1.0.17.12: win32 build fix
[sbcl/pkhuong.git] / src / code / x86-vm.lisp
blob434f345e49a1ba11a3400134e3819b457c8bd34f
1 ;;;; X86-specific runtime stuff
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!VM")
14 ;;;; OS-CONTEXT-T
16 ;;; a POSIX signal context, i.e. the type passed as the third
17 ;;; argument to an SA_SIGACTION-style signal handler
18 ;;;
19 ;;; The real type does have slots, but at Lisp level, we never
20 ;;; access them, or care about the size of the object. Instead, we
21 ;;; always refer to these objects by pointers handed to us by the C
22 ;;; runtime library, and ask the runtime library any time we need
23 ;;; information about the contents of one of these objects. Thus, it
24 ;;; works to represent this as an object with no slots.
25 ;;;
26 ;;; KLUDGE: It would be nice to have a type definition analogous to
27 ;;; C's "struct os_context_t;", for an incompletely specified object
28 ;;; which can only be referred to by reference, but I don't know how
29 ;;; to do that in the FFI, so instead we just this bogus no-slots
30 ;;; representation. -- WHN 20000730
31 ;;;
32 ;;; FIXME: Since SBCL, unlike CMU CL, uses this as an opaque type,
33 ;;; it's no longer architecture-dependent, and probably belongs in
34 ;;; some other package, perhaps SB-KERNEL.
35 (define-alien-type os-context-t (struct os-context-t-struct))
37 ;;;; MACHINE-TYPE and MACHINE-VERSION
39 (defun machine-type ()
40 #!+sb-doc
41 "Return a string describing the type of the local machine."
42 "X86")
44 ;;; arch-specific support for CL:MACHINE-VERSION, defined OAOO elsewhere
45 (defun get-machine-version ()
46 #!+linux
47 (with-open-file (stream "/proc/cpuinfo"
48 ;; Even on Linux it's an option to build
49 ;; kernels without /proc filesystems, so
50 ;; degrade gracefully.
51 :if-does-not-exist nil)
52 (loop with line while (setf line (read-line stream nil))
53 ;; The field "model name" exists on kernel 2.4.21-rc6-ac1
54 ;; anyway, with values e.g.
55 ;; "AMD Athlon(TM) XP 2000+"
56 ;; "Intel(R) Pentium(R) M processor 1300MHz"
57 ;; which seem comparable to the information in the example
58 ;; in the MACHINE-VERSION page of the ANSI spec.
59 when (eql (search "model name" line) 0)
60 return (string-trim " " (subseq line (1+ (position #\: line))))))
61 #!-linux
62 nil)
64 ;;;; :CODE-OBJECT fixups
66 ;;; a counter to measure the storage overhead of these fixups
67 (defvar *num-fixups* 0)
68 ;;; FIXME: When the system runs, it'd be interesting to see what this is.
70 (declaim (inline adjust-fixup-array))
71 (defun adjust-fixup-array (array size)
72 (let ((new (make-array size :element-type '(unsigned-byte 32))))
73 (replace new array)
74 new))
76 ;;; This gets called by LOAD to resolve newly positioned objects
77 ;;; with things (like code instructions) that have to refer to them.
78 ;;;
79 ;;; Add a fixup offset to the vector of fixup offsets for the given
80 ;;; code object.
81 (defun fixup-code-object (code offset fixup kind)
82 (declare (type index offset))
83 (flet ((add-fixup (code offset)
84 ;; (We check for and ignore fixups for code objects in the
85 ;; read-only and static spaces. (In the old CMU CL code
86 ;; this check was conditional on *ENABLE-DYNAMIC-SPACE-CODE*,
87 ;; but in SBCL relocatable dynamic space code is always in
88 ;; use, so we always do the check.)
89 (incf *num-fixups*)
90 (let ((fixups (code-header-ref code code-constants-offset)))
91 (cond ((typep fixups '(simple-array (unsigned-byte 32) (*)))
92 (let ((new-fixups
93 (adjust-fixup-array fixups (1+ (length fixups)))))
94 (setf (aref new-fixups (length fixups)) offset)
95 (setf (code-header-ref code code-constants-offset)
96 new-fixups)))
98 (unless (or (eq (widetag-of fixups)
99 unbound-marker-widetag)
100 (zerop fixups))
101 (format t "** Init. code FU = ~S~%" fixups)) ; FIXME
102 (setf (code-header-ref code code-constants-offset)
103 (make-array
105 :element-type '(unsigned-byte 32)
106 :initial-element offset)))))))
107 (sb!sys:without-gcing
108 (let* ((sap (truly-the system-area-pointer
109 (sb!kernel:code-instructions code)))
110 (obj-start-addr (logand (sb!kernel:get-lisp-obj-address code)
111 #xfffffff8))
112 ;; FIXME: what is this 5?
113 #+nil (const-start-addr (+ obj-start-addr (* 5 n-word-bytes)))
114 (code-start-addr (sb!sys:sap-int (sb!kernel:code-instructions
115 code)))
116 (ncode-words (sb!kernel:code-header-ref code 1))
117 (code-end-addr (+ code-start-addr (* ncode-words n-word-bytes))))
118 (unless (member kind '(:absolute :relative))
119 (error "Unknown code-object-fixup kind ~S." kind))
120 (ecase kind
121 (:absolute
122 ;; Word at sap + offset contains a value to be replaced by
123 ;; adding that value to fixup.
124 (setf (sap-ref-32 sap offset) (+ fixup (sap-ref-32 sap offset)))
125 ;; Record absolute fixups that point within the code object.
126 (when (> code-end-addr (sap-ref-32 sap offset) obj-start-addr)
127 (add-fixup code offset)))
128 (:relative
129 ;; Fixup is the actual address wanted.
131 ;; Record relative fixups that point outside the code
132 ;; object.
133 (when (or (< fixup obj-start-addr) (> fixup code-end-addr))
134 (add-fixup code offset))
135 ;; Replace word with value to add to that loc to get there.
136 (let* ((loc-sap (+ (sap-int sap) offset))
137 (rel-val (- fixup loc-sap n-word-bytes)))
138 (declare (type (unsigned-byte 32) loc-sap)
139 (type (signed-byte 32) rel-val))
140 (setf (signed-sap-ref-32 sap offset) rel-val))))))
141 nil))
143 ;;; Add a code fixup to a code object generated by GENESIS. The fixup
144 ;;; has already been applied, it's just a matter of placing the fixup
145 ;;; in the code's fixup vector if necessary.
147 ;;; KLUDGE: I'd like a good explanation of why this has to be done at
148 ;;; load time instead of in GENESIS. It's probably simple, I just haven't
149 ;;; figured it out, or found it written down anywhere. -- WHN 19990908
150 #!+gencgc
151 (defun !envector-load-time-code-fixup (code offset fixup kind)
152 (flet ((frob (code offset)
153 (let ((fixups (code-header-ref code code-constants-offset)))
154 (cond ((typep fixups '(simple-array (unsigned-byte 32) (*)))
155 (let ((new-fixups
156 (adjust-fixup-array fixups (1+ (length fixups)))))
157 (setf (aref new-fixups (length fixups)) offset)
158 (setf (code-header-ref code code-constants-offset)
159 new-fixups)))
161 (unless (or (eq (widetag-of fixups)
162 unbound-marker-widetag)
163 (zerop fixups))
164 (sb!impl::!cold-lose "Argh! can't process fixup"))
165 (setf (code-header-ref code code-constants-offset)
166 (make-array
168 :element-type '(unsigned-byte 32)
169 :initial-element offset)))))))
170 (let* ((sap (truly-the system-area-pointer
171 (sb!kernel:code-instructions code)))
172 (obj-start-addr
173 ;; FIXME: looks like (LOGANDC2 foo typebits)
174 (logand (sb!kernel:get-lisp-obj-address code) #xfffffff8))
175 (code-start-addr (sb!sys:sap-int (sb!kernel:code-instructions
176 code)))
177 (ncode-words (sb!kernel:code-header-ref code 1))
178 (code-end-addr (+ code-start-addr (* ncode-words n-word-bytes))))
179 (ecase kind
180 (:absolute
181 ;; Record absolute fixups that point within the code object.
182 (when (> code-end-addr (sap-ref-32 sap offset) obj-start-addr)
183 (frob code offset)))
184 (:relative
185 ;; Record relative fixups that point outside the code object.
186 (when (or (< fixup obj-start-addr) (> fixup code-end-addr))
187 (frob code offset)))))))
189 ;;;; low-level signal context access functions
190 ;;;;
191 ;;;; Note: In CMU CL, similar functions were hardwired to access
192 ;;;; BSD-style sigcontext structures defined as alien objects. Our
193 ;;;; approach is different in two ways:
194 ;;;; 1. We use POSIX SA_SIGACTION-style signals, so our context is
195 ;;;; whatever the void pointer in the sigaction handler dereferences
196 ;;;; to, not necessarily a sigcontext.
197 ;;;; 2. We don't try to maintain alien definitions of the context
198 ;;;; structure at Lisp level, but instead call alien C functions
199 ;;;; which take care of access for us. (Since the C functions can
200 ;;;; be defined in terms of system standard header files, they
201 ;;;; should be easier to maintain; and since Lisp code uses signal
202 ;;;; contexts only in interactive or exception code (like the debugger
203 ;;;; and internal error handling) the extra runtime cost should be
204 ;;;; negligible.
206 (declaim (inline context-pc-addr))
207 (define-alien-routine ("os_context_pc_addr" context-pc-addr) (* unsigned-int)
208 ;; (Note: Just as in CONTEXT-REGISTER-ADDR, we intentionally use an
209 ;; 'unsigned *' interpretation for the 32-bit word passed to us by
210 ;; the C code, even though the C code may think it's an 'int *'.)
211 (context (* os-context-t)))
213 (declaim (inline context-pc))
214 (defun context-pc (context)
215 (declare (type (alien (* os-context-t)) context))
216 (let ((addr (context-pc-addr context)))
217 (declare (type (alien (* unsigned-int)) addr))
218 (int-sap (deref addr))))
220 (declaim (inline context-register-addr))
221 (define-alien-routine ("os_context_register_addr" context-register-addr)
222 (* unsigned-int)
223 ;; (Note the mismatch here between the 'int *' value that the C code
224 ;; may think it's giving us and the 'unsigned *' value that we
225 ;; receive. It's intentional: the C header files may think of
226 ;; register values as signed, but the CMU CL code tends to think of
227 ;; register values as unsigned, and might get bewildered if we ask
228 ;; it to work with signed values.)
229 (context (* os-context-t))
230 (index int))
232 (declaim (inline context-register))
233 (defun context-register (context index)
234 (declare (type (alien (* os-context-t)) context))
235 (let ((addr (context-register-addr context index)))
236 (declare (type (alien (* unsigned-int)) addr))
237 (deref addr)))
239 (defun %set-context-register (context index new)
240 (declare (type (alien (* os-context-t)) context))
241 (let ((addr (context-register-addr context index)))
242 (declare (type (alien (* unsigned-int)) addr))
243 (setf (deref addr) new)))
245 ;;; This is like CONTEXT-REGISTER, but returns the value of a float
246 ;;; register. FORMAT is the type of float to return.
248 ;;; As of sbcl-0.6.7, there is no working code which calls this code,
249 ;;; so it's stubbed out. Someday, in order to make the debugger work
250 ;;; better, it may be necessary to unstubify it.
251 (defun context-float-register (context index format)
252 (declare (ignore context index))
253 (warn "stub CONTEXT-FLOAT-REGISTER")
254 (coerce 0.0 format))
255 (defun %set-context-float-register (context index format new-value)
256 (declare (ignore context index))
257 (warn "stub %SET-CONTEXT-FLOAT-REGISTER")
258 (coerce new-value format))
260 ;;; Given a signal context, return the floating point modes word in
261 ;;; the same format as returned by FLOATING-POINT-MODES.
262 #!-(or linux sunos)
263 (defun context-floating-point-modes (context)
264 ;; FIXME: As of sbcl-0.6.7 and the big rewrite of signal handling for
265 ;; POSIXness and (at the Lisp level) opaque signal contexts,
266 ;; this is stubified. It needs to be rewritten as an
267 ;; alien function.
268 (declare (ignore context)) ; stub!
269 (warn "stub CONTEXT-FLOATING-POINT-MODES")
272 #!+(or linux sunos)
273 (define-alien-routine ("os_context_fp_control" context-floating-point-modes)
274 (sb!alien:unsigned 32)
275 (context (* os-context-t)))
277 ;;;; INTERNAL-ERROR-ARGS
279 ;;; Given a (POSIX) signal context, extract the internal error
280 ;;; arguments from the instruction stream.
281 (defun internal-error-args (context)
282 (declare (type (alien (* os-context-t)) context))
283 (/show0 "entering INTERNAL-ERROR-ARGS, CONTEXT=..")
284 (/hexstr context)
285 (let ((pc (context-pc context)))
286 (declare (type system-area-pointer pc))
287 (/show0 "got PC")
288 ;; using INT3 the pc is .. INT3 <here> code length bytes...
289 (let* ((length (sap-ref-8 pc 1))
290 (vector (make-array length :element-type '(unsigned-byte 8))))
291 (declare (type (unsigned-byte 8) length)
292 (type (simple-array (unsigned-byte 8) (*)) vector))
293 (/show0 "LENGTH,VECTOR,ERROR-NUMBER=..")
294 (/hexstr length)
295 (/hexstr vector)
296 (copy-ub8-from-system-area pc 2 vector 0 length)
297 (let* ((index 0)
298 (error-number (sb!c:read-var-integer vector index)))
299 (/hexstr error-number)
300 (collect ((sc-offsets))
301 (loop
302 (/show0 "INDEX=..")
303 (/hexstr index)
304 (when (>= index length)
305 (return))
306 (let ((sc-offset (sb!c:read-var-integer vector index)))
307 (/show0 "SC-OFFSET=..")
308 (/hexstr sc-offset)
309 (sc-offsets sc-offset)))
310 (values error-number (sc-offsets)))))))
312 ;;; This is used in error.lisp to insure that floating-point exceptions
313 ;;; are properly trapped. The compiler translates this to a VOP.
314 (defun float-wait ()
315 (float-wait))
317 ;;; float constants
319 ;;; These are used by the FP MOVE-FROM-{SINGLE|DOUBLE} VOPs rather
320 ;;; than the i387 load constant instructions to avoid consing in some
321 ;;; cases. Note these are initialized by GENESIS as they are needed
322 ;;; early.
323 (defvar *fp-constant-0f0*)
324 (defvar *fp-constant-1f0*)
325 (defvar *fp-constant-0d0*)
326 (defvar *fp-constant-1d0*)
327 ;;; the long-float constants
328 (defvar *fp-constant-0l0*)
329 (defvar *fp-constant-1l0*)
330 (defvar *fp-constant-pi*)
331 (defvar *fp-constant-l2t*)
332 (defvar *fp-constant-l2e*)
333 (defvar *fp-constant-lg2*)
334 (defvar *fp-constant-ln2*)
336 ;;; the current alien stack pointer; saved/restored for non-local exits
337 (defvar *alien-stack*)
339 ;;; Support for the MT19937 random number generator. The update
340 ;;; function is implemented as an assembly routine. This definition is
341 ;;; transformed to a call to the assembly routine allowing its use in
342 ;;; interpreted code.
343 (defun random-mt19937 (state)
344 (declare (type (simple-array (unsigned-byte 32) (627)) state))
345 (random-mt19937 state))