new function: is_lisp_immediate()
[sbcl/pkhuong.git] / src / runtime / gencgc.c
blob699cc62fb2da2634b2d179737c8f75ebbd3de1ed
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <string.h>
32 #include "sbcl.h"
33 #include "runtime.h"
34 #include "os.h"
35 #include "interr.h"
36 #include "globals.h"
37 #include "interrupt.h"
38 #include "validate.h"
39 #include "lispregs.h"
40 #include "arch.h"
41 #include "gc.h"
42 #include "gc-internal.h"
43 #include "thread.h"
44 #include "alloc.h"
45 #include "genesis/vector.h"
46 #include "genesis/weak-pointer.h"
47 #include "genesis/fdefn.h"
48 #include "genesis/simple-fun.h"
49 #include "save.h"
50 #include "genesis/hash-table.h"
51 #include "genesis/instance.h"
52 #include "genesis/layout.h"
53 #include "gencgc.h"
54 #if defined(LUTEX_WIDETAG)
55 #include "pthread-lutex.h"
56 #endif
58 /* forward declarations */
59 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
60 int unboxed);
64 * GC parameters
67 /* Generations 0-5 are normal collected generations, 6 is only used as
68 * scratch space by the collector, and should never get collected.
70 enum {
71 HIGHEST_NORMAL_GENERATION = 5,
72 PSEUDO_STATIC_GENERATION,
73 SCRATCH_GENERATION,
74 NUM_GENERATIONS
77 /* Should we use page protection to help avoid the scavenging of pages
78 * that don't have pointers to younger generations? */
79 boolean enable_page_protection = 1;
81 /* the minimum size (in bytes) for a large object*/
82 long large_object_size = 4 * PAGE_BYTES;
86 * debugging
89 /* the verbosity level. All non-error messages are disabled at level 0;
90 * and only a few rare messages are printed at level 1. */
91 #ifdef QSHOW
92 boolean gencgc_verbose = 1;
93 #else
94 boolean gencgc_verbose = 0;
95 #endif
97 /* FIXME: At some point enable the various error-checking things below
98 * and see what they say. */
100 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
101 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
102 * check. */
103 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
105 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
106 boolean pre_verify_gen_0 = 0;
108 /* Should we check for bad pointers after gc_free_heap is called
109 * from Lisp PURIFY? */
110 boolean verify_after_free_heap = 0;
112 /* Should we print a note when code objects are found in the dynamic space
113 * during a heap verify? */
114 boolean verify_dynamic_code_check = 0;
116 /* Should we check code objects for fixup errors after they are transported? */
117 boolean check_code_fixups = 0;
119 /* Should we check that newly allocated regions are zero filled? */
120 boolean gencgc_zero_check = 0;
122 /* Should we check that the free space is zero filled? */
123 boolean gencgc_enable_verify_zero_fill = 0;
125 /* Should we check that free pages are zero filled during gc_free_heap
126 * called after Lisp PURIFY? */
127 boolean gencgc_zero_check_during_free_heap = 0;
129 /* When loading a core, don't do a full scan of the memory for the
130 * memory region boundaries. (Set to true by coreparse.c if the core
131 * contained a pagetable entry).
133 boolean gencgc_partial_pickup = 0;
135 /* If defined, free pages are read-protected to ensure that nothing
136 * accesses them.
139 /* #define READ_PROTECT_FREE_PAGES */
143 * GC structures and variables
146 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
147 unsigned long bytes_allocated = 0;
148 unsigned long auto_gc_trigger = 0;
150 /* the source and destination generations. These are set before a GC starts
151 * scavenging. */
152 generation_index_t from_space;
153 generation_index_t new_space;
155 /* Set to 1 when in GC */
156 boolean gc_active_p = 0;
158 /* should the GC be conservative on stack. If false (only right before
159 * saving a core), don't scan the stack / mark pages dont_move. */
160 static boolean conservative_stack = 1;
162 /* An array of page structures is allocated on gc initialization.
163 * This helps quickly map between an address its page structure.
164 * page_table_pages is set from the size of the dynamic space. */
165 page_index_t page_table_pages;
166 struct page *page_table;
168 /* To map addresses to page structures the address of the first page
169 * is needed. */
170 static void *heap_base = NULL;
172 /* Calculate the start address for the given page number. */
173 inline void *
174 page_address(page_index_t page_num)
176 return (heap_base + (page_num * PAGE_BYTES));
179 /* Find the page index within the page_table for the given
180 * address. Return -1 on failure. */
181 inline page_index_t
182 find_page_index(void *addr)
184 page_index_t index = addr-heap_base;
186 if (index >= 0) {
187 index = ((unsigned long)index)/PAGE_BYTES;
188 if (index < page_table_pages)
189 return (index);
192 return (-1);
195 /* a structure to hold the state of a generation */
196 struct generation {
198 /* the first page that gc_alloc() checks on its next call */
199 page_index_t alloc_start_page;
201 /* the first page that gc_alloc_unboxed() checks on its next call */
202 page_index_t alloc_unboxed_start_page;
204 /* the first page that gc_alloc_large (boxed) considers on its next
205 * call. (Although it always allocates after the boxed_region.) */
206 page_index_t alloc_large_start_page;
208 /* the first page that gc_alloc_large (unboxed) considers on its
209 * next call. (Although it always allocates after the
210 * current_unboxed_region.) */
211 page_index_t alloc_large_unboxed_start_page;
213 /* the bytes allocated to this generation */
214 long bytes_allocated;
216 /* the number of bytes at which to trigger a GC */
217 long gc_trigger;
219 /* to calculate a new level for gc_trigger */
220 long bytes_consed_between_gc;
222 /* the number of GCs since the last raise */
223 int num_gc;
225 /* the average age after which a GC will raise objects to the
226 * next generation */
227 int trigger_age;
229 /* the cumulative sum of the bytes allocated to this generation. It is
230 * cleared after a GC on this generations, and update before new
231 * objects are added from a GC of a younger generation. Dividing by
232 * the bytes_allocated will give the average age of the memory in
233 * this generation since its last GC. */
234 long cum_sum_bytes_allocated;
236 /* a minimum average memory age before a GC will occur helps
237 * prevent a GC when a large number of new live objects have been
238 * added, in which case a GC could be a waste of time */
239 double min_av_mem_age;
241 /* A linked list of lutex structures in this generation, used for
242 * implementing lutex finalization. */
243 #ifdef LUTEX_WIDETAG
244 struct lutex *lutexes;
245 #else
246 void *lutexes;
247 #endif
250 /* an array of generation structures. There needs to be one more
251 * generation structure than actual generations as the oldest
252 * generation is temporarily raised then lowered. */
253 struct generation generations[NUM_GENERATIONS];
255 /* the oldest generation that is will currently be GCed by default.
256 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
258 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
260 * Setting this to 0 effectively disables the generational nature of
261 * the GC. In some applications generational GC may not be useful
262 * because there are no long-lived objects.
264 * An intermediate value could be handy after moving long-lived data
265 * into an older generation so an unnecessary GC of this long-lived
266 * data can be avoided. */
267 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
269 /* The maximum free page in the heap is maintained and used to update
270 * ALLOCATION_POINTER which is used by the room function to limit its
271 * search of the heap. XX Gencgc obviously needs to be better
272 * integrated with the Lisp code. */
273 page_index_t last_free_page;
275 /* This lock is to prevent multiple threads from simultaneously
276 * allocating new regions which overlap each other. Note that the
277 * majority of GC is single-threaded, but alloc() may be called from
278 * >1 thread at a time and must be thread-safe. This lock must be
279 * seized before all accesses to generations[] or to parts of
280 * page_table[] that other threads may want to see */
282 #ifdef LISP_FEATURE_SB_THREAD
283 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
284 #endif
288 * miscellaneous heap functions
291 /* Count the number of pages which are write-protected within the
292 * given generation. */
293 static long
294 count_write_protect_generation_pages(generation_index_t generation)
296 page_index_t i;
297 long count = 0;
299 for (i = 0; i < last_free_page; i++)
300 if ((page_table[i].allocated != FREE_PAGE_FLAG)
301 && (page_table[i].gen == generation)
302 && (page_table[i].write_protected == 1))
303 count++;
304 return count;
307 /* Count the number of pages within the given generation. */
308 static long
309 count_generation_pages(generation_index_t generation)
311 page_index_t i;
312 long count = 0;
314 for (i = 0; i < last_free_page; i++)
315 if ((page_table[i].allocated != FREE_PAGE_FLAG)
316 && (page_table[i].gen == generation))
317 count++;
318 return count;
321 #ifdef QSHOW
322 static long
323 count_dont_move_pages(void)
325 page_index_t i;
326 long count = 0;
327 for (i = 0; i < last_free_page; i++) {
328 if ((page_table[i].allocated != FREE_PAGE_FLAG)
329 && (page_table[i].dont_move != 0)) {
330 ++count;
333 return count;
335 #endif /* QSHOW */
337 /* Work through the pages and add up the number of bytes used for the
338 * given generation. */
339 static long
340 count_generation_bytes_allocated (generation_index_t gen)
342 page_index_t i;
343 long result = 0;
344 for (i = 0; i < last_free_page; i++) {
345 if ((page_table[i].allocated != FREE_PAGE_FLAG)
346 && (page_table[i].gen == gen))
347 result += page_table[i].bytes_used;
349 return result;
352 /* Return the average age of the memory in a generation. */
353 static double
354 gen_av_mem_age(generation_index_t gen)
356 if (generations[gen].bytes_allocated == 0)
357 return 0.0;
359 return
360 ((double)generations[gen].cum_sum_bytes_allocated)
361 / ((double)generations[gen].bytes_allocated);
364 /* The verbose argument controls how much to print: 0 for normal
365 * level of detail; 1 for debugging. */
366 static void
367 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
369 generation_index_t i, gens;
371 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
372 #define FPU_STATE_SIZE 27
373 int fpu_state[FPU_STATE_SIZE];
374 #elif defined(LISP_FEATURE_PPC)
375 #define FPU_STATE_SIZE 32
376 long long fpu_state[FPU_STATE_SIZE];
377 #endif
379 /* This code uses the FP instructions which may be set up for Lisp
380 * so they need to be saved and reset for C. */
381 fpu_save(fpu_state);
383 /* highest generation to print */
384 if (verbose)
385 gens = SCRATCH_GENERATION;
386 else
387 gens = PSEUDO_STATIC_GENERATION;
389 /* Print the heap stats. */
390 fprintf(stderr,
391 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
393 for (i = 0; i < gens; i++) {
394 page_index_t j;
395 long boxed_cnt = 0;
396 long unboxed_cnt = 0;
397 long large_boxed_cnt = 0;
398 long large_unboxed_cnt = 0;
399 long pinned_cnt=0;
401 for (j = 0; j < last_free_page; j++)
402 if (page_table[j].gen == i) {
404 /* Count the number of boxed pages within the given
405 * generation. */
406 if (page_table[j].allocated & BOXED_PAGE_FLAG) {
407 if (page_table[j].large_object)
408 large_boxed_cnt++;
409 else
410 boxed_cnt++;
412 if(page_table[j].dont_move) pinned_cnt++;
413 /* Count the number of unboxed pages within the given
414 * generation. */
415 if (page_table[j].allocated & UNBOXED_PAGE_FLAG) {
416 if (page_table[j].large_object)
417 large_unboxed_cnt++;
418 else
419 unboxed_cnt++;
423 gc_assert(generations[i].bytes_allocated
424 == count_generation_bytes_allocated(i));
425 fprintf(stderr,
426 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
428 generations[i].alloc_start_page,
429 generations[i].alloc_unboxed_start_page,
430 generations[i].alloc_large_start_page,
431 generations[i].alloc_large_unboxed_start_page,
432 boxed_cnt,
433 unboxed_cnt,
434 large_boxed_cnt,
435 large_unboxed_cnt,
436 pinned_cnt,
437 generations[i].bytes_allocated,
438 (count_generation_pages(i)*PAGE_BYTES - generations[i].bytes_allocated),
439 generations[i].gc_trigger,
440 count_write_protect_generation_pages(i),
441 generations[i].num_gc,
442 gen_av_mem_age(i));
444 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
446 fpu_restore(fpu_state);
450 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
451 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
452 #endif
454 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
455 * if zeroing it ourselves, i.e. in practice give the memory back to the
456 * OS. Generally done after a large GC.
458 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
459 int i;
460 void *addr = (void *) page_address(start), *new_addr;
461 size_t length = PAGE_BYTES*(1+end-start);
463 if (start > end)
464 return;
466 os_invalidate(addr, length);
467 new_addr = os_validate(addr, length);
468 if (new_addr == NULL || new_addr != addr) {
469 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x", start, new_addr);
472 for (i = start; i <= end; i++) {
473 page_table[i].need_to_zero = 0;
477 /* Zero the pages from START to END (inclusive). Generally done just after
478 * a new region has been allocated.
480 static void
481 zero_pages(page_index_t start, page_index_t end) {
482 if (start > end)
483 return;
485 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
486 fast_bzero(page_address(start), PAGE_BYTES*(1+end-start));
487 #else
488 bzero(page_address(start), PAGE_BYTES*(1+end-start));
489 #endif
493 /* Zero the pages from START to END (inclusive), except for those
494 * pages that are known to already zeroed. Mark all pages in the
495 * ranges as non-zeroed.
497 static void
498 zero_dirty_pages(page_index_t start, page_index_t end) {
499 page_index_t i;
501 for (i = start; i <= end; i++) {
502 if (page_table[i].need_to_zero == 1) {
503 zero_pages(start, end);
504 break;
508 for (i = start; i <= end; i++) {
509 page_table[i].need_to_zero = 1;
515 * To support quick and inline allocation, regions of memory can be
516 * allocated and then allocated from with just a free pointer and a
517 * check against an end address.
519 * Since objects can be allocated to spaces with different properties
520 * e.g. boxed/unboxed, generation, ages; there may need to be many
521 * allocation regions.
523 * Each allocation region may start within a partly used page. Many
524 * features of memory use are noted on a page wise basis, e.g. the
525 * generation; so if a region starts within an existing allocated page
526 * it must be consistent with this page.
528 * During the scavenging of the newspace, objects will be transported
529 * into an allocation region, and pointers updated to point to this
530 * allocation region. It is possible that these pointers will be
531 * scavenged again before the allocation region is closed, e.g. due to
532 * trans_list which jumps all over the place to cleanup the list. It
533 * is important to be able to determine properties of all objects
534 * pointed to when scavenging, e.g to detect pointers to the oldspace.
535 * Thus it's important that the allocation regions have the correct
536 * properties set when allocated, and not just set when closed. The
537 * region allocation routines return regions with the specified
538 * properties, and grab all the pages, setting their properties
539 * appropriately, except that the amount used is not known.
541 * These regions are used to support quicker allocation using just a
542 * free pointer. The actual space used by the region is not reflected
543 * in the pages tables until it is closed. It can't be scavenged until
544 * closed.
546 * When finished with the region it should be closed, which will
547 * update the page tables for the actual space used returning unused
548 * space. Further it may be noted in the new regions which is
549 * necessary when scavenging the newspace.
551 * Large objects may be allocated directly without an allocation
552 * region, the page tables are updated immediately.
554 * Unboxed objects don't contain pointers to other objects and so
555 * don't need scavenging. Further they can't contain pointers to
556 * younger generations so WP is not needed. By allocating pages to
557 * unboxed objects the whole page never needs scavenging or
558 * write-protecting. */
560 /* We are only using two regions at present. Both are for the current
561 * newspace generation. */
562 struct alloc_region boxed_region;
563 struct alloc_region unboxed_region;
565 /* The generation currently being allocated to. */
566 static generation_index_t gc_alloc_generation;
568 /* Find a new region with room for at least the given number of bytes.
570 * It starts looking at the current generation's alloc_start_page. So
571 * may pick up from the previous region if there is enough space. This
572 * keeps the allocation contiguous when scavenging the newspace.
574 * The alloc_region should have been closed by a call to
575 * gc_alloc_update_page_tables(), and will thus be in an empty state.
577 * To assist the scavenging functions write-protected pages are not
578 * used. Free pages should not be write-protected.
580 * It is critical to the conservative GC that the start of regions be
581 * known. To help achieve this only small regions are allocated at a
582 * time.
584 * During scavenging, pointers may be found to within the current
585 * region and the page generation must be set so that pointers to the
586 * from space can be recognized. Therefore the generation of pages in
587 * the region are set to gc_alloc_generation. To prevent another
588 * allocation call using the same pages, all the pages in the region
589 * are allocated, although they will initially be empty.
591 static void
592 gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
594 page_index_t first_page;
595 page_index_t last_page;
596 long bytes_found;
597 page_index_t i;
598 int ret;
601 FSHOW((stderr,
602 "/alloc_new_region for %d bytes from gen %d\n",
603 nbytes, gc_alloc_generation));
606 /* Check that the region is in a reset state. */
607 gc_assert((alloc_region->first_page == 0)
608 && (alloc_region->last_page == -1)
609 && (alloc_region->free_pointer == alloc_region->end_addr));
610 ret = thread_mutex_lock(&free_pages_lock);
611 gc_assert(ret == 0);
612 if (unboxed) {
613 first_page =
614 generations[gc_alloc_generation].alloc_unboxed_start_page;
615 } else {
616 first_page =
617 generations[gc_alloc_generation].alloc_start_page;
619 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
620 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
621 + PAGE_BYTES*(last_page-first_page);
623 /* Set up the alloc_region. */
624 alloc_region->first_page = first_page;
625 alloc_region->last_page = last_page;
626 alloc_region->start_addr = page_table[first_page].bytes_used
627 + page_address(first_page);
628 alloc_region->free_pointer = alloc_region->start_addr;
629 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
631 /* Set up the pages. */
633 /* The first page may have already been in use. */
634 if (page_table[first_page].bytes_used == 0) {
635 if (unboxed)
636 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
637 else
638 page_table[first_page].allocated = BOXED_PAGE_FLAG;
639 page_table[first_page].gen = gc_alloc_generation;
640 page_table[first_page].large_object = 0;
641 page_table[first_page].first_object_offset = 0;
644 if (unboxed)
645 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
646 else
647 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
648 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
650 gc_assert(page_table[first_page].gen == gc_alloc_generation);
651 gc_assert(page_table[first_page].large_object == 0);
653 for (i = first_page+1; i <= last_page; i++) {
654 if (unboxed)
655 page_table[i].allocated = UNBOXED_PAGE_FLAG;
656 else
657 page_table[i].allocated = BOXED_PAGE_FLAG;
658 page_table[i].gen = gc_alloc_generation;
659 page_table[i].large_object = 0;
660 /* This may not be necessary for unboxed regions (think it was
661 * broken before!) */
662 page_table[i].first_object_offset =
663 alloc_region->start_addr - page_address(i);
664 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
666 /* Bump up last_free_page. */
667 if (last_page+1 > last_free_page) {
668 last_free_page = last_page+1;
669 /* do we only want to call this on special occasions? like for boxed_region? */
670 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
672 ret = thread_mutex_unlock(&free_pages_lock);
673 gc_assert(ret == 0);
675 #ifdef READ_PROTECT_FREE_PAGES
676 os_protect(page_address(first_page),
677 PAGE_BYTES*(1+last_page-first_page),
678 OS_VM_PROT_ALL);
679 #endif
681 /* If the first page was only partial, don't check whether it's
682 * zeroed (it won't be) and don't zero it (since the parts that
683 * we're interested in are guaranteed to be zeroed).
685 if (page_table[first_page].bytes_used) {
686 first_page++;
689 zero_dirty_pages(first_page, last_page);
691 /* we can do this after releasing free_pages_lock */
692 if (gencgc_zero_check) {
693 long *p;
694 for (p = (long *)alloc_region->start_addr;
695 p < (long *)alloc_region->end_addr; p++) {
696 if (*p != 0) {
697 /* KLUDGE: It would be nice to use %lx and explicit casts
698 * (long) in code like this, so that it is less likely to
699 * break randomly when running on a machine with different
700 * word sizes. -- WHN 19991129 */
701 lose("The new region at %x is not zero (start=%p, end=%p).\n",
702 p, alloc_region->start_addr, alloc_region->end_addr);
708 /* If the record_new_objects flag is 2 then all new regions created
709 * are recorded.
711 * If it's 1 then then it is only recorded if the first page of the
712 * current region is <= new_areas_ignore_page. This helps avoid
713 * unnecessary recording when doing full scavenge pass.
715 * The new_object structure holds the page, byte offset, and size of
716 * new regions of objects. Each new area is placed in the array of
717 * these structures pointer to by new_areas. new_areas_index holds the
718 * offset into new_areas.
720 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
721 * later code must detect this and handle it, probably by doing a full
722 * scavenge of a generation. */
723 #define NUM_NEW_AREAS 512
724 static int record_new_objects = 0;
725 static page_index_t new_areas_ignore_page;
726 struct new_area {
727 page_index_t page;
728 long offset;
729 long size;
731 static struct new_area (*new_areas)[];
732 static long new_areas_index;
733 long max_new_areas;
735 /* Add a new area to new_areas. */
736 static void
737 add_new_area(page_index_t first_page, long offset, long size)
739 unsigned long new_area_start,c;
740 long i;
742 /* Ignore if full. */
743 if (new_areas_index >= NUM_NEW_AREAS)
744 return;
746 switch (record_new_objects) {
747 case 0:
748 return;
749 case 1:
750 if (first_page > new_areas_ignore_page)
751 return;
752 break;
753 case 2:
754 break;
755 default:
756 gc_abort();
759 new_area_start = PAGE_BYTES*first_page + offset;
761 /* Search backwards for a prior area that this follows from. If
762 found this will save adding a new area. */
763 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
764 unsigned long area_end =
765 PAGE_BYTES*((*new_areas)[i].page)
766 + (*new_areas)[i].offset
767 + (*new_areas)[i].size;
768 /*FSHOW((stderr,
769 "/add_new_area S1 %d %d %d %d\n",
770 i, c, new_area_start, area_end));*/
771 if (new_area_start == area_end) {
772 /*FSHOW((stderr,
773 "/adding to [%d] %d %d %d with %d %d %d:\n",
775 (*new_areas)[i].page,
776 (*new_areas)[i].offset,
777 (*new_areas)[i].size,
778 first_page,
779 offset,
780 size);*/
781 (*new_areas)[i].size += size;
782 return;
786 (*new_areas)[new_areas_index].page = first_page;
787 (*new_areas)[new_areas_index].offset = offset;
788 (*new_areas)[new_areas_index].size = size;
789 /*FSHOW((stderr,
790 "/new_area %d page %d offset %d size %d\n",
791 new_areas_index, first_page, offset, size));*/
792 new_areas_index++;
794 /* Note the max new_areas used. */
795 if (new_areas_index > max_new_areas)
796 max_new_areas = new_areas_index;
799 /* Update the tables for the alloc_region. The region may be added to
800 * the new_areas.
802 * When done the alloc_region is set up so that the next quick alloc
803 * will fail safely and thus a new region will be allocated. Further
804 * it is safe to try to re-update the page table of this reset
805 * alloc_region. */
806 void
807 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
809 int more;
810 page_index_t first_page;
811 page_index_t next_page;
812 int bytes_used;
813 long orig_first_page_bytes_used;
814 long region_size;
815 long byte_cnt;
816 int ret;
819 first_page = alloc_region->first_page;
821 /* Catch an unused alloc_region. */
822 if ((first_page == 0) && (alloc_region->last_page == -1))
823 return;
825 next_page = first_page+1;
827 ret = thread_mutex_lock(&free_pages_lock);
828 gc_assert(ret == 0);
829 if (alloc_region->free_pointer != alloc_region->start_addr) {
830 /* some bytes were allocated in the region */
831 orig_first_page_bytes_used = page_table[first_page].bytes_used;
833 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
835 /* All the pages used need to be updated */
837 /* Update the first page. */
839 /* If the page was free then set up the gen, and
840 * first_object_offset. */
841 if (page_table[first_page].bytes_used == 0)
842 gc_assert(page_table[first_page].first_object_offset == 0);
843 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
845 if (unboxed)
846 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
847 else
848 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
849 gc_assert(page_table[first_page].gen == gc_alloc_generation);
850 gc_assert(page_table[first_page].large_object == 0);
852 byte_cnt = 0;
854 /* Calculate the number of bytes used in this page. This is not
855 * always the number of new bytes, unless it was free. */
856 more = 0;
857 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>PAGE_BYTES) {
858 bytes_used = PAGE_BYTES;
859 more = 1;
861 page_table[first_page].bytes_used = bytes_used;
862 byte_cnt += bytes_used;
865 /* All the rest of the pages should be free. We need to set their
866 * first_object_offset pointer to the start of the region, and set
867 * the bytes_used. */
868 while (more) {
869 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
870 if (unboxed)
871 gc_assert(page_table[next_page].allocated==UNBOXED_PAGE_FLAG);
872 else
873 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
874 gc_assert(page_table[next_page].bytes_used == 0);
875 gc_assert(page_table[next_page].gen == gc_alloc_generation);
876 gc_assert(page_table[next_page].large_object == 0);
878 gc_assert(page_table[next_page].first_object_offset ==
879 alloc_region->start_addr - page_address(next_page));
881 /* Calculate the number of bytes used in this page. */
882 more = 0;
883 if ((bytes_used = (alloc_region->free_pointer
884 - page_address(next_page)))>PAGE_BYTES) {
885 bytes_used = PAGE_BYTES;
886 more = 1;
888 page_table[next_page].bytes_used = bytes_used;
889 byte_cnt += bytes_used;
891 next_page++;
894 region_size = alloc_region->free_pointer - alloc_region->start_addr;
895 bytes_allocated += region_size;
896 generations[gc_alloc_generation].bytes_allocated += region_size;
898 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
900 /* Set the generations alloc restart page to the last page of
901 * the region. */
902 if (unboxed)
903 generations[gc_alloc_generation].alloc_unboxed_start_page =
904 next_page-1;
905 else
906 generations[gc_alloc_generation].alloc_start_page = next_page-1;
908 /* Add the region to the new_areas if requested. */
909 if (!unboxed)
910 add_new_area(first_page,orig_first_page_bytes_used, region_size);
913 FSHOW((stderr,
914 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
915 region_size,
916 gc_alloc_generation));
918 } else {
919 /* There are no bytes allocated. Unallocate the first_page if
920 * there are 0 bytes_used. */
921 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
922 if (page_table[first_page].bytes_used == 0)
923 page_table[first_page].allocated = FREE_PAGE_FLAG;
926 /* Unallocate any unused pages. */
927 while (next_page <= alloc_region->last_page) {
928 gc_assert(page_table[next_page].bytes_used == 0);
929 page_table[next_page].allocated = FREE_PAGE_FLAG;
930 next_page++;
932 ret = thread_mutex_unlock(&free_pages_lock);
933 gc_assert(ret == 0);
935 /* alloc_region is per-thread, we're ok to do this unlocked */
936 gc_set_region_empty(alloc_region);
939 static inline void *gc_quick_alloc(long nbytes);
941 /* Allocate a possibly large object. */
942 void *
943 gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
945 page_index_t first_page;
946 page_index_t last_page;
947 int orig_first_page_bytes_used;
948 long byte_cnt;
949 int more;
950 long bytes_used;
951 page_index_t next_page;
952 int ret;
954 ret = thread_mutex_lock(&free_pages_lock);
955 gc_assert(ret == 0);
957 if (unboxed) {
958 first_page =
959 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
960 } else {
961 first_page = generations[gc_alloc_generation].alloc_large_start_page;
963 if (first_page <= alloc_region->last_page) {
964 first_page = alloc_region->last_page+1;
967 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
969 gc_assert(first_page > alloc_region->last_page);
970 if (unboxed)
971 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
972 last_page;
973 else
974 generations[gc_alloc_generation].alloc_large_start_page = last_page;
976 /* Set up the pages. */
977 orig_first_page_bytes_used = page_table[first_page].bytes_used;
979 /* If the first page was free then set up the gen, and
980 * first_object_offset. */
981 if (page_table[first_page].bytes_used == 0) {
982 if (unboxed)
983 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
984 else
985 page_table[first_page].allocated = BOXED_PAGE_FLAG;
986 page_table[first_page].gen = gc_alloc_generation;
987 page_table[first_page].first_object_offset = 0;
988 page_table[first_page].large_object = 1;
991 if (unboxed)
992 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
993 else
994 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
995 gc_assert(page_table[first_page].gen == gc_alloc_generation);
996 gc_assert(page_table[first_page].large_object == 1);
998 byte_cnt = 0;
1000 /* Calc. the number of bytes used in this page. This is not
1001 * always the number of new bytes, unless it was free. */
1002 more = 0;
1003 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1004 bytes_used = PAGE_BYTES;
1005 more = 1;
1007 page_table[first_page].bytes_used = bytes_used;
1008 byte_cnt += bytes_used;
1010 next_page = first_page+1;
1012 /* All the rest of the pages should be free. We need to set their
1013 * first_object_offset pointer to the start of the region, and
1014 * set the bytes_used. */
1015 while (more) {
1016 gc_assert(page_table[next_page].allocated == FREE_PAGE_FLAG);
1017 gc_assert(page_table[next_page].bytes_used == 0);
1018 if (unboxed)
1019 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1020 else
1021 page_table[next_page].allocated = BOXED_PAGE_FLAG;
1022 page_table[next_page].gen = gc_alloc_generation;
1023 page_table[next_page].large_object = 1;
1025 page_table[next_page].first_object_offset =
1026 orig_first_page_bytes_used - PAGE_BYTES*(next_page-first_page);
1028 /* Calculate the number of bytes used in this page. */
1029 more = 0;
1030 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > PAGE_BYTES) {
1031 bytes_used = PAGE_BYTES;
1032 more = 1;
1034 page_table[next_page].bytes_used = bytes_used;
1035 page_table[next_page].write_protected=0;
1036 page_table[next_page].dont_move=0;
1037 byte_cnt += bytes_used;
1038 next_page++;
1041 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1043 bytes_allocated += nbytes;
1044 generations[gc_alloc_generation].bytes_allocated += nbytes;
1046 /* Add the region to the new_areas if requested. */
1047 if (!unboxed)
1048 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1050 /* Bump up last_free_page */
1051 if (last_page+1 > last_free_page) {
1052 last_free_page = last_page+1;
1053 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
1055 ret = thread_mutex_unlock(&free_pages_lock);
1056 gc_assert(ret == 0);
1058 #ifdef READ_PROTECT_FREE_PAGES
1059 os_protect(page_address(first_page),
1060 PAGE_BYTES*(1+last_page-first_page),
1061 OS_VM_PROT_ALL);
1062 #endif
1064 zero_dirty_pages(first_page, last_page);
1066 return page_address(first_page);
1069 static page_index_t gencgc_alloc_start_page = -1;
1071 void
1072 gc_heap_exhausted_error_or_lose (long available, long requested)
1074 /* Write basic information before doing anything else: if we don't
1075 * call to lisp this is a must, and even if we do there is always
1076 * the danger that we bounce back here before the error has been
1077 * handled, or indeed even printed.
1079 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1080 gc_active_p ? "garbage collection" : "allocation", available, requested);
1081 if (gc_active_p || (available == 0)) {
1082 /* If we are in GC, or totally out of memory there is no way
1083 * to sanely transfer control to the lisp-side of things.
1085 struct thread *thread = arch_os_get_current_thread();
1086 print_generation_stats(1);
1087 fprintf(stderr, "GC control variables:\n");
1088 fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1089 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
1090 SymbolValue(GC_PENDING,thread)==NIL ? "false" : "true");
1091 #ifdef LISP_FEATURE_SB_THREAD
1092 fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
1093 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
1094 #endif
1095 lose("Heap exhausted, game over.");
1097 else {
1098 /* FIXME: assert free_pages_lock held */
1099 (void)thread_mutex_unlock(&free_pages_lock);
1100 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1101 alloc_number(available), alloc_number(requested));
1102 lose("HEAP-EXHAUSTED-ERROR fell through");
1106 page_index_t
1107 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes, int unboxed)
1109 page_index_t first_page;
1110 page_index_t last_page;
1111 long region_size;
1112 page_index_t restart_page=*restart_page_ptr;
1113 long bytes_found;
1114 long num_pages;
1115 int large_p=(nbytes>=large_object_size);
1116 /* FIXME: assert(free_pages_lock is held); */
1118 /* Search for a contiguous free space of at least nbytes. If it's
1119 * a large object then align it on a page boundary by searching
1120 * for a free page. */
1122 if (gencgc_alloc_start_page != -1) {
1123 restart_page = gencgc_alloc_start_page;
1126 do {
1127 first_page = restart_page;
1128 if (large_p)
1129 while ((first_page < page_table_pages)
1130 && (page_table[first_page].allocated != FREE_PAGE_FLAG))
1131 first_page++;
1132 else
1133 while (first_page < page_table_pages) {
1134 if(page_table[first_page].allocated == FREE_PAGE_FLAG)
1135 break;
1136 if((page_table[first_page].allocated ==
1137 (unboxed ? UNBOXED_PAGE_FLAG : BOXED_PAGE_FLAG)) &&
1138 (page_table[first_page].large_object == 0) &&
1139 (page_table[first_page].gen == gc_alloc_generation) &&
1140 (page_table[first_page].bytes_used < (PAGE_BYTES-32)) &&
1141 (page_table[first_page].write_protected == 0) &&
1142 (page_table[first_page].dont_move == 0)) {
1143 break;
1145 first_page++;
1148 if (first_page >= page_table_pages)
1149 gc_heap_exhausted_error_or_lose(0, nbytes);
1151 gc_assert(page_table[first_page].write_protected == 0);
1153 last_page = first_page;
1154 bytes_found = PAGE_BYTES - page_table[first_page].bytes_used;
1155 num_pages = 1;
1156 while (((bytes_found < nbytes)
1157 || (!large_p && (num_pages < 2)))
1158 && (last_page < (page_table_pages-1))
1159 && (page_table[last_page+1].allocated == FREE_PAGE_FLAG)) {
1160 last_page++;
1161 num_pages++;
1162 bytes_found += PAGE_BYTES;
1163 gc_assert(page_table[last_page].write_protected == 0);
1166 region_size = (PAGE_BYTES - page_table[first_page].bytes_used)
1167 + PAGE_BYTES*(last_page-first_page);
1169 gc_assert(bytes_found == region_size);
1170 restart_page = last_page + 1;
1171 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1173 /* Check for a failure */
1174 if ((restart_page >= page_table_pages) && (bytes_found < nbytes))
1175 gc_heap_exhausted_error_or_lose(bytes_found, nbytes);
1177 *restart_page_ptr=first_page;
1179 return last_page;
1182 /* Allocate bytes. All the rest of the special-purpose allocation
1183 * functions will eventually call this */
1185 void *
1186 gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
1187 int quick_p)
1189 void *new_free_pointer;
1191 if (nbytes>=large_object_size)
1192 return gc_alloc_large(nbytes,unboxed_p,my_region);
1194 /* Check whether there is room in the current alloc region. */
1195 new_free_pointer = my_region->free_pointer + nbytes;
1197 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1198 my_region->free_pointer, new_free_pointer); */
1200 if (new_free_pointer <= my_region->end_addr) {
1201 /* If so then allocate from the current alloc region. */
1202 void *new_obj = my_region->free_pointer;
1203 my_region->free_pointer = new_free_pointer;
1205 /* Unless a `quick' alloc was requested, check whether the
1206 alloc region is almost empty. */
1207 if (!quick_p &&
1208 (my_region->end_addr - my_region->free_pointer) <= 32) {
1209 /* If so, finished with the current region. */
1210 gc_alloc_update_page_tables(unboxed_p, my_region);
1211 /* Set up a new region. */
1212 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1215 return((void *)new_obj);
1218 /* Else not enough free space in the current region: retry with a
1219 * new region. */
1221 gc_alloc_update_page_tables(unboxed_p, my_region);
1222 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1223 return gc_alloc_with_region(nbytes,unboxed_p,my_region,0);
1226 /* these are only used during GC: all allocation from the mutator calls
1227 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1228 * region */
1230 void *
1231 gc_general_alloc(long nbytes,int unboxed_p,int quick_p)
1233 struct alloc_region *my_region =
1234 unboxed_p ? &unboxed_region : &boxed_region;
1235 return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
1238 static inline void *
1239 gc_quick_alloc(long nbytes)
1241 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1244 static inline void *
1245 gc_quick_alloc_large(long nbytes)
1247 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1250 static inline void *
1251 gc_alloc_unboxed(long nbytes)
1253 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1256 static inline void *
1257 gc_quick_alloc_unboxed(long nbytes)
1259 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1262 static inline void *
1263 gc_quick_alloc_large_unboxed(long nbytes)
1265 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1269 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1272 extern long (*scavtab[256])(lispobj *where, lispobj object);
1273 extern lispobj (*transother[256])(lispobj object);
1274 extern long (*sizetab[256])(lispobj *where);
1276 /* Copy a large boxed object. If the object is in a large object
1277 * region then it is simply promoted, else it is copied. If it's large
1278 * enough then it's copied to a large object region.
1280 * Vectors may have shrunk. If the object is not copied the space
1281 * needs to be reclaimed, and the page_tables corrected. */
1282 lispobj
1283 copy_large_object(lispobj object, long nwords)
1285 int tag;
1286 lispobj *new;
1287 page_index_t first_page;
1289 gc_assert(is_lisp_pointer(object));
1290 gc_assert(from_space_p(object));
1291 gc_assert((nwords & 0x01) == 0);
1294 /* Check whether it's in a large object region. */
1295 first_page = find_page_index((void *)object);
1296 gc_assert(first_page >= 0);
1298 if (page_table[first_page].large_object) {
1300 /* Promote the object. */
1302 long remaining_bytes;
1303 page_index_t next_page;
1304 long bytes_freed;
1305 long old_bytes_used;
1307 /* Note: Any page write-protection must be removed, else a
1308 * later scavenge_newspace may incorrectly not scavenge these
1309 * pages. This would not be necessary if they are added to the
1310 * new areas, but let's do it for them all (they'll probably
1311 * be written anyway?). */
1313 gc_assert(page_table[first_page].first_object_offset == 0);
1315 next_page = first_page;
1316 remaining_bytes = nwords*N_WORD_BYTES;
1317 while (remaining_bytes > PAGE_BYTES) {
1318 gc_assert(page_table[next_page].gen == from_space);
1319 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1320 gc_assert(page_table[next_page].large_object);
1321 gc_assert(page_table[next_page].first_object_offset==
1322 -PAGE_BYTES*(next_page-first_page));
1323 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1325 page_table[next_page].gen = new_space;
1327 /* Remove any write-protection. We should be able to rely
1328 * on the write-protect flag to avoid redundant calls. */
1329 if (page_table[next_page].write_protected) {
1330 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1331 page_table[next_page].write_protected = 0;
1333 remaining_bytes -= PAGE_BYTES;
1334 next_page++;
1337 /* Now only one page remains, but the object may have shrunk
1338 * so there may be more unused pages which will be freed. */
1340 /* The object may have shrunk but shouldn't have grown. */
1341 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1343 page_table[next_page].gen = new_space;
1344 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1346 /* Adjust the bytes_used. */
1347 old_bytes_used = page_table[next_page].bytes_used;
1348 page_table[next_page].bytes_used = remaining_bytes;
1350 bytes_freed = old_bytes_used - remaining_bytes;
1352 /* Free any remaining pages; needs care. */
1353 next_page++;
1354 while ((old_bytes_used == PAGE_BYTES) &&
1355 (page_table[next_page].gen == from_space) &&
1356 (page_table[next_page].allocated == BOXED_PAGE_FLAG) &&
1357 page_table[next_page].large_object &&
1358 (page_table[next_page].first_object_offset ==
1359 -(next_page - first_page)*PAGE_BYTES)) {
1360 /* Checks out OK, free the page. Don't need to bother zeroing
1361 * pages as this should have been done before shrinking the
1362 * object. These pages shouldn't be write-protected as they
1363 * should be zero filled. */
1364 gc_assert(page_table[next_page].write_protected == 0);
1366 old_bytes_used = page_table[next_page].bytes_used;
1367 page_table[next_page].allocated = FREE_PAGE_FLAG;
1368 page_table[next_page].bytes_used = 0;
1369 bytes_freed += old_bytes_used;
1370 next_page++;
1373 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords +
1374 bytes_freed;
1375 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1376 bytes_allocated -= bytes_freed;
1378 /* Add the region to the new_areas if requested. */
1379 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1381 return(object);
1382 } else {
1383 /* Get tag of object. */
1384 tag = lowtag_of(object);
1386 /* Allocate space. */
1387 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1389 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1391 /* Return Lisp pointer of new object. */
1392 return ((lispobj) new) | tag;
1396 /* to copy unboxed objects */
1397 lispobj
1398 copy_unboxed_object(lispobj object, long nwords)
1400 long tag;
1401 lispobj *new;
1403 gc_assert(is_lisp_pointer(object));
1404 gc_assert(from_space_p(object));
1405 gc_assert((nwords & 0x01) == 0);
1407 /* Get tag of object. */
1408 tag = lowtag_of(object);
1410 /* Allocate space. */
1411 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1413 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1415 /* Return Lisp pointer of new object. */
1416 return ((lispobj) new) | tag;
1419 /* to copy large unboxed objects
1421 * If the object is in a large object region then it is simply
1422 * promoted, else it is copied. If it's large enough then it's copied
1423 * to a large object region.
1425 * Bignums and vectors may have shrunk. If the object is not copied
1426 * the space needs to be reclaimed, and the page_tables corrected.
1428 * KLUDGE: There's a lot of cut-and-paste duplication between this
1429 * function and copy_large_object(..). -- WHN 20000619 */
1430 lispobj
1431 copy_large_unboxed_object(lispobj object, long nwords)
1433 int tag;
1434 lispobj *new;
1435 page_index_t first_page;
1437 gc_assert(is_lisp_pointer(object));
1438 gc_assert(from_space_p(object));
1439 gc_assert((nwords & 0x01) == 0);
1441 if ((nwords > 1024*1024) && gencgc_verbose)
1442 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*N_WORD_BYTES));
1444 /* Check whether it's a large object. */
1445 first_page = find_page_index((void *)object);
1446 gc_assert(first_page >= 0);
1448 if (page_table[first_page].large_object) {
1449 /* Promote the object. Note: Unboxed objects may have been
1450 * allocated to a BOXED region so it may be necessary to
1451 * change the region to UNBOXED. */
1452 long remaining_bytes;
1453 page_index_t next_page;
1454 long bytes_freed;
1455 long old_bytes_used;
1457 gc_assert(page_table[first_page].first_object_offset == 0);
1459 next_page = first_page;
1460 remaining_bytes = nwords*N_WORD_BYTES;
1461 while (remaining_bytes > PAGE_BYTES) {
1462 gc_assert(page_table[next_page].gen == from_space);
1463 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1464 || (page_table[next_page].allocated == BOXED_PAGE_FLAG));
1465 gc_assert(page_table[next_page].large_object);
1466 gc_assert(page_table[next_page].first_object_offset==
1467 -PAGE_BYTES*(next_page-first_page));
1468 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1470 page_table[next_page].gen = new_space;
1471 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1472 remaining_bytes -= PAGE_BYTES;
1473 next_page++;
1476 /* Now only one page remains, but the object may have shrunk so
1477 * there may be more unused pages which will be freed. */
1479 /* Object may have shrunk but shouldn't have grown - check. */
1480 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1482 page_table[next_page].gen = new_space;
1483 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1485 /* Adjust the bytes_used. */
1486 old_bytes_used = page_table[next_page].bytes_used;
1487 page_table[next_page].bytes_used = remaining_bytes;
1489 bytes_freed = old_bytes_used - remaining_bytes;
1491 /* Free any remaining pages; needs care. */
1492 next_page++;
1493 while ((old_bytes_used == PAGE_BYTES) &&
1494 (page_table[next_page].gen == from_space) &&
1495 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1496 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
1497 page_table[next_page].large_object &&
1498 (page_table[next_page].first_object_offset ==
1499 -(next_page - first_page)*PAGE_BYTES)) {
1500 /* Checks out OK, free the page. Don't need to both zeroing
1501 * pages as this should have been done before shrinking the
1502 * object. These pages shouldn't be write-protected, even if
1503 * boxed they should be zero filled. */
1504 gc_assert(page_table[next_page].write_protected == 0);
1506 old_bytes_used = page_table[next_page].bytes_used;
1507 page_table[next_page].allocated = FREE_PAGE_FLAG;
1508 page_table[next_page].bytes_used = 0;
1509 bytes_freed += old_bytes_used;
1510 next_page++;
1513 if ((bytes_freed > 0) && gencgc_verbose)
1514 FSHOW((stderr,
1515 "/copy_large_unboxed bytes_freed=%d\n",
1516 bytes_freed));
1518 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES + bytes_freed;
1519 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1520 bytes_allocated -= bytes_freed;
1522 return(object);
1524 else {
1525 /* Get tag of object. */
1526 tag = lowtag_of(object);
1528 /* Allocate space. */
1529 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1531 /* Copy the object. */
1532 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1534 /* Return Lisp pointer of new object. */
1535 return ((lispobj) new) | tag;
1544 * code and code-related objects
1547 static lispobj trans_fun_header(lispobj object);
1548 static lispobj trans_boxed(lispobj object);
1551 /* Scan a x86 compiled code object, looking for possible fixups that
1552 * have been missed after a move.
1554 * Two types of fixups are needed:
1555 * 1. Absolute fixups to within the code object.
1556 * 2. Relative fixups to outside the code object.
1558 * Currently only absolute fixups to the constant vector, or to the
1559 * code area are checked. */
1560 void
1561 sniff_code_object(struct code *code, unsigned long displacement)
1563 #ifdef LISP_FEATURE_X86
1564 long nheader_words, ncode_words, nwords;
1565 void *p;
1566 void *constants_start_addr = NULL, *constants_end_addr;
1567 void *code_start_addr, *code_end_addr;
1568 int fixup_found = 0;
1570 if (!check_code_fixups)
1571 return;
1573 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1575 ncode_words = fixnum_value(code->code_size);
1576 nheader_words = HeaderValue(*(lispobj *)code);
1577 nwords = ncode_words + nheader_words;
1579 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1580 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1581 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1582 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1584 /* Work through the unboxed code. */
1585 for (p = code_start_addr; p < code_end_addr; p++) {
1586 void *data = *(void **)p;
1587 unsigned d1 = *((unsigned char *)p - 1);
1588 unsigned d2 = *((unsigned char *)p - 2);
1589 unsigned d3 = *((unsigned char *)p - 3);
1590 unsigned d4 = *((unsigned char *)p - 4);
1591 #ifdef QSHOW
1592 unsigned d5 = *((unsigned char *)p - 5);
1593 unsigned d6 = *((unsigned char *)p - 6);
1594 #endif
1596 /* Check for code references. */
1597 /* Check for a 32 bit word that looks like an absolute
1598 reference to within the code adea of the code object. */
1599 if ((data >= (code_start_addr-displacement))
1600 && (data < (code_end_addr-displacement))) {
1601 /* function header */
1602 if ((d4 == 0x5e)
1603 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1604 /* Skip the function header */
1605 p += 6*4 - 4 - 1;
1606 continue;
1608 /* the case of PUSH imm32 */
1609 if (d1 == 0x68) {
1610 fixup_found = 1;
1611 FSHOW((stderr,
1612 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1613 p, d6, d5, d4, d3, d2, d1, data));
1614 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1616 /* the case of MOV [reg-8],imm32 */
1617 if ((d3 == 0xc7)
1618 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1619 || d2==0x45 || d2==0x46 || d2==0x47)
1620 && (d1 == 0xf8)) {
1621 fixup_found = 1;
1622 FSHOW((stderr,
1623 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1624 p, d6, d5, d4, d3, d2, d1, data));
1625 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1627 /* the case of LEA reg,[disp32] */
1628 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1629 fixup_found = 1;
1630 FSHOW((stderr,
1631 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1632 p, d6, d5, d4, d3, d2, d1, data));
1633 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1637 /* Check for constant references. */
1638 /* Check for a 32 bit word that looks like an absolute
1639 reference to within the constant vector. Constant references
1640 will be aligned. */
1641 if ((data >= (constants_start_addr-displacement))
1642 && (data < (constants_end_addr-displacement))
1643 && (((unsigned)data & 0x3) == 0)) {
1644 /* Mov eax,m32 */
1645 if (d1 == 0xa1) {
1646 fixup_found = 1;
1647 FSHOW((stderr,
1648 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1649 p, d6, d5, d4, d3, d2, d1, data));
1650 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1653 /* the case of MOV m32,EAX */
1654 if (d1 == 0xa3) {
1655 fixup_found = 1;
1656 FSHOW((stderr,
1657 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1658 p, d6, d5, d4, d3, d2, d1, data));
1659 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1662 /* the case of CMP m32,imm32 */
1663 if ((d1 == 0x3d) && (d2 == 0x81)) {
1664 fixup_found = 1;
1665 FSHOW((stderr,
1666 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1667 p, d6, d5, d4, d3, d2, d1, data));
1668 /* XX Check this */
1669 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1672 /* Check for a mod=00, r/m=101 byte. */
1673 if ((d1 & 0xc7) == 5) {
1674 /* Cmp m32,reg */
1675 if (d2 == 0x39) {
1676 fixup_found = 1;
1677 FSHOW((stderr,
1678 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1679 p, d6, d5, d4, d3, d2, d1, data));
1680 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1682 /* the case of CMP reg32,m32 */
1683 if (d2 == 0x3b) {
1684 fixup_found = 1;
1685 FSHOW((stderr,
1686 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1687 p, d6, d5, d4, d3, d2, d1, data));
1688 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1690 /* the case of MOV m32,reg32 */
1691 if (d2 == 0x89) {
1692 fixup_found = 1;
1693 FSHOW((stderr,
1694 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1695 p, d6, d5, d4, d3, d2, d1, data));
1696 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1698 /* the case of MOV reg32,m32 */
1699 if (d2 == 0x8b) {
1700 fixup_found = 1;
1701 FSHOW((stderr,
1702 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1703 p, d6, d5, d4, d3, d2, d1, data));
1704 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1706 /* the case of LEA reg32,m32 */
1707 if (d2 == 0x8d) {
1708 fixup_found = 1;
1709 FSHOW((stderr,
1710 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1711 p, d6, d5, d4, d3, d2, d1, data));
1712 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1718 /* If anything was found, print some information on the code
1719 * object. */
1720 if (fixup_found) {
1721 FSHOW((stderr,
1722 "/compiled code object at %x: header words = %d, code words = %d\n",
1723 code, nheader_words, ncode_words));
1724 FSHOW((stderr,
1725 "/const start = %x, end = %x\n",
1726 constants_start_addr, constants_end_addr));
1727 FSHOW((stderr,
1728 "/code start = %x, end = %x\n",
1729 code_start_addr, code_end_addr));
1731 #endif
1734 void
1735 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1737 /* x86-64 uses pc-relative addressing instead of this kludge */
1738 #ifndef LISP_FEATURE_X86_64
1739 long nheader_words, ncode_words, nwords;
1740 void *constants_start_addr, *constants_end_addr;
1741 void *code_start_addr, *code_end_addr;
1742 lispobj fixups = NIL;
1743 unsigned long displacement = (unsigned long)new_code - (unsigned long)old_code;
1744 struct vector *fixups_vector;
1746 ncode_words = fixnum_value(new_code->code_size);
1747 nheader_words = HeaderValue(*(lispobj *)new_code);
1748 nwords = ncode_words + nheader_words;
1749 /* FSHOW((stderr,
1750 "/compiled code object at %x: header words = %d, code words = %d\n",
1751 new_code, nheader_words, ncode_words)); */
1752 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1753 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1754 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1755 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1757 FSHOW((stderr,
1758 "/const start = %x, end = %x\n",
1759 constants_start_addr,constants_end_addr));
1760 FSHOW((stderr,
1761 "/code start = %x; end = %x\n",
1762 code_start_addr,code_end_addr));
1765 /* The first constant should be a pointer to the fixups for this
1766 code objects. Check. */
1767 fixups = new_code->constants[0];
1769 /* It will be 0 or the unbound-marker if there are no fixups (as
1770 * will be the case if the code object has been purified, for
1771 * example) and will be an other pointer if it is valid. */
1772 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1773 !is_lisp_pointer(fixups)) {
1774 /* Check for possible errors. */
1775 if (check_code_fixups)
1776 sniff_code_object(new_code, displacement);
1778 return;
1781 fixups_vector = (struct vector *)native_pointer(fixups);
1783 /* Could be pointing to a forwarding pointer. */
1784 /* FIXME is this always in from_space? if so, could replace this code with
1785 * forwarding_pointer_p/forwarding_pointer_value */
1786 if (is_lisp_pointer(fixups) &&
1787 (find_page_index((void*)fixups_vector) != -1) &&
1788 (fixups_vector->header == 0x01)) {
1789 /* If so, then follow it. */
1790 /*SHOW("following pointer to a forwarding pointer");*/
1791 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1794 /*SHOW("got fixups");*/
1796 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1797 /* Got the fixups for the code block. Now work through the vector,
1798 and apply a fixup at each address. */
1799 long length = fixnum_value(fixups_vector->length);
1800 long i;
1801 for (i = 0; i < length; i++) {
1802 unsigned long offset = fixups_vector->data[i];
1803 /* Now check the current value of offset. */
1804 unsigned long old_value =
1805 *(unsigned long *)((unsigned long)code_start_addr + offset);
1807 /* If it's within the old_code object then it must be an
1808 * absolute fixup (relative ones are not saved) */
1809 if ((old_value >= (unsigned long)old_code)
1810 && (old_value < ((unsigned long)old_code + nwords*N_WORD_BYTES)))
1811 /* So add the dispacement. */
1812 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1813 old_value + displacement;
1814 else
1815 /* It is outside the old code object so it must be a
1816 * relative fixup (absolute fixups are not saved). So
1817 * subtract the displacement. */
1818 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1819 old_value - displacement;
1821 } else {
1822 /* This used to just print a note to stderr, but a bogus fixup seems to
1823 * indicate real heap corruption, so a hard hailure is in order. */
1824 lose("fixup vector %p has a bad widetag: %d\n", fixups_vector, widetag_of(fixups_vector->header));
1827 /* Check for possible errors. */
1828 if (check_code_fixups) {
1829 sniff_code_object(new_code,displacement);
1831 #endif
1835 static lispobj
1836 trans_boxed_large(lispobj object)
1838 lispobj header;
1839 unsigned long length;
1841 gc_assert(is_lisp_pointer(object));
1843 header = *((lispobj *) native_pointer(object));
1844 length = HeaderValue(header) + 1;
1845 length = CEILING(length, 2);
1847 return copy_large_object(object, length);
1850 /* Doesn't seem to be used, delete it after the grace period. */
1851 #if 0
1852 static lispobj
1853 trans_unboxed_large(lispobj object)
1855 lispobj header;
1856 unsigned long length;
1858 gc_assert(is_lisp_pointer(object));
1860 header = *((lispobj *) native_pointer(object));
1861 length = HeaderValue(header) + 1;
1862 length = CEILING(length, 2);
1864 return copy_large_unboxed_object(object, length);
1866 #endif
1870 * Lutexes. Using the normal finalization machinery for finalizing
1871 * lutexes is tricky, since the finalization depends on working lutexes.
1872 * So we track the lutexes in the GC and finalize them manually.
1875 #if defined(LUTEX_WIDETAG)
1878 * Start tracking LUTEX in the GC, by adding it to the linked list of
1879 * lutexes in the nursery generation. The caller is responsible for
1880 * locking, and GCs must be inhibited until the registration is
1881 * complete.
1883 void
1884 gencgc_register_lutex (struct lutex *lutex) {
1885 int index = find_page_index(lutex);
1886 generation_index_t gen;
1887 struct lutex *head;
1889 /* This lutex is in static space, so we don't need to worry about
1890 * finalizing it.
1892 if (index == -1)
1893 return;
1895 gen = page_table[index].gen;
1897 gc_assert(gen >= 0);
1898 gc_assert(gen < NUM_GENERATIONS);
1900 head = generations[gen].lutexes;
1902 lutex->gen = gen;
1903 lutex->next = head;
1904 lutex->prev = NULL;
1905 if (head)
1906 head->prev = lutex;
1907 generations[gen].lutexes = lutex;
1911 * Stop tracking LUTEX in the GC by removing it from the appropriate
1912 * linked lists. This will only be called during GC, so no locking is
1913 * needed.
1915 void
1916 gencgc_unregister_lutex (struct lutex *lutex) {
1917 if (lutex->prev) {
1918 lutex->prev->next = lutex->next;
1919 } else {
1920 generations[lutex->gen].lutexes = lutex->next;
1923 if (lutex->next) {
1924 lutex->next->prev = lutex->prev;
1927 lutex->next = NULL;
1928 lutex->prev = NULL;
1929 lutex->gen = -1;
1933 * Mark all lutexes in generation GEN as not live.
1935 static void
1936 unmark_lutexes (generation_index_t gen) {
1937 struct lutex *lutex = generations[gen].lutexes;
1939 while (lutex) {
1940 lutex->live = 0;
1941 lutex = lutex->next;
1946 * Finalize all lutexes in generation GEN that have not been marked live.
1948 static void
1949 reap_lutexes (generation_index_t gen) {
1950 struct lutex *lutex = generations[gen].lutexes;
1952 while (lutex) {
1953 struct lutex *next = lutex->next;
1954 if (!lutex->live) {
1955 lutex_destroy((tagged_lutex_t) lutex);
1956 gencgc_unregister_lutex(lutex);
1958 lutex = next;
1963 * Mark LUTEX as live.
1965 static void
1966 mark_lutex (lispobj tagged_lutex) {
1967 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
1969 lutex->live = 1;
1973 * Move all lutexes in generation FROM to generation TO.
1975 static void
1976 move_lutexes (generation_index_t from, generation_index_t to) {
1977 struct lutex *tail = generations[from].lutexes;
1979 /* Nothing to move */
1980 if (!tail)
1981 return;
1983 /* Change the generation of the lutexes in FROM. */
1984 while (tail->next) {
1985 tail->gen = to;
1986 tail = tail->next;
1988 tail->gen = to;
1990 /* Link the last lutex in the FROM list to the start of the TO list */
1991 tail->next = generations[to].lutexes;
1993 /* And vice versa */
1994 if (generations[to].lutexes) {
1995 generations[to].lutexes->prev = tail;
1998 /* And update the generations structures to match this */
1999 generations[to].lutexes = generations[from].lutexes;
2000 generations[from].lutexes = NULL;
2003 static long
2004 scav_lutex(lispobj *where, lispobj object)
2006 mark_lutex((lispobj) where);
2008 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2011 static lispobj
2012 trans_lutex(lispobj object)
2014 struct lutex *lutex = (struct lutex *) native_pointer(object);
2015 lispobj copied;
2016 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2017 gc_assert(is_lisp_pointer(object));
2018 copied = copy_object(object, words);
2020 /* Update the links, since the lutex moved in memory. */
2021 if (lutex->next) {
2022 lutex->next->prev = (struct lutex *) native_pointer(copied);
2025 if (lutex->prev) {
2026 lutex->prev->next = (struct lutex *) native_pointer(copied);
2027 } else {
2028 generations[lutex->gen].lutexes =
2029 (struct lutex *) native_pointer(copied);
2032 return copied;
2035 static long
2036 size_lutex(lispobj *where)
2038 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2040 #endif /* LUTEX_WIDETAG */
2044 * weak pointers
2047 /* XX This is a hack adapted from cgc.c. These don't work too
2048 * efficiently with the gencgc as a list of the weak pointers is
2049 * maintained within the objects which causes writes to the pages. A
2050 * limited attempt is made to avoid unnecessary writes, but this needs
2051 * a re-think. */
2052 #define WEAK_POINTER_NWORDS \
2053 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2055 static long
2056 scav_weak_pointer(lispobj *where, lispobj object)
2058 /* Since we overwrite the 'next' field, we have to make
2059 * sure not to do so for pointers already in the list.
2060 * Instead of searching the list of weak_pointers each
2061 * time, we ensure that next is always NULL when the weak
2062 * pointer isn't in the list, and not NULL otherwise.
2063 * Since we can't use NULL to denote end of list, we
2064 * use a pointer back to the same weak_pointer.
2066 struct weak_pointer * wp = (struct weak_pointer*)where;
2068 if (NULL == wp->next) {
2069 wp->next = weak_pointers;
2070 weak_pointers = wp;
2071 if (NULL == wp->next)
2072 wp->next = wp;
2075 /* Do not let GC scavenge the value slot of the weak pointer.
2076 * (That is why it is a weak pointer.) */
2078 return WEAK_POINTER_NWORDS;
2082 lispobj *
2083 search_read_only_space(void *pointer)
2085 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2086 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2087 if ((pointer < (void *)start) || (pointer >= (void *)end))
2088 return NULL;
2089 return (gc_search_space(start,
2090 (((lispobj *)pointer)+2)-start,
2091 (lispobj *) pointer));
2094 lispobj *
2095 search_static_space(void *pointer)
2097 lispobj *start = (lispobj *)STATIC_SPACE_START;
2098 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2099 if ((pointer < (void *)start) || (pointer >= (void *)end))
2100 return NULL;
2101 return (gc_search_space(start,
2102 (((lispobj *)pointer)+2)-start,
2103 (lispobj *) pointer));
2106 /* a faster version for searching the dynamic space. This will work even
2107 * if the object is in a current allocation region. */
2108 lispobj *
2109 search_dynamic_space(void *pointer)
2111 page_index_t page_index = find_page_index(pointer);
2112 lispobj *start;
2114 /* The address may be invalid, so do some checks. */
2115 if ((page_index == -1) ||
2116 (page_table[page_index].allocated == FREE_PAGE_FLAG))
2117 return NULL;
2118 start = (lispobj *)((void *)page_address(page_index)
2119 + page_table[page_index].first_object_offset);
2120 return (gc_search_space(start,
2121 (((lispobj *)pointer)+2)-start,
2122 (lispobj *)pointer));
2125 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2127 /* Helper for valid_lisp_pointer_p and
2128 * possibly_valid_dynamic_space_pointer.
2130 * pointer is the pointer to validate, and start_addr is the address
2131 * of the enclosing object.
2133 static int
2134 looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
2136 /* We need to allow raw pointers into Code objects for return
2137 * addresses. This will also pick up pointers to functions in code
2138 * objects. */
2139 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG)
2140 /* XXX could do some further checks here */
2141 return 1;
2143 if (!is_lisp_pointer((lispobj)pointer)) {
2144 return 0;
2147 /* Check that the object pointed to is consistent with the pointer
2148 * low tag. */
2149 switch (lowtag_of((lispobj)pointer)) {
2150 case FUN_POINTER_LOWTAG:
2151 /* Start_addr should be the enclosing code object, or a closure
2152 * header. */
2153 switch (widetag_of(*start_addr)) {
2154 case CODE_HEADER_WIDETAG:
2155 /* This case is probably caught above. */
2156 break;
2157 case CLOSURE_HEADER_WIDETAG:
2158 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2159 if ((unsigned long)pointer !=
2160 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2161 if (gencgc_verbose)
2162 FSHOW((stderr,
2163 "/Wf2: %x %x %x\n",
2164 pointer, start_addr, *start_addr));
2165 return 0;
2167 break;
2168 default:
2169 if (gencgc_verbose)
2170 FSHOW((stderr,
2171 "/Wf3: %x %x %x\n",
2172 pointer, start_addr, *start_addr));
2173 return 0;
2175 break;
2176 case LIST_POINTER_LOWTAG:
2177 if ((unsigned long)pointer !=
2178 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2179 if (gencgc_verbose)
2180 FSHOW((stderr,
2181 "/Wl1: %x %x %x\n",
2182 pointer, start_addr, *start_addr));
2183 return 0;
2185 /* Is it plausible cons? */
2186 if ((is_lisp_pointer(start_addr[0]) || is_lisp_immediate(start_addr[0])) &&
2187 (is_lisp_pointer(start_addr[1]) || is_lisp_immediate(start_addr[1])))
2188 break;
2189 else {
2190 if (gencgc_verbose)
2191 FSHOW((stderr,
2192 "/Wl2: %x %x %x\n",
2193 pointer, start_addr, *start_addr));
2194 return 0;
2196 case INSTANCE_POINTER_LOWTAG:
2197 if ((unsigned long)pointer !=
2198 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2199 if (gencgc_verbose)
2200 FSHOW((stderr,
2201 "/Wi1: %x %x %x\n",
2202 pointer, start_addr, *start_addr));
2203 return 0;
2205 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2206 if (gencgc_verbose)
2207 FSHOW((stderr,
2208 "/Wi2: %x %x %x\n",
2209 pointer, start_addr, *start_addr));
2210 return 0;
2212 break;
2213 case OTHER_POINTER_LOWTAG:
2214 if ((unsigned long)pointer !=
2215 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2216 if (gencgc_verbose)
2217 FSHOW((stderr,
2218 "/Wo1: %x %x %x\n",
2219 pointer, start_addr, *start_addr));
2220 return 0;
2222 /* Is it plausible? Not a cons. XXX should check the headers. */
2223 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2224 if (gencgc_verbose)
2225 FSHOW((stderr,
2226 "/Wo2: %x %x %x\n",
2227 pointer, start_addr, *start_addr));
2228 return 0;
2230 switch (widetag_of(start_addr[0])) {
2231 case UNBOUND_MARKER_WIDETAG:
2232 case NO_TLS_VALUE_MARKER_WIDETAG:
2233 case CHARACTER_WIDETAG:
2234 #if N_WORD_BITS == 64
2235 case SINGLE_FLOAT_WIDETAG:
2236 #endif
2237 if (gencgc_verbose)
2238 FSHOW((stderr,
2239 "*Wo3: %x %x %x\n",
2240 pointer, start_addr, *start_addr));
2241 return 0;
2243 /* only pointed to by function pointers? */
2244 case CLOSURE_HEADER_WIDETAG:
2245 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2246 if (gencgc_verbose)
2247 FSHOW((stderr,
2248 "*Wo4: %x %x %x\n",
2249 pointer, start_addr, *start_addr));
2250 return 0;
2252 case INSTANCE_HEADER_WIDETAG:
2253 if (gencgc_verbose)
2254 FSHOW((stderr,
2255 "*Wo5: %x %x %x\n",
2256 pointer, start_addr, *start_addr));
2257 return 0;
2259 /* the valid other immediate pointer objects */
2260 case SIMPLE_VECTOR_WIDETAG:
2261 case RATIO_WIDETAG:
2262 case COMPLEX_WIDETAG:
2263 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2264 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2265 #endif
2266 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2267 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2268 #endif
2269 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2270 case COMPLEX_LONG_FLOAT_WIDETAG:
2271 #endif
2272 case SIMPLE_ARRAY_WIDETAG:
2273 case COMPLEX_BASE_STRING_WIDETAG:
2274 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2275 case COMPLEX_CHARACTER_STRING_WIDETAG:
2276 #endif
2277 case COMPLEX_VECTOR_NIL_WIDETAG:
2278 case COMPLEX_BIT_VECTOR_WIDETAG:
2279 case COMPLEX_VECTOR_WIDETAG:
2280 case COMPLEX_ARRAY_WIDETAG:
2281 case VALUE_CELL_HEADER_WIDETAG:
2282 case SYMBOL_HEADER_WIDETAG:
2283 case FDEFN_WIDETAG:
2284 case CODE_HEADER_WIDETAG:
2285 case BIGNUM_WIDETAG:
2286 #if N_WORD_BITS != 64
2287 case SINGLE_FLOAT_WIDETAG:
2288 #endif
2289 case DOUBLE_FLOAT_WIDETAG:
2290 #ifdef LONG_FLOAT_WIDETAG
2291 case LONG_FLOAT_WIDETAG:
2292 #endif
2293 case SIMPLE_BASE_STRING_WIDETAG:
2294 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2295 case SIMPLE_CHARACTER_STRING_WIDETAG:
2296 #endif
2297 case SIMPLE_BIT_VECTOR_WIDETAG:
2298 case SIMPLE_ARRAY_NIL_WIDETAG:
2299 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2300 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2301 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2302 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2303 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2304 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2305 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2306 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2307 #endif
2308 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2309 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2310 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2311 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2312 #endif
2313 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2314 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2315 #endif
2316 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2317 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2318 #endif
2319 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2320 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2321 #endif
2322 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2323 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2324 #endif
2325 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2326 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2327 #endif
2328 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2329 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2330 #endif
2331 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2332 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2333 #endif
2334 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2335 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2336 #endif
2337 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2338 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2339 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2340 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2341 #endif
2342 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2343 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2344 #endif
2345 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2346 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2347 #endif
2348 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2349 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2350 #endif
2351 case SAP_WIDETAG:
2352 case WEAK_POINTER_WIDETAG:
2353 #ifdef LUTEX_WIDETAG
2354 case LUTEX_WIDETAG:
2355 #endif
2356 break;
2358 default:
2359 if (gencgc_verbose)
2360 FSHOW((stderr,
2361 "/Wo6: %x %x %x\n",
2362 pointer, start_addr, *start_addr));
2363 return 0;
2365 break;
2366 default:
2367 if (gencgc_verbose)
2368 FSHOW((stderr,
2369 "*W?: %x %x %x\n",
2370 pointer, start_addr, *start_addr));
2371 return 0;
2374 /* looks good */
2375 return 1;
2378 /* Used by the debugger to validate possibly bogus pointers before
2379 * calling MAKE-LISP-OBJ on them.
2381 * FIXME: We would like to make this perfect, because if the debugger
2382 * constructs a reference to a bugs lisp object, and it ends up in a
2383 * location scavenged by the GC all hell breaks loose.
2385 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2386 * and return true for all valid pointers, this could actually be eager
2387 * and lie about a few pointers without bad results... but that should
2388 * be reflected in the name.
2391 valid_lisp_pointer_p(lispobj *pointer)
2393 lispobj *start;
2394 if (((start=search_dynamic_space(pointer))!=NULL) ||
2395 ((start=search_static_space(pointer))!=NULL) ||
2396 ((start=search_read_only_space(pointer))!=NULL))
2397 return looks_like_valid_lisp_pointer_p(pointer, start);
2398 else
2399 return 0;
2402 /* Is there any possibility that pointer is a valid Lisp object
2403 * reference, and/or something else (e.g. subroutine call return
2404 * address) which should prevent us from moving the referred-to thing?
2405 * This is called from preserve_pointers() */
2406 static int
2407 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2409 lispobj *start_addr;
2411 /* Find the object start address. */
2412 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2413 return 0;
2416 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2419 /* Adjust large bignum and vector objects. This will adjust the
2420 * allocated region if the size has shrunk, and move unboxed objects
2421 * into unboxed pages. The pages are not promoted here, and the
2422 * promoted region is not added to the new_regions; this is really
2423 * only designed to be called from preserve_pointer(). Shouldn't fail
2424 * if this is missed, just may delay the moving of objects to unboxed
2425 * pages, and the freeing of pages. */
2426 static void
2427 maybe_adjust_large_object(lispobj *where)
2429 page_index_t first_page;
2430 page_index_t next_page;
2431 long nwords;
2433 long remaining_bytes;
2434 long bytes_freed;
2435 long old_bytes_used;
2437 int boxed;
2439 /* Check whether it's a vector or bignum object. */
2440 switch (widetag_of(where[0])) {
2441 case SIMPLE_VECTOR_WIDETAG:
2442 boxed = BOXED_PAGE_FLAG;
2443 break;
2444 case BIGNUM_WIDETAG:
2445 case SIMPLE_BASE_STRING_WIDETAG:
2446 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2447 case SIMPLE_CHARACTER_STRING_WIDETAG:
2448 #endif
2449 case SIMPLE_BIT_VECTOR_WIDETAG:
2450 case SIMPLE_ARRAY_NIL_WIDETAG:
2451 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2452 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2453 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2454 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2455 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2456 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2457 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2458 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2459 #endif
2460 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2461 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2462 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2463 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2464 #endif
2465 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2466 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2467 #endif
2468 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2469 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2470 #endif
2471 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2472 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2473 #endif
2474 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2475 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2476 #endif
2477 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2478 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2479 #endif
2480 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2481 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2482 #endif
2483 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2484 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2485 #endif
2486 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2487 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2488 #endif
2489 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2490 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2491 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2492 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2493 #endif
2494 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2495 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2496 #endif
2497 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2498 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2499 #endif
2500 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2501 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2502 #endif
2503 boxed = UNBOXED_PAGE_FLAG;
2504 break;
2505 default:
2506 return;
2509 /* Find its current size. */
2510 nwords = (sizetab[widetag_of(where[0])])(where);
2512 first_page = find_page_index((void *)where);
2513 gc_assert(first_page >= 0);
2515 /* Note: Any page write-protection must be removed, else a later
2516 * scavenge_newspace may incorrectly not scavenge these pages.
2517 * This would not be necessary if they are added to the new areas,
2518 * but lets do it for them all (they'll probably be written
2519 * anyway?). */
2521 gc_assert(page_table[first_page].first_object_offset == 0);
2523 next_page = first_page;
2524 remaining_bytes = nwords*N_WORD_BYTES;
2525 while (remaining_bytes > PAGE_BYTES) {
2526 gc_assert(page_table[next_page].gen == from_space);
2527 gc_assert((page_table[next_page].allocated == BOXED_PAGE_FLAG)
2528 || (page_table[next_page].allocated == UNBOXED_PAGE_FLAG));
2529 gc_assert(page_table[next_page].large_object);
2530 gc_assert(page_table[next_page].first_object_offset ==
2531 -PAGE_BYTES*(next_page-first_page));
2532 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2534 page_table[next_page].allocated = boxed;
2536 /* Shouldn't be write-protected at this stage. Essential that the
2537 * pages aren't. */
2538 gc_assert(!page_table[next_page].write_protected);
2539 remaining_bytes -= PAGE_BYTES;
2540 next_page++;
2543 /* Now only one page remains, but the object may have shrunk so
2544 * there may be more unused pages which will be freed. */
2546 /* Object may have shrunk but shouldn't have grown - check. */
2547 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2549 page_table[next_page].allocated = boxed;
2550 gc_assert(page_table[next_page].allocated ==
2551 page_table[first_page].allocated);
2553 /* Adjust the bytes_used. */
2554 old_bytes_used = page_table[next_page].bytes_used;
2555 page_table[next_page].bytes_used = remaining_bytes;
2557 bytes_freed = old_bytes_used - remaining_bytes;
2559 /* Free any remaining pages; needs care. */
2560 next_page++;
2561 while ((old_bytes_used == PAGE_BYTES) &&
2562 (page_table[next_page].gen == from_space) &&
2563 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
2564 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
2565 page_table[next_page].large_object &&
2566 (page_table[next_page].first_object_offset ==
2567 -(next_page - first_page)*PAGE_BYTES)) {
2568 /* It checks out OK, free the page. We don't need to both zeroing
2569 * pages as this should have been done before shrinking the
2570 * object. These pages shouldn't be write protected as they
2571 * should be zero filled. */
2572 gc_assert(page_table[next_page].write_protected == 0);
2574 old_bytes_used = page_table[next_page].bytes_used;
2575 page_table[next_page].allocated = FREE_PAGE_FLAG;
2576 page_table[next_page].bytes_used = 0;
2577 bytes_freed += old_bytes_used;
2578 next_page++;
2581 if ((bytes_freed > 0) && gencgc_verbose) {
2582 FSHOW((stderr,
2583 "/maybe_adjust_large_object() freed %d\n",
2584 bytes_freed));
2587 generations[from_space].bytes_allocated -= bytes_freed;
2588 bytes_allocated -= bytes_freed;
2590 return;
2593 /* Take a possible pointer to a Lisp object and mark its page in the
2594 * page_table so that it will not be relocated during a GC.
2596 * This involves locating the page it points to, then backing up to
2597 * the start of its region, then marking all pages dont_move from there
2598 * up to the first page that's not full or has a different generation
2600 * It is assumed that all the page static flags have been cleared at
2601 * the start of a GC.
2603 * It is also assumed that the current gc_alloc() region has been
2604 * flushed and the tables updated. */
2606 static void
2607 preserve_pointer(void *addr)
2609 page_index_t addr_page_index = find_page_index(addr);
2610 page_index_t first_page;
2611 page_index_t i;
2612 unsigned int region_allocation;
2614 /* quick check 1: Address is quite likely to have been invalid. */
2615 if ((addr_page_index == -1)
2616 || (page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2617 || (page_table[addr_page_index].bytes_used == 0)
2618 || (page_table[addr_page_index].gen != from_space)
2619 /* Skip if already marked dont_move. */
2620 || (page_table[addr_page_index].dont_move != 0))
2621 return;
2622 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2623 /* (Now that we know that addr_page_index is in range, it's
2624 * safe to index into page_table[] with it.) */
2625 region_allocation = page_table[addr_page_index].allocated;
2627 /* quick check 2: Check the offset within the page.
2630 if (((unsigned long)addr & (PAGE_BYTES - 1)) > page_table[addr_page_index].bytes_used)
2631 return;
2633 /* Filter out anything which can't be a pointer to a Lisp object
2634 * (or, as a special case which also requires dont_move, a return
2635 * address referring to something in a CodeObject). This is
2636 * expensive but important, since it vastly reduces the
2637 * probability that random garbage will be bogusly interpreted as
2638 * a pointer which prevents a page from moving. */
2639 if (!(possibly_valid_dynamic_space_pointer(addr)))
2640 return;
2642 /* Find the beginning of the region. Note that there may be
2643 * objects in the region preceding the one that we were passed a
2644 * pointer to: if this is the case, we will write-protect all the
2645 * previous objects' pages too. */
2647 #if 0
2648 /* I think this'd work just as well, but without the assertions.
2649 * -dan 2004.01.01 */
2650 first_page=
2651 find_page_index(page_address(addr_page_index)+
2652 page_table[addr_page_index].first_object_offset);
2653 #else
2654 first_page = addr_page_index;
2655 while (page_table[first_page].first_object_offset != 0) {
2656 --first_page;
2657 /* Do some checks. */
2658 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2659 gc_assert(page_table[first_page].gen == from_space);
2660 gc_assert(page_table[first_page].allocated == region_allocation);
2662 #endif
2664 /* Adjust any large objects before promotion as they won't be
2665 * copied after promotion. */
2666 if (page_table[first_page].large_object) {
2667 maybe_adjust_large_object(page_address(first_page));
2668 /* If a large object has shrunk then addr may now point to a
2669 * free area in which case it's ignored here. Note it gets
2670 * through the valid pointer test above because the tail looks
2671 * like conses. */
2672 if ((page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2673 || (page_table[addr_page_index].bytes_used == 0)
2674 /* Check the offset within the page. */
2675 || (((unsigned long)addr & (PAGE_BYTES - 1))
2676 > page_table[addr_page_index].bytes_used)) {
2677 FSHOW((stderr,
2678 "weird? ignore ptr 0x%x to freed area of large object\n",
2679 addr));
2680 return;
2682 /* It may have moved to unboxed pages. */
2683 region_allocation = page_table[first_page].allocated;
2686 /* Now work forward until the end of this contiguous area is found,
2687 * marking all pages as dont_move. */
2688 for (i = first_page; ;i++) {
2689 gc_assert(page_table[i].allocated == region_allocation);
2691 /* Mark the page static. */
2692 page_table[i].dont_move = 1;
2694 /* Move the page to the new_space. XX I'd rather not do this
2695 * but the GC logic is not quite able to copy with the static
2696 * pages remaining in the from space. This also requires the
2697 * generation bytes_allocated counters be updated. */
2698 page_table[i].gen = new_space;
2699 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2700 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2702 /* It is essential that the pages are not write protected as
2703 * they may have pointers into the old-space which need
2704 * scavenging. They shouldn't be write protected at this
2705 * stage. */
2706 gc_assert(!page_table[i].write_protected);
2708 /* Check whether this is the last page in this contiguous block.. */
2709 if ((page_table[i].bytes_used < PAGE_BYTES)
2710 /* ..or it is PAGE_BYTES and is the last in the block */
2711 || (page_table[i+1].allocated == FREE_PAGE_FLAG)
2712 || (page_table[i+1].bytes_used == 0) /* next page free */
2713 || (page_table[i+1].gen != from_space) /* diff. gen */
2714 || (page_table[i+1].first_object_offset == 0))
2715 break;
2718 /* Check that the page is now static. */
2719 gc_assert(page_table[addr_page_index].dont_move != 0);
2722 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2725 /* If the given page is not write-protected, then scan it for pointers
2726 * to younger generations or the top temp. generation, if no
2727 * suspicious pointers are found then the page is write-protected.
2729 * Care is taken to check for pointers to the current gc_alloc()
2730 * region if it is a younger generation or the temp. generation. This
2731 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2732 * the gc_alloc_generation does not need to be checked as this is only
2733 * called from scavenge_generation() when the gc_alloc generation is
2734 * younger, so it just checks if there is a pointer to the current
2735 * region.
2737 * We return 1 if the page was write-protected, else 0. */
2738 static int
2739 update_page_write_prot(page_index_t page)
2741 generation_index_t gen = page_table[page].gen;
2742 long j;
2743 int wp_it = 1;
2744 void **page_addr = (void **)page_address(page);
2745 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2747 /* Shouldn't be a free page. */
2748 gc_assert(page_table[page].allocated != FREE_PAGE_FLAG);
2749 gc_assert(page_table[page].bytes_used != 0);
2751 /* Skip if it's already write-protected, pinned, or unboxed */
2752 if (page_table[page].write_protected
2753 /* FIXME: What's the reason for not write-protecting pinned pages? */
2754 || page_table[page].dont_move
2755 || (page_table[page].allocated & UNBOXED_PAGE_FLAG))
2756 return (0);
2758 /* Scan the page for pointers to younger generations or the
2759 * top temp. generation. */
2761 for (j = 0; j < num_words; j++) {
2762 void *ptr = *(page_addr+j);
2763 page_index_t index = find_page_index(ptr);
2765 /* Check that it's in the dynamic space */
2766 if (index != -1)
2767 if (/* Does it point to a younger or the temp. generation? */
2768 ((page_table[index].allocated != FREE_PAGE_FLAG)
2769 && (page_table[index].bytes_used != 0)
2770 && ((page_table[index].gen < gen)
2771 || (page_table[index].gen == SCRATCH_GENERATION)))
2773 /* Or does it point within a current gc_alloc() region? */
2774 || ((boxed_region.start_addr <= ptr)
2775 && (ptr <= boxed_region.free_pointer))
2776 || ((unboxed_region.start_addr <= ptr)
2777 && (ptr <= unboxed_region.free_pointer))) {
2778 wp_it = 0;
2779 break;
2783 if (wp_it == 1) {
2784 /* Write-protect the page. */
2785 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2787 os_protect((void *)page_addr,
2788 PAGE_BYTES,
2789 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2791 /* Note the page as protected in the page tables. */
2792 page_table[page].write_protected = 1;
2795 return (wp_it);
2798 /* Scavenge all generations from FROM to TO, inclusive, except for
2799 * new_space which needs special handling, as new objects may be
2800 * added which are not checked here - use scavenge_newspace generation.
2802 * Write-protected pages should not have any pointers to the
2803 * from_space so do need scavenging; thus write-protected pages are
2804 * not always scavenged. There is some code to check that these pages
2805 * are not written; but to check fully the write-protected pages need
2806 * to be scavenged by disabling the code to skip them.
2808 * Under the current scheme when a generation is GCed the younger
2809 * generations will be empty. So, when a generation is being GCed it
2810 * is only necessary to scavenge the older generations for pointers
2811 * not the younger. So a page that does not have pointers to younger
2812 * generations does not need to be scavenged.
2814 * The write-protection can be used to note pages that don't have
2815 * pointers to younger pages. But pages can be written without having
2816 * pointers to younger generations. After the pages are scavenged here
2817 * they can be scanned for pointers to younger generations and if
2818 * there are none the page can be write-protected.
2820 * One complication is when the newspace is the top temp. generation.
2822 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2823 * that none were written, which they shouldn't be as they should have
2824 * no pointers to younger generations. This breaks down for weak
2825 * pointers as the objects contain a link to the next and are written
2826 * if a weak pointer is scavenged. Still it's a useful check. */
2827 static void
2828 scavenge_generations(generation_index_t from, generation_index_t to)
2830 page_index_t i;
2831 int num_wp = 0;
2833 #define SC_GEN_CK 0
2834 #if SC_GEN_CK
2835 /* Clear the write_protected_cleared flags on all pages. */
2836 for (i = 0; i < page_table_pages; i++)
2837 page_table[i].write_protected_cleared = 0;
2838 #endif
2840 for (i = 0; i < last_free_page; i++) {
2841 generation_index_t generation = page_table[i].gen;
2842 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2843 && (page_table[i].bytes_used != 0)
2844 && (generation != new_space)
2845 && (generation >= from)
2846 && (generation <= to)) {
2847 page_index_t last_page,j;
2848 int write_protected=1;
2850 /* This should be the start of a region */
2851 gc_assert(page_table[i].first_object_offset == 0);
2853 /* Now work forward until the end of the region */
2854 for (last_page = i; ; last_page++) {
2855 write_protected =
2856 write_protected && page_table[last_page].write_protected;
2857 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2858 /* Or it is PAGE_BYTES and is the last in the block */
2859 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2860 || (page_table[last_page+1].bytes_used == 0)
2861 || (page_table[last_page+1].gen != generation)
2862 || (page_table[last_page+1].first_object_offset == 0))
2863 break;
2865 if (!write_protected) {
2866 scavenge(page_address(i),
2867 (page_table[last_page].bytes_used +
2868 (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
2870 /* Now scan the pages and write protect those that
2871 * don't have pointers to younger generations. */
2872 if (enable_page_protection) {
2873 for (j = i; j <= last_page; j++) {
2874 num_wp += update_page_write_prot(j);
2877 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2878 FSHOW((stderr,
2879 "/write protected %d pages within generation %d\n",
2880 num_wp, generation));
2883 i = last_page;
2887 #if SC_GEN_CK
2888 /* Check that none of the write_protected pages in this generation
2889 * have been written to. */
2890 for (i = 0; i < page_table_pages; i++) {
2891 if ((page_table[i].allocation != FREE_PAGE_FLAG)
2892 && (page_table[i].bytes_used != 0)
2893 && (page_table[i].gen == generation)
2894 && (page_table[i].write_protected_cleared != 0)) {
2895 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2896 FSHOW((stderr,
2897 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2898 page_table[i].bytes_used,
2899 page_table[i].first_object_offset,
2900 page_table[i].dont_move));
2901 lose("write to protected page %d in scavenge_generation()\n", i);
2904 #endif
2908 /* Scavenge a newspace generation. As it is scavenged new objects may
2909 * be allocated to it; these will also need to be scavenged. This
2910 * repeats until there are no more objects unscavenged in the
2911 * newspace generation.
2913 * To help improve the efficiency, areas written are recorded by
2914 * gc_alloc() and only these scavenged. Sometimes a little more will be
2915 * scavenged, but this causes no harm. An easy check is done that the
2916 * scavenged bytes equals the number allocated in the previous
2917 * scavenge.
2919 * Write-protected pages are not scanned except if they are marked
2920 * dont_move in which case they may have been promoted and still have
2921 * pointers to the from space.
2923 * Write-protected pages could potentially be written by alloc however
2924 * to avoid having to handle re-scavenging of write-protected pages
2925 * gc_alloc() does not write to write-protected pages.
2927 * New areas of objects allocated are recorded alternatively in the two
2928 * new_areas arrays below. */
2929 static struct new_area new_areas_1[NUM_NEW_AREAS];
2930 static struct new_area new_areas_2[NUM_NEW_AREAS];
2932 /* Do one full scan of the new space generation. This is not enough to
2933 * complete the job as new objects may be added to the generation in
2934 * the process which are not scavenged. */
2935 static void
2936 scavenge_newspace_generation_one_scan(generation_index_t generation)
2938 page_index_t i;
2940 FSHOW((stderr,
2941 "/starting one full scan of newspace generation %d\n",
2942 generation));
2943 for (i = 0; i < last_free_page; i++) {
2944 /* Note that this skips over open regions when it encounters them. */
2945 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2946 && (page_table[i].bytes_used != 0)
2947 && (page_table[i].gen == generation)
2948 && ((page_table[i].write_protected == 0)
2949 /* (This may be redundant as write_protected is now
2950 * cleared before promotion.) */
2951 || (page_table[i].dont_move == 1))) {
2952 page_index_t last_page;
2953 int all_wp=1;
2955 /* The scavenge will start at the first_object_offset of page i.
2957 * We need to find the full extent of this contiguous
2958 * block in case objects span pages.
2960 * Now work forward until the end of this contiguous area
2961 * is found. A small area is preferred as there is a
2962 * better chance of its pages being write-protected. */
2963 for (last_page = i; ;last_page++) {
2964 /* If all pages are write-protected and movable,
2965 * then no need to scavenge */
2966 all_wp=all_wp && page_table[last_page].write_protected &&
2967 !page_table[last_page].dont_move;
2969 /* Check whether this is the last page in this
2970 * contiguous block */
2971 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2972 /* Or it is PAGE_BYTES and is the last in the block */
2973 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2974 || (page_table[last_page+1].bytes_used == 0)
2975 || (page_table[last_page+1].gen != generation)
2976 || (page_table[last_page+1].first_object_offset == 0))
2977 break;
2980 /* Do a limited check for write-protected pages. */
2981 if (!all_wp) {
2982 long size;
2984 size = (page_table[last_page].bytes_used
2985 + (last_page-i)*PAGE_BYTES
2986 - page_table[i].first_object_offset)/N_WORD_BYTES;
2987 new_areas_ignore_page = last_page;
2989 scavenge(page_address(i) +
2990 page_table[i].first_object_offset,
2991 size);
2994 i = last_page;
2997 FSHOW((stderr,
2998 "/done with one full scan of newspace generation %d\n",
2999 generation));
3002 /* Do a complete scavenge of the newspace generation. */
3003 static void
3004 scavenge_newspace_generation(generation_index_t generation)
3006 long i;
3008 /* the new_areas array currently being written to by gc_alloc() */
3009 struct new_area (*current_new_areas)[] = &new_areas_1;
3010 long current_new_areas_index;
3012 /* the new_areas created by the previous scavenge cycle */
3013 struct new_area (*previous_new_areas)[] = NULL;
3014 long previous_new_areas_index;
3016 /* Flush the current regions updating the tables. */
3017 gc_alloc_update_all_page_tables();
3019 /* Turn on the recording of new areas by gc_alloc(). */
3020 new_areas = current_new_areas;
3021 new_areas_index = 0;
3023 /* Don't need to record new areas that get scavenged anyway during
3024 * scavenge_newspace_generation_one_scan. */
3025 record_new_objects = 1;
3027 /* Start with a full scavenge. */
3028 scavenge_newspace_generation_one_scan(generation);
3030 /* Record all new areas now. */
3031 record_new_objects = 2;
3033 /* Give a chance to weak hash tables to make other objects live.
3034 * FIXME: The algorithm implemented here for weak hash table gcing
3035 * is O(W^2+N) as Bruno Haible warns in
3036 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3037 * see "Implementation 2". */
3038 scav_weak_hash_tables();
3040 /* Flush the current regions updating the tables. */
3041 gc_alloc_update_all_page_tables();
3043 /* Grab new_areas_index. */
3044 current_new_areas_index = new_areas_index;
3046 /*FSHOW((stderr,
3047 "The first scan is finished; current_new_areas_index=%d.\n",
3048 current_new_areas_index));*/
3050 while (current_new_areas_index > 0) {
3051 /* Move the current to the previous new areas */
3052 previous_new_areas = current_new_areas;
3053 previous_new_areas_index = current_new_areas_index;
3055 /* Scavenge all the areas in previous new areas. Any new areas
3056 * allocated are saved in current_new_areas. */
3058 /* Allocate an array for current_new_areas; alternating between
3059 * new_areas_1 and 2 */
3060 if (previous_new_areas == &new_areas_1)
3061 current_new_areas = &new_areas_2;
3062 else
3063 current_new_areas = &new_areas_1;
3065 /* Set up for gc_alloc(). */
3066 new_areas = current_new_areas;
3067 new_areas_index = 0;
3069 /* Check whether previous_new_areas had overflowed. */
3070 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3072 /* New areas of objects allocated have been lost so need to do a
3073 * full scan to be sure! If this becomes a problem try
3074 * increasing NUM_NEW_AREAS. */
3075 if (gencgc_verbose)
3076 SHOW("new_areas overflow, doing full scavenge");
3078 /* Don't need to record new areas that get scavenged
3079 * anyway during scavenge_newspace_generation_one_scan. */
3080 record_new_objects = 1;
3082 scavenge_newspace_generation_one_scan(generation);
3084 /* Record all new areas now. */
3085 record_new_objects = 2;
3087 scav_weak_hash_tables();
3089 /* Flush the current regions updating the tables. */
3090 gc_alloc_update_all_page_tables();
3092 } else {
3094 /* Work through previous_new_areas. */
3095 for (i = 0; i < previous_new_areas_index; i++) {
3096 long page = (*previous_new_areas)[i].page;
3097 long offset = (*previous_new_areas)[i].offset;
3098 long size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3099 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3100 scavenge(page_address(page)+offset, size);
3103 scav_weak_hash_tables();
3105 /* Flush the current regions updating the tables. */
3106 gc_alloc_update_all_page_tables();
3109 current_new_areas_index = new_areas_index;
3111 /*FSHOW((stderr,
3112 "The re-scan has finished; current_new_areas_index=%d.\n",
3113 current_new_areas_index));*/
3116 /* Turn off recording of areas allocated by gc_alloc(). */
3117 record_new_objects = 0;
3119 #if SC_NS_GEN_CK
3120 /* Check that none of the write_protected pages in this generation
3121 * have been written to. */
3122 for (i = 0; i < page_table_pages; i++) {
3123 if ((page_table[i].allocation != FREE_PAGE_FLAG)
3124 && (page_table[i].bytes_used != 0)
3125 && (page_table[i].gen == generation)
3126 && (page_table[i].write_protected_cleared != 0)
3127 && (page_table[i].dont_move == 0)) {
3128 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3129 i, generation, page_table[i].dont_move);
3132 #endif
3135 /* Un-write-protect all the pages in from_space. This is done at the
3136 * start of a GC else there may be many page faults while scavenging
3137 * the newspace (I've seen drive the system time to 99%). These pages
3138 * would need to be unprotected anyway before unmapping in
3139 * free_oldspace; not sure what effect this has on paging.. */
3140 static void
3141 unprotect_oldspace(void)
3143 page_index_t i;
3145 for (i = 0; i < last_free_page; i++) {
3146 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3147 && (page_table[i].bytes_used != 0)
3148 && (page_table[i].gen == from_space)) {
3149 void *page_start;
3151 page_start = (void *)page_address(i);
3153 /* Remove any write-protection. We should be able to rely
3154 * on the write-protect flag to avoid redundant calls. */
3155 if (page_table[i].write_protected) {
3156 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3157 page_table[i].write_protected = 0;
3163 /* Work through all the pages and free any in from_space. This
3164 * assumes that all objects have been copied or promoted to an older
3165 * generation. Bytes_allocated and the generation bytes_allocated
3166 * counter are updated. The number of bytes freed is returned. */
3167 static long
3168 free_oldspace(void)
3170 long bytes_freed = 0;
3171 page_index_t first_page, last_page;
3173 first_page = 0;
3175 do {
3176 /* Find a first page for the next region of pages. */
3177 while ((first_page < last_free_page)
3178 && ((page_table[first_page].allocated == FREE_PAGE_FLAG)
3179 || (page_table[first_page].bytes_used == 0)
3180 || (page_table[first_page].gen != from_space)))
3181 first_page++;
3183 if (first_page >= last_free_page)
3184 break;
3186 /* Find the last page of this region. */
3187 last_page = first_page;
3189 do {
3190 /* Free the page. */
3191 bytes_freed += page_table[last_page].bytes_used;
3192 generations[page_table[last_page].gen].bytes_allocated -=
3193 page_table[last_page].bytes_used;
3194 page_table[last_page].allocated = FREE_PAGE_FLAG;
3195 page_table[last_page].bytes_used = 0;
3197 /* Remove any write-protection. We should be able to rely
3198 * on the write-protect flag to avoid redundant calls. */
3200 void *page_start = (void *)page_address(last_page);
3202 if (page_table[last_page].write_protected) {
3203 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3204 page_table[last_page].write_protected = 0;
3207 last_page++;
3209 while ((last_page < last_free_page)
3210 && (page_table[last_page].allocated != FREE_PAGE_FLAG)
3211 && (page_table[last_page].bytes_used != 0)
3212 && (page_table[last_page].gen == from_space));
3214 #ifdef READ_PROTECT_FREE_PAGES
3215 os_protect(page_address(first_page),
3216 PAGE_BYTES*(last_page-first_page),
3217 OS_VM_PROT_NONE);
3218 #endif
3219 first_page = last_page;
3220 } while (first_page < last_free_page);
3222 bytes_allocated -= bytes_freed;
3223 return bytes_freed;
3226 #if 0
3227 /* Print some information about a pointer at the given address. */
3228 static void
3229 print_ptr(lispobj *addr)
3231 /* If addr is in the dynamic space then out the page information. */
3232 page_index_t pi1 = find_page_index((void*)addr);
3234 if (pi1 != -1)
3235 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3236 (unsigned long) addr,
3237 pi1,
3238 page_table[pi1].allocated,
3239 page_table[pi1].gen,
3240 page_table[pi1].bytes_used,
3241 page_table[pi1].first_object_offset,
3242 page_table[pi1].dont_move);
3243 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3244 *(addr-4),
3245 *(addr-3),
3246 *(addr-2),
3247 *(addr-1),
3248 *(addr-0),
3249 *(addr+1),
3250 *(addr+2),
3251 *(addr+3),
3252 *(addr+4));
3254 #endif
3256 static void
3257 verify_space(lispobj *start, size_t words)
3259 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3260 int is_in_readonly_space =
3261 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3262 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3264 while (words > 0) {
3265 size_t count = 1;
3266 lispobj thing = *(lispobj*)start;
3268 if (is_lisp_pointer(thing)) {
3269 page_index_t page_index = find_page_index((void*)thing);
3270 long to_readonly_space =
3271 (READ_ONLY_SPACE_START <= thing &&
3272 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3273 long to_static_space =
3274 (STATIC_SPACE_START <= thing &&
3275 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3277 /* Does it point to the dynamic space? */
3278 if (page_index != -1) {
3279 /* If it's within the dynamic space it should point to a used
3280 * page. XX Could check the offset too. */
3281 if ((page_table[page_index].allocated != FREE_PAGE_FLAG)
3282 && (page_table[page_index].bytes_used == 0))
3283 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3284 /* Check that it doesn't point to a forwarding pointer! */
3285 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3286 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3288 /* Check that its not in the RO space as it would then be a
3289 * pointer from the RO to the dynamic space. */
3290 if (is_in_readonly_space) {
3291 lose("ptr to dynamic space %x from RO space %x\n",
3292 thing, start);
3294 /* Does it point to a plausible object? This check slows
3295 * it down a lot (so it's commented out).
3297 * "a lot" is serious: it ate 50 minutes cpu time on
3298 * my duron 950 before I came back from lunch and
3299 * killed it.
3301 * FIXME: Add a variable to enable this
3302 * dynamically. */
3304 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3305 lose("ptr %x to invalid object %x\n", thing, start);
3308 } else {
3309 /* Verify that it points to another valid space. */
3310 if (!to_readonly_space && !to_static_space) {
3311 lose("Ptr %x @ %x sees junk.\n", thing, start);
3314 } else {
3315 if (!(fixnump(thing))) {
3316 /* skip fixnums */
3317 switch(widetag_of(*start)) {
3319 /* boxed objects */
3320 case SIMPLE_VECTOR_WIDETAG:
3321 case RATIO_WIDETAG:
3322 case COMPLEX_WIDETAG:
3323 case SIMPLE_ARRAY_WIDETAG:
3324 case COMPLEX_BASE_STRING_WIDETAG:
3325 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3326 case COMPLEX_CHARACTER_STRING_WIDETAG:
3327 #endif
3328 case COMPLEX_VECTOR_NIL_WIDETAG:
3329 case COMPLEX_BIT_VECTOR_WIDETAG:
3330 case COMPLEX_VECTOR_WIDETAG:
3331 case COMPLEX_ARRAY_WIDETAG:
3332 case CLOSURE_HEADER_WIDETAG:
3333 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3334 case VALUE_CELL_HEADER_WIDETAG:
3335 case SYMBOL_HEADER_WIDETAG:
3336 case CHARACTER_WIDETAG:
3337 #if N_WORD_BITS == 64
3338 case SINGLE_FLOAT_WIDETAG:
3339 #endif
3340 case UNBOUND_MARKER_WIDETAG:
3341 case FDEFN_WIDETAG:
3342 count = 1;
3343 break;
3345 case INSTANCE_HEADER_WIDETAG:
3347 lispobj nuntagged;
3348 long ntotal = HeaderValue(thing);
3349 lispobj layout = ((struct instance *)start)->slots[0];
3350 if (!layout) {
3351 count = 1;
3352 break;
3354 nuntagged = ((struct layout *)native_pointer(layout))->n_untagged_slots;
3355 verify_space(start + 1, ntotal - fixnum_value(nuntagged));
3356 count = ntotal + 1;
3357 break;
3359 case CODE_HEADER_WIDETAG:
3361 lispobj object = *start;
3362 struct code *code;
3363 long nheader_words, ncode_words, nwords;
3364 lispobj fheaderl;
3365 struct simple_fun *fheaderp;
3367 code = (struct code *) start;
3369 /* Check that it's not in the dynamic space.
3370 * FIXME: Isn't is supposed to be OK for code
3371 * objects to be in the dynamic space these days? */
3372 if (is_in_dynamic_space
3373 /* It's ok if it's byte compiled code. The trace
3374 * table offset will be a fixnum if it's x86
3375 * compiled code - check.
3377 * FIXME: #^#@@! lack of abstraction here..
3378 * This line can probably go away now that
3379 * there's no byte compiler, but I've got
3380 * too much to worry about right now to try
3381 * to make sure. -- WHN 2001-10-06 */
3382 && fixnump(code->trace_table_offset)
3383 /* Only when enabled */
3384 && verify_dynamic_code_check) {
3385 FSHOW((stderr,
3386 "/code object at %x in the dynamic space\n",
3387 start));
3390 ncode_words = fixnum_value(code->code_size);
3391 nheader_words = HeaderValue(object);
3392 nwords = ncode_words + nheader_words;
3393 nwords = CEILING(nwords, 2);
3394 /* Scavenge the boxed section of the code data block */
3395 verify_space(start + 1, nheader_words - 1);
3397 /* Scavenge the boxed section of each function
3398 * object in the code data block. */
3399 fheaderl = code->entry_points;
3400 while (fheaderl != NIL) {
3401 fheaderp =
3402 (struct simple_fun *) native_pointer(fheaderl);
3403 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3404 verify_space(&fheaderp->name, 1);
3405 verify_space(&fheaderp->arglist, 1);
3406 verify_space(&fheaderp->type, 1);
3407 fheaderl = fheaderp->next;
3409 count = nwords;
3410 break;
3413 /* unboxed objects */
3414 case BIGNUM_WIDETAG:
3415 #if N_WORD_BITS != 64
3416 case SINGLE_FLOAT_WIDETAG:
3417 #endif
3418 case DOUBLE_FLOAT_WIDETAG:
3419 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3420 case LONG_FLOAT_WIDETAG:
3421 #endif
3422 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3423 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3424 #endif
3425 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3426 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3427 #endif
3428 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3429 case COMPLEX_LONG_FLOAT_WIDETAG:
3430 #endif
3431 case SIMPLE_BASE_STRING_WIDETAG:
3432 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3433 case SIMPLE_CHARACTER_STRING_WIDETAG:
3434 #endif
3435 case SIMPLE_BIT_VECTOR_WIDETAG:
3436 case SIMPLE_ARRAY_NIL_WIDETAG:
3437 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3438 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3439 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3440 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3441 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3442 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3443 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3444 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3445 #endif
3446 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3447 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3448 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3449 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3450 #endif
3451 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3452 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3453 #endif
3454 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3455 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3456 #endif
3457 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3458 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3459 #endif
3460 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3461 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3462 #endif
3463 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3464 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3465 #endif
3466 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3467 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3468 #endif
3469 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3470 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3471 #endif
3472 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3473 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3474 #endif
3475 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3476 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3477 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3478 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3479 #endif
3480 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3481 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3482 #endif
3483 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3484 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3485 #endif
3486 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3487 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3488 #endif
3489 case SAP_WIDETAG:
3490 case WEAK_POINTER_WIDETAG:
3491 #ifdef LUTEX_WIDETAG
3492 case LUTEX_WIDETAG:
3493 #endif
3494 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3495 case NO_TLS_VALUE_MARKER_WIDETAG:
3496 #endif
3497 count = (sizetab[widetag_of(*start)])(start);
3498 break;
3500 default:
3501 lose("Unhandled widetag 0x%x at 0x%x\n", widetag_of(*start), start);
3505 start += count;
3506 words -= count;
3510 static void
3511 verify_gc(void)
3513 /* FIXME: It would be nice to make names consistent so that
3514 * foo_size meant size *in* *bytes* instead of size in some
3515 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3516 * Some counts of lispobjs are called foo_count; it might be good
3517 * to grep for all foo_size and rename the appropriate ones to
3518 * foo_count. */
3519 long read_only_space_size =
3520 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3521 - (lispobj*)READ_ONLY_SPACE_START;
3522 long static_space_size =
3523 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3524 - (lispobj*)STATIC_SPACE_START;
3525 struct thread *th;
3526 for_each_thread(th) {
3527 long binding_stack_size =
3528 (lispobj*)get_binding_stack_pointer(th)
3529 - (lispobj*)th->binding_stack_start;
3530 verify_space(th->binding_stack_start, binding_stack_size);
3532 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3533 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3536 static void
3537 verify_generation(generation_index_t generation)
3539 page_index_t i;
3541 for (i = 0; i < last_free_page; i++) {
3542 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3543 && (page_table[i].bytes_used != 0)
3544 && (page_table[i].gen == generation)) {
3545 page_index_t last_page;
3546 int region_allocation = page_table[i].allocated;
3548 /* This should be the start of a contiguous block */
3549 gc_assert(page_table[i].first_object_offset == 0);
3551 /* Need to find the full extent of this contiguous block in case
3552 objects span pages. */
3554 /* Now work forward until the end of this contiguous area is
3555 found. */
3556 for (last_page = i; ;last_page++)
3557 /* Check whether this is the last page in this contiguous
3558 * block. */
3559 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3560 /* Or it is PAGE_BYTES and is the last in the block */
3561 || (page_table[last_page+1].allocated != region_allocation)
3562 || (page_table[last_page+1].bytes_used == 0)
3563 || (page_table[last_page+1].gen != generation)
3564 || (page_table[last_page+1].first_object_offset == 0))
3565 break;
3567 verify_space(page_address(i), (page_table[last_page].bytes_used
3568 + (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
3569 i = last_page;
3574 /* Check that all the free space is zero filled. */
3575 static void
3576 verify_zero_fill(void)
3578 page_index_t page;
3580 for (page = 0; page < last_free_page; page++) {
3581 if (page_table[page].allocated == FREE_PAGE_FLAG) {
3582 /* The whole page should be zero filled. */
3583 long *start_addr = (long *)page_address(page);
3584 long size = 1024;
3585 long i;
3586 for (i = 0; i < size; i++) {
3587 if (start_addr[i] != 0) {
3588 lose("free page not zero at %x\n", start_addr + i);
3591 } else {
3592 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3593 if (free_bytes > 0) {
3594 long *start_addr = (long *)((unsigned long)page_address(page)
3595 + page_table[page].bytes_used);
3596 long size = free_bytes / N_WORD_BYTES;
3597 long i;
3598 for (i = 0; i < size; i++) {
3599 if (start_addr[i] != 0) {
3600 lose("free region not zero at %x\n", start_addr + i);
3608 /* External entry point for verify_zero_fill */
3609 void
3610 gencgc_verify_zero_fill(void)
3612 /* Flush the alloc regions updating the tables. */
3613 gc_alloc_update_all_page_tables();
3614 SHOW("verifying zero fill");
3615 verify_zero_fill();
3618 static void
3619 verify_dynamic_space(void)
3621 generation_index_t i;
3623 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3624 verify_generation(i);
3626 if (gencgc_enable_verify_zero_fill)
3627 verify_zero_fill();
3630 /* Write-protect all the dynamic boxed pages in the given generation. */
3631 static void
3632 write_protect_generation_pages(generation_index_t generation)
3634 page_index_t start;
3636 gc_assert(generation < SCRATCH_GENERATION);
3638 for (start = 0; start < last_free_page; start++) {
3639 if ((page_table[start].allocated == BOXED_PAGE_FLAG)
3640 && (page_table[start].bytes_used != 0)
3641 && !page_table[start].dont_move
3642 && (page_table[start].gen == generation)) {
3643 void *page_start;
3644 page_index_t last;
3646 /* Note the page as protected in the page tables. */
3647 page_table[start].write_protected = 1;
3649 for (last = start + 1; last < last_free_page; last++) {
3650 if ((page_table[last].allocated != BOXED_PAGE_FLAG)
3651 || (page_table[last].bytes_used == 0)
3652 || page_table[last].dont_move
3653 || (page_table[last].gen != generation))
3654 break;
3655 page_table[last].write_protected = 1;
3658 page_start = (void *)page_address(start);
3660 os_protect(page_start,
3661 PAGE_BYTES * (last - start),
3662 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3664 start = last;
3668 if (gencgc_verbose > 1) {
3669 FSHOW((stderr,
3670 "/write protected %d of %d pages in generation %d\n",
3671 count_write_protect_generation_pages(generation),
3672 count_generation_pages(generation),
3673 generation));
3677 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3679 static void
3680 scavenge_control_stack()
3682 unsigned long control_stack_size;
3684 /* This is going to be a big problem when we try to port threads
3685 * to PPC... CLH */
3686 struct thread *th = arch_os_get_current_thread();
3687 lispobj *control_stack =
3688 (lispobj *)(th->control_stack_start);
3690 control_stack_size = current_control_stack_pointer - control_stack;
3691 scavenge(control_stack, control_stack_size);
3694 /* Scavenging Interrupt Contexts */
3696 static int boxed_registers[] = BOXED_REGISTERS;
3698 static void
3699 scavenge_interrupt_context(os_context_t * context)
3701 int i;
3703 #ifdef reg_LIP
3704 unsigned long lip;
3705 unsigned long lip_offset;
3706 int lip_register_pair;
3707 #endif
3708 unsigned long pc_code_offset;
3710 #ifdef ARCH_HAS_LINK_REGISTER
3711 unsigned long lr_code_offset;
3712 #endif
3713 #ifdef ARCH_HAS_NPC_REGISTER
3714 unsigned long npc_code_offset;
3715 #endif
3717 #ifdef reg_LIP
3718 /* Find the LIP's register pair and calculate it's offset */
3719 /* before we scavenge the context. */
3722 * I (RLT) think this is trying to find the boxed register that is
3723 * closest to the LIP address, without going past it. Usually, it's
3724 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3726 lip = *os_context_register_addr(context, reg_LIP);
3727 lip_offset = 0x7FFFFFFF;
3728 lip_register_pair = -1;
3729 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3730 unsigned long reg;
3731 long offset;
3732 int index;
3734 index = boxed_registers[i];
3735 reg = *os_context_register_addr(context, index);
3736 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3737 offset = lip - reg;
3738 if (offset < lip_offset) {
3739 lip_offset = offset;
3740 lip_register_pair = index;
3744 #endif /* reg_LIP */
3746 /* Compute the PC's offset from the start of the CODE */
3747 /* register. */
3748 pc_code_offset = *os_context_pc_addr(context) - *os_context_register_addr(context, reg_CODE);
3749 #ifdef ARCH_HAS_NPC_REGISTER
3750 npc_code_offset = *os_context_npc_addr(context) - *os_context_register_addr(context, reg_CODE);
3751 #endif /* ARCH_HAS_NPC_REGISTER */
3753 #ifdef ARCH_HAS_LINK_REGISTER
3754 lr_code_offset =
3755 *os_context_lr_addr(context) -
3756 *os_context_register_addr(context, reg_CODE);
3757 #endif
3759 /* Scanvenge all boxed registers in the context. */
3760 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3761 int index;
3762 lispobj foo;
3764 index = boxed_registers[i];
3765 foo = *os_context_register_addr(context, index);
3766 scavenge(&foo, 1);
3767 *os_context_register_addr(context, index) = foo;
3769 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3772 #ifdef reg_LIP
3773 /* Fix the LIP */
3776 * But what happens if lip_register_pair is -1? *os_context_register_addr on Solaris
3777 * (see solaris_register_address in solaris-os.c) will return
3778 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3779 * that what we really want? My guess is that that is not what we
3780 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3781 * all. But maybe it doesn't really matter if LIP is trashed?
3783 if (lip_register_pair >= 0) {
3784 *os_context_register_addr(context, reg_LIP) =
3785 *os_context_register_addr(context, lip_register_pair) + lip_offset;
3787 #endif /* reg_LIP */
3789 /* Fix the PC if it was in from space */
3790 if (from_space_p(*os_context_pc_addr(context)))
3791 *os_context_pc_addr(context) = *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3793 #ifdef ARCH_HAS_LINK_REGISTER
3794 /* Fix the LR ditto; important if we're being called from
3795 * an assembly routine that expects to return using blr, otherwise
3796 * harmless */
3797 if (from_space_p(*os_context_lr_addr(context)))
3798 *os_context_lr_addr(context) =
3799 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3800 #endif
3802 #ifdef ARCH_HAS_NPC_REGISTER
3803 if (from_space_p(*os_context_npc_addr(context)))
3804 *os_context_npc_addr(context) = *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3805 #endif /* ARCH_HAS_NPC_REGISTER */
3808 void
3809 scavenge_interrupt_contexts(void)
3811 int i, index;
3812 os_context_t *context;
3814 struct thread *th=arch_os_get_current_thread();
3816 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3818 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3819 printf("Number of active contexts: %d\n", index);
3820 #endif
3822 for (i = 0; i < index; i++) {
3823 context = th->interrupt_contexts[i];
3824 scavenge_interrupt_context(context);
3828 #endif
3830 #if defined(LISP_FEATURE_SB_THREAD)
3831 static void
3832 preserve_context_registers (os_context_t *c)
3834 void **ptr;
3835 /* On Darwin the signal context isn't a contiguous block of memory,
3836 * so just preserve_pointering its contents won't be sufficient.
3838 #if defined(LISP_FEATURE_DARWIN)
3839 #if defined LISP_FEATURE_X86
3840 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3841 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3842 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3843 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3844 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3845 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3846 preserve_pointer((void*)*os_context_pc_addr(c));
3847 #elif defined LISP_FEATURE_X86_64
3848 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3849 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3850 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3851 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3852 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3853 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3854 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3855 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3856 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3857 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3858 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3859 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3860 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3861 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3862 preserve_pointer((void*)*os_context_pc_addr(c));
3863 #else
3864 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3865 #endif
3866 #endif
3867 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3868 preserve_pointer(*ptr);
3871 #endif
3873 /* Garbage collect a generation. If raise is 0 then the remains of the
3874 * generation are not raised to the next generation. */
3875 static void
3876 garbage_collect_generation(generation_index_t generation, int raise)
3878 unsigned long bytes_freed;
3879 page_index_t i;
3880 unsigned long static_space_size;
3881 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3882 struct thread *th;
3883 #endif
3884 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3886 /* The oldest generation can't be raised. */
3887 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3889 /* Check if weak hash tables were processed in the previous GC. */
3890 gc_assert(weak_hash_tables == NULL);
3892 /* Initialize the weak pointer list. */
3893 weak_pointers = NULL;
3895 #ifdef LUTEX_WIDETAG
3896 unmark_lutexes(generation);
3897 #endif
3899 /* When a generation is not being raised it is transported to a
3900 * temporary generation (NUM_GENERATIONS), and lowered when
3901 * done. Set up this new generation. There should be no pages
3902 * allocated to it yet. */
3903 if (!raise) {
3904 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3907 /* Set the global src and dest. generations */
3908 from_space = generation;
3909 if (raise)
3910 new_space = generation+1;
3911 else
3912 new_space = SCRATCH_GENERATION;
3914 /* Change to a new space for allocation, resetting the alloc_start_page */
3915 gc_alloc_generation = new_space;
3916 generations[new_space].alloc_start_page = 0;
3917 generations[new_space].alloc_unboxed_start_page = 0;
3918 generations[new_space].alloc_large_start_page = 0;
3919 generations[new_space].alloc_large_unboxed_start_page = 0;
3921 /* Before any pointers are preserved, the dont_move flags on the
3922 * pages need to be cleared. */
3923 for (i = 0; i < last_free_page; i++)
3924 if(page_table[i].gen==from_space)
3925 page_table[i].dont_move = 0;
3927 /* Un-write-protect the old-space pages. This is essential for the
3928 * promoted pages as they may contain pointers into the old-space
3929 * which need to be scavenged. It also helps avoid unnecessary page
3930 * faults as forwarding pointers are written into them. They need to
3931 * be un-protected anyway before unmapping later. */
3932 unprotect_oldspace();
3934 /* Scavenge the stacks' conservative roots. */
3936 /* there are potentially two stacks for each thread: the main
3937 * stack, which may contain Lisp pointers, and the alternate stack.
3938 * We don't ever run Lisp code on the altstack, but it may
3939 * host a sigcontext with lisp objects in it */
3941 /* what we need to do: (1) find the stack pointer for the main
3942 * stack; scavenge it (2) find the interrupt context on the
3943 * alternate stack that might contain lisp values, and scavenge
3944 * that */
3946 /* we assume that none of the preceding applies to the thread that
3947 * initiates GC. If you ever call GC from inside an altstack
3948 * handler, you will lose. */
3950 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3951 /* And if we're saving a core, there's no point in being conservative. */
3952 if (conservative_stack) {
3953 for_each_thread(th) {
3954 void **ptr;
3955 void **esp=(void **)-1;
3956 #ifdef LISP_FEATURE_SB_THREAD
3957 long i,free;
3958 if(th==arch_os_get_current_thread()) {
3959 /* Somebody is going to burn in hell for this, but casting
3960 * it in two steps shuts gcc up about strict aliasing. */
3961 esp = (void **)((void *)&raise);
3962 } else {
3963 void **esp1;
3964 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3965 for(i=free-1;i>=0;i--) {
3966 os_context_t *c=th->interrupt_contexts[i];
3967 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3968 if (esp1>=(void **)th->control_stack_start &&
3969 esp1<(void **)th->control_stack_end) {
3970 if(esp1<esp) esp=esp1;
3971 preserve_context_registers(c);
3975 #else
3976 esp = (void **)((void *)&raise);
3977 #endif
3978 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
3979 preserve_pointer(*ptr);
3983 #endif
3985 #ifdef QSHOW
3986 if (gencgc_verbose > 1) {
3987 long num_dont_move_pages = count_dont_move_pages();
3988 fprintf(stderr,
3989 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3990 num_dont_move_pages,
3991 num_dont_move_pages * PAGE_BYTES);
3993 #endif
3995 /* Scavenge all the rest of the roots. */
3997 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3999 * If not x86, we need to scavenge the interrupt context(s) and the
4000 * control stack.
4002 scavenge_interrupt_contexts();
4003 scavenge_control_stack();
4004 #endif
4006 /* Scavenge the Lisp functions of the interrupt handlers, taking
4007 * care to avoid SIG_DFL and SIG_IGN. */
4008 for (i = 0; i < NSIG; i++) {
4009 union interrupt_handler handler = interrupt_handlers[i];
4010 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
4011 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
4012 scavenge((lispobj *)(interrupt_handlers + i), 1);
4015 /* Scavenge the binding stacks. */
4017 struct thread *th;
4018 for_each_thread(th) {
4019 long len= (lispobj *)get_binding_stack_pointer(th) -
4020 th->binding_stack_start;
4021 scavenge((lispobj *) th->binding_stack_start,len);
4022 #ifdef LISP_FEATURE_SB_THREAD
4023 /* do the tls as well */
4024 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4025 (sizeof (struct thread))/(sizeof (lispobj));
4026 scavenge((lispobj *) (th+1),len);
4027 #endif
4031 /* The original CMU CL code had scavenge-read-only-space code
4032 * controlled by the Lisp-level variable
4033 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4034 * wasn't documented under what circumstances it was useful or
4035 * safe to turn it on, so it's been turned off in SBCL. If you
4036 * want/need this functionality, and can test and document it,
4037 * please submit a patch. */
4038 #if 0
4039 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4040 unsigned long read_only_space_size =
4041 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4042 (lispobj*)READ_ONLY_SPACE_START;
4043 FSHOW((stderr,
4044 "/scavenge read only space: %d bytes\n",
4045 read_only_space_size * sizeof(lispobj)));
4046 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4048 #endif
4050 /* Scavenge static space. */
4051 static_space_size =
4052 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4053 (lispobj *)STATIC_SPACE_START;
4054 if (gencgc_verbose > 1) {
4055 FSHOW((stderr,
4056 "/scavenge static space: %d bytes\n",
4057 static_space_size * sizeof(lispobj)));
4059 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4061 /* All generations but the generation being GCed need to be
4062 * scavenged. The new_space generation needs special handling as
4063 * objects may be moved in - it is handled separately below. */
4064 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4066 /* Finally scavenge the new_space generation. Keep going until no
4067 * more objects are moved into the new generation */
4068 scavenge_newspace_generation(new_space);
4070 /* FIXME: I tried reenabling this check when debugging unrelated
4071 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4072 * Since the current GC code seems to work well, I'm guessing that
4073 * this debugging code is just stale, but I haven't tried to
4074 * figure it out. It should be figured out and then either made to
4075 * work or just deleted. */
4076 #define RESCAN_CHECK 0
4077 #if RESCAN_CHECK
4078 /* As a check re-scavenge the newspace once; no new objects should
4079 * be found. */
4081 long old_bytes_allocated = bytes_allocated;
4082 long bytes_allocated;
4084 /* Start with a full scavenge. */
4085 scavenge_newspace_generation_one_scan(new_space);
4087 /* Flush the current regions, updating the tables. */
4088 gc_alloc_update_all_page_tables();
4090 bytes_allocated = bytes_allocated - old_bytes_allocated;
4092 if (bytes_allocated != 0) {
4093 lose("Rescan of new_space allocated %d more bytes.\n",
4094 bytes_allocated);
4097 #endif
4099 scan_weak_hash_tables();
4100 scan_weak_pointers();
4102 /* Flush the current regions, updating the tables. */
4103 gc_alloc_update_all_page_tables();
4105 /* Free the pages in oldspace, but not those marked dont_move. */
4106 bytes_freed = free_oldspace();
4108 /* If the GC is not raising the age then lower the generation back
4109 * to its normal generation number */
4110 if (!raise) {
4111 for (i = 0; i < last_free_page; i++)
4112 if ((page_table[i].bytes_used != 0)
4113 && (page_table[i].gen == SCRATCH_GENERATION))
4114 page_table[i].gen = generation;
4115 gc_assert(generations[generation].bytes_allocated == 0);
4116 generations[generation].bytes_allocated =
4117 generations[SCRATCH_GENERATION].bytes_allocated;
4118 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4121 /* Reset the alloc_start_page for generation. */
4122 generations[generation].alloc_start_page = 0;
4123 generations[generation].alloc_unboxed_start_page = 0;
4124 generations[generation].alloc_large_start_page = 0;
4125 generations[generation].alloc_large_unboxed_start_page = 0;
4127 if (generation >= verify_gens) {
4128 if (gencgc_verbose)
4129 SHOW("verifying");
4130 verify_gc();
4131 verify_dynamic_space();
4134 /* Set the new gc trigger for the GCed generation. */
4135 generations[generation].gc_trigger =
4136 generations[generation].bytes_allocated
4137 + generations[generation].bytes_consed_between_gc;
4139 if (raise)
4140 generations[generation].num_gc = 0;
4141 else
4142 ++generations[generation].num_gc;
4144 #ifdef LUTEX_WIDETAG
4145 reap_lutexes(generation);
4146 if (raise)
4147 move_lutexes(generation, generation+1);
4148 #endif
4151 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4152 long
4153 update_dynamic_space_free_pointer(void)
4155 page_index_t last_page = -1, i;
4157 for (i = 0; i < last_free_page; i++)
4158 if ((page_table[i].allocated != FREE_PAGE_FLAG)
4159 && (page_table[i].bytes_used != 0))
4160 last_page = i;
4162 last_free_page = last_page+1;
4164 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
4165 return 0; /* dummy value: return something ... */
4168 static void
4169 remap_free_pages (page_index_t from, page_index_t to)
4171 page_index_t first_page, last_page;
4173 for (first_page = from; first_page <= to; first_page++) {
4174 if (page_table[first_page].allocated != FREE_PAGE_FLAG ||
4175 page_table[first_page].need_to_zero == 0) {
4176 continue;
4179 last_page = first_page + 1;
4180 while (page_table[last_page].allocated == FREE_PAGE_FLAG &&
4181 last_page < to &&
4182 page_table[last_page].need_to_zero == 1) {
4183 last_page++;
4186 /* There's a mysterious Solaris/x86 problem with using mmap
4187 * tricks for memory zeroing. See sbcl-devel thread
4188 * "Re: patch: standalone executable redux".
4190 #if defined(LISP_FEATURE_SUNOS)
4191 zero_pages(first_page, last_page-1);
4192 #else
4193 zero_pages_with_mmap(first_page, last_page-1);
4194 #endif
4196 first_page = last_page;
4200 generation_index_t small_generation_limit = 1;
4202 /* GC all generations newer than last_gen, raising the objects in each
4203 * to the next older generation - we finish when all generations below
4204 * last_gen are empty. Then if last_gen is due for a GC, or if
4205 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4206 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4208 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4209 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4210 void
4211 collect_garbage(generation_index_t last_gen)
4213 generation_index_t gen = 0, i;
4214 int raise;
4215 int gen_to_wp;
4216 /* The largest value of last_free_page seen since the time
4217 * remap_free_pages was called. */
4218 static page_index_t high_water_mark = 0;
4220 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4222 gc_active_p = 1;
4224 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4225 FSHOW((stderr,
4226 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4227 last_gen));
4228 last_gen = 0;
4231 /* Flush the alloc regions updating the tables. */
4232 gc_alloc_update_all_page_tables();
4234 /* Verify the new objects created by Lisp code. */
4235 if (pre_verify_gen_0) {
4236 FSHOW((stderr, "pre-checking generation 0\n"));
4237 verify_generation(0);
4240 if (gencgc_verbose > 1)
4241 print_generation_stats(0);
4243 do {
4244 /* Collect the generation. */
4246 if (gen >= gencgc_oldest_gen_to_gc) {
4247 /* Never raise the oldest generation. */
4248 raise = 0;
4249 } else {
4250 raise =
4251 (gen < last_gen)
4252 || (generations[gen].num_gc >= generations[gen].trigger_age);
4255 if (gencgc_verbose > 1) {
4256 FSHOW((stderr,
4257 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4258 gen,
4259 raise,
4260 generations[gen].bytes_allocated,
4261 generations[gen].gc_trigger,
4262 generations[gen].num_gc));
4265 /* If an older generation is being filled, then update its
4266 * memory age. */
4267 if (raise == 1) {
4268 generations[gen+1].cum_sum_bytes_allocated +=
4269 generations[gen+1].bytes_allocated;
4272 garbage_collect_generation(gen, raise);
4274 /* Reset the memory age cum_sum. */
4275 generations[gen].cum_sum_bytes_allocated = 0;
4277 if (gencgc_verbose > 1) {
4278 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4279 print_generation_stats(0);
4282 gen++;
4283 } while ((gen <= gencgc_oldest_gen_to_gc)
4284 && ((gen < last_gen)
4285 || ((gen <= gencgc_oldest_gen_to_gc)
4286 && raise
4287 && (generations[gen].bytes_allocated
4288 > generations[gen].gc_trigger)
4289 && (gen_av_mem_age(gen)
4290 > generations[gen].min_av_mem_age))));
4292 /* Now if gen-1 was raised all generations before gen are empty.
4293 * If it wasn't raised then all generations before gen-1 are empty.
4295 * Now objects within this gen's pages cannot point to younger
4296 * generations unless they are written to. This can be exploited
4297 * by write-protecting the pages of gen; then when younger
4298 * generations are GCed only the pages which have been written
4299 * need scanning. */
4300 if (raise)
4301 gen_to_wp = gen;
4302 else
4303 gen_to_wp = gen - 1;
4305 /* There's not much point in WPing pages in generation 0 as it is
4306 * never scavenged (except promoted pages). */
4307 if ((gen_to_wp > 0) && enable_page_protection) {
4308 /* Check that they are all empty. */
4309 for (i = 0; i < gen_to_wp; i++) {
4310 if (generations[i].bytes_allocated)
4311 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4312 gen_to_wp, i);
4314 write_protect_generation_pages(gen_to_wp);
4317 /* Set gc_alloc() back to generation 0. The current regions should
4318 * be flushed after the above GCs. */
4319 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4320 gc_alloc_generation = 0;
4322 /* Save the high-water mark before updating last_free_page */
4323 if (last_free_page > high_water_mark)
4324 high_water_mark = last_free_page;
4326 update_dynamic_space_free_pointer();
4328 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4329 if(gencgc_verbose)
4330 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4331 auto_gc_trigger);
4333 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4334 * back to the OS.
4336 if (gen > small_generation_limit) {
4337 if (last_free_page > high_water_mark)
4338 high_water_mark = last_free_page;
4339 remap_free_pages(0, high_water_mark);
4340 high_water_mark = 0;
4343 gc_active_p = 0;
4345 SHOW("returning from collect_garbage");
4348 /* This is called by Lisp PURIFY when it is finished. All live objects
4349 * will have been moved to the RO and Static heaps. The dynamic space
4350 * will need a full re-initialization. We don't bother having Lisp
4351 * PURIFY flush the current gc_alloc() region, as the page_tables are
4352 * re-initialized, and every page is zeroed to be sure. */
4353 void
4354 gc_free_heap(void)
4356 page_index_t page;
4358 if (gencgc_verbose > 1)
4359 SHOW("entering gc_free_heap");
4361 for (page = 0; page < page_table_pages; page++) {
4362 /* Skip free pages which should already be zero filled. */
4363 if (page_table[page].allocated != FREE_PAGE_FLAG) {
4364 void *page_start, *addr;
4366 /* Mark the page free. The other slots are assumed invalid
4367 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4368 * should not be write-protected -- except that the
4369 * generation is used for the current region but it sets
4370 * that up. */
4371 page_table[page].allocated = FREE_PAGE_FLAG;
4372 page_table[page].bytes_used = 0;
4374 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure about this change. */
4375 /* Zero the page. */
4376 page_start = (void *)page_address(page);
4378 /* First, remove any write-protection. */
4379 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4380 page_table[page].write_protected = 0;
4382 os_invalidate(page_start,PAGE_BYTES);
4383 addr = os_validate(page_start,PAGE_BYTES);
4384 if (addr == NULL || addr != page_start) {
4385 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4386 page_start,
4387 addr);
4389 #else
4390 page_table[page].write_protected = 0;
4391 #endif
4392 } else if (gencgc_zero_check_during_free_heap) {
4393 /* Double-check that the page is zero filled. */
4394 long *page_start;
4395 page_index_t i;
4396 gc_assert(page_table[page].allocated == FREE_PAGE_FLAG);
4397 gc_assert(page_table[page].bytes_used == 0);
4398 page_start = (long *)page_address(page);
4399 for (i=0; i<1024; i++) {
4400 if (page_start[i] != 0) {
4401 lose("free region not zero at %x\n", page_start + i);
4407 bytes_allocated = 0;
4409 /* Initialize the generations. */
4410 for (page = 0; page < NUM_GENERATIONS; page++) {
4411 generations[page].alloc_start_page = 0;
4412 generations[page].alloc_unboxed_start_page = 0;
4413 generations[page].alloc_large_start_page = 0;
4414 generations[page].alloc_large_unboxed_start_page = 0;
4415 generations[page].bytes_allocated = 0;
4416 generations[page].gc_trigger = 2000000;
4417 generations[page].num_gc = 0;
4418 generations[page].cum_sum_bytes_allocated = 0;
4419 generations[page].lutexes = NULL;
4422 if (gencgc_verbose > 1)
4423 print_generation_stats(0);
4425 /* Initialize gc_alloc(). */
4426 gc_alloc_generation = 0;
4428 gc_set_region_empty(&boxed_region);
4429 gc_set_region_empty(&unboxed_region);
4431 last_free_page = 0;
4432 set_alloc_pointer((lispobj)((char *)heap_base));
4434 if (verify_after_free_heap) {
4435 /* Check whether purify has left any bad pointers. */
4436 FSHOW((stderr, "checking after free_heap\n"));
4437 verify_gc();
4441 void
4442 gc_init(void)
4444 page_index_t i;
4446 /* Compute the number of pages needed for the dynamic space.
4447 * Dynamic space size should be aligned on page size. */
4448 page_table_pages = dynamic_space_size/PAGE_BYTES;
4449 gc_assert(dynamic_space_size == (size_t) page_table_pages*PAGE_BYTES);
4451 page_table = calloc(page_table_pages, sizeof(struct page));
4452 gc_assert(page_table);
4454 gc_init_tables();
4455 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4456 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4458 #ifdef LUTEX_WIDETAG
4459 scavtab[LUTEX_WIDETAG] = scav_lutex;
4460 transother[LUTEX_WIDETAG] = trans_lutex;
4461 sizetab[LUTEX_WIDETAG] = size_lutex;
4462 #endif
4464 heap_base = (void*)DYNAMIC_SPACE_START;
4466 /* Initialize each page structure. */
4467 for (i = 0; i < page_table_pages; i++) {
4468 /* Initialize all pages as free. */
4469 page_table[i].allocated = FREE_PAGE_FLAG;
4470 page_table[i].bytes_used = 0;
4472 /* Pages are not write-protected at startup. */
4473 page_table[i].write_protected = 0;
4476 bytes_allocated = 0;
4478 /* Initialize the generations.
4480 * FIXME: very similar to code in gc_free_heap(), should be shared */
4481 for (i = 0; i < NUM_GENERATIONS; i++) {
4482 generations[i].alloc_start_page = 0;
4483 generations[i].alloc_unboxed_start_page = 0;
4484 generations[i].alloc_large_start_page = 0;
4485 generations[i].alloc_large_unboxed_start_page = 0;
4486 generations[i].bytes_allocated = 0;
4487 generations[i].gc_trigger = 2000000;
4488 generations[i].num_gc = 0;
4489 generations[i].cum_sum_bytes_allocated = 0;
4490 /* the tune-able parameters */
4491 generations[i].bytes_consed_between_gc = 2000000;
4492 generations[i].trigger_age = 1;
4493 generations[i].min_av_mem_age = 0.75;
4494 generations[i].lutexes = NULL;
4497 /* Initialize gc_alloc. */
4498 gc_alloc_generation = 0;
4499 gc_set_region_empty(&boxed_region);
4500 gc_set_region_empty(&unboxed_region);
4502 last_free_page = 0;
4505 /* Pick up the dynamic space from after a core load.
4507 * The ALLOCATION_POINTER points to the end of the dynamic space.
4510 static void
4511 gencgc_pickup_dynamic(void)
4513 page_index_t page = 0;
4514 long alloc_ptr = get_alloc_pointer();
4515 lispobj *prev=(lispobj *)page_address(page);
4516 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4518 do {
4519 lispobj *first,*ptr= (lispobj *)page_address(page);
4520 page_table[page].allocated = BOXED_PAGE_FLAG;
4521 page_table[page].gen = gen;
4522 page_table[page].bytes_used = PAGE_BYTES;
4523 page_table[page].large_object = 0;
4524 page_table[page].write_protected = 0;
4525 page_table[page].write_protected_cleared = 0;
4526 page_table[page].dont_move = 0;
4527 page_table[page].need_to_zero = 1;
4529 if (!gencgc_partial_pickup) {
4530 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4531 if(ptr == first) prev=ptr;
4532 page_table[page].first_object_offset =
4533 (void *)prev - page_address(page);
4535 page++;
4536 } while ((long)page_address(page) < alloc_ptr);
4538 #ifdef LUTEX_WIDETAG
4539 /* Lutexes have been registered in generation 0 by coreparse, and
4540 * need to be moved to the right one manually.
4542 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4543 #endif
4545 last_free_page = page;
4547 generations[gen].bytes_allocated = PAGE_BYTES*page;
4548 bytes_allocated = PAGE_BYTES*page;
4550 gc_alloc_update_all_page_tables();
4551 write_protect_generation_pages(gen);
4554 void
4555 gc_initialize_pointers(void)
4557 gencgc_pickup_dynamic();
4563 /* alloc(..) is the external interface for memory allocation. It
4564 * allocates to generation 0. It is not called from within the garbage
4565 * collector as it is only external uses that need the check for heap
4566 * size (GC trigger) and to disable the interrupts (interrupts are
4567 * always disabled during a GC).
4569 * The vops that call alloc(..) assume that the returned space is zero-filled.
4570 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4572 * The check for a GC trigger is only performed when the current
4573 * region is full, so in most cases it's not needed. */
4575 lispobj *
4576 alloc(long nbytes)
4578 struct thread *thread=arch_os_get_current_thread();
4579 struct alloc_region *region=
4580 #ifdef LISP_FEATURE_SB_THREAD
4581 thread ? &(thread->alloc_region) : &boxed_region;
4582 #else
4583 &boxed_region;
4584 #endif
4585 #ifndef LISP_FEATURE_WIN32
4586 lispobj alloc_signal;
4587 #endif
4588 void *new_obj;
4589 void *new_free_pointer;
4591 gc_assert(nbytes>0);
4593 /* Check for alignment allocation problems. */
4594 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4595 && ((nbytes & LOWTAG_MASK) == 0));
4597 #if 0
4598 if(all_threads)
4599 /* there are a few places in the C code that allocate data in the
4600 * heap before Lisp starts. This is before interrupts are enabled,
4601 * so we don't need to check for pseudo-atomic */
4602 #ifdef LISP_FEATURE_SB_THREAD
4603 if(!get_psuedo_atomic_atomic(th)) {
4604 register u32 fs;
4605 fprintf(stderr, "fatal error in thread 0x%x, tid=%ld\n",
4606 th,th->os_thread);
4607 __asm__("movl %fs,%0" : "=r" (fs) : );
4608 fprintf(stderr, "fs is %x, th->tls_cookie=%x \n",
4609 debug_get_fs(),th->tls_cookie);
4610 lose("If you see this message before 2004.01.31, mail details to sbcl-devel\n");
4612 #else
4613 gc_assert(get_pseudo_atomic_atomic(th));
4614 #endif
4615 #endif
4617 /* maybe we can do this quickly ... */
4618 new_free_pointer = region->free_pointer + nbytes;
4619 if (new_free_pointer <= region->end_addr) {
4620 new_obj = (void*)(region->free_pointer);
4621 region->free_pointer = new_free_pointer;
4622 return(new_obj); /* yup */
4625 /* we have to go the long way around, it seems. Check whether
4626 * we should GC in the near future
4628 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4629 gc_assert(get_pseudo_atomic_atomic(thread));
4630 /* Don't flood the system with interrupts if the need to gc is
4631 * already noted. This can happen for example when SUB-GC
4632 * allocates or after a gc triggered in a WITHOUT-GCING. */
4633 if (SymbolValue(GC_PENDING,thread) == NIL) {
4634 /* set things up so that GC happens when we finish the PA
4635 * section */
4636 SetSymbolValue(GC_PENDING,T,thread);
4637 if (SymbolValue(GC_INHIBIT,thread) == NIL)
4638 set_pseudo_atomic_interrupted(thread);
4641 new_obj = gc_alloc_with_region(nbytes,0,region,0);
4643 #ifndef LISP_FEATURE_WIN32
4644 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4645 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4646 if ((signed long) alloc_signal <= 0) {
4647 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4648 #ifdef LISP_FEATURE_SB_THREAD
4649 kill_thread_safely(thread->os_thread, SIGPROF);
4650 #else
4651 raise(SIGPROF);
4652 #endif
4653 } else {
4654 SetSymbolValue(ALLOC_SIGNAL,
4655 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4656 thread);
4659 #endif
4661 return (new_obj);
4665 * shared support for the OS-dependent signal handlers which
4666 * catch GENCGC-related write-protect violations
4669 void unhandled_sigmemoryfault(void* addr);
4671 /* Depending on which OS we're running under, different signals might
4672 * be raised for a violation of write protection in the heap. This
4673 * function factors out the common generational GC magic which needs
4674 * to invoked in this case, and should be called from whatever signal
4675 * handler is appropriate for the OS we're running under.
4677 * Return true if this signal is a normal generational GC thing that
4678 * we were able to handle, or false if it was abnormal and control
4679 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4682 gencgc_handle_wp_violation(void* fault_addr)
4684 page_index_t page_index = find_page_index(fault_addr);
4686 #ifdef QSHOW_SIGNALS
4687 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4688 fault_addr, page_index));
4689 #endif
4691 /* Check whether the fault is within the dynamic space. */
4692 if (page_index == (-1)) {
4694 /* It can be helpful to be able to put a breakpoint on this
4695 * case to help diagnose low-level problems. */
4696 unhandled_sigmemoryfault(fault_addr);
4698 /* not within the dynamic space -- not our responsibility */
4699 return 0;
4701 } else {
4702 if (page_table[page_index].write_protected) {
4703 /* Unprotect the page. */
4704 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4705 page_table[page_index].write_protected_cleared = 1;
4706 page_table[page_index].write_protected = 0;
4707 } else {
4708 /* The only acceptable reason for this signal on a heap
4709 * access is that GENCGC write-protected the page.
4710 * However, if two CPUs hit a wp page near-simultaneously,
4711 * we had better not have the second one lose here if it
4712 * does this test after the first one has already set wp=0
4714 if(page_table[page_index].write_protected_cleared != 1)
4715 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4716 page_index, boxed_region.first_page, boxed_region.last_page);
4718 /* Don't worry, we can handle it. */
4719 return 1;
4722 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4723 * it's not just a case of the program hitting the write barrier, and
4724 * are about to let Lisp deal with it. It's basically just a
4725 * convenient place to set a gdb breakpoint. */
4726 void
4727 unhandled_sigmemoryfault(void *addr)
4730 void gc_alloc_update_all_page_tables(void)
4732 /* Flush the alloc regions updating the tables. */
4733 struct thread *th;
4734 for_each_thread(th)
4735 gc_alloc_update_page_tables(0, &th->alloc_region);
4736 gc_alloc_update_page_tables(1, &unboxed_region);
4737 gc_alloc_update_page_tables(0, &boxed_region);
4740 void
4741 gc_set_region_empty(struct alloc_region *region)
4743 region->first_page = 0;
4744 region->last_page = -1;
4745 region->start_addr = page_address(0);
4746 region->free_pointer = page_address(0);
4747 region->end_addr = page_address(0);
4750 static void
4751 zero_all_free_pages()
4753 page_index_t i;
4755 for (i = 0; i < last_free_page; i++) {
4756 if (page_table[i].allocated == FREE_PAGE_FLAG) {
4757 #ifdef READ_PROTECT_FREE_PAGES
4758 os_protect(page_address(i),
4759 PAGE_BYTES,
4760 OS_VM_PROT_ALL);
4761 #endif
4762 zero_pages(i, i);
4767 /* Things to do before doing a final GC before saving a core (without
4768 * purify).
4770 * + Pages in large_object pages aren't moved by the GC, so we need to
4771 * unset that flag from all pages.
4772 * + The pseudo-static generation isn't normally collected, but it seems
4773 * reasonable to collect it at least when saving a core. So move the
4774 * pages to a normal generation.
4776 static void
4777 prepare_for_final_gc ()
4779 page_index_t i;
4780 for (i = 0; i < last_free_page; i++) {
4781 page_table[i].large_object = 0;
4782 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4783 int used = page_table[i].bytes_used;
4784 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4785 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4786 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4792 /* Do a non-conservative GC, and then save a core with the initial
4793 * function being set to the value of the static symbol
4794 * SB!VM:RESTART-LISP-FUNCTION */
4795 void
4796 gc_and_save(char *filename, int prepend_runtime)
4798 FILE *file;
4799 void *runtime_bytes = NULL;
4800 size_t runtime_size;
4802 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4803 &runtime_size);
4804 if (file == NULL)
4805 return;
4807 conservative_stack = 0;
4809 /* The filename might come from Lisp, and be moved by the now
4810 * non-conservative GC. */
4811 filename = strdup(filename);
4813 /* Collect twice: once into relatively high memory, and then back
4814 * into low memory. This compacts the retained data into the lower
4815 * pages, minimizing the size of the core file.
4817 prepare_for_final_gc();
4818 gencgc_alloc_start_page = last_free_page;
4819 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4821 prepare_for_final_gc();
4822 gencgc_alloc_start_page = -1;
4823 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4825 if (prepend_runtime)
4826 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4828 /* The dumper doesn't know that pages need to be zeroed before use. */
4829 zero_all_free_pages();
4830 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4831 prepend_runtime);
4832 /* Oops. Save still managed to fail. Since we've mangled the stack
4833 * beyond hope, there's not much we can do.
4834 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4835 * going to be rather unsatisfactory too... */
4836 lose("Attempt to save core after non-conservative GC failed.\n");