start (1+ index)))
1806 ((or (and end (= index (the fixnum end))) (null current))
1807 (cdr handle))
1808 (declare (fixnum index))
1809 (if (do ((x (if from-end
1810 (nthcdr (1+ start) handle)
1811 (cdr current))
1812 (cdr x))
1813 (i (1+ index) (1+ i)))
1814 ((or (null x)
1815 (and (not from-end) end (= i (the fixnum end)))
1816 (eq x current))
1817 nil)
1818 (declare (fixnum i))
1819 (if (if test-not
1820 (not (funcall test-not
1821 (apply-key key (car current))
1822 (apply-key key (car x))))
1823 (funcall test
1824 (apply-key key (car current))
1825 (apply-key key (car x))))
1826 (return t)))
1827 (rplacd previous (cdr current))
1828 (setq previous (cdr previous))))))
1830 (defun vector-delete-duplicates* (vector test test-not key from-end start end
1831 &optional (length (length vector)))
1832 (declare (vector vector) (fixnum start length))
1833 (when (null end) (setf end (length vector)))
1834 (do ((index start (1+ index))
1835 (jndex start))
1836 ((= index end)
1837 (do ((index index (1+ index)) ; copy the rest of the vector
1838 (jndex jndex (1+ jndex)))
1839 ((= index length)
1840 (shrink-vector vector jndex))
1841 (setf (aref vector jndex) (aref vector index))))
1842 (declare (fixnum index jndex))
1843 (setf (aref vector jndex) (aref vector index))
1844 (unless (if test-not
1845 (position (apply-key key (aref vector index)) vector :key key
1846 :start (if from-end start (1+ index))
1847 :end (if from-end jndex end)
1848 :test-not test-not)
1849 (position (apply-key key (aref vector index)) vector :key key
1850 :start (if from-end start (1+ index))
1851 :end (if from-end jndex end)
1852 :test test))
1853 (setq jndex (1+ jndex)))))
1855 (define-sequence-traverser delete-duplicates
1856 (sequence &rest args &key test test-not start end from-end key)
1857 #!+sb-doc
1858 "The elements of SEQUENCE are examined, and if any two match, one is
1859 discarded. The resulting sequence, which may be formed by destroying the
1860 given sequence, is returned.
1862 The :TEST-NOT argument is deprecated."
1863 (declare (dynamic-extent args))
1864 (seq-dispatch sequence
1865 (if sequence
1866 (list-delete-duplicates* sequence test test-not
1867 key from-end start end))
1868 (vector-delete-duplicates* sequence test test-not key from-end start end)
1869 (apply #'sb!sequence:delete-duplicates sequence args)))
1871 ;;;; SUBSTITUTE
1873 (defun list-substitute* (pred new list start end count key test test-not old)
1874 (declare (fixnum start end count))
1875 (let* ((result (list nil))
1877 (splice result)
1878 (list list)) ; Get a local list for a stepper.
1879 (do ((index 0 (1+ index)))
1880 ((= index start))
1881 (declare (fixnum index))
1882 (setq splice (cdr (rplacd splice (list (car list)))))
1883 (setq list (cdr list)))
1884 (do ((index start (1+ index)))
1885 ((or (= index end) (null list) (= count 0)))
1886 (declare (fixnum index))
1887 (setq elt (car list))
1888 (setq splice
1889 (cdr (rplacd splice
1890 (list
1891 (cond
1892 ((case pred
1893 (normal
1894 (if test-not
1895 (not
1896 (funcall test-not old (apply-key key elt)))
1897 (funcall test old (apply-key key elt))))
1898 (if (funcall test (apply-key key elt)))
1899 (if-not (not (funcall test (apply-key key elt)))))
1900 (decf count)
1901 new)
1902 (t elt))))))
1903 (setq list (cdr list)))
1904 (do ()
1905 ((null list))
1906 (setq splice (cdr (rplacd splice (list (car list)))))
1907 (setq list (cdr list)))
1908 (cdr result)))
1910 ;;; Replace old with new in sequence moving from left to right by incrementer
1911 ;;; on each pass through the loop. Called by all three substitute functions.
1912 (defun vector-substitute* (pred new sequence incrementer left right length
1913 start end count key test test-not old)
1914 (declare (fixnum start count end incrementer right))
1915 (let ((result (%make-sequence-like sequence length))
1916 (index left))
1917 (declare (fixnum index))
1918 (do ()
1919 ((= index start))
1920 (setf (aref result index) (aref sequence index))
1921 (setq index (+ index incrementer)))
1922 (do ((elt))
1923 ((or (= index end) (= count 0)))
1924 (setq elt (aref sequence index))
1925 (setf (aref result index)
1926 (cond ((case pred
1927 (normal
1928 (if test-not
1929 (not (funcall test-not old (apply-key key elt)))
1930 (funcall test old (apply-key key elt))))
1931 (if (funcall test (apply-key key elt)))
1932 (if-not (not (funcall test (apply-key key elt)))))
1933 (setq count (1- count))
1934 new)
1935 (t elt)))
1936 (setq index (+ index incrementer)))
1937 (do ()
1938 ((= index right))
1939 (setf (aref result index) (aref sequence index))
1940 (setq index (+ index incrementer)))
1941 result))
1943 (eval-when (:compile-toplevel :execute)
1945 (sb!xc:defmacro subst-dispatch (pred)
1946 `(seq-dispatch sequence
1947 (if from-end
1948 (nreverse (list-substitute* ,pred
1950 (reverse sequence)
1951 (- (the fixnum length)
1952 (the fixnum end))
1953 (- (the fixnum length)
1954 (the fixnum start))
1955 count key test test-not old))
1956 (list-substitute* ,pred
1957 new sequence start end count key test test-not
1958 old))
1959 (if from-end
1960 (vector-substitute* ,pred new sequence -1 (1- (the fixnum length))
1961 -1 length (1- (the fixnum end))
1962 (1- (the fixnum start))
1963 count key test test-not old)
1964 (vector-substitute* ,pred new sequence 1 0 length length
1965 start end count key test test-not old))
1966 ;; FIXME: wow, this is an odd way to implement the dispatch. PRED
1967 ;; here is (QUOTE [NORMAL|IF|IF-NOT]). Not only is this pretty
1968 ;; pointless, but also LIST-SUBSTITUTE* and VECTOR-SUBSTITUTE*
1969 ;; dispatch once per element on PRED's run-time identity.
1970 ,(ecase (cadr pred)
1971 ((normal) `(apply #'sb!sequence:substitute new old sequence args))
1972 ((if) `(apply #'sb!sequence:substitute-if new predicate sequence args))
1973 ((if-not) `(apply #'sb!sequence:substitute-if-not new predicate sequence args)))))
1974 ) ; EVAL-WHEN
1976 (define-sequence-traverser substitute
1977 (new old sequence &rest args &key from-end test test-not
1978 start count end key)
1979 #!+sb-doc
1980 "Return a sequence of the same kind as SEQUENCE with the same elements,
1981 except that all elements equal to OLD are replaced with NEW."
1982 (declare (fixnum start))
1983 (declare (dynamic-extent args))
1984 (let ((end (or end length)))
1985 (declare (type index end))
1986 (subst-dispatch 'normal)))
1988 ;;;; SUBSTITUTE-IF, SUBSTITUTE-IF-NOT
1990 (define-sequence-traverser substitute-if
1991 (new predicate sequence &rest args &key from-end start end count key)
1992 #!+sb-doc
1993 "Return a sequence of the same kind as SEQUENCE with the same elements
1994 except that all elements satisfying the PRED are replaced with NEW."
1995 (declare (dynamic-extent args))
1996 (declare (fixnum start))
1997 (let ((end (or end length))
1998 (test predicate)
1999 (test-not nil)
2000 old)
2001 (declare (type index length end))
2002 (subst-dispatch 'if)))
2004 (define-sequence-traverser substitute-if-not
2005 (new predicate sequence &rest args &key from-end start end count key)
2006 #!+sb-doc
2007 "Return a sequence of the same kind as SEQUENCE with the same elements
2008 except that all elements not satisfying the PRED are replaced with NEW."
2009 (declare (dynamic-extent args))
2010 (declare (fixnum start))
2011 (let ((end (or end length))
2012 (test predicate)
2013 (test-not nil)
2014 old)
2015 (declare (type index length end))
2016 (subst-dispatch 'if-not)))
2018 ;;;; NSUBSTITUTE
2020 (define-sequence-traverser nsubstitute
2021 (new old sequence &rest args &key from-end test test-not
2022 end count key start)
2023 #!+sb-doc
2024 "Return a sequence of the same kind as SEQUENCE with the same elements
2025 except that all elements equal to OLD are replaced with NEW. SEQUENCE
2026 may be destructively modified."
2027 (declare (fixnum start))
2028 (declare (dynamic-extent args))
2029 (let ((end (or end length)))
2030 (seq-dispatch sequence
2031 (if from-end
2032 (let ((length (length sequence)))
2033 (nreverse (nlist-substitute*
2034 new old (nreverse (the list sequence))
2035 test test-not (- length end) (- length start)
2036 count key)))
2037 (nlist-substitute* new old sequence
2038 test test-not start end count key))
2039 (if from-end
2040 (nvector-substitute* new old sequence -1
2041 test test-not (1- end) (1- start) count key)
2042 (nvector-substitute* new old sequence 1
2043 test test-not start end count key))
2044 (apply #'sb!sequence:nsubstitute new old sequence args))))
2046 (defun nlist-substitute* (new old sequence test test-not start end count key)
2047 (declare (fixnum start count end))
2048 (do ((list (nthcdr start sequence) (cdr list))
2049 (index start (1+ index)))
2050 ((or (= index end) (null list) (= count 0)) sequence)
2051 (declare (fixnum index))
2052 (when (if test-not
2053 (not (funcall test-not old (apply-key key (car list))))
2054 (funcall test old (apply-key key (car list))))
2055 (rplaca list new)
2056 (setq count (1- count)))))
2058 (defun nvector-substitute* (new old sequence incrementer
2059 test test-not start end count key)
2060 (declare (fixnum start incrementer count end))
2061 (do ((index start (+ index incrementer)))
2062 ((or (= index end) (= count 0)) sequence)
2063 (declare (fixnum index))
2064 (when (if test-not
2065 (not (funcall test-not
2067 (apply-key key (aref sequence index))))
2068 (funcall test old (apply-key key (aref sequence index))))
2069 (setf (aref sequence index) new)
2070 (setq count (1- count)))))
2072 ;;;; NSUBSTITUTE-IF, NSUBSTITUTE-IF-NOT
2074 (define-sequence-traverser nsubstitute-if
2075 (new predicate sequence &rest args &key from-end start end count key)
2076 #!+sb-doc
2077 "Return a sequence of the same kind as SEQUENCE with the same elements
2078 except that all elements satisfying PREDICATE are replaced with NEW.
2079 SEQUENCE may be destructively modified."
2080 (declare (fixnum start))
2081 (declare (dynamic-extent args))
2082 (let ((end (or end length)))
2083 (declare (fixnum end))
2084 (seq-dispatch sequence
2085 (if from-end
2086 (let ((length (length sequence)))
2087 (nreverse (nlist-substitute-if*
2088 new predicate (nreverse (the list sequence))
2089 (- length end) (- length start) count key)))
2090 (nlist-substitute-if* new predicate sequence
2091 start end count key))
2092 (if from-end
2093 (nvector-substitute-if* new predicate sequence -1
2094 (1- end) (1- start) count key)
2095 (nvector-substitute-if* new predicate sequence 1
2096 start end count key))
2097 (apply #'sb!sequence:nsubstitute-if new predicate sequence args))))
2099 (defun nlist-substitute-if* (new test sequence start end count key)
2100 (declare (fixnum end))
2101 (do ((list (nthcdr start sequence) (cdr list))
2102 (index start (1+ index)))
2103 ((or (= index end) (null list) (= count 0)) sequence)
2104 (when (funcall test (apply-key key (car list)))
2105 (rplaca list new)
2106 (setq count (1- count)))))
2108 (defun nvector-substitute-if* (new test sequence incrementer
2109 start end count key)
2110 (do ((index start (+ index incrementer)))
2111 ((or (= index end) (= count 0)) sequence)
2112 (when (funcall test (apply-key key (aref sequence index)))
2113 (setf (aref sequence index) new)
2114 (setq count (1- count)))))
2116 (define-sequence-traverser nsubstitute-if-not
2117 (new predicate sequence &rest args &key from-end start end count key)
2118 #!+sb-doc
2119 "Return a sequence of the same kind as SEQUENCE with the same elements
2120 except that all elements not satisfying PREDICATE are replaced with NEW.
2121 SEQUENCE may be destructively modified."
2122 (declare (fixnum start))
2123 (declare (dynamic-extent args))
2124 (let ((end (or end length)))
2125 (declare (fixnum end))
2126 (seq-dispatch sequence
2127 (if from-end
2128 (let ((length (length sequence)))
2129 (nreverse (nlist-substitute-if-not*
2130 new predicate (nreverse (the list sequence))
2131 (- length end) (- length start) count key)))
2132 (nlist-substitute-if-not* new predicate sequence
2133 start end count key))
2134 (if from-end
2135 (nvector-substitute-if-not* new predicate sequence -1
2136 (1- end) (1- start) count key)
2137 (nvector-substitute-if-not* new predicate sequence 1
2138 start end count key))
2139 (apply #'sb!sequence:nsubstitute-if-not new predicate sequence args))))
2141 (defun nlist-substitute-if-not* (new test sequence start end count key)
2142 (declare (fixnum end))
2143 (do ((list (nthcdr start sequence) (cdr list))
2144 (index start (1+ index)))
2145 ((or (= index end) (null list) (= count 0)) sequence)
2146 (when (not (funcall test (apply-key key (car list))))
2147 (rplaca list new)
2148 (decf count))))
2150 (defun nvector-substitute-if-not* (new test sequence incrementer
2151 start end count key)
2152 (do ((index start (+ index incrementer)))
2153 ((or (= index end) (= count 0)) sequence)
2154 (when (not (funcall test (apply-key key (aref sequence index))))
2155 (setf (aref sequence index) new)
2156 (decf count))))
2158 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
2160 (defun effective-find-position-test (test test-not)
2161 (effective-find-position-test test test-not))
2162 (defun effective-find-position-key (key)
2163 (effective-find-position-key key))
2165 ;;; shared guts of out-of-line FIND, POSITION, FIND-IF, and POSITION-IF
2166 (macrolet (;; shared logic for defining %FIND-POSITION and
2167 ;; %FIND-POSITION-IF in terms of various inlineable cases
2168 ;; of the expression defined in FROB and VECTOR*-FROB
2169 (frobs ()
2170 `(seq-dispatch sequence-arg
2171 (frob sequence-arg from-end)
2172 (with-array-data ((sequence sequence-arg :offset-var offset)
2173 (start start)
2174 (end end)
2175 :check-fill-pointer t)
2176 (multiple-value-bind (f p)
2177 (macrolet ((frob2 () '(if from-end
2178 (frob sequence t)
2179 (frob sequence nil))))
2180 (typecase sequence
2181 #!+sb-unicode
2182 ((simple-array character (*)) (frob2))
2183 ((simple-array base-char (*)) (frob2))
2184 (t (vector*-frob sequence))))
2185 (declare (type (or index null) p))
2186 (values f (and p (the index (- p offset)))))))))
2187 (defun %find-position (item sequence-arg from-end start end key test)
2188 (macrolet ((frob (sequence from-end)
2189 `(%find-position item ,sequence
2190 ,from-end start end key test))
2191 (vector*-frob (sequence)
2192 `(%find-position-vector-macro item ,sequence
2193 from-end start end key test)))
2194 (frobs)))
2195 (defun %find-position-if (predicate sequence-arg from-end start end key)
2196 (macrolet ((frob (sequence from-end)
2197 `(%find-position-if predicate ,sequence
2198 ,from-end start end key))
2199 (vector*-frob (sequence)
2200 `(%find-position-if-vector-macro predicate ,sequence
2201 from-end start end key)))
2202 (frobs)))
2203 (defun %find-position-if-not (predicate sequence-arg from-end start end key)
2204 (macrolet ((frob (sequence from-end)
2205 `(%find-position-if-not predicate ,sequence
2206 ,from-end start end key))
2207 (vector*-frob (sequence)
2208 `(%find-position-if-not-vector-macro predicate ,sequence
2209 from-end start end key)))
2210 (frobs))))
2212 (defun find
2213 (item sequence &rest args &key from-end (start 0) end key test test-not)
2214 (declare (dynamic-extent args))
2215 (seq-dispatch sequence
2216 (nth-value 0 (%find-position
2217 item sequence from-end start end
2218 (effective-find-position-key key)
2219 (effective-find-position-test test test-not)))
2220 (nth-value 0 (%find-position
2221 item sequence from-end start end
2222 (effective-find-position-key key)
2223 (effective-find-position-test test test-not)))
2224 (apply #'sb!sequence:find item sequence args)))
2225 (defun position
2226 (item sequence &rest args &key from-end (start 0) end key test test-not)
2227 (declare (dynamic-extent args))
2228 (seq-dispatch sequence
2229 (nth-value 1 (%find-position
2230 item sequence from-end start end
2231 (effective-find-position-key key)
2232 (effective-find-position-test test test-not)))
2233 (nth-value 1 (%find-position
2234 item sequence from-end start end
2235 (effective-find-position-key key)
2236 (effective-find-position-test test test-not)))
2237 (apply #'sb!sequence:position item sequence args)))
2239 (defun find-if (predicate sequence &rest args &key from-end (start 0) end key)
2240 (declare (dynamic-extent args))
2241 (seq-dispatch sequence
2242 (nth-value 0 (%find-position-if
2243 (%coerce-callable-to-fun predicate)
2244 sequence from-end start end
2245 (effective-find-position-key key)))
2246 (nth-value 0 (%find-position-if
2247 (%coerce-callable-to-fun predicate)
2248 sequence from-end start end
2249 (effective-find-position-key key)))
2250 (apply #'sb!sequence:find-if predicate sequence args)))
2251 (defun position-if
2252 (predicate sequence &rest args &key from-end (start 0) end key)
2253 (declare (dynamic-extent args))
2254 (seq-dispatch sequence
2255 (nth-value 1 (%find-position-if
2256 (%coerce-callable-to-fun predicate)
2257 sequence from-end start end
2258 (effective-find-position-key key)))
2259 (nth-value 1 (%find-position-if
2260 (%coerce-callable-to-fun predicate)
2261 sequence from-end start end
2262 (effective-find-position-key key)))
2263 (apply #'sb!sequence:position-if predicate sequence args)))
2265 (defun find-if-not
2266 (predicate sequence &rest args &key from-end (start 0) end key)
2267 (declare (dynamic-extent args))
2268 (seq-dispatch sequence
2269 (nth-value 0 (%find-position-if-not
2270 (%coerce-callable-to-fun predicate)
2271 sequence from-end start end
2272 (effective-find-position-key key)))
2273 (nth-value 0 (%find-position-if-not
2274 (%coerce-callable-to-fun predicate)
2275 sequence from-end start end
2276 (effective-find-position-key key)))
2277 (apply #'sb!sequence:find-if-not predicate sequence args)))
2278 (defun position-if-not
2279 (predicate sequence &rest args &key from-end (start 0) end key)
2280 (declare (dynamic-extent args))
2281 (seq-dispatch sequence
2282 (nth-value 1 (%find-position-if-not
2283 (%coerce-callable-to-fun predicate)
2284 sequence from-end start end
2285 (effective-find-position-key key)))
2286 (nth-value 1 (%find-position-if-not
2287 (%coerce-callable-to-fun predicate)
2288 sequence from-end start end
2289 (effective-find-position-key key)))
2290 (apply #'sb!sequence:position-if-not predicate sequence args)))
2292 ;;;; COUNT-IF, COUNT-IF-NOT, and COUNT
2294 (eval-when (:compile-toplevel :execute)
2296 (sb!xc:defmacro vector-count-if (notp from-end-p predicate sequence)
2297 (let ((next-index (if from-end-p '(1- index) '(1+ index)))
2298 (pred `(funcall ,predicate (apply-key key (aref ,sequence index)))))
2299 `(let ((%start ,(if from-end-p '(1- end) 'start))
2300 (%end ,(if from-end-p '(1- start) 'end)))
2301 (do ((index %start ,next-index)
2302 (count 0))
2303 ((= index (the fixnum %end)) count)
2304 (declare (fixnum index count))
2305 (,(if notp 'unless 'when) ,pred
2306 (setq count (1+ count)))))))
2308 (sb!xc:defmacro list-count-if (notp from-end-p predicate sequence)
2309 (let ((pred `(funcall ,predicate (apply-key key (pop sequence)))))
2310 `(let ((%start ,(if from-end-p '(- length end) 'start))
2311 (%end ,(if from-end-p '(- length start) 'end))
2312 (sequence ,(if from-end-p '(reverse sequence) 'sequence)))
2313 (do ((sequence (nthcdr %start ,sequence))
2314 (index %start (1+ index))
2315 (count 0))
2316 ((or (= index (the fixnum %end)) (null sequence)) count)
2317 (declare (fixnum index count))
2318 (,(if notp 'unless 'when) ,pred
2319 (setq count (1+ count)))))))
2322 ) ; EVAL-WHEN
2324 (define-sequence-traverser count-if
2325 (pred sequence &rest args &key from-end start end key)
2326 #!+sb-doc
2327 "Return the number of elements in SEQUENCE satisfying PRED(el)."
2328 (declare (fixnum start))
2329 (declare (dynamic-extent args))
2330 (let ((end (or end length))
2331 (pred (%coerce-callable-to-fun pred)))
2332 (declare (type index end))
2333 (seq-dispatch sequence
2334 (if from-end
2335 (list-count-if nil t pred sequence)
2336 (list-count-if nil nil pred sequence))
2337 (if from-end
2338 (vector-count-if nil t pred sequence)
2339 (vector-count-if nil nil pred sequence))
2340 (apply #'sb!sequence:count-if pred sequence args))))
2342 (define-sequence-traverser count-if-not
2343 (pred sequence &rest args &key from-end start end key)
2344 #!+sb-doc
2345 "Return the number of elements in SEQUENCE not satisfying TEST(el)."
2346 (declare (fixnum start))
2347 (declare (dynamic-extent args))
2348 (let ((end (or end length))
2349 (pred (%coerce-callable-to-fun pred)))
2350 (declare (type index end))
2351 (seq-dispatch sequence
2352 (if from-end
2353 (list-count-if t t pred sequence)
2354 (list-count-if t nil pred sequence))
2355 (if from-end
2356 (vector-count-if t t pred sequence)
2357 (vector-count-if t nil pred sequence))
2358 (apply #'sb!sequence:count-if-not pred sequence args))))
2360 (define-sequence-traverser count
2361 (item sequence &rest args &key from-end start end
2362 key (test #'eql test-p) (test-not nil test-not-p))
2363 #!+sb-doc
2364 "Return the number of elements in SEQUENCE satisfying a test with ITEM,
2365 which defaults to EQL."
2366 (declare (fixnum start))
2367 (declare (dynamic-extent args))
2368 (when (and test-p test-not-p)
2369 ;; ANSI Common Lisp has left the behavior in this situation unspecified.
2370 ;; (CLHS 17.2.1)
2371 (error ":TEST and :TEST-NOT are both present."))
2372 (let ((end (or end length)))
2373 (declare (type index end))
2374 (let ((%test (if test-not-p
2375 (lambda (x)
2376 (not (funcall test-not item x)))
2377 (lambda (x)
2378 (funcall test item x)))))
2379 (seq-dispatch sequence
2380 (if from-end
2381 (list-count-if nil t %test sequence)
2382 (list-count-if nil nil %test sequence))
2383 (if from-end
2384 (vector-count-if nil t %test sequence)
2385 (vector-count-if nil nil %test sequence))
2386 (apply #'sb!sequence:count item sequence args)))))
2388 ;;;; MISMATCH
2390 (eval-when (:compile-toplevel :execute)
2392 (sb!xc:defmacro match-vars (&rest body)
2393 `(let ((inc (if from-end -1 1))
2394 (start1 (if from-end (1- (the fixnum end1)) start1))
2395 (start2 (if from-end (1- (the fixnum end2)) start2))
2396 (end1 (if from-end (1- (the fixnum start1)) end1))
2397 (end2 (if from-end (1- (the fixnum start2)) end2)))
2398 (declare (fixnum inc start1 start2 end1 end2))
2399 ,@body))
2401 (sb!xc:defmacro matchify-list ((sequence start length end) &body body)
2402 (declare (ignore end)) ;; ### Should END be used below?
2403 `(let ((,sequence (if from-end
2404 (nthcdr (- (the fixnum ,length) (the fixnum ,start) 1)
2405 (reverse (the list ,sequence)))
2406 (nthcdr ,start ,sequence))))
2407 (declare (type list ,sequence))
2408 ,@body))
2410 ) ; EVAL-WHEN
2412 (eval-when (:compile-toplevel :execute)
2414 (sb!xc:defmacro if-mismatch (elt1 elt2)
2415 `(cond ((= (the fixnum index1) (the fixnum end1))
2416 (return (if (= (the fixnum index2) (the fixnum end2))
2418 (if from-end
2419 (1+ (the fixnum index1))
2420 (the fixnum index1)))))
2421 ((= (the fixnum index2) (the fixnum end2))
2422 (return (if from-end (1+ (the fixnum index1)) index1)))
2423 (test-not
2424 (if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
2425 (return (if from-end (1+ (the fixnum index1)) index1))))
2426 (t (if (not (funcall test (apply-key key ,elt1)
2427 (apply-key key ,elt2)))
2428 (return (if from-end (1+ (the fixnum index1)) index1))))))
2430 (sb!xc:defmacro mumble-mumble-mismatch ()
2431 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2432 (index2 start2 (+ index2 (the fixnum inc))))
2433 (())
2434 (declare (fixnum index1 index2))
2435 (if-mismatch (aref sequence1 index1) (aref sequence2 index2))))
2437 (sb!xc:defmacro mumble-list-mismatch ()
2438 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2439 (index2 start2 (+ index2 (the fixnum inc))))
2440 (())
2441 (declare (fixnum index1 index2))
2442 (if-mismatch (aref sequence1 index1) (pop sequence2))))
2444 (sb!xc:defmacro list-mumble-mismatch ()
2445 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2446 (index2 start2 (+ index2 (the fixnum inc))))
2447 (())
2448 (declare (fixnum index1 index2))
2449 (if-mismatch (pop sequence1) (aref sequence2 index2))))
2451 (sb!xc:defmacro list-list-mismatch ()
2452 `(do ((sequence1 sequence1)
2453 (sequence2 sequence2)
2454 (index1 start1 (+ index1 (the fixnum inc)))
2455 (index2 start2 (+ index2 (the fixnum inc))))
2456 (())
2457 (declare (fixnum index1 index2))
2458 (if-mismatch (pop sequence1) (pop sequence2))))
2460 ) ; EVAL-WHEN
2462 (define-sequence-traverser mismatch
2463 (sequence1 sequence2 &rest args &key from-end test test-not
2464 start1 end1 start2 end2 key)
2465 #!+sb-doc
2466 "The specified subsequences of SEQUENCE1 and SEQUENCE2 are compared
2467 element-wise. If they are of equal length and match in every element, the
2468 result is NIL. Otherwise, the result is a non-negative integer, the index
2469 within SEQUENCE1 of the leftmost position at which they fail to match; or,
2470 if one is shorter than and a matching prefix of the other, the index within
2471 SEQUENCE1 beyond the last position tested is returned. If a non-NIL
2472 :FROM-END argument is given, then one plus the index of the rightmost
2473 position in which the sequences differ is returned."
2474 (declare (fixnum start1 start2))
2475 (declare (dynamic-extent args))
2476 (let* ((end1 (or end1 length1))
2477 (end2 (or end2 length2)))
2478 (declare (type index end1 end2))
2479 (match-vars
2480 (seq-dispatch sequence1
2481 (seq-dispatch sequence2
2482 (matchify-list (sequence1 start1 length1 end1)
2483 (matchify-list (sequence2 start2 length2 end2)
2484 (list-list-mismatch)))
2485 (matchify-list (sequence1 start1 length1 end1)
2486 (list-mumble-mismatch))
2487 (apply #'sb!sequence:mismatch sequence1 sequence2 args))
2488 (seq-dispatch sequence2
2489 (matchify-list (sequence2 start2 length2 end2)
2490 (mumble-list-mismatch))
2491 (mumble-mumble-mismatch)
2492 (apply #'sb!sequence:mismatch sequence1 sequence2 args))
2493 (apply #'sb!sequence:mismatch sequence1 sequence2 args)))))
2495 ;;; search comparison functions
2497 (eval-when (:compile-toplevel :execute)
2499 ;;; Compare two elements and return if they don't match.
2500 (sb!xc:defmacro compare-elements (elt1 elt2)
2501 `(if test-not
2502 (if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
2503 (return nil)
2505 (if (not (funcall test (apply-key key ,elt1) (apply-key key ,elt2)))
2506 (return nil)
2507 t)))
2509 (sb!xc:defmacro search-compare-list-list (main sub)
2510 `(do ((main ,main (cdr main))
2511 (jndex start1 (1+ jndex))
2512 (sub (nthcdr start1 ,sub) (cdr sub)))
2513 ((or (endp main) (endp sub) (<= end1 jndex))
2515 (declare (type (integer 0) jndex))
2516 (compare-elements (car sub) (car main))))
2518 (sb!xc:defmacro search-compare-list-vector (main sub)
2519 `(do ((main ,main (cdr main))
2520 (index start1 (1+ index)))
2521 ((or (endp main) (= index end1)) t)
2522 (compare-elements (aref ,sub index) (car main))))
2524 (sb!xc:defmacro search-compare-vector-list (main sub index)
2525 `(do ((sub (nthcdr start1 ,sub) (cdr sub))
2526 (jndex start1 (1+ jndex))
2527 (index ,index (1+ index)))
2528 ((or (<= end1 jndex) (endp sub)) t)
2529 (declare (type (integer 0) jndex))
2530 (compare-elements (car sub) (aref ,main index))))
2532 (sb!xc:defmacro search-compare-vector-vector (main sub index)
2533 `(do ((index ,index (1+ index))
2534 (sub-index start1 (1+ sub-index)))
2535 ((= sub-index end1) t)
2536 (compare-elements (aref ,sub sub-index) (aref ,main index))))
2538 (sb!xc:defmacro search-compare (main-type main sub index)
2539 (if (eq main-type 'list)
2540 `(seq-dispatch ,sub
2541 (search-compare-list-list ,main ,sub)
2542 (search-compare-list-vector ,main ,sub)
2543 ;; KLUDGE: just hack it together so that it works
2544 (return-from search (apply #'sb!sequence:search sequence1 sequence2 args)))
2545 `(seq-dispatch ,sub
2546 (search-compare-vector-list ,main ,sub ,index)
2547 (search-compare-vector-vector ,main ,sub ,index)
2548 (return-from search (apply #'sb!sequence:search sequence1 sequence2 args)))))
2550 ) ; EVAL-WHEN
2552 ;;;; SEARCH
2554 (eval-when (:compile-toplevel :execute)
2556 (sb!xc:defmacro list-search (main sub)
2557 `(do ((main (nthcdr start2 ,main) (cdr main))
2558 (index2 start2 (1+ index2))
2559 (terminus (- end2 (the (integer 0) (- end1 start1))))
2560 (last-match ()))
2561 ((> index2 terminus) last-match)
2562 (declare (type (integer 0) index2))
2563 (if (search-compare list main ,sub index2)
2564 (if from-end
2565 (setq last-match index2)
2566 (return index2)))))
2568 (sb!xc:defmacro vector-search (main sub)
2569 `(do ((index2 start2 (1+ index2))
2570 (terminus (- end2 (the (integer 0) (- end1 start1))))
2571 (last-match ()))
2572 ((> index2 terminus) last-match)
2573 (declare (type (integer 0) index2))
2574 (if (search-compare vector ,main ,sub index2)
2575 (if from-end
2576 (setq last-match index2)
2577 (return index2)))))
2579 ) ; EVAL-WHEN
2581 (define-sequence-traverser search
2582 (sequence1 sequence2 &rest args &key
2583 from-end test test-not start1 end1 start2 end2 key)
2584 (declare (fixnum start1 start2))
2585 (declare (dynamic-extent args))
2586 (let ((end1 (or end1 length1))
2587 (end2 (or end2 length2)))
2588 (seq-dispatch sequence2
2589 (list-search sequence2 sequence1)
2590 (vector-search sequence2 sequence1)
2591 (apply #'sb!sequence:search sequence1 sequence2 args))))
2593 ;;; FIXME: this was originally in array.lisp; it might be better to
2594 ;;; put it back there, and make DOSEQUENCE and SEQ-DISPATCH be in
2595 ;;; a new early-seq.lisp file.
2596 (defun fill-data-vector (vector dimensions initial-contents)
2597 (let ((index 0))
2598 (labels ((frob (axis dims contents)
2599 (cond ((null dims)
2600 (setf (aref vector index) contents)
2601 (incf index))
2603 (unless (typep contents 'sequence)
2604 (error "malformed :INITIAL-CONTENTS: ~S is not a ~
2605 sequence, but ~W more layer~:P needed."
2606 contents
2607 (- (length dimensions) axis)))
2608 (unless (= (length contents) (car dims))
2609 (error "malformed :INITIAL-CONTENTS: Dimension of ~
2610 axis ~W is ~W, but ~S is ~W long."
2611 axis (car dims) contents (length contents)))
2612 (sb!sequence:dosequence (content contents)
2613 (frob (1+ axis) (cdr dims) content))))))
2614 (frob 0 dimensions initial-contents))))