0.8.16.17
[sbcl/simd.git] / src / compiler / ir1opt.lisp
blob820fcf4c480d5c9f9302027df4c69d7b208eba0c
1 ;;;; This file implements the IR1 optimization phase of the compiler.
2 ;;;; IR1 optimization is a grab-bag of optimizations that don't make
3 ;;;; major changes to the block-level control flow and don't use flow
4 ;;;; analysis. These optimizations can mostly be classified as
5 ;;;; "meta-evaluation", but there is a sizable top-down component as
6 ;;;; well.
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!C")
19 ;;;; interface for obtaining results of constant folding
21 ;;; Return true for an LVAR whose sole use is a reference to a
22 ;;; constant leaf.
23 (defun constant-lvar-p (thing)
24 (declare (type (or lvar null) thing))
25 (and (lvar-p thing)
26 (let ((use (principal-lvar-use thing)))
27 (and (ref-p use) (constant-p (ref-leaf use))))))
29 ;;; Return the constant value for an LVAR whose only use is a constant
30 ;;; node.
31 (declaim (ftype (function (lvar) t) lvar-value))
32 (defun lvar-value (lvar)
33 (let ((use (principal-lvar-use lvar)))
34 (constant-value (ref-leaf use))))
36 ;;;; interface for obtaining results of type inference
38 ;;; Our best guess for the type of this lvar's value. Note that this
39 ;;; may be VALUES or FUNCTION type, which cannot be passed as an
40 ;;; argument to the normal type operations. See LVAR-TYPE.
41 ;;;
42 ;;; The result value is cached in the LVAR-%DERIVED-TYPE slot. If the
43 ;;; slot is true, just return that value, otherwise recompute and
44 ;;; stash the value there.
45 #!-sb-fluid (declaim (inline lvar-derived-type))
46 (defun lvar-derived-type (lvar)
47 (declare (type lvar lvar))
48 (or (lvar-%derived-type lvar)
49 (setf (lvar-%derived-type lvar)
50 (%lvar-derived-type lvar))))
51 (defun %lvar-derived-type (lvar)
52 (declare (type lvar lvar))
53 (let ((uses (lvar-uses lvar)))
54 (cond ((null uses) *empty-type*)
55 ((listp uses)
56 (do ((res (node-derived-type (first uses))
57 (values-type-union (node-derived-type (first current))
58 res))
59 (current (rest uses) (rest current)))
60 ((null current) res)))
62 (node-derived-type (lvar-uses lvar))))))
64 ;;; Return the derived type for LVAR's first value. This is guaranteed
65 ;;; not to be a VALUES or FUNCTION type.
66 (declaim (ftype (sfunction (lvar) ctype) lvar-type))
67 (defun lvar-type (lvar)
68 (single-value-type (lvar-derived-type lvar)))
70 ;;; If LVAR is an argument of a function, return a type which the
71 ;;; function checks LVAR for.
72 #!-sb-fluid (declaim (inline lvar-externally-checkable-type))
73 (defun lvar-externally-checkable-type (lvar)
74 (or (lvar-%externally-checkable-type lvar)
75 (%lvar-%externally-checkable-type lvar)))
76 (defun %lvar-%externally-checkable-type (lvar)
77 (declare (type lvar lvar))
78 (let ((dest (lvar-dest lvar)))
79 (if (not (and dest (combination-p dest)))
80 ;; TODO: MV-COMBINATION
81 (setf (lvar-%externally-checkable-type lvar) *wild-type*)
82 (let* ((fun (combination-fun dest))
83 (args (combination-args dest))
84 (fun-type (lvar-type fun)))
85 (setf (lvar-%externally-checkable-type fun) *wild-type*)
86 (if (or (not (call-full-like-p dest))
87 (not (fun-type-p fun-type))
88 ;; FUN-TYPE might be (AND FUNCTION (SATISFIES ...)).
89 (fun-type-wild-args fun-type))
90 (dolist (arg args)
91 (when arg
92 (setf (lvar-%externally-checkable-type arg)
93 *wild-type*)))
94 (map-combination-args-and-types
95 (lambda (arg type)
96 (setf (lvar-%externally-checkable-type arg)
97 (acond ((lvar-%externally-checkable-type arg)
98 (values-type-intersection
99 it (coerce-to-values type)))
100 (t (coerce-to-values type)))))
101 dest)))))
102 (lvar-%externally-checkable-type lvar))
103 #!-sb-fluid(declaim (inline flush-lvar-externally-checkable-type))
104 (defun flush-lvar-externally-checkable-type (lvar)
105 (declare (type lvar lvar))
106 (setf (lvar-%externally-checkable-type lvar) nil))
108 ;;;; interface routines used by optimizers
110 ;;; This function is called by optimizers to indicate that something
111 ;;; interesting has happened to the value of LVAR. Optimizers must
112 ;;; make sure that they don't call for reoptimization when nothing has
113 ;;; happened, since optimization will fail to terminate.
115 ;;; We clear any cached type for the lvar and set the reoptimize flags
116 ;;; on everything in sight.
117 (defun reoptimize-lvar (lvar)
118 (declare (type (or lvar null) lvar))
119 (when lvar
120 (setf (lvar-%derived-type lvar) nil)
121 (let ((dest (lvar-dest lvar)))
122 (when dest
123 (setf (lvar-reoptimize lvar) t)
124 (setf (node-reoptimize dest) t)
125 (binding* (;; Since this may be called during IR1 conversion,
126 ;; PREV may be missing.
127 (prev (node-prev dest) :exit-if-null)
128 (block (ctran-block prev))
129 (component (block-component block)))
130 (when (typep dest 'cif)
131 (setf (block-test-modified block) t))
132 (setf (block-reoptimize block) t)
133 (setf (component-reoptimize component) t))))
134 (do-uses (node lvar)
135 (setf (block-type-check (node-block node)) t)))
136 (values))
138 (defun reoptimize-lvar-uses (lvar)
139 (declare (type lvar lvar))
140 (do-uses (use lvar)
141 (setf (node-reoptimize use) t)
142 (setf (block-reoptimize (node-block use)) t)
143 (setf (component-reoptimize (node-component use)) t)))
145 ;;; Annotate NODE to indicate that its result has been proven to be
146 ;;; TYPEP to RTYPE. After IR1 conversion has happened, this is the
147 ;;; only correct way to supply information discovered about a node's
148 ;;; type. If you screw with the NODE-DERIVED-TYPE directly, then
149 ;;; information may be lost and reoptimization may not happen.
151 ;;; What we do is intersect RTYPE with NODE's DERIVED-TYPE. If the
152 ;;; intersection is different from the old type, then we do a
153 ;;; REOPTIMIZE-LVAR on the NODE-LVAR.
154 (defun derive-node-type (node rtype)
155 (declare (type valued-node node) (type ctype rtype))
156 (let ((node-type (node-derived-type node)))
157 (unless (eq node-type rtype)
158 (let ((int (values-type-intersection node-type rtype))
159 (lvar (node-lvar node)))
160 (when (type/= node-type int)
161 (when (and *check-consistency*
162 (eq int *empty-type*)
163 (not (eq rtype *empty-type*)))
164 (let ((*compiler-error-context* node))
165 (compiler-warn
166 "New inferred type ~S conflicts with old type:~
167 ~% ~S~%*** possible internal error? Please report this."
168 (type-specifier rtype) (type-specifier node-type))))
169 (setf (node-derived-type node) int)
170 ;; If the new type consists of only one object, replace the
171 ;; node with a constant reference.
172 (when (and (ref-p node)
173 (lambda-var-p (ref-leaf node)))
174 (let ((type (single-value-type int)))
175 (when (and (member-type-p type)
176 (null (rest (member-type-members type))))
177 (change-ref-leaf node (find-constant
178 (first (member-type-members type)))))))
179 (reoptimize-lvar lvar)))))
180 (values))
182 ;;; This is similar to DERIVE-NODE-TYPE, but asserts that it is an
183 ;;; error for LVAR's value not to be TYPEP to TYPE. We implement it
184 ;;; splitting off DEST a new CAST node; old LVAR will deliver values
185 ;;; to CAST. If we improve the assertion, we set TYPE-CHECK and
186 ;;; TYPE-ASSERTED to guarantee that the new assertion will be checked.
187 (defun assert-lvar-type (lvar type policy)
188 (declare (type lvar lvar) (type ctype type))
189 (unless (values-subtypep (lvar-derived-type lvar) type)
190 (let* ((dest (lvar-dest lvar))
191 (ctran (node-prev dest)))
192 (with-ir1-environment-from-node dest
193 (let* ((cast (make-cast lvar type policy))
194 (internal-lvar (make-lvar))
195 (internal-ctran (make-ctran)))
196 (setf (ctran-next ctran) cast
197 (node-prev cast) ctran)
198 (use-continuation cast internal-ctran internal-lvar)
199 (link-node-to-previous-ctran dest internal-ctran)
200 (substitute-lvar internal-lvar lvar)
201 (setf (lvar-dest lvar) cast)
202 (reoptimize-lvar lvar)
203 (when (return-p dest)
204 (node-ends-block cast))
205 (setf (block-attributep (block-flags (node-block cast))
206 type-check type-asserted)
207 t))))))
210 ;;;; IR1-OPTIMIZE
212 ;;; Do one forward pass over COMPONENT, deleting unreachable blocks
213 ;;; and doing IR1 optimizations. We can ignore all blocks that don't
214 ;;; have the REOPTIMIZE flag set. If COMPONENT-REOPTIMIZE is true when
215 ;;; we are done, then another iteration would be beneficial.
216 (defun ir1-optimize (component)
217 (declare (type component component))
218 (setf (component-reoptimize component) nil)
219 (loop with block = (block-next (component-head component))
220 with tail = (component-tail component)
221 for last-block = block
222 until (eq block tail)
223 do (cond
224 ;; We delete blocks when there is either no predecessor or the
225 ;; block is in a lambda that has been deleted. These blocks
226 ;; would eventually be deleted by DFO recomputation, but doing
227 ;; it here immediately makes the effect available to IR1
228 ;; optimization.
229 ((or (block-delete-p block)
230 (null (block-pred block)))
231 (delete-block-lazily block)
232 (setq block (clean-component component block)))
233 ((eq (functional-kind (block-home-lambda block)) :deleted)
234 ;; Preserve the BLOCK-SUCC invariant that almost every block has
235 ;; one successor (and a block with DELETE-P set is an acceptable
236 ;; exception).
237 (mark-for-deletion block)
238 (setq block (clean-component component block)))
240 (loop
241 (let ((succ (block-succ block)))
242 (unless (singleton-p succ)
243 (return)))
245 (let ((last (block-last block)))
246 (typecase last
247 (cif
248 (flush-dest (if-test last))
249 (when (unlink-node last)
250 (return)))
251 (exit
252 (when (maybe-delete-exit last)
253 (return)))))
255 (unless (join-successor-if-possible block)
256 (return)))
258 (when (and (block-reoptimize block) (block-component block))
259 (aver (not (block-delete-p block)))
260 (ir1-optimize-block block))
262 (cond ((and (block-delete-p block) (block-component block))
263 (setq block (clean-component component block)))
264 ((and (block-flush-p block) (block-component block))
265 (flush-dead-code block)))))
266 do (when (eq block last-block)
267 (setq block (block-next block))))
269 (values))
271 ;;; Loop over the nodes in BLOCK, acting on (and clearing) REOPTIMIZE
272 ;;; flags.
274 ;;; Note that although they are cleared here, REOPTIMIZE flags might
275 ;;; still be set upon return from this function, meaning that further
276 ;;; optimization is wanted (as a consequence of optimizations we did).
277 (defun ir1-optimize-block (block)
278 (declare (type cblock block))
279 ;; We clear the node and block REOPTIMIZE flags before doing the
280 ;; optimization, not after. This ensures that the node or block will
281 ;; be reoptimized if necessary.
282 (setf (block-reoptimize block) nil)
283 (do-nodes (node nil block :restart-p t)
284 (when (node-reoptimize node)
285 ;; As above, we clear the node REOPTIMIZE flag before optimizing.
286 (setf (node-reoptimize node) nil)
287 (typecase node
288 (ref)
289 (combination
290 ;; With a COMBINATION, we call PROPAGATE-FUN-CHANGE whenever
291 ;; the function changes, and call IR1-OPTIMIZE-COMBINATION if
292 ;; any argument changes.
293 (ir1-optimize-combination node))
294 (cif
295 (ir1-optimize-if node))
296 (creturn
297 ;; KLUDGE: We leave the NODE-OPTIMIZE flag set going into
298 ;; IR1-OPTIMIZE-RETURN, since IR1-OPTIMIZE-RETURN wants to
299 ;; clear the flag itself. -- WHN 2002-02-02, quoting original
300 ;; CMU CL comments
301 (setf (node-reoptimize node) t)
302 (ir1-optimize-return node))
303 (mv-combination
304 (ir1-optimize-mv-combination node))
305 (exit
306 ;; With an EXIT, we derive the node's type from the VALUE's
307 ;; type.
308 (let ((value (exit-value node)))
309 (when value
310 (derive-node-type node (lvar-derived-type value)))))
311 (cset
312 (ir1-optimize-set node))
313 (cast
314 (ir1-optimize-cast node)))))
316 (values))
318 ;;; Try to join with a successor block. If we succeed, we return true,
319 ;;; otherwise false.
320 (defun join-successor-if-possible (block)
321 (declare (type cblock block))
322 (let ((next (first (block-succ block))))
323 (when (block-start next) ; NEXT is not an END-OF-COMPONENT marker
324 (cond ( ;; We cannot combine with a successor block if:
326 ;; the successor has more than one predecessor;
327 (rest (block-pred next))
328 ;; the successor is the current block (infinite loop);
329 (eq next block)
330 ;; the next block has a different cleanup, and thus
331 ;; we may want to insert cleanup code between the
332 ;; two blocks at some point;
333 (not (eq (block-end-cleanup block)
334 (block-start-cleanup next)))
335 ;; the next block has a different home lambda, and
336 ;; thus the control transfer is a non-local exit.
337 (not (eq (block-home-lambda block)
338 (block-home-lambda next)))
339 ;; Stack analysis phase wants ENTRY to start a block...
340 (entry-p (block-start-node next))
341 (let ((last (block-last block)))
342 (and (valued-node-p last)
343 (awhen (node-lvar last)
344 (or
345 ;; ... and a DX-allocator to end a block.
346 (lvar-dynamic-extent it)
347 ;; FIXME: This is a partial workaround for bug 303.
348 (consp (lvar-uses it)))))))
349 nil)
351 (join-blocks block next)
352 t)))))
354 ;;; Join together two blocks. The code in BLOCK2 is moved into BLOCK1
355 ;;; and BLOCK2 is deleted from the DFO. We combine the optimize flags
356 ;;; for the two blocks so that any indicated optimization gets done.
357 (defun join-blocks (block1 block2)
358 (declare (type cblock block1 block2))
359 (let* ((last1 (block-last block1))
360 (last2 (block-last block2))
361 (succ (block-succ block2))
362 (start2 (block-start block2)))
363 (do ((ctran start2 (node-next (ctran-next ctran))))
364 ((not ctran))
365 (setf (ctran-block ctran) block1))
367 (unlink-blocks block1 block2)
368 (dolist (block succ)
369 (unlink-blocks block2 block)
370 (link-blocks block1 block))
372 (setf (ctran-kind start2) :inside-block)
373 (setf (node-next last1) start2)
374 (setf (ctran-use start2) last1)
375 (setf (block-last block1) last2))
377 (setf (block-flags block1)
378 (attributes-union (block-flags block1)
379 (block-flags block2)
380 (block-attributes type-asserted test-modified)))
382 (let ((next (block-next block2))
383 (prev (block-prev block2)))
384 (setf (block-next prev) next)
385 (setf (block-prev next) prev))
387 (values))
389 ;;; Delete any nodes in BLOCK whose value is unused and which have no
390 ;;; side effects. We can delete sets of lexical variables when the set
391 ;;; variable has no references.
392 (defun flush-dead-code (block)
393 (declare (type cblock block))
394 (setf (block-flush-p block) nil)
395 (do-nodes-backwards (node lvar block :restart-p t)
396 (unless lvar
397 (typecase node
398 (ref
399 (delete-ref node)
400 (unlink-node node))
401 (combination
402 (let ((kind (combination-kind node))
403 (info (combination-fun-info node)))
404 (when (and (eq kind :known) (fun-info-p info))
405 (let ((attr (fun-info-attributes info)))
406 (when (and (not (ir1-attributep attr call))
407 ;; ### For now, don't delete potentially
408 ;; flushable calls when they have the CALL
409 ;; attribute. Someday we should look at the
410 ;; functional args to determine if they have
411 ;; any side effects.
412 (if (policy node (= safety 3))
413 (ir1-attributep attr flushable)
414 (ir1-attributep attr unsafely-flushable)))
415 (flush-combination node))))))
416 (mv-combination
417 (when (eq (basic-combination-kind node) :local)
418 (let ((fun (combination-lambda node)))
419 (when (dolist (var (lambda-vars fun) t)
420 (when (or (leaf-refs var)
421 (lambda-var-sets var))
422 (return nil)))
423 (flush-dest (first (basic-combination-args node)))
424 (delete-let fun)))))
425 (exit
426 (let ((value (exit-value node)))
427 (when value
428 (flush-dest value)
429 (setf (exit-value node) nil))))
430 (cset
431 (let ((var (set-var node)))
432 (when (and (lambda-var-p var)
433 (null (leaf-refs var)))
434 (flush-dest (set-value node))
435 (setf (basic-var-sets var)
436 (delq node (basic-var-sets var)))
437 (unlink-node node))))
438 (cast
439 (unless (cast-type-check node)
440 (flush-dest (cast-value node))
441 (unlink-node node))))))
443 (values))
445 ;;;; local call return type propagation
447 ;;; This function is called on RETURN nodes that have their REOPTIMIZE
448 ;;; flag set. It iterates over the uses of the RESULT, looking for
449 ;;; interesting stuff to update the TAIL-SET. If a use isn't a local
450 ;;; call, then we union its type together with the types of other such
451 ;;; uses. We assign to the RETURN-RESULT-TYPE the intersection of this
452 ;;; type with the RESULT's asserted type. We can make this
453 ;;; intersection now (potentially before type checking) because this
454 ;;; assertion on the result will eventually be checked (if
455 ;;; appropriate.)
457 ;;; We call MAYBE-CONVERT-TAIL-LOCAL-CALL on each local non-MV
458 ;;; combination, which may change the succesor of the call to be the
459 ;;; called function, and if so, checks if the call can become an
460 ;;; assignment. If we convert to an assignment, we abort, since the
461 ;;; RETURN has been deleted.
462 (defun find-result-type (node)
463 (declare (type creturn node))
464 (let ((result (return-result node)))
465 (collect ((use-union *empty-type* values-type-union))
466 (do-uses (use result)
467 (let ((use-home (node-home-lambda use)))
468 (cond ((or (eq (functional-kind use-home) :deleted)
469 (block-delete-p (node-block use))))
470 ((and (basic-combination-p use)
471 (eq (basic-combination-kind use) :local))
472 (aver (eq (lambda-tail-set use-home)
473 (lambda-tail-set (combination-lambda use))))
474 (when (combination-p use)
475 (when (nth-value 1 (maybe-convert-tail-local-call use))
476 (return-from find-result-type t))))
478 (use-union (node-derived-type use))))))
479 (let ((int
480 ;; (values-type-intersection
481 ;; (continuation-asserted-type result) ; FIXME -- APD, 2002-01-26
482 (use-union)
483 ;; )
485 (setf (return-result-type node) int))))
486 nil)
488 ;;; Do stuff to realize that something has changed about the value
489 ;;; delivered to a return node. Since we consider the return values of
490 ;;; all functions in the tail set to be equivalent, this amounts to
491 ;;; bringing the entire tail set up to date. We iterate over the
492 ;;; returns for all the functions in the tail set, reanalyzing them
493 ;;; all (not treating NODE specially.)
495 ;;; When we are done, we check whether the new type is different from
496 ;;; the old TAIL-SET-TYPE. If so, we set the type and also reoptimize
497 ;;; all the lvars for references to functions in the tail set. This
498 ;;; will cause IR1-OPTIMIZE-COMBINATION to derive the new type as the
499 ;;; results of the calls.
500 (defun ir1-optimize-return (node)
501 (declare (type creturn node))
502 (tagbody
503 :restart
504 (let* ((tails (lambda-tail-set (return-lambda node)))
505 (funs (tail-set-funs tails)))
506 (collect ((res *empty-type* values-type-union))
507 (dolist (fun funs)
508 (let ((return (lambda-return fun)))
509 (when return
510 (when (node-reoptimize return)
511 (setf (node-reoptimize return) nil)
512 (when (find-result-type return)
513 (go :restart)))
514 (res (return-result-type return)))))
516 (when (type/= (res) (tail-set-type tails))
517 (setf (tail-set-type tails) (res))
518 (dolist (fun (tail-set-funs tails))
519 (dolist (ref (leaf-refs fun))
520 (reoptimize-lvar (node-lvar ref))))))))
522 (values))
524 ;;;; IF optimization
526 ;;; If the test has multiple uses, replicate the node when possible.
527 ;;; Also check whether the predicate is known to be true or false,
528 ;;; deleting the IF node in favor of the appropriate branch when this
529 ;;; is the case.
530 (defun ir1-optimize-if (node)
531 (declare (type cif node))
532 (let ((test (if-test node))
533 (block (node-block node)))
535 (when (and (eq (block-start-node block) node)
536 (listp (lvar-uses test)))
537 (do-uses (use test)
538 (when (immediately-used-p test use)
539 (convert-if-if use node)
540 (when (not (listp (lvar-uses test))) (return)))))
542 (let* ((type (lvar-type test))
543 (victim
544 (cond ((constant-lvar-p test)
545 (if (lvar-value test)
546 (if-alternative node)
547 (if-consequent node)))
548 ((not (types-equal-or-intersect type (specifier-type 'null)))
549 (if-alternative node))
550 ((type= type (specifier-type 'null))
551 (if-consequent node)))))
552 (when victim
553 (flush-dest test)
554 (when (rest (block-succ block))
555 (unlink-blocks block victim))
556 (setf (component-reanalyze (node-component node)) t)
557 (unlink-node node))))
558 (values))
560 ;;; Create a new copy of an IF node that tests the value of the node
561 ;;; USE. The test must have >1 use, and must be immediately used by
562 ;;; USE. NODE must be the only node in its block (implying that
563 ;;; block-start = if-test).
565 ;;; This optimization has an effect semantically similar to the
566 ;;; source-to-source transformation:
567 ;;; (IF (IF A B C) D E) ==>
568 ;;; (IF A (IF B D E) (IF C D E))
570 ;;; We clobber the NODE-SOURCE-PATH of both the original and the new
571 ;;; node so that dead code deletion notes will definitely not consider
572 ;;; either node to be part of the original source. One node might
573 ;;; become unreachable, resulting in a spurious note.
574 (defun convert-if-if (use node)
575 (declare (type node use) (type cif node))
576 (with-ir1-environment-from-node node
577 (let* ((block (node-block node))
578 (test (if-test node))
579 (cblock (if-consequent node))
580 (ablock (if-alternative node))
581 (use-block (node-block use))
582 (new-ctran (make-ctran))
583 (new-lvar (make-lvar))
584 (new-node (make-if :test new-lvar
585 :consequent cblock
586 :alternative ablock))
587 (new-block (ctran-starts-block new-ctran)))
588 (link-node-to-previous-ctran new-node new-ctran)
589 (setf (lvar-dest new-lvar) new-node)
590 (setf (block-last new-block) new-node)
592 (unlink-blocks use-block block)
593 (%delete-lvar-use use)
594 (add-lvar-use use new-lvar)
595 (link-blocks use-block new-block)
597 (link-blocks new-block cblock)
598 (link-blocks new-block ablock)
600 (push "<IF Duplication>" (node-source-path node))
601 (push "<IF Duplication>" (node-source-path new-node))
603 (reoptimize-lvar test)
604 (reoptimize-lvar new-lvar)
605 (setf (component-reanalyze *current-component*) t)))
606 (values))
608 ;;;; exit IR1 optimization
610 ;;; This function attempts to delete an exit node, returning true if
611 ;;; it deletes the block as a consequence:
612 ;;; -- If the exit is degenerate (has no ENTRY), then we don't do
613 ;;; anything, since there is nothing to be done.
614 ;;; -- If the exit node and its ENTRY have the same home lambda then
615 ;;; we know the exit is local, and can delete the exit. We change
616 ;;; uses of the Exit-Value to be uses of the original lvar,
617 ;;; then unlink the node. If the exit is to a TR context, then we
618 ;;; must do MERGE-TAIL-SETS on any local calls which delivered
619 ;;; their value to this exit.
620 ;;; -- If there is no value (as in a GO), then we skip the value
621 ;;; semantics.
623 ;;; This function is also called by environment analysis, since it
624 ;;; wants all exits to be optimized even if normal optimization was
625 ;;; omitted.
626 (defun maybe-delete-exit (node)
627 (declare (type exit node))
628 (let ((value (exit-value node))
629 (entry (exit-entry node)))
630 (when (and entry
631 (eq (node-home-lambda node) (node-home-lambda entry)))
632 (setf (entry-exits entry) (delq node (entry-exits entry)))
633 (if value
634 (delete-filter node (node-lvar node) value)
635 (unlink-node node)))))
638 ;;;; combination IR1 optimization
640 ;;; Report as we try each transform?
641 #!+sb-show
642 (defvar *show-transforms-p* nil)
644 ;;; Do IR1 optimizations on a COMBINATION node.
645 (declaim (ftype (function (combination) (values)) ir1-optimize-combination))
646 (defun ir1-optimize-combination (node)
647 (when (lvar-reoptimize (basic-combination-fun node))
648 (propagate-fun-change node)
649 (maybe-terminate-block node nil))
650 (let ((args (basic-combination-args node))
651 (kind (basic-combination-kind node))
652 (info (basic-combination-fun-info node)))
653 (ecase kind
654 (:local
655 (let ((fun (combination-lambda node)))
656 (if (eq (functional-kind fun) :let)
657 (propagate-let-args node fun)
658 (propagate-local-call-args node fun))))
659 (:error
660 (dolist (arg args)
661 (when arg
662 (setf (lvar-reoptimize arg) nil))))
663 (:full
664 (dolist (arg args)
665 (when arg
666 (setf (lvar-reoptimize arg) nil)))
667 (when info
668 (let ((fun (fun-info-derive-type info)))
669 (when fun
670 (let ((res (funcall fun node)))
671 (when res
672 (derive-node-type node (coerce-to-values res))
673 (maybe-terminate-block node nil)))))))
674 (:known
675 (aver info)
676 (dolist (arg args)
677 (when arg
678 (setf (lvar-reoptimize arg) nil)))
680 (let ((attr (fun-info-attributes info)))
681 (when (and (ir1-attributep attr foldable)
682 ;; KLUDGE: The next test could be made more sensitive,
683 ;; only suppressing constant-folding of functions with
684 ;; CALL attributes when they're actually passed
685 ;; function arguments. -- WHN 19990918
686 (not (ir1-attributep attr call))
687 (every #'constant-lvar-p args)
688 (node-lvar node)
689 ;; Even if the function is foldable in principle,
690 ;; it might be one of our low-level
691 ;; implementation-specific functions. Such
692 ;; functions don't necessarily exist at runtime on
693 ;; a plain vanilla ANSI Common Lisp
694 ;; cross-compilation host, in which case the
695 ;; cross-compiler can't fold it because the
696 ;; cross-compiler doesn't know how to evaluate it.
697 #+sb-xc-host
698 (or (fboundp (combination-fun-source-name node))
699 (progn (format t ";;; !!! Unbound fun: (~S~{ ~S~})~%"
700 (combination-fun-source-name node)
701 (mapcar #'lvar-value args))
702 nil)))
703 (constant-fold-call node)
704 (return-from ir1-optimize-combination)))
706 (let ((fun (fun-info-derive-type info)))
707 (when fun
708 (let ((res (funcall fun node)))
709 (when res
710 (derive-node-type node (coerce-to-values res))
711 (maybe-terminate-block node nil)))))
713 (let ((fun (fun-info-optimizer info)))
714 (unless (and fun (funcall fun node))
715 (dolist (x (fun-info-transforms info))
716 #!+sb-show
717 (when *show-transforms-p*
718 (let* ((lvar (basic-combination-fun node))
719 (fname (lvar-fun-name lvar t)))
720 (/show "trying transform" x (transform-function x) "for" fname)))
721 (unless (ir1-transform node x)
722 #!+sb-show
723 (when *show-transforms-p*
724 (/show "quitting because IR1-TRANSFORM result was NIL"))
725 (return))))))))
727 (values))
729 ;;; If NODE doesn't return (i.e. return type is NIL), then terminate
730 ;;; the block there, and link it to the component tail.
732 ;;; Except when called during IR1 convertion, we delete the
733 ;;; continuation if it has no other uses. (If it does have other uses,
734 ;;; we reoptimize.)
736 ;;; Termination on the basis of a continuation type is
737 ;;; inhibited when:
738 ;;; -- The continuation is deleted (hence the assertion is spurious), or
739 ;;; -- We are in IR1 conversion (where THE assertions are subject to
740 ;;; weakening.) FIXME: Now THE assertions are not weakened, but new
741 ;;; uses can(?) be added later. -- APD, 2003-07-17
743 ;;; Why do we need to consider LVAR type? -- APD, 2003-07-30
744 (defun maybe-terminate-block (node ir1-converting-not-optimizing-p)
745 (declare (type (or basic-combination cast ref) node))
746 (let* ((block (node-block node))
747 (lvar (node-lvar node))
748 (ctran (node-next node))
749 (tail (component-tail (block-component block)))
750 (succ (first (block-succ block))))
751 (declare (ignore lvar))
752 (unless (or (and (eq node (block-last block)) (eq succ tail))
753 (block-delete-p block))
754 (when (eq (node-derived-type node) *empty-type*)
755 (cond (ir1-converting-not-optimizing-p
756 (cond
757 ((block-last block)
758 (aver (eq (block-last block) node)))
760 (setf (block-last block) node)
761 (setf (ctran-use ctran) nil)
762 (setf (ctran-kind ctran) :unused)
763 (setf (ctran-block ctran) nil)
764 (setf (node-next node) nil)
765 (link-blocks block (ctran-starts-block ctran)))))
767 (node-ends-block node)))
769 (let ((succ (first (block-succ block))))
770 (unlink-blocks block succ)
771 (setf (component-reanalyze (block-component block)) t)
772 (aver (not (block-succ block)))
773 (link-blocks block tail)
774 (cond (ir1-converting-not-optimizing-p
775 (%delete-lvar-use node))
776 (t (delete-lvar-use node)
777 (when (null (block-pred succ))
778 (mark-for-deletion succ)))))
779 t))))
781 ;;; This is called both by IR1 conversion and IR1 optimization when
782 ;;; they have verified the type signature for the call, and are
783 ;;; wondering if something should be done to special-case the call. If
784 ;;; CALL is a call to a global function, then see whether it defined
785 ;;; or known:
786 ;;; -- If a DEFINED-FUN should be inline expanded, then convert
787 ;;; the expansion and change the call to call it. Expansion is
788 ;;; enabled if :INLINE or if SPACE=0. If the FUNCTIONAL slot is
789 ;;; true, we never expand, since this function has already been
790 ;;; converted. Local call analysis will duplicate the definition
791 ;;; if necessary. We claim that the parent form is LABELS for
792 ;;; context declarations, since we don't want it to be considered
793 ;;; a real global function.
794 ;;; -- If it is a known function, mark it as such by setting the KIND.
796 ;;; We return the leaf referenced (NIL if not a leaf) and the
797 ;;; FUN-INFO assigned.
798 (defun recognize-known-call (call ir1-converting-not-optimizing-p)
799 (declare (type combination call))
800 (let* ((ref (lvar-uses (basic-combination-fun call)))
801 (leaf (when (ref-p ref) (ref-leaf ref)))
802 (inlinep (if (defined-fun-p leaf)
803 (defined-fun-inlinep leaf)
804 :no-chance)))
805 (cond
806 ((eq inlinep :notinline)
807 (let ((info (info :function :info (leaf-source-name leaf))))
808 (when info
809 (setf (basic-combination-fun-info call) info))
810 (values nil nil)))
811 ((not (and (global-var-p leaf)
812 (eq (global-var-kind leaf) :global-function)))
813 (values leaf nil))
814 ((and (ecase inlinep
815 (:inline t)
816 (:no-chance nil)
817 ((nil :maybe-inline) (policy call (zerop space))))
818 (defined-fun-p leaf)
819 (defined-fun-inline-expansion leaf)
820 (let ((fun (defined-fun-functional leaf)))
821 (or (not fun)
822 (and (eq inlinep :inline) (functional-kind fun))))
823 (inline-expansion-ok call))
824 (flet (;; FIXME: Is this what the old CMU CL internal documentation
825 ;; called semi-inlining? A more descriptive name would
826 ;; be nice. -- WHN 2002-01-07
827 (frob ()
828 (let ((res (let ((*allow-instrumenting* t))
829 (ir1-convert-lambda-for-defun
830 (defined-fun-inline-expansion leaf)
831 leaf t
832 #'ir1-convert-inline-lambda))))
833 (setf (defined-fun-functional leaf) res)
834 (change-ref-leaf ref res))))
835 (if ir1-converting-not-optimizing-p
836 (frob)
837 (with-ir1-environment-from-node call
838 (frob)
839 (locall-analyze-component *current-component*))))
841 (values (ref-leaf (lvar-uses (basic-combination-fun call)))
842 nil))
844 (let ((info (info :function :info (leaf-source-name leaf))))
845 (if info
846 (values leaf
847 (progn
848 (setf (basic-combination-kind call) :known)
849 (setf (basic-combination-fun-info call) info)))
850 (values leaf nil)))))))
852 ;;; Check whether CALL satisfies TYPE. If so, apply the type to the
853 ;;; call, and do MAYBE-TERMINATE-BLOCK and return the values of
854 ;;; RECOGNIZE-KNOWN-CALL. If an error, set the combination kind and
855 ;;; return NIL, NIL. If the type is just FUNCTION, then skip the
856 ;;; syntax check, arg/result type processing, but still call
857 ;;; RECOGNIZE-KNOWN-CALL, since the call might be to a known lambda,
858 ;;; and that checking is done by local call analysis.
859 (defun validate-call-type (call type ir1-converting-not-optimizing-p)
860 (declare (type combination call) (type ctype type))
861 (cond ((not (fun-type-p type))
862 (aver (multiple-value-bind (val win)
863 (csubtypep type (specifier-type 'function))
864 (or val (not win))))
865 (recognize-known-call call ir1-converting-not-optimizing-p))
866 ((valid-fun-use call type
867 :argument-test #'always-subtypep
868 :result-test nil
869 ;; KLUDGE: Common Lisp is such a dynamic
870 ;; language that all we can do here in
871 ;; general is issue a STYLE-WARNING. It
872 ;; would be nice to issue a full WARNING
873 ;; in the special case of of type
874 ;; mismatches within a compilation unit
875 ;; (as in section 3.2.2.3 of the spec)
876 ;; but at least as of sbcl-0.6.11, we
877 ;; don't keep track of whether the
878 ;; mismatched data came from the same
879 ;; compilation unit, so we can't do that.
880 ;; -- WHN 2001-02-11
882 ;; FIXME: Actually, I think we could
883 ;; issue a full WARNING if the call
884 ;; violates a DECLAIM FTYPE.
885 :lossage-fun #'compiler-style-warn
886 :unwinnage-fun #'compiler-notify)
887 (assert-call-type call type)
888 (maybe-terminate-block call ir1-converting-not-optimizing-p)
889 (recognize-known-call call ir1-converting-not-optimizing-p))
891 (setf (combination-kind call) :error)
892 (values nil nil))))
894 ;;; This is called by IR1-OPTIMIZE when the function for a call has
895 ;;; changed. If the call is local, we try to LET-convert it, and
896 ;;; derive the result type. If it is a :FULL call, we validate it
897 ;;; against the type, which recognizes known calls, does inline
898 ;;; expansion, etc. If a call to a predicate in a non-conditional
899 ;;; position or to a function with a source transform, then we
900 ;;; reconvert the form to give IR1 another chance.
901 (defun propagate-fun-change (call)
902 (declare (type combination call))
903 (let ((*compiler-error-context* call)
904 (fun-lvar (basic-combination-fun call)))
905 (setf (lvar-reoptimize fun-lvar) nil)
906 (case (combination-kind call)
907 (:local
908 (let ((fun (combination-lambda call)))
909 (maybe-let-convert fun)
910 (unless (member (functional-kind fun) '(:let :assignment :deleted))
911 (derive-node-type call (tail-set-type (lambda-tail-set fun))))))
912 (:full
913 (multiple-value-bind (leaf info)
914 (validate-call-type call (lvar-type fun-lvar) nil)
915 (cond ((functional-p leaf)
916 (convert-call-if-possible
917 (lvar-uses (basic-combination-fun call))
918 call))
919 ((not leaf))
920 ((and (global-var-p leaf)
921 (eq (global-var-kind leaf) :global-function)
922 (leaf-has-source-name-p leaf)
923 (or (info :function :source-transform (leaf-source-name leaf))
924 (and info
925 (ir1-attributep (fun-info-attributes info)
926 predicate)
927 (let ((lvar (node-lvar call)))
928 (and lvar (not (if-p (lvar-dest lvar))))))))
929 (let ((name (leaf-source-name leaf))
930 (dummies (make-gensym-list
931 (length (combination-args call)))))
932 (transform-call call
933 `(lambda ,dummies
934 (,@(if (symbolp name)
935 `(,name)
936 `(funcall #',name))
937 ,@dummies))
938 (leaf-source-name leaf)))))))))
939 (values))
941 ;;;; known function optimization
943 ;;; Add a failed optimization note to FAILED-OPTIMZATIONS for NODE,
944 ;;; FUN and ARGS. If there is already a note for NODE and TRANSFORM,
945 ;;; replace it, otherwise add a new one.
946 (defun record-optimization-failure (node transform args)
947 (declare (type combination node) (type transform transform)
948 (type (or fun-type list) args))
949 (let* ((table (component-failed-optimizations *component-being-compiled*))
950 (found (assoc transform (gethash node table))))
951 (if found
952 (setf (cdr found) args)
953 (push (cons transform args) (gethash node table))))
954 (values))
956 ;;; Attempt to transform NODE using TRANSFORM-FUNCTION, subject to the
957 ;;; call type constraint TRANSFORM-TYPE. If we are inhibited from
958 ;;; doing the transform for some reason and FLAME is true, then we
959 ;;; make a note of the message in FAILED-OPTIMIZATIONS for IR1
960 ;;; finalize to pick up. We return true if the transform failed, and
961 ;;; thus further transformation should be attempted. We return false
962 ;;; if either the transform succeeded or was aborted.
963 (defun ir1-transform (node transform)
964 (declare (type combination node) (type transform transform))
965 (let* ((type (transform-type transform))
966 (fun (transform-function transform))
967 (constrained (fun-type-p type))
968 (table (component-failed-optimizations *component-being-compiled*))
969 (flame (if (transform-important transform)
970 (policy node (>= speed inhibit-warnings))
971 (policy node (> speed inhibit-warnings))))
972 (*compiler-error-context* node))
973 (cond ((or (not constrained)
974 (valid-fun-use node type))
975 (multiple-value-bind (severity args)
976 (catch 'give-up-ir1-transform
977 (transform-call node
978 (funcall fun node)
979 (combination-fun-source-name node))
980 (values :none nil))
981 (ecase severity
982 (:none
983 (remhash node table)
984 nil)
985 (:aborted
986 (setf (combination-kind node) :error)
987 (when args
988 (apply #'warn args))
989 (remhash node table)
990 nil)
991 (:failure
992 (if args
993 (when flame
994 (record-optimization-failure node transform args))
995 (setf (gethash node table)
996 (remove transform (gethash node table) :key #'car)))
998 (:delayed
999 (remhash node table)
1000 nil))))
1001 ((and flame
1002 (valid-fun-use node
1003 type
1004 :argument-test #'types-equal-or-intersect
1005 :result-test #'values-types-equal-or-intersect))
1006 (record-optimization-failure node transform type)
1009 t))))
1011 ;;; When we don't like an IR1 transform, we throw the severity/reason
1012 ;;; and args.
1014 ;;; GIVE-UP-IR1-TRANSFORM is used to throw out of an IR1 transform,
1015 ;;; aborting this attempt to transform the call, but admitting the
1016 ;;; possibility that this or some other transform will later succeed.
1017 ;;; If arguments are supplied, they are format arguments for an
1018 ;;; efficiency note.
1020 ;;; ABORT-IR1-TRANSFORM is used to throw out of an IR1 transform and
1021 ;;; force a normal call to the function at run time. No further
1022 ;;; optimizations will be attempted.
1024 ;;; DELAY-IR1-TRANSFORM is used to throw out of an IR1 transform, and
1025 ;;; delay the transform on the node until later. REASONS specifies
1026 ;;; when the transform will be later retried. The :OPTIMIZE reason
1027 ;;; causes the transform to be delayed until after the current IR1
1028 ;;; optimization pass. The :CONSTRAINT reason causes the transform to
1029 ;;; be delayed until after constraint propagation.
1031 ;;; FIXME: Now (0.6.11.44) that there are 4 variants of this (GIVE-UP,
1032 ;;; ABORT, DELAY/:OPTIMIZE, DELAY/:CONSTRAINT) and we're starting to
1033 ;;; do CASE operations on the various REASON values, it might be a
1034 ;;; good idea to go OO, representing the reasons by objects, using
1035 ;;; CLOS methods on the objects instead of CASE, and (possibly) using
1036 ;;; SIGNAL instead of THROW.
1037 (declaim (ftype (function (&rest t) nil) give-up-ir1-transform))
1038 (defun give-up-ir1-transform (&rest args)
1039 (throw 'give-up-ir1-transform (values :failure args)))
1040 (defun abort-ir1-transform (&rest args)
1041 (throw 'give-up-ir1-transform (values :aborted args)))
1042 (defun delay-ir1-transform (node &rest reasons)
1043 (let ((assoc (assoc node *delayed-ir1-transforms*)))
1044 (cond ((not assoc)
1045 (setf *delayed-ir1-transforms*
1046 (acons node reasons *delayed-ir1-transforms*))
1047 (throw 'give-up-ir1-transform :delayed))
1048 ((cdr assoc)
1049 (dolist (reason reasons)
1050 (pushnew reason (cdr assoc)))
1051 (throw 'give-up-ir1-transform :delayed)))))
1053 ;;; Clear any delayed transform with no reasons - these should have
1054 ;;; been tried in the last pass. Then remove the reason from the
1055 ;;; delayed transform reasons, and if any become empty then set
1056 ;;; reoptimize flags for the node. Return true if any transforms are
1057 ;;; to be retried.
1058 (defun retry-delayed-ir1-transforms (reason)
1059 (setf *delayed-ir1-transforms*
1060 (remove-if-not #'cdr *delayed-ir1-transforms*))
1061 (let ((reoptimize nil))
1062 (dolist (assoc *delayed-ir1-transforms*)
1063 (let ((reasons (remove reason (cdr assoc))))
1064 (setf (cdr assoc) reasons)
1065 (unless reasons
1066 (let ((node (car assoc)))
1067 (unless (node-deleted node)
1068 (setf reoptimize t)
1069 (setf (node-reoptimize node) t)
1070 (let ((block (node-block node)))
1071 (setf (block-reoptimize block) t)
1072 (setf (component-reoptimize (block-component block)) t)))))))
1073 reoptimize))
1075 ;;; Take the lambda-expression RES, IR1 convert it in the proper
1076 ;;; environment, and then install it as the function for the call
1077 ;;; NODE. We do local call analysis so that the new function is
1078 ;;; integrated into the control flow.
1080 ;;; We require the original function source name in order to generate
1081 ;;; a meaningful debug name for the lambda we set up. (It'd be
1082 ;;; possible to do this starting from debug names as well as source
1083 ;;; names, but as of sbcl-0.7.1.5, there was no need for this
1084 ;;; generality, since source names are always known to our callers.)
1085 (defun transform-call (call res source-name)
1086 (declare (type combination call) (list res))
1087 (aver (and (legal-fun-name-p source-name)
1088 (not (eql source-name '.anonymous.))))
1089 (node-ends-block call)
1090 (with-ir1-environment-from-node call
1091 (with-component-last-block (*current-component*
1092 (block-next (node-block call)))
1093 (let ((new-fun (ir1-convert-inline-lambda
1095 :debug-name (debug-namify "LAMBDA-inlined "
1096 source-name
1097 "<unknown function>")))
1098 (ref (lvar-use (combination-fun call))))
1099 (change-ref-leaf ref new-fun)
1100 (setf (combination-kind call) :full)
1101 (locall-analyze-component *current-component*))))
1102 (values))
1104 ;;; Replace a call to a foldable function of constant arguments with
1105 ;;; the result of evaluating the form. If there is an error during the
1106 ;;; evaluation, we give a warning and leave the call alone, making the
1107 ;;; call a :ERROR call.
1109 ;;; If there is more than one value, then we transform the call into a
1110 ;;; VALUES form.
1111 (defun constant-fold-call (call)
1112 (let ((args (mapcar #'lvar-value (combination-args call)))
1113 (fun-name (combination-fun-source-name call)))
1114 (multiple-value-bind (values win)
1115 (careful-call fun-name
1116 args
1117 call
1118 ;; Note: CMU CL had COMPILER-WARN here, and that
1119 ;; seems more natural, but it's probably not.
1121 ;; It's especially not while bug 173 exists:
1122 ;; Expressions like
1123 ;; (COND (END
1124 ;; (UNLESS (OR UNSAFE? (<= END SIZE)))
1125 ;; ...))
1126 ;; can cause constant-folding TYPE-ERRORs (in
1127 ;; #'<=) when END can be proved to be NIL, even
1128 ;; though the code is perfectly legal and safe
1129 ;; because a NIL value of END means that the
1130 ;; #'<= will never be executed.
1132 ;; Moreover, even without bug 173,
1133 ;; quite-possibly-valid code like
1134 ;; (COND ((NONINLINED-PREDICATE END)
1135 ;; (UNLESS (<= END SIZE))
1136 ;; ...))
1137 ;; (where NONINLINED-PREDICATE is something the
1138 ;; compiler can't do at compile time, but which
1139 ;; turns out to make the #'<= expression
1140 ;; unreachable when END=NIL) could cause errors
1141 ;; when the compiler tries to constant-fold (<=
1142 ;; END SIZE).
1144 ;; So, with or without bug 173, it'd be
1145 ;; unnecessarily evil to do a full
1146 ;; COMPILER-WARNING (and thus return FAILURE-P=T
1147 ;; from COMPILE-FILE) for legal code, so we we
1148 ;; use a wimpier COMPILE-STYLE-WARNING instead.
1149 #'compiler-style-warn
1150 "constant folding")
1151 (cond ((not win)
1152 (setf (combination-kind call) :error))
1153 ((and (proper-list-of-length-p values 1))
1154 (with-ir1-environment-from-node call
1155 (let* ((lvar (node-lvar call))
1156 (prev (node-prev call))
1157 (intermediate-ctran (make-ctran)))
1158 (%delete-lvar-use call)
1159 (setf (ctran-next prev) nil)
1160 (setf (node-prev call) nil)
1161 (reference-constant prev intermediate-ctran lvar
1162 (first values))
1163 (link-node-to-previous-ctran call intermediate-ctran)
1164 (reoptimize-lvar lvar)
1165 (flush-combination call))))
1166 (t (let ((dummies (make-gensym-list (length args))))
1167 (transform-call
1168 call
1169 `(lambda ,dummies
1170 (declare (ignore ,@dummies))
1171 (values ,@(mapcar (lambda (x) `',x) values)))
1172 fun-name))))))
1173 (values))
1175 ;;;; local call optimization
1177 ;;; Propagate TYPE to LEAF and its REFS, marking things changed. If
1178 ;;; the leaf type is a function type, then just leave it alone, since
1179 ;;; TYPE is never going to be more specific than that (and
1180 ;;; TYPE-INTERSECTION would choke.)
1181 (defun propagate-to-refs (leaf type)
1182 (declare (type leaf leaf) (type ctype type))
1183 (let ((var-type (leaf-type leaf)))
1184 (unless (fun-type-p var-type)
1185 (let ((int (type-approx-intersection2 var-type type)))
1186 (when (type/= int var-type)
1187 (setf (leaf-type leaf) int)
1188 (dolist (ref (leaf-refs leaf))
1189 (derive-node-type ref (make-single-value-type int))
1190 ;; KLUDGE: LET var substitution
1191 (let* ((lvar (node-lvar ref)))
1192 (when (and lvar (combination-p (lvar-dest lvar)))
1193 (reoptimize-lvar lvar))))))
1194 (values))))
1196 ;;; Iteration variable: exactly one SETQ of the form:
1198 ;;; (let ((var initial))
1199 ;;; ...
1200 ;;; (setq var (+ var step))
1201 ;;; ...)
1202 (defun maybe-infer-iteration-var-type (var initial-type)
1203 (binding* ((sets (lambda-var-sets var) :exit-if-null)
1204 (set (first sets))
1205 (() (null (rest sets)) :exit-if-null)
1206 (set-use (principal-lvar-use (set-value set)))
1207 (() (and (combination-p set-use)
1208 (eq (combination-kind set-use) :known)
1209 (fun-info-p (combination-fun-info set-use))
1210 (not (node-to-be-deleted-p set-use))
1211 (eq (combination-fun-source-name set-use) '+))
1212 :exit-if-null)
1213 (+-args (basic-combination-args set-use))
1214 (() (and (proper-list-of-length-p +-args 2 2)
1215 (let ((first (principal-lvar-use
1216 (first +-args))))
1217 (and (ref-p first)
1218 (eq (ref-leaf first) var))))
1219 :exit-if-null)
1220 (step-type (lvar-type (second +-args)))
1221 (set-type (lvar-type (set-value set))))
1222 (when (and (numeric-type-p initial-type)
1223 (numeric-type-p step-type)
1224 (numeric-type-equal initial-type step-type))
1225 (multiple-value-bind (low high)
1226 (cond ((csubtypep step-type (specifier-type '(real 0 *)))
1227 (values (numeric-type-low initial-type)
1228 (when (and (numeric-type-p set-type)
1229 (numeric-type-equal set-type initial-type))
1230 (numeric-type-high set-type))))
1231 ((csubtypep step-type (specifier-type '(real * 0)))
1232 (values (when (and (numeric-type-p set-type)
1233 (numeric-type-equal set-type initial-type))
1234 (numeric-type-low set-type))
1235 (numeric-type-high initial-type)))
1237 (values nil nil)))
1238 (modified-numeric-type initial-type
1239 :low low
1240 :high high
1241 :enumerable nil)))))
1242 (deftransform + ((x y) * * :result result)
1243 "check for iteration variable reoptimization"
1244 (let ((dest (principal-lvar-end result))
1245 (use (principal-lvar-use x)))
1246 (when (and (ref-p use)
1247 (set-p dest)
1248 (eq (ref-leaf use)
1249 (set-var dest)))
1250 (reoptimize-lvar (set-value dest))))
1251 (give-up-ir1-transform))
1253 ;;; Figure out the type of a LET variable that has sets. We compute
1254 ;;; the union of the INITIAL-TYPE and the types of all the set
1255 ;;; values and to a PROPAGATE-TO-REFS with this type.
1256 (defun propagate-from-sets (var initial-type)
1257 (collect ((res initial-type type-union))
1258 (dolist (set (basic-var-sets var))
1259 (let ((type (lvar-type (set-value set))))
1260 (res type)
1261 (when (node-reoptimize set)
1262 (derive-node-type set (make-single-value-type type))
1263 (setf (node-reoptimize set) nil))))
1264 (let ((res (res)))
1265 (awhen (maybe-infer-iteration-var-type var initial-type)
1266 (setq res it))
1267 (propagate-to-refs var res)))
1268 (values))
1270 ;;; If a LET variable, find the initial value's type and do
1271 ;;; PROPAGATE-FROM-SETS. We also derive the VALUE's type as the node's
1272 ;;; type.
1273 (defun ir1-optimize-set (node)
1274 (declare (type cset node))
1275 (let ((var (set-var node)))
1276 (when (and (lambda-var-p var) (leaf-refs var))
1277 (let ((home (lambda-var-home var)))
1278 (when (eq (functional-kind home) :let)
1279 (let* ((initial-value (let-var-initial-value var))
1280 (initial-type (lvar-type initial-value)))
1281 (setf (lvar-reoptimize initial-value) nil)
1282 (propagate-from-sets var initial-type))))))
1284 (derive-node-type node (make-single-value-type
1285 (lvar-type (set-value node))))
1286 (values))
1288 ;;; Return true if the value of REF will always be the same (and is
1289 ;;; thus legal to substitute.)
1290 (defun constant-reference-p (ref)
1291 (declare (type ref ref))
1292 (let ((leaf (ref-leaf ref)))
1293 (typecase leaf
1294 ((or constant functional) t)
1295 (lambda-var
1296 (null (lambda-var-sets leaf)))
1297 (defined-fun
1298 (not (eq (defined-fun-inlinep leaf) :notinline)))
1299 (global-var
1300 (case (global-var-kind leaf)
1301 (:global-function
1302 (let ((name (leaf-source-name leaf)))
1303 (or #-sb-xc-host
1304 (eq (symbol-package (fun-name-block-name name))
1305 *cl-package*)
1306 (info :function :info name)))))))))
1308 ;;; If we have a non-set LET var with a single use, then (if possible)
1309 ;;; replace the variable reference's LVAR with the arg lvar.
1311 ;;; We change the REF to be a reference to NIL with unused value, and
1312 ;;; let it be flushed as dead code. A side effect of this substitution
1313 ;;; is to delete the variable.
1314 (defun substitute-single-use-lvar (arg var)
1315 (declare (type lvar arg) (type lambda-var var))
1316 (binding* ((ref (first (leaf-refs var)))
1317 (lvar (node-lvar ref) :exit-if-null)
1318 (dest (lvar-dest lvar)))
1319 (when (and
1320 ;; Think about (LET ((A ...)) (IF ... A ...)): two
1321 ;; LVAR-USEs should not be met on one path. Another problem
1322 ;; is with dynamic-extent.
1323 (eq (lvar-uses lvar) ref)
1324 (typecase dest
1325 ;; we should not change lifetime of unknown values lvars
1326 (cast
1327 (and (type-single-value-p (lvar-derived-type arg))
1328 (multiple-value-bind (pdest pprev)
1329 (principal-lvar-end lvar)
1330 (declare (ignore pdest))
1331 (lvar-single-value-p pprev))))
1332 (mv-combination
1333 (or (eq (basic-combination-fun dest) lvar)
1334 (and (eq (basic-combination-kind dest) :local)
1335 (type-single-value-p (lvar-derived-type arg)))))
1336 ((or creturn exit)
1337 ;; While CRETURN and EXIT nodes may be known-values,
1338 ;; they have their own complications, such as
1339 ;; substitution into CRETURN may create new tail calls.
1340 nil)
1342 (aver (lvar-single-value-p lvar))
1344 (eq (node-home-lambda ref)
1345 (lambda-home (lambda-var-home var))))
1346 (setf (node-derived-type ref) *wild-type*)
1347 (substitute-lvar-uses lvar arg
1348 ;; Really it is (EQ (LVAR-USES LVAR) REF):
1350 (delete-lvar-use ref)
1351 (change-ref-leaf ref (find-constant nil))
1352 (delete-ref ref)
1353 (unlink-node ref)
1354 (reoptimize-lvar lvar)
1355 t)))
1357 ;;; Delete a LET, removing the call and bind nodes, and warning about
1358 ;;; any unreferenced variables. Note that FLUSH-DEAD-CODE will come
1359 ;;; along right away and delete the REF and then the lambda, since we
1360 ;;; flush the FUN lvar.
1361 (defun delete-let (clambda)
1362 (declare (type clambda clambda))
1363 (aver (functional-letlike-p clambda))
1364 (note-unreferenced-vars clambda)
1365 (let ((call (let-combination clambda)))
1366 (flush-dest (basic-combination-fun call))
1367 (unlink-node call)
1368 (unlink-node (lambda-bind clambda))
1369 (setf (lambda-bind clambda) nil))
1370 (setf (functional-kind clambda) :zombie)
1371 (let ((home (lambda-home clambda)))
1372 (setf (lambda-lets home) (delete clambda (lambda-lets home))))
1373 (values))
1375 ;;; This function is called when one of the arguments to a LET
1376 ;;; changes. We look at each changed argument. If the corresponding
1377 ;;; variable is set, then we call PROPAGATE-FROM-SETS. Otherwise, we
1378 ;;; consider substituting for the variable, and also propagate
1379 ;;; derived-type information for the arg to all the VAR's refs.
1381 ;;; Substitution is inhibited when the arg leaf's derived type isn't a
1382 ;;; subtype of the argument's leaf type. This prevents type checking
1383 ;;; from being defeated, and also ensures that the best representation
1384 ;;; for the variable can be used.
1386 ;;; Substitution of individual references is inhibited if the
1387 ;;; reference is in a different component from the home. This can only
1388 ;;; happen with closures over top level lambda vars. In such cases,
1389 ;;; the references may have already been compiled, and thus can't be
1390 ;;; retroactively modified.
1392 ;;; If all of the variables are deleted (have no references) when we
1393 ;;; are done, then we delete the LET.
1395 ;;; Note that we are responsible for clearing the LVAR-REOPTIMIZE
1396 ;;; flags.
1397 (defun propagate-let-args (call fun)
1398 (declare (type combination call) (type clambda fun))
1399 (loop for arg in (combination-args call)
1400 and var in (lambda-vars fun) do
1401 (when (and arg (lvar-reoptimize arg))
1402 (setf (lvar-reoptimize arg) nil)
1403 (cond
1404 ((lambda-var-sets var)
1405 (propagate-from-sets var (lvar-type arg)))
1406 ((let ((use (lvar-uses arg)))
1407 (when (ref-p use)
1408 (let ((leaf (ref-leaf use)))
1409 (when (and (constant-reference-p use)
1410 (csubtypep (leaf-type leaf)
1411 ;; (NODE-DERIVED-TYPE USE) would
1412 ;; be better -- APD, 2003-05-15
1413 (leaf-type var)))
1414 (propagate-to-refs var (lvar-type arg))
1415 (let ((use-component (node-component use)))
1416 (prog1 (substitute-leaf-if
1417 (lambda (ref)
1418 (cond ((eq (node-component ref) use-component)
1421 (aver (lambda-toplevelish-p (lambda-home fun)))
1422 nil)))
1423 leaf var)))
1424 t)))))
1425 ((and (null (rest (leaf-refs var)))
1426 (substitute-single-use-lvar arg var)))
1428 (propagate-to-refs var (lvar-type arg))))))
1430 (when (every #'not (combination-args call))
1431 (delete-let fun))
1433 (values))
1435 ;;; This function is called when one of the args to a non-LET local
1436 ;;; call changes. For each changed argument corresponding to an unset
1437 ;;; variable, we compute the union of the types across all calls and
1438 ;;; propagate this type information to the var's refs.
1440 ;;; If the function has an XEP, then we don't do anything, since we
1441 ;;; won't discover anything.
1443 ;;; We can clear the LVAR-REOPTIMIZE flags for arguments in all calls
1444 ;;; corresponding to changed arguments in CALL, since the only use in
1445 ;;; IR1 optimization of the REOPTIMIZE flag for local call args is
1446 ;;; right here.
1447 (defun propagate-local-call-args (call fun)
1448 (declare (type combination call) (type clambda fun))
1450 (unless (or (functional-entry-fun fun)
1451 (lambda-optional-dispatch fun))
1452 (let* ((vars (lambda-vars fun))
1453 (union (mapcar (lambda (arg var)
1454 (when (and arg
1455 (lvar-reoptimize arg)
1456 (null (basic-var-sets var)))
1457 (lvar-type arg)))
1458 (basic-combination-args call)
1459 vars))
1460 (this-ref (lvar-use (basic-combination-fun call))))
1462 (dolist (arg (basic-combination-args call))
1463 (when arg
1464 (setf (lvar-reoptimize arg) nil)))
1466 (dolist (ref (leaf-refs fun))
1467 (let ((dest (node-dest ref)))
1468 (unless (or (eq ref this-ref) (not dest))
1469 (setq union
1470 (mapcar (lambda (this-arg old)
1471 (when old
1472 (setf (lvar-reoptimize this-arg) nil)
1473 (type-union (lvar-type this-arg) old)))
1474 (basic-combination-args dest)
1475 union)))))
1477 (loop for var in vars
1478 and type in union
1479 when type do (propagate-to-refs var type))))
1481 (values))
1483 ;;;; multiple values optimization
1485 ;;; Do stuff to notice a change to a MV combination node. There are
1486 ;;; two main branches here:
1487 ;;; -- If the call is local, then it is already a MV let, or should
1488 ;;; become one. Note that although all :LOCAL MV calls must eventually
1489 ;;; be converted to :MV-LETs, there can be a window when the call
1490 ;;; is local, but has not been LET converted yet. This is because
1491 ;;; the entry-point lambdas may have stray references (in other
1492 ;;; entry points) that have not been deleted yet.
1493 ;;; -- The call is full. This case is somewhat similar to the non-MV
1494 ;;; combination optimization: we propagate return type information and
1495 ;;; notice non-returning calls. We also have an optimization
1496 ;;; which tries to convert MV-CALLs into MV-binds.
1497 (defun ir1-optimize-mv-combination (node)
1498 (ecase (basic-combination-kind node)
1499 (:local
1500 (let ((fun-lvar (basic-combination-fun node)))
1501 (when (lvar-reoptimize fun-lvar)
1502 (setf (lvar-reoptimize fun-lvar) nil)
1503 (maybe-let-convert (combination-lambda node))))
1504 (setf (lvar-reoptimize (first (basic-combination-args node))) nil)
1505 (when (eq (functional-kind (combination-lambda node)) :mv-let)
1506 (unless (convert-mv-bind-to-let node)
1507 (ir1-optimize-mv-bind node))))
1508 (:full
1509 (let* ((fun (basic-combination-fun node))
1510 (fun-changed (lvar-reoptimize fun))
1511 (args (basic-combination-args node)))
1512 (when fun-changed
1513 (setf (lvar-reoptimize fun) nil)
1514 (let ((type (lvar-type fun)))
1515 (when (fun-type-p type)
1516 (derive-node-type node (fun-type-returns type))))
1517 (maybe-terminate-block node nil)
1518 (let ((use (lvar-uses fun)))
1519 (when (and (ref-p use) (functional-p (ref-leaf use)))
1520 (convert-call-if-possible use node)
1521 (when (eq (basic-combination-kind node) :local)
1522 (maybe-let-convert (ref-leaf use))))))
1523 (unless (or (eq (basic-combination-kind node) :local)
1524 (eq (lvar-fun-name fun) '%throw))
1525 (ir1-optimize-mv-call node))
1526 (dolist (arg args)
1527 (setf (lvar-reoptimize arg) nil))))
1528 (:error))
1529 (values))
1531 ;;; Propagate derived type info from the values lvar to the vars.
1532 (defun ir1-optimize-mv-bind (node)
1533 (declare (type mv-combination node))
1534 (let* ((arg (first (basic-combination-args node)))
1535 (vars (lambda-vars (combination-lambda node)))
1536 (n-vars (length vars))
1537 (types (values-type-in (lvar-derived-type arg)
1538 n-vars)))
1539 (loop for var in vars
1540 and type in types
1541 do (if (basic-var-sets var)
1542 (propagate-from-sets var type)
1543 (propagate-to-refs var type)))
1544 (setf (lvar-reoptimize arg) nil))
1545 (values))
1547 ;;; If possible, convert a general MV call to an MV-BIND. We can do
1548 ;;; this if:
1549 ;;; -- The call has only one argument, and
1550 ;;; -- The function has a known fixed number of arguments, or
1551 ;;; -- The argument yields a known fixed number of values.
1553 ;;; What we do is change the function in the MV-CALL to be a lambda
1554 ;;; that "looks like an MV bind", which allows
1555 ;;; IR1-OPTIMIZE-MV-COMBINATION to notice that this call can be
1556 ;;; converted (the next time around.) This new lambda just calls the
1557 ;;; actual function with the MV-BIND variables as arguments. Note that
1558 ;;; this new MV bind is not let-converted immediately, as there are
1559 ;;; going to be stray references from the entry-point functions until
1560 ;;; they get deleted.
1562 ;;; In order to avoid loss of argument count checking, we only do the
1563 ;;; transformation according to a known number of expected argument if
1564 ;;; safety is unimportant. We can always convert if we know the number
1565 ;;; of actual values, since the normal call that we build will still
1566 ;;; do any appropriate argument count checking.
1568 ;;; We only attempt the transformation if the called function is a
1569 ;;; constant reference. This allows us to just splice the leaf into
1570 ;;; the new function, instead of trying to somehow bind the function
1571 ;;; expression. The leaf must be constant because we are evaluating it
1572 ;;; again in a different place. This also has the effect of squelching
1573 ;;; multiple warnings when there is an argument count error.
1574 (defun ir1-optimize-mv-call (node)
1575 (let ((fun (basic-combination-fun node))
1576 (*compiler-error-context* node)
1577 (ref (lvar-uses (basic-combination-fun node)))
1578 (args (basic-combination-args node)))
1580 (unless (and (ref-p ref) (constant-reference-p ref)
1581 (singleton-p args))
1582 (return-from ir1-optimize-mv-call))
1584 (multiple-value-bind (min max)
1585 (fun-type-nargs (lvar-type fun))
1586 (let ((total-nvals
1587 (multiple-value-bind (types nvals)
1588 (values-types (lvar-derived-type (first args)))
1589 (declare (ignore types))
1590 (if (eq nvals :unknown) nil nvals))))
1592 (when total-nvals
1593 (when (and min (< total-nvals min))
1594 (compiler-warn
1595 "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
1596 at least ~R."
1597 total-nvals min)
1598 (setf (basic-combination-kind node) :error)
1599 (return-from ir1-optimize-mv-call))
1600 (when (and max (> total-nvals max))
1601 (compiler-warn
1602 "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
1603 at most ~R."
1604 total-nvals max)
1605 (setf (basic-combination-kind node) :error)
1606 (return-from ir1-optimize-mv-call)))
1608 (let ((count (cond (total-nvals)
1609 ((and (policy node (zerop verify-arg-count))
1610 (eql min max))
1611 min)
1612 (t nil))))
1613 (when count
1614 (with-ir1-environment-from-node node
1615 (let* ((dums (make-gensym-list count))
1616 (ignore (gensym))
1617 (fun (ir1-convert-lambda
1618 `(lambda (&optional ,@dums &rest ,ignore)
1619 (declare (ignore ,ignore))
1620 (funcall ,(ref-leaf ref) ,@dums)))))
1621 (change-ref-leaf ref fun)
1622 (aver (eq (basic-combination-kind node) :full))
1623 (locall-analyze-component *current-component*)
1624 (aver (eq (basic-combination-kind node) :local)))))))))
1625 (values))
1627 ;;; If we see:
1628 ;;; (multiple-value-bind
1629 ;;; (x y)
1630 ;;; (values xx yy)
1631 ;;; ...)
1632 ;;; Convert to:
1633 ;;; (let ((x xx)
1634 ;;; (y yy))
1635 ;;; ...)
1637 ;;; What we actually do is convert the VALUES combination into a
1638 ;;; normal LET combination calling the original :MV-LET lambda. If
1639 ;;; there are extra args to VALUES, discard the corresponding
1640 ;;; lvars. If there are insufficient args, insert references to NIL.
1641 (defun convert-mv-bind-to-let (call)
1642 (declare (type mv-combination call))
1643 (let* ((arg (first (basic-combination-args call)))
1644 (use (lvar-uses arg)))
1645 (when (and (combination-p use)
1646 (eq (lvar-fun-name (combination-fun use))
1647 'values))
1648 (let* ((fun (combination-lambda call))
1649 (vars (lambda-vars fun))
1650 (vals (combination-args use))
1651 (nvars (length vars))
1652 (nvals (length vals)))
1653 (cond ((> nvals nvars)
1654 (mapc #'flush-dest (subseq vals nvars))
1655 (setq vals (subseq vals 0 nvars)))
1656 ((< nvals nvars)
1657 (with-ir1-environment-from-node use
1658 (let ((node-prev (node-prev use)))
1659 (setf (node-prev use) nil)
1660 (setf (ctran-next node-prev) nil)
1661 (collect ((res vals))
1662 (loop for count below (- nvars nvals)
1663 for prev = node-prev then ctran
1664 for ctran = (make-ctran)
1665 and lvar = (make-lvar use)
1666 do (reference-constant prev ctran lvar nil)
1667 (res lvar)
1668 finally (link-node-to-previous-ctran
1669 use ctran))
1670 (setq vals (res)))))))
1671 (setf (combination-args use) vals)
1672 (flush-dest (combination-fun use))
1673 (let ((fun-lvar (basic-combination-fun call)))
1674 (setf (lvar-dest fun-lvar) use)
1675 (setf (combination-fun use) fun-lvar)
1676 (flush-lvar-externally-checkable-type fun-lvar))
1677 (setf (combination-kind use) :local)
1678 (setf (functional-kind fun) :let)
1679 (flush-dest (first (basic-combination-args call)))
1680 (unlink-node call)
1681 (when vals
1682 (reoptimize-lvar (first vals)))
1683 (propagate-to-args use fun)
1684 (reoptimize-call use))
1685 t)))
1687 ;;; If we see:
1688 ;;; (values-list (list x y z))
1690 ;;; Convert to:
1691 ;;; (values x y z)
1693 ;;; In implementation, this is somewhat similar to
1694 ;;; CONVERT-MV-BIND-TO-LET. We grab the args of LIST and make them
1695 ;;; args of the VALUES-LIST call, flushing the old argument lvar
1696 ;;; (allowing the LIST to be flushed.)
1698 ;;; FIXME: Thus we lose possible type assertions on (LIST ...).
1699 (defoptimizer (values-list optimizer) ((list) node)
1700 (let ((use (lvar-uses list)))
1701 (when (and (combination-p use)
1702 (eq (lvar-fun-name (combination-fun use))
1703 'list))
1705 ;; FIXME: VALUES might not satisfy an assertion on NODE-LVAR.
1706 (change-ref-leaf (lvar-uses (combination-fun node))
1707 (find-free-fun 'values "in a strange place"))
1708 (setf (combination-kind node) :full)
1709 (let ((args (combination-args use)))
1710 (dolist (arg args)
1711 (setf (lvar-dest arg) node)
1712 (flush-lvar-externally-checkable-type arg))
1713 (setf (combination-args use) nil)
1714 (flush-dest list)
1715 (setf (combination-args node) args))
1716 t)))
1718 ;;; If VALUES appears in a non-MV context, then effectively convert it
1719 ;;; to a PROG1. This allows the computation of the additional values
1720 ;;; to become dead code.
1721 (deftransform values ((&rest vals) * * :node node)
1722 (unless (lvar-single-value-p (node-lvar node))
1723 (give-up-ir1-transform))
1724 (setf (node-derived-type node)
1725 (make-short-values-type (list (single-value-type
1726 (node-derived-type node)))))
1727 (principal-lvar-single-valuify (node-lvar node))
1728 (if vals
1729 (let ((dummies (make-gensym-list (length (cdr vals)))))
1730 `(lambda (val ,@dummies)
1731 (declare (ignore ,@dummies))
1732 val))
1733 nil))
1735 ;;; TODO:
1736 ;;; - CAST chains;
1737 (defun ir1-optimize-cast (cast &optional do-not-optimize)
1738 (declare (type cast cast))
1739 (let ((value (cast-value cast))
1740 (atype (cast-asserted-type cast)))
1741 (when (not do-not-optimize)
1742 (let ((lvar (node-lvar cast)))
1743 (when (values-subtypep (lvar-derived-type value)
1744 (cast-asserted-type cast))
1745 (delete-filter cast lvar value)
1746 (when lvar
1747 (reoptimize-lvar lvar)
1748 (when (lvar-single-value-p lvar)
1749 (note-single-valuified-lvar lvar)))
1750 (return-from ir1-optimize-cast t))
1752 (when (and (listp (lvar-uses value))
1753 lvar)
1754 ;; Pathwise removing of CAST
1755 (let ((ctran (node-next cast))
1756 (dest (lvar-dest lvar))
1757 next-block)
1758 (collect ((merges))
1759 (do-uses (use value)
1760 (when (and (values-subtypep (node-derived-type use) atype)
1761 (immediately-used-p value use))
1762 (unless next-block
1763 (when ctran (ensure-block-start ctran))
1764 (setq next-block (first (block-succ (node-block cast))))
1765 (ensure-block-start (node-prev cast))
1766 (reoptimize-lvar lvar)
1767 (setf (lvar-%derived-type value) nil))
1768 (%delete-lvar-use use)
1769 (add-lvar-use use lvar)
1770 (unlink-blocks (node-block use) (node-block cast))
1771 (link-blocks (node-block use) next-block)
1772 (when (and (return-p dest)
1773 (basic-combination-p use)
1774 (eq (basic-combination-kind use) :local))
1775 (merges use))))
1776 (dolist (use (merges))
1777 (merge-tail-sets use)))))))
1779 (let* ((value-type (lvar-derived-type value))
1780 (int (values-type-intersection value-type atype)))
1781 (derive-node-type cast int)
1782 (when (eq int *empty-type*)
1783 (unless (eq value-type *empty-type*)
1785 ;; FIXME: Do it in one step.
1786 (filter-lvar
1787 value
1788 (if (cast-single-value-p cast)
1789 `(list 'dummy)
1790 `(multiple-value-call #'list 'dummy)))
1791 (filter-lvar
1792 (cast-value cast)
1793 ;; FIXME: Derived type.
1794 `(%compile-time-type-error 'dummy
1795 ',(type-specifier atype)
1796 ',(type-specifier value-type)))
1797 ;; KLUDGE: FILTER-LVAR does not work for non-returning
1798 ;; functions, so we declare the return type of
1799 ;; %COMPILE-TIME-TYPE-ERROR to be * and derive the real type
1800 ;; here.
1801 (setq value (cast-value cast))
1802 (derive-node-type (lvar-uses value) *empty-type*)
1803 (maybe-terminate-block (lvar-uses value) nil)
1804 ;; FIXME: Is it necessary?
1805 (aver (null (block-pred (node-block cast))))
1806 (delete-block-lazily (node-block cast))
1807 (return-from ir1-optimize-cast)))
1808 (when (eq (node-derived-type cast) *empty-type*)
1809 (maybe-terminate-block cast nil))
1811 (when (and (cast-%type-check cast)
1812 (values-subtypep value-type
1813 (cast-type-to-check cast)))
1814 (setf (cast-%type-check cast) nil))))
1816 (unless do-not-optimize
1817 (setf (node-reoptimize cast) nil)))