3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 ;;; FIXME: Many of these have nontrivial types, e.g. *PRINT-LEVEL*,
17 ;;; *PRINT-LENGTH*, and *PRINT-LINES* are (OR NULL UNSIGNED-BYTE).
19 (defvar *print-readably
* nil
21 "If true, all objects will printed readably. If readable printing is
22 impossible, an error will be signalled. This overrides the value of
24 (defvar *print-escape
* t
26 "Should we print in a reasonably machine-readable way? (possibly
27 overridden by *PRINT-READABLY*)")
28 (defvar *print-pretty
* nil
; (set later when pretty-printer is initialized)
30 "Should pretty printing be used?")
31 (defvar *print-base
* 10.
33 "the output base for RATIONALs (including integers)")
34 (defvar *print-radix
* nil
36 "Should base be verified when printing RATIONALs?")
37 (defvar *print-level
* nil
39 "How many levels should be printed before abbreviating with \"#\"?")
40 (defvar *print-length
* nil
42 "How many elements at any level should be printed before abbreviating
44 (defvar *print-circle
* nil
46 "Should we use #n= and #n# notation to preserve uniqueness in general (and
47 circularity in particular) when printing?")
48 (defvar *print-case
* :upcase
50 "What case should the printer should use default?")
51 (defvar *print-array
* t
53 "Should the contents of arrays be printed?")
54 (defvar *print-gensym
* t
56 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
57 (defvar *print-lines
* nil
59 "the maximum number of lines to print per object")
60 (defvar *print-right-margin
* nil
62 "the position of the right margin in ems (for pretty-printing)")
63 (defvar *print-miser-width
* nil
65 "If the remaining space between the current column and the right margin
66 is less than this, then print using ``miser-style'' output. Miser
67 style conditional newlines are turned on, and all indentations are
68 turned off. If NIL, never use miser mode.")
69 (defvar *print-pprint-dispatch
*)
71 (setf (fdocumentation '*print-pprint-dispatch
* 'variable
)
72 "the pprint-dispatch-table that controls how to pretty-print objects")
74 (defmacro with-standard-io-syntax
(&body body
)
76 "Bind the reader and printer control variables to values that enable READ
77 to reliably read the results of PRINT. These values are:
78 *PACKAGE* the COMMON-LISP-USER package
88 *PRINT-MISER-WIDTH* NIL
92 *PRINT-RIGHT-MARGIN* NIL
94 *READ-DEFAULT-FLOAT-FORMAT* SINGLE-FLOAT
97 *READTABLE* the standard readtable"
98 `(%with-standard-io-syntax
(lambda () ,@body
)))
100 (defun %with-standard-io-syntax
(function)
101 (declare (type function function
))
102 (let ((*package
* (find-package "COMMON-LISP-USER"))
105 (*print-case
* :upcase
)
112 (*print-miser-width
* nil
)
116 (*print-right-margin
* nil
)
118 (*read-default-float-format
* 'single-float
)
120 (*read-suppress
* nil
)
121 ;; FIXME: It doesn't seem like a good idea to expose our
122 ;; disaster-recovery *STANDARD-READTABLE* here. What if some
123 ;; enterprising user corrupts the disaster-recovery readtable
124 ;; by doing destructive readtable operations within
125 ;; WITH-STANDARD-IO-SYNTAX? Perhaps we should do a
126 ;; COPY-READTABLE? The consing would be unfortunate, though.
127 (*readtable
* *standard-readtable
*))
130 ;;;; routines to print objects
132 (defun write (object &key
133 ((:stream stream
) *standard-output
*)
134 ((:escape
*print-escape
*) *print-escape
*)
135 ((:radix
*print-radix
*) *print-radix
*)
136 ((:base
*print-base
*) *print-base
*)
137 ((:circle
*print-circle
*) *print-circle
*)
138 ((:pretty
*print-pretty
*) *print-pretty
*)
139 ((:level
*print-level
*) *print-level
*)
140 ((:length
*print-length
*) *print-length
*)
141 ((:case
*print-case
*) *print-case
*)
142 ((:array
*print-array
*) *print-array
*)
143 ((:gensym
*print-gensym
*) *print-gensym
*)
144 ((:readably
*print-readably
*) *print-readably
*)
145 ((:right-margin
*print-right-margin
*)
146 *print-right-margin
*)
147 ((:miser-width
*print-miser-width
*)
149 ((:lines
*print-lines
*) *print-lines
*)
150 ((:pprint-dispatch
*print-pprint-dispatch
*)
151 *print-pprint-dispatch
*))
153 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*"
154 (output-object object
(out-synonym-of stream
))
157 (defun prin1 (object &optional stream
)
159 "Output a mostly READable printed representation of OBJECT on the specified
161 (let ((*print-escape
* t
))
162 (output-object object
(out-synonym-of stream
)))
165 (defun princ (object &optional stream
)
167 "Output an aesthetic but not necessarily READable printed representation
168 of OBJECT on the specified STREAM."
169 (let ((*print-escape
* nil
)
170 (*print-readably
* nil
))
171 (output-object object
(out-synonym-of stream
)))
174 (defun print (object &optional stream
)
176 "Output a newline, the mostly READable printed representation of OBJECT, and
177 space to the specified STREAM."
178 (let ((stream (out-synonym-of stream
)))
180 (prin1 object stream
)
181 (write-char #\space stream
)
184 (defun pprint (object &optional stream
)
186 "Prettily output OBJECT preceded by a newline."
187 (let ((*print-pretty
* t
)
189 (stream (out-synonym-of stream
)))
191 (output-object object stream
))
194 (defun write-to-string
196 ((:escape
*print-escape
*) *print-escape
*)
197 ((:radix
*print-radix
*) *print-radix
*)
198 ((:base
*print-base
*) *print-base
*)
199 ((:circle
*print-circle
*) *print-circle
*)
200 ((:pretty
*print-pretty
*) *print-pretty
*)
201 ((:level
*print-level
*) *print-level
*)
202 ((:length
*print-length
*) *print-length
*)
203 ((:case
*print-case
*) *print-case
*)
204 ((:array
*print-array
*) *print-array
*)
205 ((:gensym
*print-gensym
*) *print-gensym
*)
206 ((:readably
*print-readably
*) *print-readably
*)
207 ((:right-margin
*print-right-margin
*) *print-right-margin
*)
208 ((:miser-width
*print-miser-width
*) *print-miser-width
*)
209 ((:lines
*print-lines
*) *print-lines
*)
210 ((:pprint-dispatch
*print-pprint-dispatch
*)
211 *print-pprint-dispatch
*))
213 "Return the printed representation of OBJECT as a string."
214 (stringify-object object
))
216 (defun prin1-to-string (object)
218 "Return the printed representation of OBJECT as a string with
220 (let ((*print-escape
* t
))
221 (stringify-object object
)))
223 (defun princ-to-string (object)
225 "Return the printed representation of OBJECT as a string with
227 (let ((*print-escape
* nil
)
228 (*print-readably
* nil
))
229 (stringify-object object
)))
231 ;;; This produces the printed representation of an object as a string.
232 ;;; The few ...-TO-STRING functions above call this.
233 (defun stringify-object (object)
234 (let ((stream (make-string-output-stream)))
235 (setup-printer-state)
236 (output-object object stream
)
237 (get-output-stream-string stream
)))
239 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
241 ;;; guts of PRINT-UNREADABLE-OBJECT
242 (defun %print-unreadable-object
(object stream type identity body
)
243 (declare (type (or null function
) body
))
244 (when *print-readably
*
245 (error 'print-not-readable
:object object
))
246 (flet ((print-description ()
248 (write (type-of object
) :stream stream
:circle nil
249 :level nil
:length nil
)
250 (write-char #\space stream
))
254 (when (or body
(not type
))
255 (write-char #\space stream
))
256 (write-char #\
{ stream
)
257 (write (get-lisp-obj-address object
) :stream stream
259 (write-char #\
} stream
))))
260 (cond ((print-pretty-on-stream-p stream
)
261 ;; Since we're printing prettily on STREAM, format the
262 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
263 ;; not rebind the stream when it is already a pretty stream,
264 ;; so output from the body will go to the same stream.
265 (pprint-logical-block (stream nil
:prefix
"#<" :suffix
">")
266 (print-description)))
268 (write-string "#<" stream
)
270 (write-char #\
> stream
))))
273 ;;;; OUTPUT-OBJECT -- the main entry point
275 ;;; Objects whose print representation identifies them EQLly don't
276 ;;; need to be checked for circularity.
277 (defun uniquely-identified-by-print-p (x)
281 (symbol-package x
))))
283 ;;; Output OBJECT to STREAM observing all printer control variables.
284 (defun output-object (object stream
)
285 (labels ((print-it (stream)
287 (sb!pretty
:output-pretty-object object stream
)
288 (output-ugly-object object stream
)))
290 (multiple-value-bind (marker initiate
)
291 (check-for-circularity object t
)
292 (if (eq initiate
:initiate
)
293 (let ((*circularity-hash-table
*
294 (make-hash-table :test
'eq
)))
295 (check-it (make-broadcast-stream))
296 (let ((*circularity-counter
* 0))
300 (when (handle-circularity marker stream
)
302 (print-it stream
))))))
303 (cond (;; Maybe we don't need to bother with circularity detection.
304 (or (not *print-circle
*)
305 (uniquely-identified-by-print-p object
))
307 (;; If we have already started circularity detection, this
308 ;; object might be a shared reference. If we have not, then
309 ;; if it is a compound object it might contain a circular
310 ;; reference to itself or multiple shared references.
311 (or *circularity-hash-table
*
312 (compound-object-p object
))
315 (print-it stream
)))))
317 ;;; a hack to work around recurring gotchas with printing while
318 ;;; DEFGENERIC PRINT-OBJECT is being built
320 ;;; (hopefully will go away naturally when CLOS moves into cold init)
321 (defvar *print-object-is-disabled-p
*)
323 ;;; Output OBJECT to STREAM observing all printer control variables
324 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
325 ;;; then the pretty printer will be used for any components of OBJECT,
326 ;;; just not for OBJECT itself.
327 (defun output-ugly-object (object stream
)
329 ;; KLUDGE: The TYPECASE approach here is non-ANSI; the ANSI definition of
330 ;; PRINT-OBJECT says it provides printing and we're supposed to provide
331 ;; PRINT-OBJECT methods covering all classes. We deviate from this
332 ;; by using PRINT-OBJECT only when we print instance values. However,
333 ;; ANSI makes it hard to tell that we're deviating from this:
334 ;; (1) ANSI specifies that the user isn't supposed to call PRINT-OBJECT
336 ;; (2) ANSI (section 11.1.2.1.2) says it's undefined to define
337 ;; a method on an external symbol in the CL package which is
338 ;; applicable to arg lists containing only direct instances of
339 ;; standardized classes.
340 ;; Thus, in order for the user to detect our sleaziness in conforming
341 ;; code, he has to do something relatively obscure like
342 ;; (1) actually use tools like FIND-METHOD to look for PRINT-OBJECT
344 ;; (2) define a PRINT-OBJECT method which is specialized on the stream
345 ;; value (e.g. a Gray stream object).
346 ;; As long as no one comes up with a non-obscure way of detecting this
347 ;; sleaziness, fixing this nonconformity will probably have a low
348 ;; priority. -- WHN 2001-11-25
351 (output-symbol object stream
)
352 (output-list object stream
)))
354 (cond ((not (and (boundp '*print-object-is-disabled-p
*)
355 *print-object-is-disabled-p
*))
356 (print-object object stream
))
357 ((typep object
'structure-object
)
358 (default-structure-print object stream
*current-level-in-print
*))
360 (write-string "#<INSTANCE but not STRUCTURE-OBJECT>" stream
))))
361 (funcallable-instance
363 ((not (and (boundp '*print-object-is-disabled-p
*)
364 *print-object-is-disabled-p
*))
365 (print-object object stream
))
366 (t (output-fun object stream
))))
368 (output-fun object stream
))
370 (output-symbol object stream
))
374 (output-integer object stream
))
376 (output-float object stream
))
378 (output-ratio object stream
))
380 (output-ratio object stream
))
382 (output-complex object stream
))))
384 (output-character object stream
))
386 (output-vector object stream
))
388 (output-array object stream
))
390 (output-sap object stream
))
392 (output-weak-pointer object stream
))
394 (output-lra object stream
))
396 (output-code-component object stream
))
398 (output-fdefn object stream
))
400 (output-random object stream
))))
404 ;;; values of *PRINT-CASE* and (READTABLE-CASE *READTABLE*) the last
405 ;;; time the printer was called
406 (defvar *previous-case
* nil
)
407 (defvar *previous-readtable-case
* nil
)
409 ;;; This variable contains the current definition of one of three
410 ;;; symbol printers. SETUP-PRINTER-STATE sets this variable.
411 (defvar *internal-symbol-output-fun
* nil
)
413 ;;; This function sets the internal global symbol
414 ;;; *INTERNAL-SYMBOL-OUTPUT-FUN* to the right function depending on
415 ;;; the value of *PRINT-CASE*. See the manual for details. The print
416 ;;; buffer stream is also reset.
417 (defun setup-printer-state ()
418 (unless (and (eq *print-case
* *previous-case
*)
419 (eq (readtable-case *readtable
*) *previous-readtable-case
*))
420 (setq *previous-case
* *print-case
*)
421 (setq *previous-readtable-case
* (readtable-case *readtable
*))
422 (unless (member *print-case
* '(:upcase
:downcase
:capitalize
))
423 (setq *print-case
* :upcase
)
424 (error "invalid *PRINT-CASE* value: ~S" *previous-case
*))
425 (unless (member *previous-readtable-case
*
426 '(:upcase
:downcase
:invert
:preserve
))
427 (setf (readtable-case *readtable
*) :upcase
)
428 (error "invalid READTABLE-CASE value: ~S" *previous-readtable-case
*))
430 (setq *internal-symbol-output-fun
*
431 (case *previous-readtable-case
*
434 (:upcase
#'output-preserve-symbol
)
435 (:downcase
#'output-lowercase-symbol
)
436 (:capitalize
#'output-capitalize-symbol
)))
439 (:upcase
#'output-uppercase-symbol
)
440 (:downcase
#'output-preserve-symbol
)
441 (:capitalize
#'output-capitalize-symbol
)))
442 (:preserve
#'output-preserve-symbol
)
443 (:invert
#'output-invert-symbol
)))))
445 ;;; Output PNAME (a symbol-name or package-name) surrounded with |'s,
446 ;;; and with any embedded |'s or \'s escaped.
447 (defun output-quoted-symbol-name (pname stream
)
448 (write-char #\| stream
)
449 (dotimes (index (length pname
))
450 (let ((char (schar pname index
)))
451 (when (or (char= char
#\\) (char= char
#\|
))
452 (write-char #\\ stream
))
453 (write-char char stream
)))
454 (write-char #\| stream
))
456 (defun output-symbol (object stream
)
457 (if (or *print-escape
* *print-readably
*)
458 (let ((package (symbol-package object
))
459 (name (symbol-name object
)))
461 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
462 ;; requires that keywords be printed with preceding colons
463 ;; always, regardless of the value of *PACKAGE*.
464 ((eq package
*keyword-package
*)
465 (write-char #\
: stream
))
466 ;; Otherwise, if the symbol's home package is the current
467 ;; one, then a prefix is never necessary.
468 ((eq package
(sane-package)))
469 ;; Uninterned symbols print with a leading #:.
471 (when (or *print-gensym
* *print-readably
*)
472 (write-string "#:" stream
)))
474 (multiple-value-bind (symbol accessible
)
475 (find-symbol name
(sane-package))
476 ;; If we can find the symbol by looking it up, it need not
477 ;; be qualified. This can happen if the symbol has been
478 ;; inherited from a package other than its home package.
479 (unless (and accessible
(eq symbol object
))
480 (output-symbol-name (package-name package
) stream
)
481 (multiple-value-bind (symbol externalp
)
482 (find-external-symbol name package
)
483 (declare (ignore symbol
))
485 (write-char #\
: stream
)
486 (write-string "::" stream
)))))))
487 (output-symbol-name name stream
))
488 (output-symbol-name (symbol-name object
) stream nil
)))
490 ;;; Output the string NAME as if it were a symbol name. In other
491 ;;; words, diddle its case according to *PRINT-CASE* and
493 (defun output-symbol-name (name stream
&optional
(maybe-quote t
))
494 (declare (type simple-string name
))
495 (let ((*readtable
* (if *print-readably
* *standard-readtable
* *readtable
*)))
496 (setup-printer-state)
497 (if (and maybe-quote
(symbol-quotep name
))
498 (output-quoted-symbol-name name stream
)
499 (funcall *internal-symbol-output-fun
* name stream
))))
501 ;;;; escaping symbols
503 ;;; When we print symbols we have to figure out if they need to be
504 ;;; printed with escape characters. This isn't a whole lot easier than
505 ;;; reading symbols in the first place.
507 ;;; For each character, the value of the corresponding element is a
508 ;;; fixnum with bits set corresponding to attributes that the
509 ;;; character has. At characters have at least one bit set, so we can
510 ;;; search for any character with a positive test.
511 (defvar *character-attributes
*
512 (make-array 160 ; FIXME
513 :element-type
'(unsigned-byte 16)
515 (declaim (type (simple-array (unsigned-byte 16) (#.160)) ; FIXME
516 *character-attributes
*))
518 ;;; constants which are a bit-mask for each interesting character attribute
519 (defconstant other-attribute
(ash 1 0)) ; Anything else legal.
520 (defconstant number-attribute
(ash 1 1)) ; A numeric digit.
521 (defconstant uppercase-attribute
(ash 1 2)) ; An uppercase letter.
522 (defconstant lowercase-attribute
(ash 1 3)) ; A lowercase letter.
523 (defconstant sign-attribute
(ash 1 4)) ; +-
524 (defconstant extension-attribute
(ash 1 5)) ; ^_
525 (defconstant dot-attribute
(ash 1 6)) ; .
526 (defconstant slash-attribute
(ash 1 7)) ; /
527 (defconstant funny-attribute
(ash 1 8)) ; Anything illegal.
529 (eval-when (:compile-toplevel
:load-toplevel
:execute
)
531 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
532 ;;; that don't need to be escaped (according to READTABLE-CASE.)
533 (defparameter *attribute-names
*
534 `((number . number-attribute
) (lowercase . lowercase-attribute
)
535 (uppercase . uppercase-attribute
) (letter . letter-attribute
)
536 (sign . sign-attribute
) (extension . extension-attribute
)
537 (dot . dot-attribute
) (slash . slash-attribute
)
538 (other . other-attribute
) (funny . funny-attribute
)))
542 (flet ((set-bit (char bit
)
543 (let ((code (char-code char
)))
544 (setf (aref *character-attributes
* code
)
545 (logior bit
(aref *character-attributes
* code
))))))
547 (dolist (char '(#\
! #\
@ #\$
#\%
#\
& #\
* #\
= #\~
#\
[ #\
] #\
{ #\
}
549 (set-bit char other-attribute
))
552 (set-bit (digit-char i
) number-attribute
))
554 (do ((code (char-code #\A
) (1+ code
))
555 (end (char-code #\Z
)))
557 (declare (fixnum code end
))
558 (set-bit (code-char code
) uppercase-attribute
)
559 (set-bit (char-downcase (code-char code
)) lowercase-attribute
))
561 (set-bit #\- sign-attribute
)
562 (set-bit #\
+ sign-attribute
)
563 (set-bit #\^ extension-attribute
)
564 (set-bit #\_ extension-attribute
)
565 (set-bit #\. dot-attribute
)
566 (set-bit #\
/ slash-attribute
)
568 ;; Mark anything not explicitly allowed as funny.
569 (dotimes (i 160) ; FIXME
570 (when (zerop (aref *character-attributes
* i
))
571 (setf (aref *character-attributes
* i
) funny-attribute
))))
573 ;;; For each character, the value of the corresponding element is the
574 ;;; lowest base in which that character is a digit.
575 (defvar *digit-bases
*
576 (make-array 128 ; FIXME
577 :element-type
'(unsigned-byte 8)
578 :initial-element
36))
579 (declaim (type (simple-array (unsigned-byte 8) (#.128)) ; FIXME
582 (let ((char (digit-char i
36)))
583 (setf (aref *digit-bases
* (char-code char
)) i
)))
585 ;;; A FSM-like thingie that determines whether a symbol is a potential
586 ;;; number or has evil characters in it.
587 (defun symbol-quotep (name)
588 (declare (simple-string name
))
589 (macrolet ((advance (tag &optional
(at-end t
))
592 ,(if at-end
'(go TEST-SIGN
) '(return nil
)))
593 (setq current
(schar name index
)
594 code
(char-code current
)
596 ((< code
160) (aref attributes code
))
597 ((upper-case-p current
) uppercase-attribute
)
598 ((lower-case-p current
) lowercase-attribute
)
599 (t other-attribute
)))
602 (test (&rest attributes
)
614 `(and (< code
128) ; FIXME
615 (< (the fixnum
(aref bases code
)) base
))))
617 (prog ((len (length name
))
618 (attributes *character-attributes
*)
619 (bases *digit-bases
*)
622 (case (readtable-case *readtable
*)
623 (:upcase uppercase-attribute
)
624 (:downcase lowercase-attribute
)
625 (t (logior lowercase-attribute uppercase-attribute
))))
630 (declare (fixnum len base index bits code
))
633 TEST-SIGN
; At end, see whether it is a sign...
634 (return (not (test sign
)))
636 OTHER
; not potential number, see whether funny chars...
637 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
640 (do ((i (1- index
) (1+ i
)))
641 ((= i len
) (return-from symbol-quotep nil
))
642 (unless (zerop (logand (let* ((char (schar name i
))
643 (code (char-code char
)))
645 ((< code
160) (aref attributes code
))
646 ((upper-case-p char
) uppercase-attribute
)
647 ((lower-case-p char
) lowercase-attribute
)
648 (t other-attribute
)))
650 (return-from symbol-quotep t
))))
655 (advance LAST-DIGIT-ALPHA
)
657 (when (test letter number other slash
) (advance OTHER nil
))
658 (when (char= current
#\.
) (advance DOT-FOUND
))
659 (when (test sign extension
) (advance START-STUFF nil
))
662 DOT-FOUND
; leading dots...
663 (when (test letter
) (advance START-DOT-MARKER nil
))
664 (when (digitp) (advance DOT-DIGIT
))
665 (when (test number other
) (advance OTHER nil
))
666 (when (test extension slash sign
) (advance START-DOT-STUFF nil
))
667 (when (char= current
#\.
) (advance DOT-FOUND
))
670 START-STUFF
; leading stuff before any dot or digit
673 (advance LAST-DIGIT-ALPHA
)
675 (when (test number other
) (advance OTHER nil
))
676 (when (test letter
) (advance START-MARKER nil
))
677 (when (char= current
#\.
) (advance START-DOT-STUFF nil
))
678 (when (test sign extension slash
) (advance START-STUFF nil
))
681 START-MARKER
; number marker in leading stuff...
682 (when (test letter
) (advance OTHER nil
))
685 START-DOT-STUFF
; leading stuff containing dot without digit...
686 (when (test letter
) (advance START-DOT-STUFF nil
))
687 (when (digitp) (advance DOT-DIGIT
))
688 (when (test sign extension dot slash
) (advance START-DOT-STUFF nil
))
689 (when (test number other
) (advance OTHER nil
))
692 START-DOT-MARKER
; number marker in leading stuff with dot..
693 ;; leading stuff containing dot without digit followed by letter...
694 (when (test letter
) (advance OTHER nil
))
697 DOT-DIGIT
; in a thing with dots...
698 (when (test letter
) (advance DOT-MARKER
))
699 (when (digitp) (advance DOT-DIGIT
))
700 (when (test number other
) (advance OTHER nil
))
701 (when (test sign extension dot slash
) (advance DOT-DIGIT
))
704 DOT-MARKER
; number marker in number with dot...
705 (when (test letter
) (advance OTHER nil
))
708 LAST-DIGIT-ALPHA
; previous char is a letter digit...
709 (when (or (digitp) (test sign slash
))
710 (advance ALPHA-DIGIT
))
711 (when (test letter number other dot
) (advance OTHER nil
))
714 ALPHA-DIGIT
; seen a digit which is a letter...
715 (when (or (digitp) (test sign slash
))
717 (advance LAST-DIGIT-ALPHA
)
718 (advance ALPHA-DIGIT
)))
719 (when (test letter
) (advance ALPHA-MARKER
))
720 (when (test number other dot
) (advance OTHER nil
))
723 ALPHA-MARKER
; number marker in number with alpha digit...
724 (when (test letter
) (advance OTHER nil
))
727 DIGIT
; seen only ordinary (non-alphabetic) numeric digits...
730 (advance ALPHA-DIGIT
)
732 (when (test number other
) (advance OTHER nil
))
733 (when (test letter
) (advance MARKER
))
734 (when (test extension slash sign
) (advance DIGIT
))
735 (when (char= current
#\.
) (advance DOT-DIGIT
))
738 MARKER
; number marker in a numeric number...
739 ;; ("What," you may ask, "is a 'number marker'?" It's something
740 ;; that a conforming implementation might use in number syntax.
741 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
742 (when (test letter
) (advance OTHER nil
))
745 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN*
747 ;;;; case hackery: These functions are stored in
748 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN* according to the values of
749 ;;;; *PRINT-CASE* and READTABLE-CASE.
752 ;;; READTABLE-CASE *PRINT-CASE*
754 ;;; :DOWNCASE :DOWNCASE
756 (defun output-preserve-symbol (pname stream
)
757 (declare (simple-string pname
))
758 (write-string pname stream
))
761 ;;; READTABLE-CASE *PRINT-CASE*
762 ;;; :UPCASE :DOWNCASE
763 (defun output-lowercase-symbol (pname stream
)
764 (declare (simple-string pname
))
765 (dotimes (index (length pname
))
766 (let ((char (schar pname index
)))
767 (write-char (char-downcase char
) stream
))))
770 ;;; READTABLE-CASE *PRINT-CASE*
771 ;;; :DOWNCASE :UPCASE
772 (defun output-uppercase-symbol (pname stream
)
773 (declare (simple-string pname
))
774 (dotimes (index (length pname
))
775 (let ((char (schar pname index
)))
776 (write-char (char-upcase char
) stream
))))
779 ;;; READTABLE-CASE *PRINT-CASE*
780 ;;; :UPCASE :CAPITALIZE
781 ;;; :DOWNCASE :CAPITALIZE
782 (defun output-capitalize-symbol (pname stream
)
783 (declare (simple-string pname
))
784 (let ((prev-not-alphanum t
)
785 (up (eq (readtable-case *readtable
*) :upcase
)))
786 (dotimes (i (length pname
))
787 (let ((char (char pname i
)))
789 (if (or prev-not-alphanum
(lower-case-p char
))
791 (char-downcase char
))
792 (if prev-not-alphanum
796 (setq prev-not-alphanum
(not (alphanumericp char
)))))))
799 ;;; READTABLE-CASE *PRINT-CASE*
801 (defun output-invert-symbol (pname stream
)
802 (declare (simple-string pname
))
805 (dotimes (i (length pname
))
806 (let ((ch (schar pname i
)))
807 (when (both-case-p ch
)
808 (if (upper-case-p ch
)
810 (setq all-upper nil
)))))
811 (cond (all-upper (output-lowercase-symbol pname stream
))
812 (all-lower (output-uppercase-symbol pname stream
))
814 (write-string pname stream
)))))
818 (let ((*readtable
* (copy-readtable nil
)))
819 (format t
"READTABLE-CASE Input Symbol-name~@
820 ----------------------------------~%")
821 (dolist (readtable-case '(:upcase
:downcase
:preserve
:invert
))
822 (setf (readtable-case *readtable
*) readtable-case
)
823 (dolist (input '("ZEBRA" "Zebra" "zebra"))
824 (format t
"~&:~A~16T~A~24T~A"
825 (string-upcase readtable-case
)
827 (symbol-name (read-from-string input
)))))))
830 (let ((*readtable
* (copy-readtable nil
)))
831 (format t
"READTABLE-CASE *PRINT-CASE* Symbol-name Output Princ~@
832 --------------------------------------------------------~%")
833 (dolist (readtable-case '(:upcase
:downcase
:preserve
:invert
))
834 (setf (readtable-case *readtable
*) readtable-case
)
835 (dolist (*print-case
* '(:upcase
:downcase
:capitalize
))
836 (dolist (symbol '(|ZEBRA| |Zebra| |zebra|
))
837 (format t
"~&:~A~15T:~A~29T~A~42T~A~50T~A"
838 (string-upcase readtable-case
)
839 (string-upcase *print-case
*)
841 (prin1-to-string symbol
)
842 (princ-to-string symbol
)))))))
845 ;;;; recursive objects
847 (defun output-list (list stream
)
848 (descend-into (stream)
849 (write-char #\
( stream
)
853 (punt-print-if-too-long length stream
)
854 (output-object (pop list
) stream
)
857 (when (or (atom list
)
858 (check-for-circularity list
))
859 (write-string " . " stream
)
860 (output-object list stream
)
862 (write-char #\space stream
)
864 (write-char #\
) stream
)))
866 (defun output-vector (vector stream
)
867 (declare (vector vector
))
868 (cond ((stringp vector
)
869 (cond ((and *print-readably
*
870 (not (eq (array-element-type vector
)
873 (make-array 0 :element-type
'character
))))))
874 (error 'print-not-readable
:object vector
))
875 ((or *print-escape
* *print-readably
*)
876 (write-char #\" stream
)
877 (quote-string vector stream
)
878 (write-char #\" stream
))
880 (write-string vector stream
))))
881 ((not (or *print-array
* *print-readably
*))
882 (output-terse-array vector stream
))
883 ((bit-vector-p vector
)
884 (write-string "#*" stream
)
885 (dovector (bit vector
)
886 ;; (Don't use OUTPUT-OBJECT here, since this code
887 ;; has to work for all possible *PRINT-BASE* values.)
888 (write-char (if (zerop bit
) #\
0 #\
1) stream
)))
890 (when (and *print-readably
*
891 (not (array-readably-printable-p vector
)))
892 (error 'print-not-readable
:object vector
))
893 (descend-into (stream)
894 (write-string "#(" stream
)
895 (dotimes (i (length vector
))
897 (write-char #\space stream
))
898 (punt-print-if-too-long i stream
)
899 (output-object (aref vector i
) stream
))
900 (write-string ")" stream
)))))
902 ;;; This function outputs a string quoting characters sufficiently
903 ;;; so that someone can read it in again. Basically, put a slash in
904 ;;; front of an character satisfying NEEDS-SLASH-P.
905 (defun quote-string (string stream
)
906 (macrolet ((needs-slash-p (char)
907 ;; KLUDGE: We probably should look at the readtable, but just do
908 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
909 `(or (char= ,char
#\\)
911 (with-array-data ((data string
) (start) (end (length string
)))
912 (do ((index start
(1+ index
)))
914 (let ((char (schar data index
)))
915 (when (needs-slash-p char
) (write-char #\\ stream
))
916 (write-char char stream
))))))
918 (defun array-readably-printable-p (array)
919 (and (eq (array-element-type array
) t
)
920 (let ((zero (position 0 (array-dimensions array
)))
921 (number (position 0 (array-dimensions array
)
922 :test
(complement #'eql
)
924 (or (null zero
) (null number
) (> zero number
)))))
926 ;;; Output the printed representation of any array in either the #< or #A
928 (defun output-array (array stream
)
929 (if (or *print-array
* *print-readably
*)
930 (output-array-guts array stream
)
931 (output-terse-array array stream
)))
933 ;;; Output the abbreviated #< form of an array.
934 (defun output-terse-array (array stream
)
935 (let ((*print-level
* nil
)
936 (*print-length
* nil
))
937 (print-unreadable-object (array stream
:type t
:identity t
))))
939 ;;; Output the readable #A form of an array.
940 (defun output-array-guts (array stream
)
941 (when (and *print-readably
*
942 (not (array-readably-printable-p array
)))
943 (error 'print-not-readable
:object array
))
944 (write-char #\
# stream
)
945 (let ((*print-base
* 10)
947 (output-integer (array-rank array
) stream
))
948 (write-char #\A stream
)
949 (with-array-data ((data array
) (start) (end))
950 (declare (ignore end
))
951 (sub-output-array-guts data
(array-dimensions array
) stream start
)))
953 (defun sub-output-array-guts (array dimensions stream index
)
954 (declare (type (simple-array * (*)) array
) (fixnum index
))
955 (cond ((null dimensions
)
956 (output-object (aref array index
) stream
))
958 (descend-into (stream)
959 (write-char #\
( stream
)
960 (let* ((dimension (car dimensions
))
961 (dimensions (cdr dimensions
))
962 (count (reduce #'* dimensions
)))
963 (dotimes (i dimension
)
965 (write-char #\space stream
))
966 (punt-print-if-too-long i stream
)
967 (sub-output-array-guts array dimensions stream index
)
969 (write-char #\
) stream
)))))
971 ;;; a trivial non-generic-function placeholder for PRINT-OBJECT, for
972 ;;; use until CLOS is set up (at which time it will be replaced with
973 ;;; the real generic function implementation)
974 (defun print-object (instance stream
)
975 (default-structure-print instance stream
*current-level-in-print
*))
977 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
979 (defun %output-radix
(base stream
)
980 (write-char #\
# stream
)
981 (write-char (case base
985 (t (%output-reasonable-integer-in-base base
10 stream
)
989 (defun %output-reasonable-integer-in-base
(n base stream
)
990 (multiple-value-bind (q r
)
992 ;; Recurse until you have all the digits pushed on
995 (%output-reasonable-integer-in-base q base stream
))
996 ;; Then as each recursive call unwinds, turn the
997 ;; digit (in remainder) into a character and output
1000 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r
)
1003 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
1004 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
1005 ;;; always prior a GC to drop overly large bignums from the cache.
1007 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1008 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1009 (defvar *power-cache
* nil
)
1011 (defconstant +power-cache-integer-length-limit
+ 2048)
1013 (defun scrub-power-cache ()
1014 (let ((cache *power-cache
*))
1015 (dolist (cell cache
)
1016 (let ((powers (cdr cell
)))
1017 (declare (simple-vector powers
))
1018 (let ((too-big (position-if
1020 (>= (integer-length x
)
1021 +power-cache-integer-length-limit
+))
1024 (setf (cdr cell
) (subseq powers
0 too-big
))))))
1025 ;; Since base 10 is overwhelmingly common, make sure it's at head.
1026 ;; Try to keep other bases in a hopefully sensible order as well.
1027 (if (eql 10 (caar cache
))
1028 (setf *power-cache
* cache
)
1029 ;; If we modify the list destructively we need to copy it, otherwise
1030 ;; an alist lookup in progress might be screwed.
1031 (setf *power-cache
* (sort (copy-list cache
)
1033 (declare (fixnum a b
))
1043 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1044 ;;; the vector holds integers for which
1045 ;;; (aref powers k) == (expt base (expt 2 k))
1047 (defun powers-for-base (base limit
)
1048 (flet ((compute-powers (from)
1050 (do ((p from
(* p p
)))
1052 ;; We don't actually need this, but we also
1053 ;; prefer not to cons it up a second time...
1056 (nreverse powers
))))
1057 ;; Grab a local reference so that we won't stuff consed at the
1058 ;; head by other threads -- or sorting by SCRUB-POWER-CACHE.
1059 (let ((cache *power-cache
*))
1060 (let ((cell (assoc base cache
)))
1062 (let* ((powers (cdr cell
))
1063 (len (length powers
))
1064 (max (svref powers
(1- len
))))
1068 (concatenate 'vector powers
1069 (compute-powers (* max max
)))))
1070 (setf (cdr cell
) new
)
1072 (let ((powers (coerce (compute-powers base
) 'vector
)))
1073 ;; Add new base to head: SCRUB-POWER-CACHE will later
1074 ;; put it to a better place.
1075 (setf *power-cache
* (acons base powers cache
))
1078 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1079 (defun %output-huge-integer-in-base
(n base stream
)
1080 (declare (type bignum n
) (type fixnum base
))
1081 ;; POWER is a vector for which the following holds:
1082 ;; (aref power k) == (expt base (expt 2 k))
1083 (let* ((power (powers-for-base base n
))
1084 (k-start (or (position-if (lambda (x) (> x n
)) power
)
1085 (bug "power-vector too short"))))
1086 (labels ((bisect (n k exactp
)
1087 (declare (fixnum k
))
1088 ;; N is the number to bisect
1089 ;; K on initial entry BASE^(2^K) > N
1090 ;; EXACTP is true if 2^K is the exact number of digits
1093 (loop repeat
(ash 1 k
) do
(write-char #\
0 stream
))))
1096 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n
)
1100 (multiple-value-bind (q r
) (truncate n
(aref power k
))
1101 ;; EXACTP is NIL only at the head of the
1102 ;; initial number, as we don't know the number
1103 ;; of digits there, but we do know that it
1104 ;; doesn't get any leading zeros.
1106 (bisect r k
(or exactp
(plusp q
))))))))
1107 (bisect n k-start nil
))))
1109 (defun %output-integer-in-base
(integer base stream
)
1110 (when (minusp integer
)
1111 (write-char #\- stream
)
1112 (setf integer
(- integer
)))
1113 ;; The ideal cutoff point between these two algorithms is almost
1114 ;; certainly quite platform dependent: this gives 87 for 32 bit
1115 ;; SBCL, which is about right at least for x86/Darwin.
1116 (if (or (fixnump integer
)
1117 (< (integer-length integer
) (* 3 sb
!vm
:n-positive-fixnum-bits
)))
1118 (%output-reasonable-integer-in-base integer base stream
)
1119 (%output-huge-integer-in-base integer base stream
)))
1121 (defun output-integer (integer stream
)
1122 (let ((base *print-base
*))
1123 (when (and (/= base
10) *print-radix
*)
1124 (%output-radix base stream
))
1125 (%output-integer-in-base integer base stream
)
1126 (when (and *print-radix
* (= base
10))
1127 (write-char #\. stream
))))
1129 (defun output-ratio (ratio stream
)
1130 (let ((base *print-base
*))
1132 (%output-radix base stream
))
1133 (%output-integer-in-base
(numerator ratio
) base stream
)
1134 (write-char #\
/ stream
)
1135 (%output-integer-in-base
(denominator ratio
) base stream
)))
1137 (defun output-complex (complex stream
)
1138 (write-string "#C(" stream
)
1139 ;; FIXME: Could this just be OUTPUT-NUMBER?
1140 (output-object (realpart complex
) stream
)
1141 (write-char #\space stream
)
1142 (output-object (imagpart complex
) stream
)
1143 (write-char #\
) stream
))
1147 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1148 ;;; most of the work for all printing of floating point numbers in
1149 ;;; FORMAT. It converts a floating point number to a string in a free
1150 ;;; or fixed format with no exponent. The interpretation of the
1151 ;;; arguments is as follows:
1153 ;;; X - The floating point number to convert, which must not be
1155 ;;; WIDTH - The preferred field width, used to determine the number
1156 ;;; of fraction digits to produce if the FDIGITS parameter
1157 ;;; is unspecified or NIL. If the non-fraction digits and the
1158 ;;; decimal point alone exceed this width, no fraction digits
1159 ;;; will be produced unless a non-NIL value of FDIGITS has been
1160 ;;; specified. Field overflow is not considerd an error at this
1162 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1163 ;;; trailing zeroes may be introduced as needed. May be
1164 ;;; unspecified or NIL, in which case as many digits as possible
1165 ;;; are generated, subject to the constraint that there are no
1166 ;;; trailing zeroes.
1167 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1168 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1169 ;;; and cannot lose precision.
1170 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1171 ;;; number of fraction digits which will be produced, regardless
1172 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1173 ;;; the ~E format directive to prevent complete loss of
1174 ;;; significance in the printed value due to a bogus choice of
1178 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1179 ;;; where the results have the following interpretation:
1181 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1182 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1183 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1185 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1187 ;;; POINT-POS - The position of the digit preceding the decimal
1188 ;;; point. Zero indicates point before first digit.
1190 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1191 ;;; accuracy. Specifically, the decimal number printed is the closest
1192 ;;; possible approximation to the true value of the binary number to
1193 ;;; be printed from among all decimal representations with the same
1194 ;;; number of digits. In free-format output, i.e. with the number of
1195 ;;; digits unconstrained, it is guaranteed that all the information is
1196 ;;; preserved, so that a properly- rounding reader can reconstruct the
1197 ;;; original binary number, bit-for-bit, from its printed decimal
1198 ;;; representation. Furthermore, only as many digits as necessary to
1199 ;;; satisfy this condition will be printed.
1201 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1202 ;;; see below for comments.
1204 (defun flonum-to-string (x &optional width fdigits scale fmin
)
1205 (declare (type float x
))
1206 ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with
1207 ;; possibly-negative X.
1210 ;; Zero is a special case which FLOAT-STRING cannot handle.
1212 (let ((s (make-string (1+ fdigits
) :initial-element
#\
0)))
1213 (setf (schar s
0) #\.
)
1214 (values s
(length s
) t
(zerop fdigits
) 0))
1215 (values "." 1 t t
0)))
1217 (multiple-value-bind (e string
)
1219 (flonum-to-digits x
(min (- (+ fdigits
(or scale
0)))
1221 (if (and width
(> width
1))
1222 (let ((w (multiple-value-list
1226 (if (and scale
(minusp scale
))
1229 (f (multiple-value-list
1230 (flonum-to-digits x
(- (+ (or fmin
0)
1231 (if scale scale
0)))))))
1233 ((>= (length (cadr w
)) (length (cadr f
)))
1235 (t (values-list f
))))
1236 (flonum-to-digits x
)))
1237 (let ((e (+ e
(or scale
0)))
1238 (stream (make-string-output-stream)))
1241 (write-string string stream
:end
(min (length string
)
1243 (dotimes (i (- e
(length string
)))
1244 (write-char #\
0 stream
))
1245 (write-char #\. stream
)
1246 (write-string string stream
:start
(min (length
1249 (dotimes (i (- fdigits
1251 (min (length string
) e
))))
1252 (write-char #\
0 stream
))))
1254 (write-string "." stream
)
1256 (write-char #\
0 stream
))
1257 (write-string string stream
)
1259 (dotimes (i (+ fdigits e
(- (length string
))))
1260 (write-char #\
0 stream
)))))
1261 (let ((string (get-output-stream-string stream
)))
1262 (values string
(length string
)
1263 (char= (char string
0) #\.
)
1264 (char= (char string
(1- (length string
))) #\.
)
1265 (position #\. string
))))))))
1267 ;;; implementation of figure 1 from Burger and Dybvig, 1996. As the
1268 ;;; implementation of the Dragon from Classic CMUCL (and previously in
1269 ;;; SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN THINK OF
1270 ;;; ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE PAPER!",
1271 ;;; and in this case we have to add that even reading the paper might
1272 ;;; not bring immediate illumination as CSR has attempted to turn
1273 ;;; idiomatic Scheme into idiomatic Lisp.
1275 ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized
1276 ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has
1277 ;;; an improved algorithm, but CSR ran out of energy.
1279 ;;; possible extension for the enthusiastic: printing floats in bases
1280 ;;; other than base 10.
1281 (defconstant single-float-min-e
1282 (nth-value 1 (decode-float least-positive-single-float
)))
1283 (defconstant double-float-min-e
1284 (nth-value 1 (decode-float least-positive-double-float
)))
1286 (defconstant long-float-min-e
1287 (nth-value 1 (decode-float least-positive-long-float
)))
1289 (defun flonum-to-digits (v &optional position relativep
)
1290 (let ((print-base 10) ; B
1292 (float-digits (float-digits v
)) ; p
1293 (digit-characters "0123456789")
1296 (single-float single-float-min-e
)
1297 (double-float double-float-min-e
)
1299 (long-float long-float-min-e
))))
1300 (multiple-value-bind (f e
)
1301 (integer-decode-float v
)
1302 (let (;; FIXME: these even tests assume normal IEEE rounding
1303 ;; mode. I wonder if we should cater for non-normal?
1306 (with-push-char (:element-type base-char
)
1307 (labels ((scale (r s m
+ m-
)
1309 (s s
(* s print-base
)))
1310 ((not (or (> (+ r m
+) s
)
1311 (and high-ok
(= (+ r m
+) s
))))
1313 (r r
(* r print-base
))
1314 (m+ m
+ (* m
+ print-base
))
1315 (m- m-
(* m- print-base
)))
1316 ((not (or (< (* (+ r m
+) print-base
) s
)
1318 (= (* (+ r m
+) print-base
) s
))))
1319 (values k
(generate r s m
+ m-
)))))))
1320 (generate (r s m
+ m-
)
1324 (setf (values d r
) (truncate (* r print-base
) s
))
1325 (setf m
+ (* m
+ print-base
))
1326 (setf m-
(* m- print-base
))
1327 (setf tc1
(or (< r m-
) (and low-ok
(= r m-
))))
1328 (setf tc2
(or (> (+ r m
+) s
)
1329 (and high-ok
(= (+ r m
+) s
))))
1332 (push-char (char digit-characters d
))
1336 ((and (not tc1
) tc2
) (1+ d
))
1337 ((and tc1
(not tc2
)) d
)
1339 (if (< (* r
2) s
) d
(1+ d
))))))
1340 (push-char (char digit-characters d
))
1341 (return-from generate
(get-pushed-string))))))
1345 (let* ((be (expt float-radix e
))
1346 (be1 (* be float-radix
)))
1347 (if (/= f
(expt float-radix
(1- float-digits
)))
1357 (/= f
(expt float-radix
(1- float-digits
))))
1359 s
(* (expt float-radix
(- e
)) 2)
1362 (setf r
(* f float-radix
2)
1363 s
(* (expt float-radix
(- 1 e
)) 2)
1368 (aver (> position
0))
1370 ;; running out of letters here
1371 (l 1 (* l print-base
)))
1372 ((>= (* s l
) (+ r m
+))
1374 (if (< (+ r
(* s
(/ (expt print-base
(- k position
)) 2)))
1375 (* s
(expt print-base k
)))
1376 (setf position
(- k position
))
1377 (setf position
(- k position
1))))))
1378 (let ((low (max m-
(/ (* s
(expt print-base position
)) 2)))
1379 (high (max m
+ (/ (* s
(expt print-base position
)) 2))))
1386 (values r s m
+ m-
))))
1387 (multiple-value-bind (r s m
+ m-
) (initialize)
1388 (scale r s m
+ m-
))))))))
1390 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1391 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1392 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1393 ;;; original number. There may be some loss of precision due the
1394 ;;; floating point representation. The scaling is always done with
1395 ;;; long float arithmetic, which helps printing of lesser precisions
1396 ;;; as well as avoiding generic arithmetic.
1398 ;;; When computing our initial scale factor using EXPT, we pull out
1399 ;;; part of the computation to avoid over/under flow. When
1400 ;;; denormalized, we must pull out a large factor, since there is more
1401 ;;; negative exponent range than positive range.
1403 (eval-when (:compile-toplevel
:execute
)
1404 (setf *read-default-float-format
*
1405 #!+long-float
'long-float
#!-long-float
'double-float
))
1406 (defun scale-exponent (original-x)
1407 (let* ((x (coerce original-x
'long-float
)))
1408 (multiple-value-bind (sig exponent
) (decode-float x
)
1409 (declare (ignore sig
))
1411 (values (float 0.0e0 original-x
) 1)
1412 (let* ((ex (locally (declare (optimize (safety 0)))
1414 (round (* exponent
(log 2e0
10))))))
1416 (if (float-denormalized-p x
)
1418 (* x
1.0e16
(expt 10.0e0
(- (- ex
) 16)))
1420 (* x
1.0e18
(expt 10.0e0
(- (- ex
) 18)))
1421 (* x
10.0e0
(expt 10.0e0
(- (- ex
) 1))))
1422 (/ x
10.0e0
(expt 10.0e0
(1- ex
))))))
1423 (do ((d 10.0e0
(* d
10.0e0
))
1427 (do ((m 10.0e0
(* m
10.0e0
))
1431 (values (float z original-x
) ex
))
1432 (declare (long-float m
) (integer ex
))))
1433 (declare (long-float d
))))))))
1434 (eval-when (:compile-toplevel
:execute
)
1435 (setf *read-default-float-format
* 'single-float
))
1437 ;;;; entry point for the float printer
1439 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1440 ;;; argument is printed free-format, in either exponential or
1441 ;;; non-exponential notation, depending on its magnitude.
1443 ;;; NOTE: When a number is to be printed in exponential format, it is
1444 ;;; scaled in floating point. Since precision may be lost in this
1445 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1446 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1447 ;;; extensive computations with integers of similar magnitude to that
1448 ;;; of the number being printed. For large exponents, the bignums
1449 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1450 ;;; fast and the exponent range is not too large, then it might become
1451 ;;; attractive to handle exponential notation with the same accuracy
1452 ;;; as non-exponential notation, using the method described in the
1453 ;;; Steele and White paper.
1455 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1456 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1457 ;;; probably (a) implement the optimizations suggested by Burger and
1458 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1459 ;;; fixed-format printing.
1461 ;;; Print the appropriate exponent marker for X and the specified exponent.
1462 (defun print-float-exponent (x exp stream
)
1463 (declare (type float x
) (type integer exp
) (type stream stream
))
1464 (let ((*print-radix
* nil
))
1465 (if (typep x
*read-default-float-format
*)
1467 (format stream
"e~D" exp
))
1468 (format stream
"~C~D"
1476 (defun output-float-infinity (x stream
)
1477 (declare (float x
) (stream stream
))
1479 (write-string "#." stream
))
1481 (error 'print-not-readable
:object x
))
1483 (write-string "#<" stream
)))
1484 (write-string "SB-EXT:" stream
)
1485 (write-string (symbol-name (float-format-name x
)) stream
)
1486 (write-string (if (plusp x
) "-POSITIVE-" "-NEGATIVE-")
1488 (write-string "INFINITY" stream
)
1490 (write-string ">" stream
)))
1492 (defun output-float-nan (x stream
)
1493 (print-unreadable-object (x stream
)
1494 (princ (float-format-name x
) stream
)
1495 (write-string (if (float-trapping-nan-p x
) " trapping" " quiet") stream
)
1496 (write-string " NaN" stream
)))
1498 ;;; the function called by OUTPUT-OBJECT to handle floats
1499 (defun output-float (x stream
)
1501 ((float-infinity-p x
)
1502 (output-float-infinity x stream
))
1504 (output-float-nan x stream
))
1506 (let ((x (cond ((minusp (float-sign x
))
1507 (write-char #\- stream
)
1513 (write-string "0.0" stream
)
1514 (print-float-exponent x
0 stream
))
1516 (output-float-aux x stream -
3 8)))))))
1518 (defun output-float-aux (x stream e-min e-max
)
1519 (multiple-value-bind (e string
)
1520 (flonum-to-digits x
)
1525 (write-string string stream
:end
(min (length string
) e
))
1526 (dotimes (i (- e
(length string
)))
1527 (write-char #\
0 stream
))
1528 (write-char #\. stream
)
1529 (write-string string stream
:start
(min (length string
) e
))
1530 (when (<= (length string
) e
)
1531 (write-char #\
0 stream
))
1532 (print-float-exponent x
0 stream
))
1534 (write-string "0." stream
)
1536 (write-char #\
0 stream
))
1537 (write-string string stream
)
1538 (print-float-exponent x
0 stream
))))
1539 (t (write-string string stream
:end
1)
1540 (write-char #\. stream
)
1541 (write-string string stream
:start
1)
1542 (print-float-exponent x
(1- e
) stream
)))))
1544 ;;;; other leaf objects
1546 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1547 ;;; the character name or the character in the #\char format.
1548 (defun output-character (char stream
)
1549 (if (or *print-escape
* *print-readably
*)
1550 (let ((graphicp (and (graphic-char-p char
)
1551 (standard-char-p char
)))
1552 (name (char-name char
)))
1553 (write-string "#\\" stream
)
1554 (if (and name
(not graphicp
))
1555 (quote-string name stream
)
1556 (write-char char stream
)))
1557 (write-char char stream
)))
1559 (defun output-sap (sap stream
)
1560 (declare (type system-area-pointer sap
))
1562 (format stream
"#.(~S #X~8,'0X)" 'int-sap
(sap-int sap
)))
1564 (print-unreadable-object (sap stream
)
1565 (format stream
"system area pointer: #X~8,'0X" (sap-int sap
))))))
1567 (defun output-weak-pointer (weak-pointer stream
)
1568 (declare (type weak-pointer weak-pointer
))
1569 (print-unreadable-object (weak-pointer stream
)
1570 (multiple-value-bind (value validp
) (weak-pointer-value weak-pointer
)
1572 (write-string "weak pointer: " stream
)
1573 (write value
:stream stream
))
1575 (write-string "broken weak pointer" stream
))))))
1577 (defun output-code-component (component stream
)
1578 (print-unreadable-object (component stream
:identity t
)
1579 (let ((dinfo (%code-debug-info component
)))
1580 (cond ((eq dinfo
:bogus-lra
)
1581 (write-string "bogus code object" stream
))
1583 (write-string "code object" stream
)
1585 (write-char #\space stream
)
1586 (output-object (sb!c
::debug-info-name dinfo
) stream
)))))))
1588 (defun output-lra (lra stream
)
1589 (print-unreadable-object (lra stream
:identity t
)
1590 (write-string "return PC object" stream
)))
1592 (defun output-fdefn (fdefn stream
)
1593 (print-unreadable-object (fdefn stream
)
1594 (write-string "FDEFINITION object for " stream
)
1595 (output-object (fdefn-name fdefn
) stream
)))
1599 ;;; Output OBJECT as using PRINT-OBJECT if it's a
1600 ;;; FUNCALLABLE-STANDARD-CLASS, or return NIL otherwise.
1602 ;;; The definition here is a simple temporary placeholder. It will be
1603 ;;; overwritten by a smarter version (capable of calling generic
1604 ;;; PRINT-OBJECT when appropriate) when CLOS is installed.
1605 (defun printed-as-funcallable-standard-class (object stream
)
1606 (declare (ignore object stream
))
1609 (defun output-fun (object stream
)
1610 (let* ((*print-length
* 3) ; in case we have to..
1611 (*print-level
* 3) ; ..print an interpreted function definition
1612 (name (%fun-name object
))
1613 (proper-name-p (and (legal-fun-name-p name
) (fboundp name
)
1614 (eq (fdefinition name
) object
))))
1615 (print-unreadable-object (object stream
:identity
(not proper-name-p
))
1616 (format stream
"~:[FUNCTION~;CLOSURE~]~@[ ~S~]"
1620 ;;;; catch-all for unknown things
1622 (defun output-random (object stream
)
1623 (print-unreadable-object (object stream
:identity t
)
1624 (let ((lowtag (lowtag-of object
)))
1626 (#.sb
!vm
:other-pointer-lowtag
1627 (let ((widetag (widetag-of object
)))
1629 (#.sb
!vm
:value-cell-header-widetag
1630 (write-string "value cell " stream
)
1631 (output-object (value-cell-ref object
) stream
))
1633 (write-string "unknown pointer object, widetag=" stream
)
1634 (let ((*print-base
* 16) (*print-radix
* t
))
1635 (output-integer widetag stream
))))))
1636 ((#.sb
!vm
:fun-pointer-lowtag
1637 #.sb
!vm
:instance-pointer-lowtag
1638 #.sb
!vm
:list-pointer-lowtag
)
1639 (write-string "unknown pointer object, lowtag=" stream
)
1640 (let ((*print-base
* 16) (*print-radix
* t
))
1641 (output-integer lowtag stream
)))
1643 (case (widetag-of object
)
1644 (#.sb
!vm
:unbound-marker-widetag
1645 (write-string "unbound marker" stream
))
1647 (write-string "unknown immediate object, lowtag=" stream
)
1648 (let ((*print-base
* 2) (*print-radix
* t
))
1649 (output-integer lowtag stream
))
1650 (write-string ", widetag=" stream
)
1651 (let ((*print-base
* 16) (*print-radix
* t
))
1652 (output-integer (widetag-of object
) stream
)))))))))