2 * GENerational Conservative Garbage Collector for SBCL
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
37 #include "interrupt.h"
42 #include "gc-internal.h"
44 #include "pseudo-atomic.h"
46 #include "genesis/vector.h"
47 #include "genesis/weak-pointer.h"
48 #include "genesis/fdefn.h"
49 #include "genesis/simple-fun.h"
51 #include "genesis/hash-table.h"
52 #include "genesis/instance.h"
53 #include "genesis/layout.h"
55 #if defined(LUTEX_WIDETAG)
56 #include "pthread-lutex.h"
59 /* forward declarations */
60 page_index_t
gc_find_freeish_pages(long *restart_page_ptr
, long nbytes
,
68 /* Generations 0-5 are normal collected generations, 6 is only used as
69 * scratch space by the collector, and should never get collected.
72 SCRATCH_GENERATION
= PSEUDO_STATIC_GENERATION
+1,
76 /* Should we use page protection to help avoid the scavenging of pages
77 * that don't have pointers to younger generations? */
78 boolean enable_page_protection
= 1;
80 /* the minimum size (in bytes) for a large object*/
81 long large_object_size
= 4 * PAGE_BYTES
;
88 /* the verbosity level. All non-error messages are disabled at level 0;
89 * and only a few rare messages are printed at level 1. */
91 boolean gencgc_verbose
= 1;
93 boolean gencgc_verbose
= 0;
96 /* FIXME: At some point enable the various error-checking things below
97 * and see what they say. */
99 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
100 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
102 generation_index_t verify_gens
= HIGHEST_NORMAL_GENERATION
+ 1;
104 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
105 boolean pre_verify_gen_0
= 0;
107 /* Should we check for bad pointers after gc_free_heap is called
108 * from Lisp PURIFY? */
109 boolean verify_after_free_heap
= 0;
111 /* Should we print a note when code objects are found in the dynamic space
112 * during a heap verify? */
113 boolean verify_dynamic_code_check
= 0;
115 /* Should we check code objects for fixup errors after they are transported? */
116 boolean check_code_fixups
= 0;
118 /* Should we check that newly allocated regions are zero filled? */
119 boolean gencgc_zero_check
= 0;
121 /* Should we check that the free space is zero filled? */
122 boolean gencgc_enable_verify_zero_fill
= 0;
124 /* Should we check that free pages are zero filled during gc_free_heap
125 * called after Lisp PURIFY? */
126 boolean gencgc_zero_check_during_free_heap
= 0;
128 /* When loading a core, don't do a full scan of the memory for the
129 * memory region boundaries. (Set to true by coreparse.c if the core
130 * contained a pagetable entry).
132 boolean gencgc_partial_pickup
= 0;
134 /* If defined, free pages are read-protected to ensure that nothing
138 /* #define READ_PROTECT_FREE_PAGES */
142 * GC structures and variables
145 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
146 unsigned long bytes_allocated
= 0;
147 unsigned long auto_gc_trigger
= 0;
149 /* the source and destination generations. These are set before a GC starts
151 generation_index_t from_space
;
152 generation_index_t new_space
;
154 /* Set to 1 when in GC */
155 boolean gc_active_p
= 0;
157 /* should the GC be conservative on stack. If false (only right before
158 * saving a core), don't scan the stack / mark pages dont_move. */
159 static boolean conservative_stack
= 1;
161 /* An array of page structures is allocated on gc initialization.
162 * This helps quickly map between an address its page structure.
163 * page_table_pages is set from the size of the dynamic space. */
164 page_index_t page_table_pages
;
165 struct page
*page_table
;
167 static inline boolean
page_allocated_p(page_index_t page
) {
168 return (page_table
[page
].allocated
!= FREE_PAGE_FLAG
);
171 static inline boolean
page_no_region_p(page_index_t page
) {
172 return !(page_table
[page
].allocated
& OPEN_REGION_PAGE_FLAG
);
175 static inline boolean
page_allocated_no_region_p(page_index_t page
) {
176 return ((page_table
[page
].allocated
& (UNBOXED_PAGE_FLAG
| BOXED_PAGE_FLAG
))
177 && page_no_region_p(page
));
180 static inline boolean
page_free_p(page_index_t page
) {
181 return (page_table
[page
].allocated
== FREE_PAGE_FLAG
);
184 static inline boolean
page_boxed_p(page_index_t page
) {
185 return (page_table
[page
].allocated
& BOXED_PAGE_FLAG
);
188 static inline boolean
code_page_p(page_index_t page
) {
189 return (page_table
[page
].allocated
& CODE_PAGE_FLAG
);
192 static inline boolean
page_boxed_no_region_p(page_index_t page
) {
193 return page_boxed_p(page
) && page_no_region_p(page
);
196 static inline boolean
page_unboxed_p(page_index_t page
) {
197 /* Both flags set == boxed code page */
198 return ((page_table
[page
].allocated
& UNBOXED_PAGE_FLAG
)
199 && !page_boxed_p(page
));
202 static inline boolean
protect_page_p(page_index_t page
, generation_index_t generation
) {
203 return (page_boxed_no_region_p(page
)
204 && (page_table
[page
].bytes_used
!= 0)
205 && !page_table
[page
].dont_move
206 && (page_table
[page
].gen
== generation
));
209 /* To map addresses to page structures the address of the first page
211 static void *heap_base
= NULL
;
213 /* Calculate the start address for the given page number. */
215 page_address(page_index_t page_num
)
217 return (heap_base
+ (page_num
* PAGE_BYTES
));
220 /* Calculate the address where the allocation region associated with
221 * the page starts. */
223 page_region_start(page_index_t page_index
)
225 return page_address(page_index
)-page_table
[page_index
].region_start_offset
;
228 /* Find the page index within the page_table for the given
229 * address. Return -1 on failure. */
231 find_page_index(void *addr
)
233 if (addr
>= heap_base
) {
234 page_index_t index
= ((pointer_sized_uint_t
)addr
-
235 (pointer_sized_uint_t
)heap_base
) / PAGE_BYTES
;
236 if (index
< page_table_pages
)
243 npage_bytes(long npages
)
245 gc_assert(npages
>=0);
246 return ((unsigned long)npages
)*PAGE_BYTES
;
249 /* Check that X is a higher address than Y and return offset from Y to
252 size_t void_diff(void *x
, void *y
)
255 return (pointer_sized_uint_t
)x
- (pointer_sized_uint_t
)y
;
258 /* a structure to hold the state of a generation
260 * CAUTION: If you modify this, make sure to touch up the alien
261 * definition in src/code/gc.lisp accordingly. ...or better yes,
262 * deal with the FIXME there...
266 /* the first page that gc_alloc() checks on its next call */
267 page_index_t alloc_start_page
;
269 /* the first page that gc_alloc_unboxed() checks on its next call */
270 page_index_t alloc_unboxed_start_page
;
272 /* the first page that gc_alloc_large (boxed) considers on its next
273 * call. (Although it always allocates after the boxed_region.) */
274 page_index_t alloc_large_start_page
;
276 /* the first page that gc_alloc_large (unboxed) considers on its
277 * next call. (Although it always allocates after the
278 * current_unboxed_region.) */
279 page_index_t alloc_large_unboxed_start_page
;
281 /* the bytes allocated to this generation */
282 unsigned long bytes_allocated
;
284 /* the number of bytes at which to trigger a GC */
285 unsigned long gc_trigger
;
287 /* to calculate a new level for gc_trigger */
288 unsigned long bytes_consed_between_gc
;
290 /* the number of GCs since the last raise */
293 /* the number of GCs to run on the generations before raising objects to the
295 int number_of_gcs_before_promotion
;
297 /* the cumulative sum of the bytes allocated to this generation. It is
298 * cleared after a GC on this generations, and update before new
299 * objects are added from a GC of a younger generation. Dividing by
300 * the bytes_allocated will give the average age of the memory in
301 * this generation since its last GC. */
302 unsigned long cum_sum_bytes_allocated
;
304 /* a minimum average memory age before a GC will occur helps
305 * prevent a GC when a large number of new live objects have been
306 * added, in which case a GC could be a waste of time */
307 double minimum_age_before_gc
;
309 /* A linked list of lutex structures in this generation, used for
310 * implementing lutex finalization. */
312 struct lutex
*lutexes
;
318 /* an array of generation structures. There needs to be one more
319 * generation structure than actual generations as the oldest
320 * generation is temporarily raised then lowered. */
321 struct generation generations
[NUM_GENERATIONS
];
323 /* the oldest generation that is will currently be GCed by default.
324 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
326 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
328 * Setting this to 0 effectively disables the generational nature of
329 * the GC. In some applications generational GC may not be useful
330 * because there are no long-lived objects.
332 * An intermediate value could be handy after moving long-lived data
333 * into an older generation so an unnecessary GC of this long-lived
334 * data can be avoided. */
335 generation_index_t gencgc_oldest_gen_to_gc
= HIGHEST_NORMAL_GENERATION
;
337 /* The maximum free page in the heap is maintained and used to update
338 * ALLOCATION_POINTER which is used by the room function to limit its
339 * search of the heap. XX Gencgc obviously needs to be better
340 * integrated with the Lisp code. */
341 page_index_t last_free_page
;
343 #ifdef LISP_FEATURE_SB_THREAD
344 /* This lock is to prevent multiple threads from simultaneously
345 * allocating new regions which overlap each other. Note that the
346 * majority of GC is single-threaded, but alloc() may be called from
347 * >1 thread at a time and must be thread-safe. This lock must be
348 * seized before all accesses to generations[] or to parts of
349 * page_table[] that other threads may want to see */
350 static pthread_mutex_t free_pages_lock
= PTHREAD_MUTEX_INITIALIZER
;
351 /* This lock is used to protect non-thread-local allocation. */
352 static pthread_mutex_t allocation_lock
= PTHREAD_MUTEX_INITIALIZER
;
357 * miscellaneous heap functions
360 /* Count the number of pages which are write-protected within the
361 * given generation. */
363 count_write_protect_generation_pages(generation_index_t generation
)
366 unsigned long count
= 0;
368 for (i
= 0; i
< last_free_page
; i
++)
369 if (page_allocated_p(i
)
370 && (page_table
[i
].gen
== generation
)
371 && (page_table
[i
].write_protected
== 1))
376 /* Count the number of pages within the given generation. */
378 count_generation_pages(generation_index_t generation
)
383 for (i
= 0; i
< last_free_page
; i
++)
384 if (page_allocated_p(i
)
385 && (page_table
[i
].gen
== generation
))
392 count_dont_move_pages(void)
396 for (i
= 0; i
< last_free_page
; i
++) {
397 if (page_allocated_p(i
)
398 && (page_table
[i
].dont_move
!= 0)) {
406 /* Work through the pages and add up the number of bytes used for the
407 * given generation. */
409 count_generation_bytes_allocated (generation_index_t gen
)
412 unsigned long result
= 0;
413 for (i
= 0; i
< last_free_page
; i
++) {
414 if (page_allocated_p(i
)
415 && (page_table
[i
].gen
== gen
))
416 result
+= page_table
[i
].bytes_used
;
421 /* Return the average age of the memory in a generation. */
423 generation_average_age(generation_index_t gen
)
425 if (generations
[gen
].bytes_allocated
== 0)
429 ((double)generations
[gen
].cum_sum_bytes_allocated
)
430 / ((double)generations
[gen
].bytes_allocated
);
433 /* The verbose argument controls how much to print: 0 for normal
434 * level of detail; 1 for debugging. */
436 print_generation_stats() /* FIXME: should take FILE argument, or construct a string */
438 generation_index_t i
;
440 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
441 #define FPU_STATE_SIZE 27
442 int fpu_state
[FPU_STATE_SIZE
];
443 #elif defined(LISP_FEATURE_PPC)
444 #define FPU_STATE_SIZE 32
445 long long fpu_state
[FPU_STATE_SIZE
];
448 /* This code uses the FP instructions which may be set up for Lisp
449 * so they need to be saved and reset for C. */
452 /* Print the heap stats. */
454 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
456 for (i
= 0; i
< SCRATCH_GENERATION
; i
++) {
459 long unboxed_cnt
= 0;
460 long large_boxed_cnt
= 0;
461 long large_unboxed_cnt
= 0;
464 for (j
= 0; j
< last_free_page
; j
++)
465 if (page_table
[j
].gen
== i
) {
467 /* Count the number of boxed pages within the given
469 if (page_boxed_p(j
)) {
470 if (page_table
[j
].large_object
)
475 if(page_table
[j
].dont_move
) pinned_cnt
++;
476 /* Count the number of unboxed pages within the given
478 if (page_unboxed_p(j
)) {
479 if (page_table
[j
].large_object
)
486 gc_assert(generations
[i
].bytes_allocated
487 == count_generation_bytes_allocated(i
));
489 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
491 generations
[i
].alloc_start_page
,
492 generations
[i
].alloc_unboxed_start_page
,
493 generations
[i
].alloc_large_start_page
,
494 generations
[i
].alloc_large_unboxed_start_page
,
500 generations
[i
].bytes_allocated
,
501 (npage_bytes(count_generation_pages(i
))
502 - generations
[i
].bytes_allocated
),
503 generations
[i
].gc_trigger
,
504 count_write_protect_generation_pages(i
),
505 generations
[i
].num_gc
,
506 generation_average_age(i
));
508 fprintf(stderr
," Total bytes allocated = %lu\n", bytes_allocated
);
509 fprintf(stderr
," Dynamic-space-size bytes = %u\n", dynamic_space_size
);
511 fpu_restore(fpu_state
);
515 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
516 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
519 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
520 * if zeroing it ourselves, i.e. in practice give the memory back to the
521 * OS. Generally done after a large GC.
523 void zero_pages_with_mmap(page_index_t start
, page_index_t end
) {
525 void *addr
= page_address(start
), *new_addr
;
526 size_t length
= npage_bytes(1+end
-start
);
531 os_invalidate(addr
, length
);
532 new_addr
= os_validate(addr
, length
);
533 if (new_addr
== NULL
|| new_addr
!= addr
) {
534 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
538 for (i
= start
; i
<= end
; i
++) {
539 page_table
[i
].need_to_zero
= 0;
543 /* Zero the pages from START to END (inclusive). Generally done just after
544 * a new region has been allocated.
547 zero_pages(page_index_t start
, page_index_t end
) {
551 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
552 fast_bzero(page_address(start
), npage_bytes(1+end
-start
));
554 bzero(page_address(start
), npage_bytes(1+end
-start
));
559 /* Zero the pages from START to END (inclusive), except for those
560 * pages that are known to already zeroed. Mark all pages in the
561 * ranges as non-zeroed.
564 zero_dirty_pages(page_index_t start
, page_index_t end
) {
567 for (i
= start
; i
<= end
; i
++) {
568 if (page_table
[i
].need_to_zero
== 1) {
569 zero_pages(start
, end
);
574 for (i
= start
; i
<= end
; i
++) {
575 page_table
[i
].need_to_zero
= 1;
581 * To support quick and inline allocation, regions of memory can be
582 * allocated and then allocated from with just a free pointer and a
583 * check against an end address.
585 * Since objects can be allocated to spaces with different properties
586 * e.g. boxed/unboxed, generation, ages; there may need to be many
587 * allocation regions.
589 * Each allocation region may start within a partly used page. Many
590 * features of memory use are noted on a page wise basis, e.g. the
591 * generation; so if a region starts within an existing allocated page
592 * it must be consistent with this page.
594 * During the scavenging of the newspace, objects will be transported
595 * into an allocation region, and pointers updated to point to this
596 * allocation region. It is possible that these pointers will be
597 * scavenged again before the allocation region is closed, e.g. due to
598 * trans_list which jumps all over the place to cleanup the list. It
599 * is important to be able to determine properties of all objects
600 * pointed to when scavenging, e.g to detect pointers to the oldspace.
601 * Thus it's important that the allocation regions have the correct
602 * properties set when allocated, and not just set when closed. The
603 * region allocation routines return regions with the specified
604 * properties, and grab all the pages, setting their properties
605 * appropriately, except that the amount used is not known.
607 * These regions are used to support quicker allocation using just a
608 * free pointer. The actual space used by the region is not reflected
609 * in the pages tables until it is closed. It can't be scavenged until
612 * When finished with the region it should be closed, which will
613 * update the page tables for the actual space used returning unused
614 * space. Further it may be noted in the new regions which is
615 * necessary when scavenging the newspace.
617 * Large objects may be allocated directly without an allocation
618 * region, the page tables are updated immediately.
620 * Unboxed objects don't contain pointers to other objects and so
621 * don't need scavenging. Further they can't contain pointers to
622 * younger generations so WP is not needed. By allocating pages to
623 * unboxed objects the whole page never needs scavenging or
624 * write-protecting. */
626 /* We are only using two regions at present. Both are for the current
627 * newspace generation. */
628 struct alloc_region boxed_region
;
629 struct alloc_region unboxed_region
;
631 /* The generation currently being allocated to. */
632 static generation_index_t gc_alloc_generation
;
634 static inline page_index_t
635 generation_alloc_start_page(generation_index_t generation
, int page_type_flag
, int large
)
638 if (UNBOXED_PAGE_FLAG
== page_type_flag
) {
639 return generations
[generation
].alloc_large_unboxed_start_page
;
640 } else if (BOXED_PAGE_FLAG
& page_type_flag
) {
641 /* Both code and data. */
642 return generations
[generation
].alloc_large_start_page
;
644 lose("bad page type flag: %d", page_type_flag
);
647 if (UNBOXED_PAGE_FLAG
== page_type_flag
) {
648 return generations
[generation
].alloc_unboxed_start_page
;
649 } else if (BOXED_PAGE_FLAG
& page_type_flag
) {
650 /* Both code and data. */
651 return generations
[generation
].alloc_start_page
;
653 lose("bad page_type_flag: %d", page_type_flag
);
659 set_generation_alloc_start_page(generation_index_t generation
, int page_type_flag
, int large
,
663 if (UNBOXED_PAGE_FLAG
== page_type_flag
) {
664 generations
[generation
].alloc_large_unboxed_start_page
= page
;
665 } else if (BOXED_PAGE_FLAG
& page_type_flag
) {
666 /* Both code and data. */
667 generations
[generation
].alloc_large_start_page
= page
;
669 lose("bad page type flag: %d", page_type_flag
);
672 if (UNBOXED_PAGE_FLAG
== page_type_flag
) {
673 generations
[generation
].alloc_unboxed_start_page
= page
;
674 } else if (BOXED_PAGE_FLAG
& page_type_flag
) {
675 /* Both code and data. */
676 generations
[generation
].alloc_start_page
= page
;
678 lose("bad page type flag: %d", page_type_flag
);
683 /* Find a new region with room for at least the given number of bytes.
685 * It starts looking at the current generation's alloc_start_page. So
686 * may pick up from the previous region if there is enough space. This
687 * keeps the allocation contiguous when scavenging the newspace.
689 * The alloc_region should have been closed by a call to
690 * gc_alloc_update_page_tables(), and will thus be in an empty state.
692 * To assist the scavenging functions write-protected pages are not
693 * used. Free pages should not be write-protected.
695 * It is critical to the conservative GC that the start of regions be
696 * known. To help achieve this only small regions are allocated at a
699 * During scavenging, pointers may be found to within the current
700 * region and the page generation must be set so that pointers to the
701 * from space can be recognized. Therefore the generation of pages in
702 * the region are set to gc_alloc_generation. To prevent another
703 * allocation call using the same pages, all the pages in the region
704 * are allocated, although they will initially be empty.
707 gc_alloc_new_region(long nbytes
, int page_type_flag
, struct alloc_region
*alloc_region
)
709 page_index_t first_page
;
710 page_index_t last_page
;
711 unsigned long bytes_found
;
717 "/alloc_new_region for %d bytes from gen %d\n",
718 nbytes, gc_alloc_generation));
721 /* Check that the region is in a reset state. */
722 gc_assert((alloc_region
->first_page
== 0)
723 && (alloc_region
->last_page
== -1)
724 && (alloc_region
->free_pointer
== alloc_region
->end_addr
));
725 ret
= thread_mutex_lock(&free_pages_lock
);
727 first_page
= generation_alloc_start_page(gc_alloc_generation
, page_type_flag
, 0);
728 last_page
=gc_find_freeish_pages(&first_page
, nbytes
, page_type_flag
);
729 bytes_found
=(PAGE_BYTES
- page_table
[first_page
].bytes_used
)
730 + npage_bytes(last_page
-first_page
);
732 /* Set up the alloc_region. */
733 alloc_region
->first_page
= first_page
;
734 alloc_region
->last_page
= last_page
;
735 alloc_region
->start_addr
= page_table
[first_page
].bytes_used
736 + page_address(first_page
);
737 alloc_region
->free_pointer
= alloc_region
->start_addr
;
738 alloc_region
->end_addr
= alloc_region
->start_addr
+ bytes_found
;
740 /* Set up the pages. */
742 /* The first page may have already been in use. */
743 if (page_table
[first_page
].bytes_used
== 0) {
744 page_table
[first_page
].allocated
= page_type_flag
;
745 page_table
[first_page
].gen
= gc_alloc_generation
;
746 page_table
[first_page
].large_object
= 0;
747 page_table
[first_page
].region_start_offset
= 0;
750 gc_assert(page_table
[first_page
].allocated
== page_type_flag
);
751 page_table
[first_page
].allocated
|= OPEN_REGION_PAGE_FLAG
;
753 gc_assert(page_table
[first_page
].gen
== gc_alloc_generation
);
754 gc_assert(page_table
[first_page
].large_object
== 0);
756 for (i
= first_page
+1; i
<= last_page
; i
++) {
757 page_table
[i
].allocated
= page_type_flag
;
758 page_table
[i
].gen
= gc_alloc_generation
;
759 page_table
[i
].large_object
= 0;
760 /* This may not be necessary for unboxed regions (think it was
762 page_table
[i
].region_start_offset
=
763 void_diff(page_address(i
),alloc_region
->start_addr
);
764 page_table
[i
].allocated
|= OPEN_REGION_PAGE_FLAG
;
766 /* Bump up last_free_page. */
767 if (last_page
+1 > last_free_page
) {
768 last_free_page
= last_page
+1;
769 /* do we only want to call this on special occasions? like for
771 set_alloc_pointer((lispobj
)page_address(last_free_page
));
773 ret
= thread_mutex_unlock(&free_pages_lock
);
776 #ifdef READ_PROTECT_FREE_PAGES
777 os_protect(page_address(first_page
),
778 npage_bytes(1+last_page
-first_page
),
782 /* If the first page was only partial, don't check whether it's
783 * zeroed (it won't be) and don't zero it (since the parts that
784 * we're interested in are guaranteed to be zeroed).
786 if (page_table
[first_page
].bytes_used
) {
790 zero_dirty_pages(first_page
, last_page
);
792 /* we can do this after releasing free_pages_lock */
793 if (gencgc_zero_check
) {
795 for (p
= (long *)alloc_region
->start_addr
;
796 p
< (long *)alloc_region
->end_addr
; p
++) {
798 /* KLUDGE: It would be nice to use %lx and explicit casts
799 * (long) in code like this, so that it is less likely to
800 * break randomly when running on a machine with different
801 * word sizes. -- WHN 19991129 */
802 lose("The new region at %x is not zero (start=%p, end=%p).\n",
803 p
, alloc_region
->start_addr
, alloc_region
->end_addr
);
809 /* If the record_new_objects flag is 2 then all new regions created
812 * If it's 1 then then it is only recorded if the first page of the
813 * current region is <= new_areas_ignore_page. This helps avoid
814 * unnecessary recording when doing full scavenge pass.
816 * The new_object structure holds the page, byte offset, and size of
817 * new regions of objects. Each new area is placed in the array of
818 * these structures pointer to by new_areas. new_areas_index holds the
819 * offset into new_areas.
821 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
822 * later code must detect this and handle it, probably by doing a full
823 * scavenge of a generation. */
824 #define NUM_NEW_AREAS 512
825 static int record_new_objects
= 0;
826 static page_index_t new_areas_ignore_page
;
832 static struct new_area (*new_areas
)[];
833 static long new_areas_index
;
836 /* Add a new area to new_areas. */
838 add_new_area(page_index_t first_page
, size_t offset
, size_t size
)
840 unsigned long new_area_start
,c
;
843 /* Ignore if full. */
844 if (new_areas_index
>= NUM_NEW_AREAS
)
847 switch (record_new_objects
) {
851 if (first_page
> new_areas_ignore_page
)
860 new_area_start
= npage_bytes(first_page
) + offset
;
862 /* Search backwards for a prior area that this follows from. If
863 found this will save adding a new area. */
864 for (i
= new_areas_index
-1, c
= 0; (i
>= 0) && (c
< 8); i
--, c
++) {
865 unsigned long area_end
=
866 npage_bytes((*new_areas
)[i
].page
)
867 + (*new_areas
)[i
].offset
868 + (*new_areas
)[i
].size
;
870 "/add_new_area S1 %d %d %d %d\n",
871 i, c, new_area_start, area_end));*/
872 if (new_area_start
== area_end
) {
874 "/adding to [%d] %d %d %d with %d %d %d:\n",
876 (*new_areas)[i].page,
877 (*new_areas)[i].offset,
878 (*new_areas)[i].size,
882 (*new_areas
)[i
].size
+= size
;
887 (*new_areas
)[new_areas_index
].page
= first_page
;
888 (*new_areas
)[new_areas_index
].offset
= offset
;
889 (*new_areas
)[new_areas_index
].size
= size
;
891 "/new_area %d page %d offset %d size %d\n",
892 new_areas_index, first_page, offset, size));*/
895 /* Note the max new_areas used. */
896 if (new_areas_index
> max_new_areas
)
897 max_new_areas
= new_areas_index
;
900 /* Update the tables for the alloc_region. The region may be added to
903 * When done the alloc_region is set up so that the next quick alloc
904 * will fail safely and thus a new region will be allocated. Further
905 * it is safe to try to re-update the page table of this reset
908 gc_alloc_update_page_tables(int page_type_flag
, struct alloc_region
*alloc_region
)
911 page_index_t first_page
;
912 page_index_t next_page
;
913 unsigned long bytes_used
;
914 unsigned long orig_first_page_bytes_used
;
915 unsigned long region_size
;
916 unsigned long byte_cnt
;
920 first_page
= alloc_region
->first_page
;
922 /* Catch an unused alloc_region. */
923 if ((first_page
== 0) && (alloc_region
->last_page
== -1))
926 next_page
= first_page
+1;
928 ret
= thread_mutex_lock(&free_pages_lock
);
930 if (alloc_region
->free_pointer
!= alloc_region
->start_addr
) {
931 /* some bytes were allocated in the region */
932 orig_first_page_bytes_used
= page_table
[first_page
].bytes_used
;
934 gc_assert(alloc_region
->start_addr
==
935 (page_address(first_page
)
936 + page_table
[first_page
].bytes_used
));
938 /* All the pages used need to be updated */
940 /* Update the first page. */
942 /* If the page was free then set up the gen, and
943 * region_start_offset. */
944 if (page_table
[first_page
].bytes_used
== 0)
945 gc_assert(page_table
[first_page
].region_start_offset
== 0);
946 page_table
[first_page
].allocated
&= ~(OPEN_REGION_PAGE_FLAG
);
948 gc_assert(page_table
[first_page
].allocated
& page_type_flag
);
949 gc_assert(page_table
[first_page
].gen
== gc_alloc_generation
);
950 gc_assert(page_table
[first_page
].large_object
== 0);
954 /* Calculate the number of bytes used in this page. This is not
955 * always the number of new bytes, unless it was free. */
957 if ((bytes_used
= void_diff(alloc_region
->free_pointer
,
958 page_address(first_page
)))
960 bytes_used
= PAGE_BYTES
;
963 page_table
[first_page
].bytes_used
= bytes_used
;
964 byte_cnt
+= bytes_used
;
967 /* All the rest of the pages should be free. We need to set
968 * their region_start_offset pointer to the start of the
969 * region, and set the bytes_used. */
971 page_table
[next_page
].allocated
&= ~(OPEN_REGION_PAGE_FLAG
);
972 gc_assert(page_table
[next_page
].allocated
& page_type_flag
);
973 gc_assert(page_table
[next_page
].bytes_used
== 0);
974 gc_assert(page_table
[next_page
].gen
== gc_alloc_generation
);
975 gc_assert(page_table
[next_page
].large_object
== 0);
977 gc_assert(page_table
[next_page
].region_start_offset
==
978 void_diff(page_address(next_page
),
979 alloc_region
->start_addr
));
981 /* Calculate the number of bytes used in this page. */
983 if ((bytes_used
= void_diff(alloc_region
->free_pointer
,
984 page_address(next_page
)))>PAGE_BYTES
) {
985 bytes_used
= PAGE_BYTES
;
988 page_table
[next_page
].bytes_used
= bytes_used
;
989 byte_cnt
+= bytes_used
;
994 region_size
= void_diff(alloc_region
->free_pointer
,
995 alloc_region
->start_addr
);
996 bytes_allocated
+= region_size
;
997 generations
[gc_alloc_generation
].bytes_allocated
+= region_size
;
999 gc_assert((byte_cnt
- orig_first_page_bytes_used
) == region_size
);
1001 /* Set the generations alloc restart page to the last page of
1003 set_generation_alloc_start_page(gc_alloc_generation
, page_type_flag
, 0, next_page
-1);
1005 /* Add the region to the new_areas if requested. */
1006 if (BOXED_PAGE_FLAG
& page_type_flag
)
1007 add_new_area(first_page
,orig_first_page_bytes_used
, region_size
);
1011 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1013 gc_alloc_generation));
1016 /* There are no bytes allocated. Unallocate the first_page if
1017 * there are 0 bytes_used. */
1018 page_table
[first_page
].allocated
&= ~(OPEN_REGION_PAGE_FLAG
);
1019 if (page_table
[first_page
].bytes_used
== 0)
1020 page_table
[first_page
].allocated
= FREE_PAGE_FLAG
;
1023 /* Unallocate any unused pages. */
1024 while (next_page
<= alloc_region
->last_page
) {
1025 gc_assert(page_table
[next_page
].bytes_used
== 0);
1026 page_table
[next_page
].allocated
= FREE_PAGE_FLAG
;
1029 ret
= thread_mutex_unlock(&free_pages_lock
);
1030 gc_assert(ret
== 0);
1032 /* alloc_region is per-thread, we're ok to do this unlocked */
1033 gc_set_region_empty(alloc_region
);
1036 static inline void *gc_quick_alloc(long nbytes
);
1038 /* Allocate a possibly large object. */
1040 gc_alloc_large(long nbytes
, int page_type_flag
, struct alloc_region
*alloc_region
)
1042 page_index_t first_page
;
1043 page_index_t last_page
;
1044 int orig_first_page_bytes_used
;
1047 unsigned long bytes_used
;
1048 page_index_t next_page
;
1051 ret
= thread_mutex_lock(&free_pages_lock
);
1052 gc_assert(ret
== 0);
1054 first_page
= generation_alloc_start_page(gc_alloc_generation
, page_type_flag
, 1);
1055 if (first_page
<= alloc_region
->last_page
) {
1056 first_page
= alloc_region
->last_page
+1;
1059 last_page
=gc_find_freeish_pages(&first_page
,nbytes
, page_type_flag
);
1061 gc_assert(first_page
> alloc_region
->last_page
);
1063 set_generation_alloc_start_page(gc_alloc_generation
, page_type_flag
, 1, last_page
);
1065 /* Set up the pages. */
1066 orig_first_page_bytes_used
= page_table
[first_page
].bytes_used
;
1068 /* If the first page was free then set up the gen, and
1069 * region_start_offset. */
1070 if (page_table
[first_page
].bytes_used
== 0) {
1071 page_table
[first_page
].allocated
= page_type_flag
;
1072 page_table
[first_page
].gen
= gc_alloc_generation
;
1073 page_table
[first_page
].region_start_offset
= 0;
1074 page_table
[first_page
].large_object
= 1;
1077 gc_assert(page_table
[first_page
].allocated
== page_type_flag
);
1078 gc_assert(page_table
[first_page
].gen
== gc_alloc_generation
);
1079 gc_assert(page_table
[first_page
].large_object
== 1);
1083 /* Calc. the number of bytes used in this page. This is not
1084 * always the number of new bytes, unless it was free. */
1086 if ((bytes_used
= nbytes
+orig_first_page_bytes_used
) > PAGE_BYTES
) {
1087 bytes_used
= PAGE_BYTES
;
1090 page_table
[first_page
].bytes_used
= bytes_used
;
1091 byte_cnt
+= bytes_used
;
1093 next_page
= first_page
+1;
1095 /* All the rest of the pages should be free. We need to set their
1096 * region_start_offset pointer to the start of the region, and set
1097 * the bytes_used. */
1099 gc_assert(page_free_p(next_page
));
1100 gc_assert(page_table
[next_page
].bytes_used
== 0);
1101 page_table
[next_page
].allocated
= page_type_flag
;
1102 page_table
[next_page
].gen
= gc_alloc_generation
;
1103 page_table
[next_page
].large_object
= 1;
1105 page_table
[next_page
].region_start_offset
=
1106 npage_bytes(next_page
-first_page
) - orig_first_page_bytes_used
;
1108 /* Calculate the number of bytes used in this page. */
1110 bytes_used
=(nbytes
+orig_first_page_bytes_used
)-byte_cnt
;
1111 if (bytes_used
> PAGE_BYTES
) {
1112 bytes_used
= PAGE_BYTES
;
1115 page_table
[next_page
].bytes_used
= bytes_used
;
1116 page_table
[next_page
].write_protected
=0;
1117 page_table
[next_page
].dont_move
=0;
1118 byte_cnt
+= bytes_used
;
1122 gc_assert((byte_cnt
-orig_first_page_bytes_used
) == nbytes
);
1124 bytes_allocated
+= nbytes
;
1125 generations
[gc_alloc_generation
].bytes_allocated
+= nbytes
;
1127 /* Add the region to the new_areas if requested. */
1128 if (BOXED_PAGE_FLAG
& page_type_flag
)
1129 add_new_area(first_page
,orig_first_page_bytes_used
,nbytes
);
1131 /* Bump up last_free_page */
1132 if (last_page
+1 > last_free_page
) {
1133 last_free_page
= last_page
+1;
1134 set_alloc_pointer((lispobj
)(page_address(last_free_page
)));
1136 ret
= thread_mutex_unlock(&free_pages_lock
);
1137 gc_assert(ret
== 0);
1139 #ifdef READ_PROTECT_FREE_PAGES
1140 os_protect(page_address(first_page
),
1141 npage_bytes(1+last_page
-first_page
),
1145 zero_dirty_pages(first_page
, last_page
);
1147 return page_address(first_page
);
1150 static page_index_t gencgc_alloc_start_page
= -1;
1153 gc_heap_exhausted_error_or_lose (long available
, long requested
)
1155 struct thread
*thread
= arch_os_get_current_thread();
1156 /* Write basic information before doing anything else: if we don't
1157 * call to lisp this is a must, and even if we do there is always
1158 * the danger that we bounce back here before the error has been
1159 * handled, or indeed even printed.
1161 fprintf(stderr
, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1162 gc_active_p
? "garbage collection" : "allocation",
1163 available
, requested
);
1164 if (gc_active_p
|| (available
== 0)) {
1165 /* If we are in GC, or totally out of memory there is no way
1166 * to sanely transfer control to the lisp-side of things.
1168 print_generation_stats();
1169 fprintf(stderr
, "GC control variables:\n");
1170 fprintf(stderr
, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1171 SymbolValue(GC_INHIBIT
,thread
)==NIL
? "false" : "true",
1172 (SymbolValue(GC_PENDING
, thread
) == T
) ?
1173 "true" : ((SymbolValue(GC_PENDING
, thread
) == NIL
) ?
1174 "false" : "in progress"));
1175 #ifdef LISP_FEATURE_SB_THREAD
1176 fprintf(stderr
, " *STOP-FOR-GC-PENDING* = %s\n",
1177 SymbolValue(STOP_FOR_GC_PENDING
,thread
)==NIL
? "false" : "true");
1179 lose("Heap exhausted, game over.");
1182 /* FIXME: assert free_pages_lock held */
1183 (void)thread_mutex_unlock(&free_pages_lock
);
1184 gc_assert(get_pseudo_atomic_atomic(thread
));
1185 clear_pseudo_atomic_atomic(thread
);
1186 if (get_pseudo_atomic_interrupted(thread
))
1187 do_pending_interrupt();
1188 /* Another issue is that signalling HEAP-EXHAUSTED error leads
1189 * to running user code at arbitrary places, even in a
1190 * WITHOUT-INTERRUPTS which may lead to a deadlock without
1191 * running out of the heap. So at this point all bets are
1193 if (SymbolValue(INTERRUPTS_ENABLED
,thread
) == NIL
)
1194 corruption_warning_and_maybe_lose
1195 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1196 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR
),
1197 alloc_number(available
), alloc_number(requested
));
1198 lose("HEAP-EXHAUSTED-ERROR fell through");
1203 gc_find_freeish_pages(page_index_t
*restart_page_ptr
, long nbytes
,
1206 page_index_t first_page
, last_page
;
1207 page_index_t restart_page
= *restart_page_ptr
;
1208 long bytes_found
= 0;
1209 long most_bytes_found
= 0;
1210 /* FIXME: assert(free_pages_lock is held); */
1212 /* Toggled by gc_and_save for heap compaction, normally -1. */
1213 if (gencgc_alloc_start_page
!= -1) {
1214 restart_page
= gencgc_alloc_start_page
;
1217 gc_assert(nbytes
>=0);
1218 if (((unsigned long)nbytes
)>=PAGE_BYTES
) {
1219 /* Search for a contiguous free space of at least nbytes,
1220 * aligned on a page boundary. The page-alignment is strictly
1221 * speaking needed only for objects at least large_object_size
1224 first_page
= restart_page
;
1225 while ((first_page
< page_table_pages
) &&
1226 page_allocated_p(first_page
))
1229 last_page
= first_page
;
1230 bytes_found
= PAGE_BYTES
;
1231 while ((bytes_found
< nbytes
) &&
1232 (last_page
< (page_table_pages
-1)) &&
1233 page_free_p(last_page
+1)) {
1235 bytes_found
+= PAGE_BYTES
;
1236 gc_assert(0 == page_table
[last_page
].bytes_used
);
1237 gc_assert(0 == page_table
[last_page
].write_protected
);
1239 if (bytes_found
> most_bytes_found
)
1240 most_bytes_found
= bytes_found
;
1241 restart_page
= last_page
+ 1;
1242 } while ((restart_page
< page_table_pages
) && (bytes_found
< nbytes
));
1245 /* Search for a page with at least nbytes of space. We prefer
1246 * not to split small objects on multiple pages, to reduce the
1247 * number of contiguous allocation regions spaning multiple
1248 * pages: this helps avoid excessive conservativism. */
1249 first_page
= restart_page
;
1250 while (first_page
< page_table_pages
) {
1251 if (page_free_p(first_page
))
1253 gc_assert(0 == page_table
[first_page
].bytes_used
);
1254 bytes_found
= PAGE_BYTES
;
1257 else if ((page_table
[first_page
].allocated
== page_type_flag
) &&
1258 (page_table
[first_page
].large_object
== 0) &&
1259 (page_table
[first_page
].gen
== gc_alloc_generation
) &&
1260 (page_table
[first_page
].write_protected
== 0) &&
1261 (page_table
[first_page
].dont_move
== 0))
1263 bytes_found
= PAGE_BYTES
1264 - page_table
[first_page
].bytes_used
;
1265 if (bytes_found
> most_bytes_found
)
1266 most_bytes_found
= bytes_found
;
1267 if (bytes_found
>= nbytes
)
1272 last_page
= first_page
;
1273 restart_page
= first_page
+ 1;
1276 /* Check for a failure */
1277 if (bytes_found
< nbytes
) {
1278 gc_assert(restart_page
>= page_table_pages
);
1279 gc_heap_exhausted_error_or_lose(most_bytes_found
, nbytes
);
1282 gc_assert(page_table
[first_page
].write_protected
== 0);
1284 *restart_page_ptr
= first_page
;
1288 /* Allocate bytes. All the rest of the special-purpose allocation
1289 * functions will eventually call this */
1292 gc_alloc_with_region(long nbytes
,int page_type_flag
, struct alloc_region
*my_region
,
1295 void *new_free_pointer
;
1297 if (nbytes
>=large_object_size
)
1298 return gc_alloc_large(nbytes
, page_type_flag
, my_region
);
1300 /* Check whether there is room in the current alloc region. */
1301 new_free_pointer
= my_region
->free_pointer
+ nbytes
;
1303 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1304 my_region->free_pointer, new_free_pointer); */
1306 if (new_free_pointer
<= my_region
->end_addr
) {
1307 /* If so then allocate from the current alloc region. */
1308 void *new_obj
= my_region
->free_pointer
;
1309 my_region
->free_pointer
= new_free_pointer
;
1311 /* Unless a `quick' alloc was requested, check whether the
1312 alloc region is almost empty. */
1314 void_diff(my_region
->end_addr
,my_region
->free_pointer
) <= 32) {
1315 /* If so, finished with the current region. */
1316 gc_alloc_update_page_tables(page_type_flag
, my_region
);
1317 /* Set up a new region. */
1318 gc_alloc_new_region(32 /*bytes*/, page_type_flag
, my_region
);
1321 return((void *)new_obj
);
1324 /* Else not enough free space in the current region: retry with a
1327 gc_alloc_update_page_tables(page_type_flag
, my_region
);
1328 gc_alloc_new_region(nbytes
, page_type_flag
, my_region
);
1329 return gc_alloc_with_region(nbytes
, page_type_flag
, my_region
,0);
1332 /* these are only used during GC: all allocation from the mutator calls
1333 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1336 static inline void *
1337 gc_quick_alloc(long nbytes
)
1339 return gc_general_alloc(nbytes
, BOXED_PAGE_FLAG
, ALLOC_QUICK
);
1342 static inline void *
1343 gc_quick_alloc_large(long nbytes
)
1345 return gc_general_alloc(nbytes
, BOXED_PAGE_FLAG
,ALLOC_QUICK
);
1348 static inline void *
1349 gc_alloc_unboxed(long nbytes
)
1351 return gc_general_alloc(nbytes
, UNBOXED_PAGE_FLAG
, 0);
1354 static inline void *
1355 gc_quick_alloc_unboxed(long nbytes
)
1357 return gc_general_alloc(nbytes
, UNBOXED_PAGE_FLAG
, ALLOC_QUICK
);
1360 static inline void *
1361 gc_quick_alloc_large_unboxed(long nbytes
)
1363 return gc_general_alloc(nbytes
, UNBOXED_PAGE_FLAG
, ALLOC_QUICK
);
1367 /* Copy a large boxed object. If the object is in a large object
1368 * region then it is simply promoted, else it is copied. If it's large
1369 * enough then it's copied to a large object region.
1371 * Vectors may have shrunk. If the object is not copied the space
1372 * needs to be reclaimed, and the page_tables corrected. */
1374 copy_large_object(lispobj object
, long nwords
)
1378 page_index_t first_page
;
1380 gc_assert(is_lisp_pointer(object
));
1381 gc_assert(from_space_p(object
));
1382 gc_assert((nwords
& 0x01) == 0);
1385 /* Check whether it's in a large object region. */
1386 first_page
= find_page_index((void *)object
);
1387 gc_assert(first_page
>= 0);
1389 if (page_table
[first_page
].large_object
) {
1391 /* Promote the object. */
1393 unsigned long remaining_bytes
;
1394 page_index_t next_page
;
1395 unsigned long bytes_freed
;
1396 unsigned long old_bytes_used
;
1398 /* Note: Any page write-protection must be removed, else a
1399 * later scavenge_newspace may incorrectly not scavenge these
1400 * pages. This would not be necessary if they are added to the
1401 * new areas, but let's do it for them all (they'll probably
1402 * be written anyway?). */
1404 gc_assert(page_table
[first_page
].region_start_offset
== 0);
1406 next_page
= first_page
;
1407 remaining_bytes
= nwords
*N_WORD_BYTES
;
1408 while (remaining_bytes
> PAGE_BYTES
) {
1409 gc_assert(page_table
[next_page
].gen
== from_space
);
1410 gc_assert(page_boxed_p(next_page
));
1411 gc_assert(page_table
[next_page
].large_object
);
1412 gc_assert(page_table
[next_page
].region_start_offset
==
1413 npage_bytes(next_page
-first_page
));
1414 gc_assert(page_table
[next_page
].bytes_used
== PAGE_BYTES
);
1416 page_table
[next_page
].gen
= new_space
;
1418 /* Remove any write-protection. We should be able to rely
1419 * on the write-protect flag to avoid redundant calls. */
1420 if (page_table
[next_page
].write_protected
) {
1421 os_protect(page_address(next_page
), PAGE_BYTES
, OS_VM_PROT_ALL
);
1422 page_table
[next_page
].write_protected
= 0;
1424 remaining_bytes
-= PAGE_BYTES
;
1428 /* Now only one page remains, but the object may have shrunk
1429 * so there may be more unused pages which will be freed. */
1431 /* The object may have shrunk but shouldn't have grown. */
1432 gc_assert(page_table
[next_page
].bytes_used
>= remaining_bytes
);
1434 page_table
[next_page
].gen
= new_space
;
1435 gc_assert(page_boxed_p(next_page
));
1437 /* Adjust the bytes_used. */
1438 old_bytes_used
= page_table
[next_page
].bytes_used
;
1439 page_table
[next_page
].bytes_used
= remaining_bytes
;
1441 bytes_freed
= old_bytes_used
- remaining_bytes
;
1443 /* Free any remaining pages; needs care. */
1445 while ((old_bytes_used
== PAGE_BYTES
) &&
1446 (page_table
[next_page
].gen
== from_space
) &&
1447 page_boxed_p(next_page
) &&
1448 page_table
[next_page
].large_object
&&
1449 (page_table
[next_page
].region_start_offset
==
1450 npage_bytes(next_page
- first_page
))) {
1451 /* Checks out OK, free the page. Don't need to bother zeroing
1452 * pages as this should have been done before shrinking the
1453 * object. These pages shouldn't be write-protected as they
1454 * should be zero filled. */
1455 gc_assert(page_table
[next_page
].write_protected
== 0);
1457 old_bytes_used
= page_table
[next_page
].bytes_used
;
1458 page_table
[next_page
].allocated
= FREE_PAGE_FLAG
;
1459 page_table
[next_page
].bytes_used
= 0;
1460 bytes_freed
+= old_bytes_used
;
1464 generations
[from_space
].bytes_allocated
-= N_WORD_BYTES
*nwords
1466 generations
[new_space
].bytes_allocated
+= N_WORD_BYTES
*nwords
;
1467 bytes_allocated
-= bytes_freed
;
1469 /* Add the region to the new_areas if requested. */
1470 add_new_area(first_page
,0,nwords
*N_WORD_BYTES
);
1474 /* Get tag of object. */
1475 tag
= lowtag_of(object
);
1477 /* Allocate space. */
1478 new = gc_quick_alloc_large(nwords
*N_WORD_BYTES
);
1480 memcpy(new,native_pointer(object
),nwords
*N_WORD_BYTES
);
1482 /* Return Lisp pointer of new object. */
1483 return ((lispobj
) new) | tag
;
1487 /* to copy unboxed objects */
1489 copy_unboxed_object(lispobj object
, long nwords
)
1494 gc_assert(is_lisp_pointer(object
));
1495 gc_assert(from_space_p(object
));
1496 gc_assert((nwords
& 0x01) == 0);
1498 /* Get tag of object. */
1499 tag
= lowtag_of(object
);
1501 /* Allocate space. */
1502 new = gc_quick_alloc_unboxed(nwords
*N_WORD_BYTES
);
1504 memcpy(new,native_pointer(object
),nwords
*N_WORD_BYTES
);
1506 /* Return Lisp pointer of new object. */
1507 return ((lispobj
) new) | tag
;
1510 /* to copy large unboxed objects
1512 * If the object is in a large object region then it is simply
1513 * promoted, else it is copied. If it's large enough then it's copied
1514 * to a large object region.
1516 * Bignums and vectors may have shrunk. If the object is not copied
1517 * the space needs to be reclaimed, and the page_tables corrected.
1519 * KLUDGE: There's a lot of cut-and-paste duplication between this
1520 * function and copy_large_object(..). -- WHN 20000619 */
1522 copy_large_unboxed_object(lispobj object
, long nwords
)
1526 page_index_t first_page
;
1528 gc_assert(is_lisp_pointer(object
));
1529 gc_assert(from_space_p(object
));
1530 gc_assert((nwords
& 0x01) == 0);
1532 if ((nwords
> 1024*1024) && gencgc_verbose
) {
1533 FSHOW((stderr
, "/copy_large_unboxed_object: %d bytes\n",
1534 nwords
*N_WORD_BYTES
));
1537 /* Check whether it's a large object. */
1538 first_page
= find_page_index((void *)object
);
1539 gc_assert(first_page
>= 0);
1541 if (page_table
[first_page
].large_object
) {
1542 /* Promote the object. Note: Unboxed objects may have been
1543 * allocated to a BOXED region so it may be necessary to
1544 * change the region to UNBOXED. */
1545 unsigned long remaining_bytes
;
1546 page_index_t next_page
;
1547 unsigned long bytes_freed
;
1548 unsigned long old_bytes_used
;
1550 gc_assert(page_table
[first_page
].region_start_offset
== 0);
1552 next_page
= first_page
;
1553 remaining_bytes
= nwords
*N_WORD_BYTES
;
1554 while (remaining_bytes
> PAGE_BYTES
) {
1555 gc_assert(page_table
[next_page
].gen
== from_space
);
1556 gc_assert(page_allocated_no_region_p(next_page
));
1557 gc_assert(page_table
[next_page
].large_object
);
1558 gc_assert(page_table
[next_page
].region_start_offset
==
1559 npage_bytes(next_page
-first_page
));
1560 gc_assert(page_table
[next_page
].bytes_used
== PAGE_BYTES
);
1562 page_table
[next_page
].gen
= new_space
;
1563 page_table
[next_page
].allocated
= UNBOXED_PAGE_FLAG
;
1564 remaining_bytes
-= PAGE_BYTES
;
1568 /* Now only one page remains, but the object may have shrunk so
1569 * there may be more unused pages which will be freed. */
1571 /* Object may have shrunk but shouldn't have grown - check. */
1572 gc_assert(page_table
[next_page
].bytes_used
>= remaining_bytes
);
1574 page_table
[next_page
].gen
= new_space
;
1575 page_table
[next_page
].allocated
= UNBOXED_PAGE_FLAG
;
1577 /* Adjust the bytes_used. */
1578 old_bytes_used
= page_table
[next_page
].bytes_used
;
1579 page_table
[next_page
].bytes_used
= remaining_bytes
;
1581 bytes_freed
= old_bytes_used
- remaining_bytes
;
1583 /* Free any remaining pages; needs care. */
1585 while ((old_bytes_used
== PAGE_BYTES
) &&
1586 (page_table
[next_page
].gen
== from_space
) &&
1587 page_allocated_no_region_p(next_page
) &&
1588 page_table
[next_page
].large_object
&&
1589 (page_table
[next_page
].region_start_offset
==
1590 npage_bytes(next_page
- first_page
))) {
1591 /* Checks out OK, free the page. Don't need to both zeroing
1592 * pages as this should have been done before shrinking the
1593 * object. These pages shouldn't be write-protected, even if
1594 * boxed they should be zero filled. */
1595 gc_assert(page_table
[next_page
].write_protected
== 0);
1597 old_bytes_used
= page_table
[next_page
].bytes_used
;
1598 page_table
[next_page
].allocated
= FREE_PAGE_FLAG
;
1599 page_table
[next_page
].bytes_used
= 0;
1600 bytes_freed
+= old_bytes_used
;
1604 if ((bytes_freed
> 0) && gencgc_verbose
) {
1606 "/copy_large_unboxed bytes_freed=%d\n",
1610 generations
[from_space
].bytes_allocated
-=
1611 nwords
*N_WORD_BYTES
+ bytes_freed
;
1612 generations
[new_space
].bytes_allocated
+= nwords
*N_WORD_BYTES
;
1613 bytes_allocated
-= bytes_freed
;
1618 /* Get tag of object. */
1619 tag
= lowtag_of(object
);
1621 /* Allocate space. */
1622 new = gc_quick_alloc_large_unboxed(nwords
*N_WORD_BYTES
);
1624 /* Copy the object. */
1625 memcpy(new,native_pointer(object
),nwords
*N_WORD_BYTES
);
1627 /* Return Lisp pointer of new object. */
1628 return ((lispobj
) new) | tag
;
1637 * code and code-related objects
1640 static lispobj trans_fun_header(lispobj object);
1641 static lispobj trans_boxed(lispobj object);
1644 /* Scan a x86 compiled code object, looking for possible fixups that
1645 * have been missed after a move.
1647 * Two types of fixups are needed:
1648 * 1. Absolute fixups to within the code object.
1649 * 2. Relative fixups to outside the code object.
1651 * Currently only absolute fixups to the constant vector, or to the
1652 * code area are checked. */
1654 sniff_code_object(struct code
*code
, unsigned long displacement
)
1656 #ifdef LISP_FEATURE_X86
1657 long nheader_words
, ncode_words
, nwords
;
1659 void *constants_start_addr
= NULL
, *constants_end_addr
;
1660 void *code_start_addr
, *code_end_addr
;
1661 int fixup_found
= 0;
1663 if (!check_code_fixups
)
1666 FSHOW((stderr
, "/sniffing code: %p, %lu\n", code
, displacement
));
1668 ncode_words
= fixnum_value(code
->code_size
);
1669 nheader_words
= HeaderValue(*(lispobj
*)code
);
1670 nwords
= ncode_words
+ nheader_words
;
1672 constants_start_addr
= (void *)code
+ 5*N_WORD_BYTES
;
1673 constants_end_addr
= (void *)code
+ nheader_words
*N_WORD_BYTES
;
1674 code_start_addr
= (void *)code
+ nheader_words
*N_WORD_BYTES
;
1675 code_end_addr
= (void *)code
+ nwords
*N_WORD_BYTES
;
1677 /* Work through the unboxed code. */
1678 for (p
= code_start_addr
; p
< code_end_addr
; p
++) {
1679 void *data
= *(void **)p
;
1680 unsigned d1
= *((unsigned char *)p
- 1);
1681 unsigned d2
= *((unsigned char *)p
- 2);
1682 unsigned d3
= *((unsigned char *)p
- 3);
1683 unsigned d4
= *((unsigned char *)p
- 4);
1685 unsigned d5
= *((unsigned char *)p
- 5);
1686 unsigned d6
= *((unsigned char *)p
- 6);
1689 /* Check for code references. */
1690 /* Check for a 32 bit word that looks like an absolute
1691 reference to within the code adea of the code object. */
1692 if ((data
>= (code_start_addr
-displacement
))
1693 && (data
< (code_end_addr
-displacement
))) {
1694 /* function header */
1696 && (((unsigned)p
- 4 - 4*HeaderValue(*((unsigned *)p
-1))) ==
1698 /* Skip the function header */
1702 /* the case of PUSH imm32 */
1706 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1707 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1708 FSHOW((stderr
, "/PUSH $0x%.8x\n", data
));
1710 /* the case of MOV [reg-8],imm32 */
1712 && (d2
==0x40 || d2
==0x41 || d2
==0x42 || d2
==0x43
1713 || d2
==0x45 || d2
==0x46 || d2
==0x47)
1717 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1718 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1719 FSHOW((stderr
, "/MOV [reg-8],$0x%.8x\n", data
));
1721 /* the case of LEA reg,[disp32] */
1722 if ((d2
== 0x8d) && ((d1
& 0xc7) == 5)) {
1725 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1726 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1727 FSHOW((stderr
,"/LEA reg,[$0x%.8x]\n", data
));
1731 /* Check for constant references. */
1732 /* Check for a 32 bit word that looks like an absolute
1733 reference to within the constant vector. Constant references
1735 if ((data
>= (constants_start_addr
-displacement
))
1736 && (data
< (constants_end_addr
-displacement
))
1737 && (((unsigned)data
& 0x3) == 0)) {
1742 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1743 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1744 FSHOW((stderr
,"/MOV eax,0x%.8x\n", data
));
1747 /* the case of MOV m32,EAX */
1751 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1752 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1753 FSHOW((stderr
, "/MOV 0x%.8x,eax\n", data
));
1756 /* the case of CMP m32,imm32 */
1757 if ((d1
== 0x3d) && (d2
== 0x81)) {
1760 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1761 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1763 FSHOW((stderr
, "/CMP 0x%.8x,immed32\n", data
));
1766 /* Check for a mod=00, r/m=101 byte. */
1767 if ((d1
& 0xc7) == 5) {
1772 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1773 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1774 FSHOW((stderr
,"/CMP 0x%.8x,reg\n", data
));
1776 /* the case of CMP reg32,m32 */
1780 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1781 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1782 FSHOW((stderr
, "/CMP reg32,0x%.8x\n", data
));
1784 /* the case of MOV m32,reg32 */
1788 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1789 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1790 FSHOW((stderr
, "/MOV 0x%.8x,reg32\n", data
));
1792 /* the case of MOV reg32,m32 */
1796 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1797 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1798 FSHOW((stderr
, "/MOV reg32,0x%.8x\n", data
));
1800 /* the case of LEA reg32,m32 */
1804 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1805 p
, d6
, d5
, d4
, d3
, d2
, d1
, data
));
1806 FSHOW((stderr
, "/LEA reg32,0x%.8x\n", data
));
1812 /* If anything was found, print some information on the code
1816 "/compiled code object at %x: header words = %d, code words = %d\n",
1817 code
, nheader_words
, ncode_words
));
1819 "/const start = %x, end = %x\n",
1820 constants_start_addr
, constants_end_addr
));
1822 "/code start = %x, end = %x\n",
1823 code_start_addr
, code_end_addr
));
1829 gencgc_apply_code_fixups(struct code
*old_code
, struct code
*new_code
)
1831 /* x86-64 uses pc-relative addressing instead of this kludge */
1832 #ifndef LISP_FEATURE_X86_64
1833 long nheader_words
, ncode_words
, nwords
;
1834 void *constants_start_addr
, *constants_end_addr
;
1835 void *code_start_addr
, *code_end_addr
;
1836 lispobj fixups
= NIL
;
1837 unsigned long displacement
=
1838 (unsigned long)new_code
- (unsigned long)old_code
;
1839 struct vector
*fixups_vector
;
1841 ncode_words
= fixnum_value(new_code
->code_size
);
1842 nheader_words
= HeaderValue(*(lispobj
*)new_code
);
1843 nwords
= ncode_words
+ nheader_words
;
1845 "/compiled code object at %x: header words = %d, code words = %d\n",
1846 new_code, nheader_words, ncode_words)); */
1847 constants_start_addr
= (void *)new_code
+ 5*N_WORD_BYTES
;
1848 constants_end_addr
= (void *)new_code
+ nheader_words
*N_WORD_BYTES
;
1849 code_start_addr
= (void *)new_code
+ nheader_words
*N_WORD_BYTES
;
1850 code_end_addr
= (void *)new_code
+ nwords
*N_WORD_BYTES
;
1853 "/const start = %x, end = %x\n",
1854 constants_start_addr,constants_end_addr));
1856 "/code start = %x; end = %x\n",
1857 code_start_addr,code_end_addr));
1860 /* The first constant should be a pointer to the fixups for this
1861 code objects. Check. */
1862 fixups
= new_code
->constants
[0];
1864 /* It will be 0 or the unbound-marker if there are no fixups (as
1865 * will be the case if the code object has been purified, for
1866 * example) and will be an other pointer if it is valid. */
1867 if ((fixups
== 0) || (fixups
== UNBOUND_MARKER_WIDETAG
) ||
1868 !is_lisp_pointer(fixups
)) {
1869 /* Check for possible errors. */
1870 if (check_code_fixups
)
1871 sniff_code_object(new_code
, displacement
);
1876 fixups_vector
= (struct vector
*)native_pointer(fixups
);
1878 /* Could be pointing to a forwarding pointer. */
1879 /* FIXME is this always in from_space? if so, could replace this code with
1880 * forwarding_pointer_p/forwarding_pointer_value */
1881 if (is_lisp_pointer(fixups
) &&
1882 (find_page_index((void*)fixups_vector
) != -1) &&
1883 (fixups_vector
->header
== 0x01)) {
1884 /* If so, then follow it. */
1885 /*SHOW("following pointer to a forwarding pointer");*/
1887 (struct vector
*)native_pointer((lispobj
)fixups_vector
->length
);
1890 /*SHOW("got fixups");*/
1892 if (widetag_of(fixups_vector
->header
) == SIMPLE_ARRAY_WORD_WIDETAG
) {
1893 /* Got the fixups for the code block. Now work through the vector,
1894 and apply a fixup at each address. */
1895 long length
= fixnum_value(fixups_vector
->length
);
1897 for (i
= 0; i
< length
; i
++) {
1898 unsigned long offset
= fixups_vector
->data
[i
];
1899 /* Now check the current value of offset. */
1900 unsigned long old_value
=
1901 *(unsigned long *)((unsigned long)code_start_addr
+ offset
);
1903 /* If it's within the old_code object then it must be an
1904 * absolute fixup (relative ones are not saved) */
1905 if ((old_value
>= (unsigned long)old_code
)
1906 && (old_value
< ((unsigned long)old_code
1907 + nwords
*N_WORD_BYTES
)))
1908 /* So add the dispacement. */
1909 *(unsigned long *)((unsigned long)code_start_addr
+ offset
) =
1910 old_value
+ displacement
;
1912 /* It is outside the old code object so it must be a
1913 * relative fixup (absolute fixups are not saved). So
1914 * subtract the displacement. */
1915 *(unsigned long *)((unsigned long)code_start_addr
+ offset
) =
1916 old_value
- displacement
;
1919 /* This used to just print a note to stderr, but a bogus fixup seems to
1920 * indicate real heap corruption, so a hard hailure is in order. */
1921 lose("fixup vector %p has a bad widetag: %d\n",
1922 fixups_vector
, widetag_of(fixups_vector
->header
));
1925 /* Check for possible errors. */
1926 if (check_code_fixups
) {
1927 sniff_code_object(new_code
,displacement
);
1934 trans_boxed_large(lispobj object
)
1937 unsigned long length
;
1939 gc_assert(is_lisp_pointer(object
));
1941 header
= *((lispobj
*) native_pointer(object
));
1942 length
= HeaderValue(header
) + 1;
1943 length
= CEILING(length
, 2);
1945 return copy_large_object(object
, length
);
1948 /* Doesn't seem to be used, delete it after the grace period. */
1951 trans_unboxed_large(lispobj object
)
1954 unsigned long length
;
1956 gc_assert(is_lisp_pointer(object
));
1958 header
= *((lispobj
*) native_pointer(object
));
1959 length
= HeaderValue(header
) + 1;
1960 length
= CEILING(length
, 2);
1962 return copy_large_unboxed_object(object
, length
);
1968 * Lutexes. Using the normal finalization machinery for finalizing
1969 * lutexes is tricky, since the finalization depends on working lutexes.
1970 * So we track the lutexes in the GC and finalize them manually.
1973 #if defined(LUTEX_WIDETAG)
1976 * Start tracking LUTEX in the GC, by adding it to the linked list of
1977 * lutexes in the nursery generation. The caller is responsible for
1978 * locking, and GCs must be inhibited until the registration is
1982 gencgc_register_lutex (struct lutex
*lutex
) {
1983 int index
= find_page_index(lutex
);
1984 generation_index_t gen
;
1987 /* This lutex is in static space, so we don't need to worry about
1993 gen
= page_table
[index
].gen
;
1995 gc_assert(gen
>= 0);
1996 gc_assert(gen
< NUM_GENERATIONS
);
1998 head
= generations
[gen
].lutexes
;
2005 generations
[gen
].lutexes
= lutex
;
2009 * Stop tracking LUTEX in the GC by removing it from the appropriate
2010 * linked lists. This will only be called during GC, so no locking is
2014 gencgc_unregister_lutex (struct lutex
*lutex
) {
2016 lutex
->prev
->next
= lutex
->next
;
2018 generations
[lutex
->gen
].lutexes
= lutex
->next
;
2022 lutex
->next
->prev
= lutex
->prev
;
2031 * Mark all lutexes in generation GEN as not live.
2034 unmark_lutexes (generation_index_t gen
) {
2035 struct lutex
*lutex
= generations
[gen
].lutexes
;
2039 lutex
= lutex
->next
;
2044 * Finalize all lutexes in generation GEN that have not been marked live.
2047 reap_lutexes (generation_index_t gen
) {
2048 struct lutex
*lutex
= generations
[gen
].lutexes
;
2051 struct lutex
*next
= lutex
->next
;
2053 lutex_destroy((tagged_lutex_t
) lutex
);
2054 gencgc_unregister_lutex(lutex
);
2061 * Mark LUTEX as live.
2064 mark_lutex (lispobj tagged_lutex
) {
2065 struct lutex
*lutex
= (struct lutex
*) native_pointer(tagged_lutex
);
2071 * Move all lutexes in generation FROM to generation TO.
2074 move_lutexes (generation_index_t from
, generation_index_t to
) {
2075 struct lutex
*tail
= generations
[from
].lutexes
;
2077 /* Nothing to move */
2081 /* Change the generation of the lutexes in FROM. */
2082 while (tail
->next
) {
2088 /* Link the last lutex in the FROM list to the start of the TO list */
2089 tail
->next
= generations
[to
].lutexes
;
2091 /* And vice versa */
2092 if (generations
[to
].lutexes
) {
2093 generations
[to
].lutexes
->prev
= tail
;
2096 /* And update the generations structures to match this */
2097 generations
[to
].lutexes
= generations
[from
].lutexes
;
2098 generations
[from
].lutexes
= NULL
;
2102 scav_lutex(lispobj
*where
, lispobj object
)
2104 mark_lutex((lispobj
) where
);
2106 return CEILING(sizeof(struct lutex
)/sizeof(lispobj
), 2);
2110 trans_lutex(lispobj object
)
2112 struct lutex
*lutex
= (struct lutex
*) native_pointer(object
);
2114 size_t words
= CEILING(sizeof(struct lutex
)/sizeof(lispobj
), 2);
2115 gc_assert(is_lisp_pointer(object
));
2116 copied
= copy_object(object
, words
);
2118 /* Update the links, since the lutex moved in memory. */
2120 lutex
->next
->prev
= (struct lutex
*) native_pointer(copied
);
2124 lutex
->prev
->next
= (struct lutex
*) native_pointer(copied
);
2126 generations
[lutex
->gen
].lutexes
=
2127 (struct lutex
*) native_pointer(copied
);
2134 size_lutex(lispobj
*where
)
2136 return CEILING(sizeof(struct lutex
)/sizeof(lispobj
), 2);
2138 #endif /* LUTEX_WIDETAG */
2145 /* XX This is a hack adapted from cgc.c. These don't work too
2146 * efficiently with the gencgc as a list of the weak pointers is
2147 * maintained within the objects which causes writes to the pages. A
2148 * limited attempt is made to avoid unnecessary writes, but this needs
2150 #define WEAK_POINTER_NWORDS \
2151 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2154 scav_weak_pointer(lispobj
*where
, lispobj object
)
2156 /* Since we overwrite the 'next' field, we have to make
2157 * sure not to do so for pointers already in the list.
2158 * Instead of searching the list of weak_pointers each
2159 * time, we ensure that next is always NULL when the weak
2160 * pointer isn't in the list, and not NULL otherwise.
2161 * Since we can't use NULL to denote end of list, we
2162 * use a pointer back to the same weak_pointer.
2164 struct weak_pointer
* wp
= (struct weak_pointer
*)where
;
2166 if (NULL
== wp
->next
) {
2167 wp
->next
= weak_pointers
;
2169 if (NULL
== wp
->next
)
2173 /* Do not let GC scavenge the value slot of the weak pointer.
2174 * (That is why it is a weak pointer.) */
2176 return WEAK_POINTER_NWORDS
;
2181 search_read_only_space(void *pointer
)
2183 lispobj
*start
= (lispobj
*) READ_ONLY_SPACE_START
;
2184 lispobj
*end
= (lispobj
*) SymbolValue(READ_ONLY_SPACE_FREE_POINTER
,0);
2185 if ((pointer
< (void *)start
) || (pointer
>= (void *)end
))
2187 return (gc_search_space(start
,
2188 (((lispobj
*)pointer
)+2)-start
,
2189 (lispobj
*) pointer
));
2193 search_static_space(void *pointer
)
2195 lispobj
*start
= (lispobj
*)STATIC_SPACE_START
;
2196 lispobj
*end
= (lispobj
*)SymbolValue(STATIC_SPACE_FREE_POINTER
,0);
2197 if ((pointer
< (void *)start
) || (pointer
>= (void *)end
))
2199 return (gc_search_space(start
,
2200 (((lispobj
*)pointer
)+2)-start
,
2201 (lispobj
*) pointer
));
2204 /* a faster version for searching the dynamic space. This will work even
2205 * if the object is in a current allocation region. */
2207 search_dynamic_space(void *pointer
)
2209 page_index_t page_index
= find_page_index(pointer
);
2212 /* The address may be invalid, so do some checks. */
2213 if ((page_index
== -1) || page_free_p(page_index
))
2215 start
= (lispobj
*)page_region_start(page_index
);
2216 return (gc_search_space(start
,
2217 (((lispobj
*)pointer
)+2)-start
,
2218 (lispobj
*)pointer
));
2221 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2223 /* Helper for valid_lisp_pointer_p and
2224 * possibly_valid_dynamic_space_pointer.
2226 * pointer is the pointer to validate, and start_addr is the address
2227 * of the enclosing object.
2230 looks_like_valid_lisp_pointer_p(lispobj
*pointer
, lispobj
*start_addr
)
2232 if (!is_lisp_pointer((lispobj
)pointer
)) {
2236 /* Check that the object pointed to is consistent with the pointer
2238 switch (lowtag_of((lispobj
)pointer
)) {
2239 case FUN_POINTER_LOWTAG
:
2240 /* Start_addr should be the enclosing code object, or a closure
2242 switch (widetag_of(*start_addr
)) {
2243 case CODE_HEADER_WIDETAG
:
2244 /* This case is probably caught above. */
2246 case CLOSURE_HEADER_WIDETAG
:
2247 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG
:
2248 if ((unsigned long)pointer
!=
2249 ((unsigned long)start_addr
+FUN_POINTER_LOWTAG
)) {
2250 if (gencgc_verbose
) {
2253 pointer
, start_addr
, *start_addr
));
2259 if (gencgc_verbose
) {
2262 pointer
, start_addr
, *start_addr
));
2267 case LIST_POINTER_LOWTAG
:
2268 if ((unsigned long)pointer
!=
2269 ((unsigned long)start_addr
+LIST_POINTER_LOWTAG
)) {
2270 if (gencgc_verbose
) {
2273 pointer
, start_addr
, *start_addr
));
2277 /* Is it plausible cons? */
2278 if ((is_lisp_pointer(start_addr
[0]) ||
2279 is_lisp_immediate(start_addr
[0])) &&
2280 (is_lisp_pointer(start_addr
[1]) ||
2281 is_lisp_immediate(start_addr
[1])))
2284 if (gencgc_verbose
) {
2287 pointer
, start_addr
, *start_addr
));
2291 case INSTANCE_POINTER_LOWTAG
:
2292 if ((unsigned long)pointer
!=
2293 ((unsigned long)start_addr
+INSTANCE_POINTER_LOWTAG
)) {
2294 if (gencgc_verbose
) {
2297 pointer
, start_addr
, *start_addr
));
2301 if (widetag_of(start_addr
[0]) != INSTANCE_HEADER_WIDETAG
) {
2302 if (gencgc_verbose
) {
2305 pointer
, start_addr
, *start_addr
));
2310 case OTHER_POINTER_LOWTAG
:
2311 if ((unsigned long)pointer
!=
2312 ((unsigned long)start_addr
+OTHER_POINTER_LOWTAG
)) {
2313 if (gencgc_verbose
) {
2316 pointer
, start_addr
, *start_addr
));
2320 /* Is it plausible? Not a cons. XXX should check the headers. */
2321 if (is_lisp_pointer(start_addr
[0]) || ((start_addr
[0] & 3) == 0)) {
2322 if (gencgc_verbose
) {
2325 pointer
, start_addr
, *start_addr
));
2329 switch (widetag_of(start_addr
[0])) {
2330 case UNBOUND_MARKER_WIDETAG
:
2331 case NO_TLS_VALUE_MARKER_WIDETAG
:
2332 case CHARACTER_WIDETAG
:
2333 #if N_WORD_BITS == 64
2334 case SINGLE_FLOAT_WIDETAG
:
2336 if (gencgc_verbose
) {
2339 pointer
, start_addr
, *start_addr
));
2343 /* only pointed to by function pointers? */
2344 case CLOSURE_HEADER_WIDETAG
:
2345 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG
:
2346 if (gencgc_verbose
) {
2349 pointer
, start_addr
, *start_addr
));
2353 case INSTANCE_HEADER_WIDETAG
:
2354 if (gencgc_verbose
) {
2357 pointer
, start_addr
, *start_addr
));
2361 /* the valid other immediate pointer objects */
2362 case SIMPLE_VECTOR_WIDETAG
:
2364 case COMPLEX_WIDETAG
:
2365 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2366 case COMPLEX_SINGLE_FLOAT_WIDETAG
:
2368 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2369 case COMPLEX_DOUBLE_FLOAT_WIDETAG
:
2371 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2372 case COMPLEX_LONG_FLOAT_WIDETAG
:
2374 #ifdef SSE_PACK_WIDETAG
2375 case SSE_PACK_WIDETAG
:
2377 case SIMPLE_ARRAY_WIDETAG
:
2378 case COMPLEX_BASE_STRING_WIDETAG
:
2379 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2380 case COMPLEX_CHARACTER_STRING_WIDETAG
:
2382 case COMPLEX_VECTOR_NIL_WIDETAG
:
2383 case COMPLEX_BIT_VECTOR_WIDETAG
:
2384 case COMPLEX_VECTOR_WIDETAG
:
2385 case COMPLEX_ARRAY_WIDETAG
:
2386 case VALUE_CELL_HEADER_WIDETAG
:
2387 case SYMBOL_HEADER_WIDETAG
:
2389 case CODE_HEADER_WIDETAG
:
2390 case BIGNUM_WIDETAG
:
2391 #if N_WORD_BITS != 64
2392 case SINGLE_FLOAT_WIDETAG
:
2394 case DOUBLE_FLOAT_WIDETAG
:
2395 #ifdef LONG_FLOAT_WIDETAG
2396 case LONG_FLOAT_WIDETAG
:
2398 case SIMPLE_BASE_STRING_WIDETAG
:
2399 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2400 case SIMPLE_CHARACTER_STRING_WIDETAG
:
2402 case SIMPLE_BIT_VECTOR_WIDETAG
:
2403 case SIMPLE_ARRAY_NIL_WIDETAG
:
2404 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG
:
2405 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG
:
2406 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG
:
2407 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG
:
2408 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG
:
2409 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG
:
2410 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2411 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
:
2413 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG
:
2414 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
:
2415 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2416 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
:
2418 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2419 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
:
2421 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2422 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
:
2424 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2425 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
:
2427 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2428 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
:
2430 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2431 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
:
2433 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2434 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
:
2436 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2437 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
:
2439 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2440 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
:
2442 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG
:
2443 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG
:
2444 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2445 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
:
2447 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2448 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
:
2450 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2451 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
:
2453 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2454 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
:
2457 case WEAK_POINTER_WIDETAG
:
2458 #ifdef LUTEX_WIDETAG
2464 if (gencgc_verbose
) {
2467 pointer
, start_addr
, *start_addr
));
2473 if (gencgc_verbose
) {
2476 pointer
, start_addr
, *start_addr
));
2485 /* Used by the debugger to validate possibly bogus pointers before
2486 * calling MAKE-LISP-OBJ on them.
2488 * FIXME: We would like to make this perfect, because if the debugger
2489 * constructs a reference to a bugs lisp object, and it ends up in a
2490 * location scavenged by the GC all hell breaks loose.
2492 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2493 * and return true for all valid pointers, this could actually be eager
2494 * and lie about a few pointers without bad results... but that should
2495 * be reflected in the name.
2498 valid_lisp_pointer_p(lispobj
*pointer
)
2501 if (((start
=search_dynamic_space(pointer
))!=NULL
) ||
2502 ((start
=search_static_space(pointer
))!=NULL
) ||
2503 ((start
=search_read_only_space(pointer
))!=NULL
))
2504 return looks_like_valid_lisp_pointer_p(pointer
, start
);
2509 /* Is there any possibility that pointer is a valid Lisp object
2510 * reference, and/or something else (e.g. subroutine call return
2511 * address) which should prevent us from moving the referred-to thing?
2512 * This is called from preserve_pointers() */
2514 possibly_valid_dynamic_space_pointer(lispobj
*pointer
)
2516 lispobj
*start_addr
;
2518 /* Find the object start address. */
2519 if ((start_addr
= search_dynamic_space(pointer
)) == NULL
) {
2523 return looks_like_valid_lisp_pointer_p(pointer
, start_addr
);
2526 /* Adjust large bignum and vector objects. This will adjust the
2527 * allocated region if the size has shrunk, and move unboxed objects
2528 * into unboxed pages. The pages are not promoted here, and the
2529 * promoted region is not added to the new_regions; this is really
2530 * only designed to be called from preserve_pointer(). Shouldn't fail
2531 * if this is missed, just may delay the moving of objects to unboxed
2532 * pages, and the freeing of pages. */
2534 maybe_adjust_large_object(lispobj
*where
)
2536 page_index_t first_page
;
2537 page_index_t next_page
;
2540 unsigned long remaining_bytes
;
2541 unsigned long bytes_freed
;
2542 unsigned long old_bytes_used
;
2546 /* Check whether it's a vector or bignum object. */
2547 switch (widetag_of(where
[0])) {
2548 case SIMPLE_VECTOR_WIDETAG
:
2549 boxed
= BOXED_PAGE_FLAG
;
2551 case BIGNUM_WIDETAG
:
2552 case SIMPLE_BASE_STRING_WIDETAG
:
2553 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2554 case SIMPLE_CHARACTER_STRING_WIDETAG
:
2556 case SIMPLE_BIT_VECTOR_WIDETAG
:
2557 case SIMPLE_ARRAY_NIL_WIDETAG
:
2558 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG
:
2559 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG
:
2560 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG
:
2561 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG
:
2562 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG
:
2563 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG
:
2564 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2565 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
:
2567 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG
:
2568 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
:
2569 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2570 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
:
2572 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2573 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
:
2575 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2576 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
:
2578 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2579 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
:
2581 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2582 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
:
2584 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2585 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
:
2587 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2588 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
:
2590 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2591 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
:
2593 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2594 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
:
2596 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG
:
2597 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG
:
2598 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2599 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
:
2601 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2602 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
:
2604 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2605 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
:
2607 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2608 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
:
2610 boxed
= UNBOXED_PAGE_FLAG
;
2616 /* Find its current size. */
2617 nwords
= (sizetab
[widetag_of(where
[0])])(where
);
2619 first_page
= find_page_index((void *)where
);
2620 gc_assert(first_page
>= 0);
2622 /* Note: Any page write-protection must be removed, else a later
2623 * scavenge_newspace may incorrectly not scavenge these pages.
2624 * This would not be necessary if they are added to the new areas,
2625 * but lets do it for them all (they'll probably be written
2628 gc_assert(page_table
[first_page
].region_start_offset
== 0);
2630 next_page
= first_page
;
2631 remaining_bytes
= nwords
*N_WORD_BYTES
;
2632 while (remaining_bytes
> PAGE_BYTES
) {
2633 gc_assert(page_table
[next_page
].gen
== from_space
);
2634 gc_assert(page_allocated_no_region_p(next_page
));
2635 gc_assert(page_table
[next_page
].large_object
);
2636 gc_assert(page_table
[next_page
].region_start_offset
==
2637 npage_bytes(next_page
-first_page
));
2638 gc_assert(page_table
[next_page
].bytes_used
== PAGE_BYTES
);
2640 page_table
[next_page
].allocated
= boxed
;
2642 /* Shouldn't be write-protected at this stage. Essential that the
2644 gc_assert(!page_table
[next_page
].write_protected
);
2645 remaining_bytes
-= PAGE_BYTES
;
2649 /* Now only one page remains, but the object may have shrunk so
2650 * there may be more unused pages which will be freed. */
2652 /* Object may have shrunk but shouldn't have grown - check. */
2653 gc_assert(page_table
[next_page
].bytes_used
>= remaining_bytes
);
2655 page_table
[next_page
].allocated
= boxed
;
2656 gc_assert(page_table
[next_page
].allocated
==
2657 page_table
[first_page
].allocated
);
2659 /* Adjust the bytes_used. */
2660 old_bytes_used
= page_table
[next_page
].bytes_used
;
2661 page_table
[next_page
].bytes_used
= remaining_bytes
;
2663 bytes_freed
= old_bytes_used
- remaining_bytes
;
2665 /* Free any remaining pages; needs care. */
2667 while ((old_bytes_used
== PAGE_BYTES
) &&
2668 (page_table
[next_page
].gen
== from_space
) &&
2669 page_allocated_no_region_p(next_page
) &&
2670 page_table
[next_page
].large_object
&&
2671 (page_table
[next_page
].region_start_offset
==
2672 npage_bytes(next_page
- first_page
))) {
2673 /* It checks out OK, free the page. We don't need to both zeroing
2674 * pages as this should have been done before shrinking the
2675 * object. These pages shouldn't be write protected as they
2676 * should be zero filled. */
2677 gc_assert(page_table
[next_page
].write_protected
== 0);
2679 old_bytes_used
= page_table
[next_page
].bytes_used
;
2680 page_table
[next_page
].allocated
= FREE_PAGE_FLAG
;
2681 page_table
[next_page
].bytes_used
= 0;
2682 bytes_freed
+= old_bytes_used
;
2686 if ((bytes_freed
> 0) && gencgc_verbose
) {
2688 "/maybe_adjust_large_object() freed %d\n",
2692 generations
[from_space
].bytes_allocated
-= bytes_freed
;
2693 bytes_allocated
-= bytes_freed
;
2698 /* Take a possible pointer to a Lisp object and mark its page in the
2699 * page_table so that it will not be relocated during a GC.
2701 * This involves locating the page it points to, then backing up to
2702 * the start of its region, then marking all pages dont_move from there
2703 * up to the first page that's not full or has a different generation
2705 * It is assumed that all the page static flags have been cleared at
2706 * the start of a GC.
2708 * It is also assumed that the current gc_alloc() region has been
2709 * flushed and the tables updated. */
2712 preserve_pointer(void *addr
)
2714 page_index_t addr_page_index
= find_page_index(addr
);
2715 page_index_t first_page
;
2717 unsigned int region_allocation
;
2719 /* quick check 1: Address is quite likely to have been invalid. */
2720 if ((addr_page_index
== -1)
2721 || page_free_p(addr_page_index
)
2722 || (page_table
[addr_page_index
].bytes_used
== 0)
2723 || (page_table
[addr_page_index
].gen
!= from_space
)
2724 /* Skip if already marked dont_move. */
2725 || (page_table
[addr_page_index
].dont_move
!= 0))
2727 gc_assert(!(page_table
[addr_page_index
].allocated
&OPEN_REGION_PAGE_FLAG
));
2728 /* (Now that we know that addr_page_index is in range, it's
2729 * safe to index into page_table[] with it.) */
2730 region_allocation
= page_table
[addr_page_index
].allocated
;
2732 /* quick check 2: Check the offset within the page.
2735 if (((unsigned long)addr
& (PAGE_BYTES
- 1)) >
2736 page_table
[addr_page_index
].bytes_used
)
2739 /* Filter out anything which can't be a pointer to a Lisp object
2740 * (or, as a special case which also requires dont_move, a return
2741 * address referring to something in a CodeObject). This is
2742 * expensive but important, since it vastly reduces the
2743 * probability that random garbage will be bogusly interpreted as
2744 * a pointer which prevents a page from moving. */
2745 if (!(code_page_p(addr_page_index
)
2746 || (is_lisp_pointer((lispobj
)addr
) &&
2747 possibly_valid_dynamic_space_pointer(addr
))))
2750 /* Find the beginning of the region. Note that there may be
2751 * objects in the region preceding the one that we were passed a
2752 * pointer to: if this is the case, we will write-protect all the
2753 * previous objects' pages too. */
2756 /* I think this'd work just as well, but without the assertions.
2757 * -dan 2004.01.01 */
2758 first_page
= find_page_index(page_region_start(addr_page_index
))
2760 first_page
= addr_page_index
;
2761 while (page_table
[first_page
].region_start_offset
!= 0) {
2763 /* Do some checks. */
2764 gc_assert(page_table
[first_page
].bytes_used
== PAGE_BYTES
);
2765 gc_assert(page_table
[first_page
].gen
== from_space
);
2766 gc_assert(page_table
[first_page
].allocated
== region_allocation
);
2770 /* Adjust any large objects before promotion as they won't be
2771 * copied after promotion. */
2772 if (page_table
[first_page
].large_object
) {
2773 maybe_adjust_large_object(page_address(first_page
));
2774 /* If a large object has shrunk then addr may now point to a
2775 * free area in which case it's ignored here. Note it gets
2776 * through the valid pointer test above because the tail looks
2778 if (page_free_p(addr_page_index
)
2779 || (page_table
[addr_page_index
].bytes_used
== 0)
2780 /* Check the offset within the page. */
2781 || (((unsigned long)addr
& (PAGE_BYTES
- 1))
2782 > page_table
[addr_page_index
].bytes_used
)) {
2784 "weird? ignore ptr 0x%x to freed area of large object\n",
2788 /* It may have moved to unboxed pages. */
2789 region_allocation
= page_table
[first_page
].allocated
;
2792 /* Now work forward until the end of this contiguous area is found,
2793 * marking all pages as dont_move. */
2794 for (i
= first_page
; ;i
++) {
2795 gc_assert(page_table
[i
].allocated
== region_allocation
);
2797 /* Mark the page static. */
2798 page_table
[i
].dont_move
= 1;
2800 /* Move the page to the new_space. XX I'd rather not do this
2801 * but the GC logic is not quite able to copy with the static
2802 * pages remaining in the from space. This also requires the
2803 * generation bytes_allocated counters be updated. */
2804 page_table
[i
].gen
= new_space
;
2805 generations
[new_space
].bytes_allocated
+= page_table
[i
].bytes_used
;
2806 generations
[from_space
].bytes_allocated
-= page_table
[i
].bytes_used
;
2808 /* It is essential that the pages are not write protected as
2809 * they may have pointers into the old-space which need
2810 * scavenging. They shouldn't be write protected at this
2812 gc_assert(!page_table
[i
].write_protected
);
2814 /* Check whether this is the last page in this contiguous block.. */
2815 if ((page_table
[i
].bytes_used
< PAGE_BYTES
)
2816 /* ..or it is PAGE_BYTES and is the last in the block */
2818 || (page_table
[i
+1].bytes_used
== 0) /* next page free */
2819 || (page_table
[i
+1].gen
!= from_space
) /* diff. gen */
2820 || (page_table
[i
+1].region_start_offset
== 0))
2824 /* Check that the page is now static. */
2825 gc_assert(page_table
[addr_page_index
].dont_move
!= 0);
2828 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2831 /* If the given page is not write-protected, then scan it for pointers
2832 * to younger generations or the top temp. generation, if no
2833 * suspicious pointers are found then the page is write-protected.
2835 * Care is taken to check for pointers to the current gc_alloc()
2836 * region if it is a younger generation or the temp. generation. This
2837 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2838 * the gc_alloc_generation does not need to be checked as this is only
2839 * called from scavenge_generation() when the gc_alloc generation is
2840 * younger, so it just checks if there is a pointer to the current
2843 * We return 1 if the page was write-protected, else 0. */
2845 update_page_write_prot(page_index_t page
)
2847 generation_index_t gen
= page_table
[page
].gen
;
2850 void **page_addr
= (void **)page_address(page
);
2851 long num_words
= page_table
[page
].bytes_used
/ N_WORD_BYTES
;
2853 /* Shouldn't be a free page. */
2854 gc_assert(page_allocated_p(page
));
2855 gc_assert(page_table
[page
].bytes_used
!= 0);
2857 /* Skip if it's already write-protected, pinned, or unboxed */
2858 if (page_table
[page
].write_protected
2859 /* FIXME: What's the reason for not write-protecting pinned pages? */
2860 || page_table
[page
].dont_move
2861 || page_unboxed_p(page
))
2864 /* Scan the page for pointers to younger generations or the
2865 * top temp. generation. */
2867 for (j
= 0; j
< num_words
; j
++) {
2868 void *ptr
= *(page_addr
+j
);
2869 page_index_t index
= find_page_index(ptr
);
2871 /* Check that it's in the dynamic space */
2873 if (/* Does it point to a younger or the temp. generation? */
2874 (page_allocated_p(index
)
2875 && (page_table
[index
].bytes_used
!= 0)
2876 && ((page_table
[index
].gen
< gen
)
2877 || (page_table
[index
].gen
== SCRATCH_GENERATION
)))
2879 /* Or does it point within a current gc_alloc() region? */
2880 || ((boxed_region
.start_addr
<= ptr
)
2881 && (ptr
<= boxed_region
.free_pointer
))
2882 || ((unboxed_region
.start_addr
<= ptr
)
2883 && (ptr
<= unboxed_region
.free_pointer
))) {
2890 /* Write-protect the page. */
2891 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2893 os_protect((void *)page_addr
,
2895 OS_VM_PROT_READ
|OS_VM_PROT_EXECUTE
);
2897 /* Note the page as protected in the page tables. */
2898 page_table
[page
].write_protected
= 1;
2904 /* Scavenge all generations from FROM to TO, inclusive, except for
2905 * new_space which needs special handling, as new objects may be
2906 * added which are not checked here - use scavenge_newspace generation.
2908 * Write-protected pages should not have any pointers to the
2909 * from_space so do need scavenging; thus write-protected pages are
2910 * not always scavenged. There is some code to check that these pages
2911 * are not written; but to check fully the write-protected pages need
2912 * to be scavenged by disabling the code to skip them.
2914 * Under the current scheme when a generation is GCed the younger
2915 * generations will be empty. So, when a generation is being GCed it
2916 * is only necessary to scavenge the older generations for pointers
2917 * not the younger. So a page that does not have pointers to younger
2918 * generations does not need to be scavenged.
2920 * The write-protection can be used to note pages that don't have
2921 * pointers to younger pages. But pages can be written without having
2922 * pointers to younger generations. After the pages are scavenged here
2923 * they can be scanned for pointers to younger generations and if
2924 * there are none the page can be write-protected.
2926 * One complication is when the newspace is the top temp. generation.
2928 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2929 * that none were written, which they shouldn't be as they should have
2930 * no pointers to younger generations. This breaks down for weak
2931 * pointers as the objects contain a link to the next and are written
2932 * if a weak pointer is scavenged. Still it's a useful check. */
2934 scavenge_generations(generation_index_t from
, generation_index_t to
)
2941 /* Clear the write_protected_cleared flags on all pages. */
2942 for (i
= 0; i
< page_table_pages
; i
++)
2943 page_table
[i
].write_protected_cleared
= 0;
2946 for (i
= 0; i
< last_free_page
; i
++) {
2947 generation_index_t generation
= page_table
[i
].gen
;
2949 && (page_table
[i
].bytes_used
!= 0)
2950 && (generation
!= new_space
)
2951 && (generation
>= from
)
2952 && (generation
<= to
)) {
2953 page_index_t last_page
,j
;
2954 int write_protected
=1;
2956 /* This should be the start of a region */
2957 gc_assert(page_table
[i
].region_start_offset
== 0);
2959 /* Now work forward until the end of the region */
2960 for (last_page
= i
; ; last_page
++) {
2962 write_protected
&& page_table
[last_page
].write_protected
;
2963 if ((page_table
[last_page
].bytes_used
< PAGE_BYTES
)
2964 /* Or it is PAGE_BYTES and is the last in the block */
2965 || (!page_boxed_p(last_page
+1))
2966 || (page_table
[last_page
+1].bytes_used
== 0)
2967 || (page_table
[last_page
+1].gen
!= generation
)
2968 || (page_table
[last_page
+1].region_start_offset
== 0))
2971 if (!write_protected
) {
2972 scavenge(page_address(i
),
2973 ((unsigned long)(page_table
[last_page
].bytes_used
2974 + npage_bytes(last_page
-i
)))
2977 /* Now scan the pages and write protect those that
2978 * don't have pointers to younger generations. */
2979 if (enable_page_protection
) {
2980 for (j
= i
; j
<= last_page
; j
++) {
2981 num_wp
+= update_page_write_prot(j
);
2984 if ((gencgc_verbose
> 1) && (num_wp
!= 0)) {
2986 "/write protected %d pages within generation %d\n",
2987 num_wp
, generation
));
2995 /* Check that none of the write_protected pages in this generation
2996 * have been written to. */
2997 for (i
= 0; i
< page_table_pages
; i
++) {
2998 if (page_allocated_p(i
)
2999 && (page_table
[i
].bytes_used
!= 0)
3000 && (page_table
[i
].gen
== generation
)
3001 && (page_table
[i
].write_protected_cleared
!= 0)) {
3002 FSHOW((stderr
, "/scavenge_generation() %d\n", generation
));
3004 "/page bytes_used=%d region_start_offset=%lu dont_move=%d\n",
3005 page_table
[i
].bytes_used
,
3006 page_table
[i
].region_start_offset
,
3007 page_table
[i
].dont_move
));
3008 lose("write to protected page %d in scavenge_generation()\n", i
);
3015 /* Scavenge a newspace generation. As it is scavenged new objects may
3016 * be allocated to it; these will also need to be scavenged. This
3017 * repeats until there are no more objects unscavenged in the
3018 * newspace generation.
3020 * To help improve the efficiency, areas written are recorded by
3021 * gc_alloc() and only these scavenged. Sometimes a little more will be
3022 * scavenged, but this causes no harm. An easy check is done that the
3023 * scavenged bytes equals the number allocated in the previous
3026 * Write-protected pages are not scanned except if they are marked
3027 * dont_move in which case they may have been promoted and still have
3028 * pointers to the from space.
3030 * Write-protected pages could potentially be written by alloc however
3031 * to avoid having to handle re-scavenging of write-protected pages
3032 * gc_alloc() does not write to write-protected pages.
3034 * New areas of objects allocated are recorded alternatively in the two
3035 * new_areas arrays below. */
3036 static struct new_area new_areas_1
[NUM_NEW_AREAS
];
3037 static struct new_area new_areas_2
[NUM_NEW_AREAS
];
3039 /* Do one full scan of the new space generation. This is not enough to
3040 * complete the job as new objects may be added to the generation in
3041 * the process which are not scavenged. */
3043 scavenge_newspace_generation_one_scan(generation_index_t generation
)
3048 "/starting one full scan of newspace generation %d\n",
3050 for (i
= 0; i
< last_free_page
; i
++) {
3051 /* Note that this skips over open regions when it encounters them. */
3053 && (page_table
[i
].bytes_used
!= 0)
3054 && (page_table
[i
].gen
== generation
)
3055 && ((page_table
[i
].write_protected
== 0)
3056 /* (This may be redundant as write_protected is now
3057 * cleared before promotion.) */
3058 || (page_table
[i
].dont_move
== 1))) {
3059 page_index_t last_page
;
3062 /* The scavenge will start at the region_start_offset of
3065 * We need to find the full extent of this contiguous
3066 * block in case objects span pages.
3068 * Now work forward until the end of this contiguous area
3069 * is found. A small area is preferred as there is a
3070 * better chance of its pages being write-protected. */
3071 for (last_page
= i
; ;last_page
++) {
3072 /* If all pages are write-protected and movable,
3073 * then no need to scavenge */
3074 all_wp
=all_wp
&& page_table
[last_page
].write_protected
&&
3075 !page_table
[last_page
].dont_move
;
3077 /* Check whether this is the last page in this
3078 * contiguous block */
3079 if ((page_table
[last_page
].bytes_used
< PAGE_BYTES
)
3080 /* Or it is PAGE_BYTES and is the last in the block */
3081 || (!page_boxed_p(last_page
+1))
3082 || (page_table
[last_page
+1].bytes_used
== 0)
3083 || (page_table
[last_page
+1].gen
!= generation
)
3084 || (page_table
[last_page
+1].region_start_offset
== 0))
3088 /* Do a limited check for write-protected pages. */
3090 long nwords
= (((unsigned long)
3091 (page_table
[last_page
].bytes_used
3092 + npage_bytes(last_page
-i
)
3093 + page_table
[i
].region_start_offset
))
3095 new_areas_ignore_page
= last_page
;
3097 scavenge(page_region_start(i
), nwords
);
3104 "/done with one full scan of newspace generation %d\n",
3108 /* Do a complete scavenge of the newspace generation. */
3110 scavenge_newspace_generation(generation_index_t generation
)
3114 /* the new_areas array currently being written to by gc_alloc() */
3115 struct new_area (*current_new_areas
)[] = &new_areas_1
;
3116 long current_new_areas_index
;
3118 /* the new_areas created by the previous scavenge cycle */
3119 struct new_area (*previous_new_areas
)[] = NULL
;
3120 long previous_new_areas_index
;
3122 /* Flush the current regions updating the tables. */
3123 gc_alloc_update_all_page_tables();
3125 /* Turn on the recording of new areas by gc_alloc(). */
3126 new_areas
= current_new_areas
;
3127 new_areas_index
= 0;
3129 /* Don't need to record new areas that get scavenged anyway during
3130 * scavenge_newspace_generation_one_scan. */
3131 record_new_objects
= 1;
3133 /* Start with a full scavenge. */
3134 scavenge_newspace_generation_one_scan(generation
);
3136 /* Record all new areas now. */
3137 record_new_objects
= 2;
3139 /* Give a chance to weak hash tables to make other objects live.
3140 * FIXME: The algorithm implemented here for weak hash table gcing
3141 * is O(W^2+N) as Bruno Haible warns in
3142 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3143 * see "Implementation 2". */
3144 scav_weak_hash_tables();
3146 /* Flush the current regions updating the tables. */
3147 gc_alloc_update_all_page_tables();
3149 /* Grab new_areas_index. */
3150 current_new_areas_index
= new_areas_index
;
3153 "The first scan is finished; current_new_areas_index=%d.\n",
3154 current_new_areas_index));*/
3156 while (current_new_areas_index
> 0) {
3157 /* Move the current to the previous new areas */
3158 previous_new_areas
= current_new_areas
;
3159 previous_new_areas_index
= current_new_areas_index
;
3161 /* Scavenge all the areas in previous new areas. Any new areas
3162 * allocated are saved in current_new_areas. */
3164 /* Allocate an array for current_new_areas; alternating between
3165 * new_areas_1 and 2 */
3166 if (previous_new_areas
== &new_areas_1
)
3167 current_new_areas
= &new_areas_2
;
3169 current_new_areas
= &new_areas_1
;
3171 /* Set up for gc_alloc(). */
3172 new_areas
= current_new_areas
;
3173 new_areas_index
= 0;
3175 /* Check whether previous_new_areas had overflowed. */
3176 if (previous_new_areas_index
>= NUM_NEW_AREAS
) {
3178 /* New areas of objects allocated have been lost so need to do a
3179 * full scan to be sure! If this becomes a problem try
3180 * increasing NUM_NEW_AREAS. */
3181 if (gencgc_verbose
) {
3182 SHOW("new_areas overflow, doing full scavenge");
3185 /* Don't need to record new areas that get scavenged
3186 * anyway during scavenge_newspace_generation_one_scan. */
3187 record_new_objects
= 1;
3189 scavenge_newspace_generation_one_scan(generation
);
3191 /* Record all new areas now. */
3192 record_new_objects
= 2;
3194 scav_weak_hash_tables();
3196 /* Flush the current regions updating the tables. */
3197 gc_alloc_update_all_page_tables();
3201 /* Work through previous_new_areas. */
3202 for (i
= 0; i
< previous_new_areas_index
; i
++) {
3203 page_index_t page
= (*previous_new_areas
)[i
].page
;
3204 size_t offset
= (*previous_new_areas
)[i
].offset
;
3205 size_t size
= (*previous_new_areas
)[i
].size
/ N_WORD_BYTES
;
3206 gc_assert((*previous_new_areas
)[i
].size
% N_WORD_BYTES
== 0);
3207 scavenge(page_address(page
)+offset
, size
);
3210 scav_weak_hash_tables();
3212 /* Flush the current regions updating the tables. */
3213 gc_alloc_update_all_page_tables();
3216 current_new_areas_index
= new_areas_index
;
3219 "The re-scan has finished; current_new_areas_index=%d.\n",
3220 current_new_areas_index));*/
3223 /* Turn off recording of areas allocated by gc_alloc(). */
3224 record_new_objects
= 0;
3227 /* Check that none of the write_protected pages in this generation
3228 * have been written to. */
3229 for (i
= 0; i
< page_table_pages
; i
++) {
3230 if (page_allocated_p(i
)
3231 && (page_table
[i
].bytes_used
!= 0)
3232 && (page_table
[i
].gen
== generation
)
3233 && (page_table
[i
].write_protected_cleared
!= 0)
3234 && (page_table
[i
].dont_move
== 0)) {
3235 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3236 i
, generation
, page_table
[i
].dont_move
);
3242 /* Un-write-protect all the pages in from_space. This is done at the
3243 * start of a GC else there may be many page faults while scavenging
3244 * the newspace (I've seen drive the system time to 99%). These pages
3245 * would need to be unprotected anyway before unmapping in
3246 * free_oldspace; not sure what effect this has on paging.. */
3248 unprotect_oldspace(void)
3252 for (i
= 0; i
< last_free_page
; i
++) {
3253 if (page_allocated_p(i
)
3254 && (page_table
[i
].bytes_used
!= 0)
3255 && (page_table
[i
].gen
== from_space
)) {
3258 page_start
= (void *)page_address(i
);
3260 /* Remove any write-protection. We should be able to rely
3261 * on the write-protect flag to avoid redundant calls. */
3262 if (page_table
[i
].write_protected
) {
3263 os_protect(page_start
, PAGE_BYTES
, OS_VM_PROT_ALL
);
3264 page_table
[i
].write_protected
= 0;
3270 /* Work through all the pages and free any in from_space. This
3271 * assumes that all objects have been copied or promoted to an older
3272 * generation. Bytes_allocated and the generation bytes_allocated
3273 * counter are updated. The number of bytes freed is returned. */
3274 static unsigned long
3277 unsigned long bytes_freed
= 0;
3278 page_index_t first_page
, last_page
;
3283 /* Find a first page for the next region of pages. */
3284 while ((first_page
< last_free_page
)
3285 && (page_free_p(first_page
)
3286 || (page_table
[first_page
].bytes_used
== 0)
3287 || (page_table
[first_page
].gen
!= from_space
)))
3290 if (first_page
>= last_free_page
)
3293 /* Find the last page of this region. */
3294 last_page
= first_page
;
3297 /* Free the page. */
3298 bytes_freed
+= page_table
[last_page
].bytes_used
;
3299 generations
[page_table
[last_page
].gen
].bytes_allocated
-=
3300 page_table
[last_page
].bytes_used
;
3301 page_table
[last_page
].allocated
= FREE_PAGE_FLAG
;
3302 page_table
[last_page
].bytes_used
= 0;
3304 /* Remove any write-protection. We should be able to rely
3305 * on the write-protect flag to avoid redundant calls. */
3307 void *page_start
= (void *)page_address(last_page
);
3309 if (page_table
[last_page
].write_protected
) {
3310 os_protect(page_start
, PAGE_BYTES
, OS_VM_PROT_ALL
);
3311 page_table
[last_page
].write_protected
= 0;
3316 while ((last_page
< last_free_page
)
3317 && page_allocated_p(last_page
)
3318 && (page_table
[last_page
].bytes_used
!= 0)
3319 && (page_table
[last_page
].gen
== from_space
));
3321 #ifdef READ_PROTECT_FREE_PAGES
3322 os_protect(page_address(first_page
),
3323 npage_bytes(last_page
-first_page
),
3326 first_page
= last_page
;
3327 } while (first_page
< last_free_page
);
3329 bytes_allocated
-= bytes_freed
;
3334 /* Print some information about a pointer at the given address. */
3336 print_ptr(lispobj
*addr
)
3338 /* If addr is in the dynamic space then out the page information. */
3339 page_index_t pi1
= find_page_index((void*)addr
);
3342 fprintf(stderr
," %x: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
3343 (unsigned long) addr
,
3345 page_table
[pi1
].allocated
,
3346 page_table
[pi1
].gen
,
3347 page_table
[pi1
].bytes_used
,
3348 page_table
[pi1
].region_start_offset
,
3349 page_table
[pi1
].dont_move
);
3350 fprintf(stderr
," %x %x %x %x (%x) %x %x %x %x\n",
3364 verify_space(lispobj
*start
, size_t words
)
3366 int is_in_dynamic_space
= (find_page_index((void*)start
) != -1);
3367 int is_in_readonly_space
=
3368 (READ_ONLY_SPACE_START
<= (unsigned long)start
&&
3369 (unsigned long)start
< SymbolValue(READ_ONLY_SPACE_FREE_POINTER
,0));
3373 lispobj thing
= *(lispobj
*)start
;
3375 if (is_lisp_pointer(thing
)) {
3376 page_index_t page_index
= find_page_index((void*)thing
);
3377 long to_readonly_space
=
3378 (READ_ONLY_SPACE_START
<= thing
&&
3379 thing
< SymbolValue(READ_ONLY_SPACE_FREE_POINTER
,0));
3380 long to_static_space
=
3381 (STATIC_SPACE_START
<= thing
&&
3382 thing
< SymbolValue(STATIC_SPACE_FREE_POINTER
,0));
3384 /* Does it point to the dynamic space? */
3385 if (page_index
!= -1) {
3386 /* If it's within the dynamic space it should point to a used
3387 * page. XX Could check the offset too. */
3388 if (page_allocated_p(page_index
)
3389 && (page_table
[page_index
].bytes_used
== 0))
3390 lose ("Ptr %x @ %x sees free page.\n", thing
, start
);
3391 /* Check that it doesn't point to a forwarding pointer! */
3392 if (*((lispobj
*)native_pointer(thing
)) == 0x01) {
3393 lose("Ptr %x @ %x sees forwarding ptr.\n", thing
, start
);
3395 /* Check that its not in the RO space as it would then be a
3396 * pointer from the RO to the dynamic space. */
3397 if (is_in_readonly_space
) {
3398 lose("ptr to dynamic space %x from RO space %x\n",
3401 /* Does it point to a plausible object? This check slows
3402 * it down a lot (so it's commented out).
3404 * "a lot" is serious: it ate 50 minutes cpu time on
3405 * my duron 950 before I came back from lunch and
3408 * FIXME: Add a variable to enable this
3411 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3412 lose("ptr %x to invalid object %x\n", thing, start);
3416 /* Verify that it points to another valid space. */
3417 if (!to_readonly_space
&& !to_static_space
) {
3418 lose("Ptr %x @ %x sees junk.\n", thing
, start
);
3422 if (!(fixnump(thing
))) {
3424 switch(widetag_of(*start
)) {
3427 case SIMPLE_VECTOR_WIDETAG
:
3429 case COMPLEX_WIDETAG
:
3430 case SIMPLE_ARRAY_WIDETAG
:
3431 case COMPLEX_BASE_STRING_WIDETAG
:
3432 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3433 case COMPLEX_CHARACTER_STRING_WIDETAG
:
3435 case COMPLEX_VECTOR_NIL_WIDETAG
:
3436 case COMPLEX_BIT_VECTOR_WIDETAG
:
3437 case COMPLEX_VECTOR_WIDETAG
:
3438 case COMPLEX_ARRAY_WIDETAG
:
3439 case CLOSURE_HEADER_WIDETAG
:
3440 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG
:
3441 case VALUE_CELL_HEADER_WIDETAG
:
3442 case SYMBOL_HEADER_WIDETAG
:
3443 case CHARACTER_WIDETAG
:
3444 #if N_WORD_BITS == 64
3445 case SINGLE_FLOAT_WIDETAG
:
3447 case UNBOUND_MARKER_WIDETAG
:
3452 case INSTANCE_HEADER_WIDETAG
:
3455 long ntotal
= HeaderValue(thing
);
3456 lispobj layout
= ((struct instance
*)start
)->slots
[0];
3461 nuntagged
= ((struct layout
*)
3462 native_pointer(layout
))->n_untagged_slots
;
3463 verify_space(start
+ 1,
3464 ntotal
- fixnum_value(nuntagged
));
3468 case CODE_HEADER_WIDETAG
:
3470 lispobj object
= *start
;
3472 long nheader_words
, ncode_words
, nwords
;
3474 struct simple_fun
*fheaderp
;
3476 code
= (struct code
*) start
;
3478 /* Check that it's not in the dynamic space.
3479 * FIXME: Isn't is supposed to be OK for code
3480 * objects to be in the dynamic space these days? */
3481 if (is_in_dynamic_space
3482 /* It's ok if it's byte compiled code. The trace
3483 * table offset will be a fixnum if it's x86
3484 * compiled code - check.
3486 * FIXME: #^#@@! lack of abstraction here..
3487 * This line can probably go away now that
3488 * there's no byte compiler, but I've got
3489 * too much to worry about right now to try
3490 * to make sure. -- WHN 2001-10-06 */
3491 && fixnump(code
->trace_table_offset
)
3492 /* Only when enabled */
3493 && verify_dynamic_code_check
) {
3495 "/code object at %x in the dynamic space\n",
3499 ncode_words
= fixnum_value(code
->code_size
);
3500 nheader_words
= HeaderValue(object
);
3501 nwords
= ncode_words
+ nheader_words
;
3502 nwords
= CEILING(nwords
, 2);
3503 /* Scavenge the boxed section of the code data block */
3504 verify_space(start
+ 1, nheader_words
- 1);
3506 /* Scavenge the boxed section of each function
3507 * object in the code data block. */
3508 fheaderl
= code
->entry_points
;
3509 while (fheaderl
!= NIL
) {
3511 (struct simple_fun
*) native_pointer(fheaderl
);
3512 gc_assert(widetag_of(fheaderp
->header
) ==
3513 SIMPLE_FUN_HEADER_WIDETAG
);
3514 verify_space(&fheaderp
->name
, 1);
3515 verify_space(&fheaderp
->arglist
, 1);
3516 verify_space(&fheaderp
->type
, 1);
3517 fheaderl
= fheaderp
->next
;
3523 /* unboxed objects */
3524 case BIGNUM_WIDETAG
:
3525 #if N_WORD_BITS != 64
3526 case SINGLE_FLOAT_WIDETAG
:
3528 case DOUBLE_FLOAT_WIDETAG
:
3529 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3530 case LONG_FLOAT_WIDETAG
:
3532 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3533 case COMPLEX_SINGLE_FLOAT_WIDETAG
:
3535 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3536 case COMPLEX_DOUBLE_FLOAT_WIDETAG
:
3538 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3539 case COMPLEX_LONG_FLOAT_WIDETAG
:
3541 #ifdef SSE_PACK_WIDETAG
3542 case SSE_PACK_WIDETAG
:
3544 case SIMPLE_BASE_STRING_WIDETAG
:
3545 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3546 case SIMPLE_CHARACTER_STRING_WIDETAG
:
3548 case SIMPLE_BIT_VECTOR_WIDETAG
:
3549 case SIMPLE_ARRAY_NIL_WIDETAG
:
3550 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG
:
3551 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG
:
3552 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG
:
3553 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG
:
3554 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG
:
3555 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG
:
3556 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3557 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
:
3559 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG
:
3560 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
:
3561 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3562 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
:
3564 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3565 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
:
3567 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3568 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
:
3570 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3571 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
:
3573 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3574 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
:
3576 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3577 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
:
3579 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3580 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
:
3582 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3583 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
:
3585 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3586 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
:
3588 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG
:
3589 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG
:
3590 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3591 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
:
3593 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3594 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
:
3596 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3597 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
:
3599 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3600 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
:
3603 case WEAK_POINTER_WIDETAG
:
3604 #ifdef LUTEX_WIDETAG
3607 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3608 case NO_TLS_VALUE_MARKER_WIDETAG
:
3610 count
= (sizetab
[widetag_of(*start
)])(start
);
3614 lose("Unhandled widetag 0x%x at 0x%x\n",
3615 widetag_of(*start
), start
);
3627 /* FIXME: It would be nice to make names consistent so that
3628 * foo_size meant size *in* *bytes* instead of size in some
3629 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3630 * Some counts of lispobjs are called foo_count; it might be good
3631 * to grep for all foo_size and rename the appropriate ones to
3633 long read_only_space_size
=
3634 (lispobj
*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER
,0)
3635 - (lispobj
*)READ_ONLY_SPACE_START
;
3636 long static_space_size
=
3637 (lispobj
*)SymbolValue(STATIC_SPACE_FREE_POINTER
,0)
3638 - (lispobj
*)STATIC_SPACE_START
;
3640 for_each_thread(th
) {
3641 long binding_stack_size
=
3642 (lispobj
*)get_binding_stack_pointer(th
)
3643 - (lispobj
*)th
->binding_stack_start
;
3644 verify_space(th
->binding_stack_start
, binding_stack_size
);
3646 verify_space((lispobj
*)READ_ONLY_SPACE_START
, read_only_space_size
);
3647 verify_space((lispobj
*)STATIC_SPACE_START
, static_space_size
);
3651 verify_generation(generation_index_t generation
)
3655 for (i
= 0; i
< last_free_page
; i
++) {
3656 if (page_allocated_p(i
)
3657 && (page_table
[i
].bytes_used
!= 0)
3658 && (page_table
[i
].gen
== generation
)) {
3659 page_index_t last_page
;
3660 int region_allocation
= page_table
[i
].allocated
;
3662 /* This should be the start of a contiguous block */
3663 gc_assert(page_table
[i
].region_start_offset
== 0);
3665 /* Need to find the full extent of this contiguous block in case
3666 objects span pages. */
3668 /* Now work forward until the end of this contiguous area is
3670 for (last_page
= i
; ;last_page
++)
3671 /* Check whether this is the last page in this contiguous
3673 if ((page_table
[last_page
].bytes_used
< PAGE_BYTES
)
3674 /* Or it is PAGE_BYTES and is the last in the block */
3675 || (page_table
[last_page
+1].allocated
!= region_allocation
)
3676 || (page_table
[last_page
+1].bytes_used
== 0)
3677 || (page_table
[last_page
+1].gen
!= generation
)
3678 || (page_table
[last_page
+1].region_start_offset
== 0))
3681 verify_space(page_address(i
),
3683 (page_table
[last_page
].bytes_used
3684 + npage_bytes(last_page
-i
)))
3691 /* Check that all the free space is zero filled. */
3693 verify_zero_fill(void)
3697 for (page
= 0; page
< last_free_page
; page
++) {
3698 if (page_free_p(page
)) {
3699 /* The whole page should be zero filled. */
3700 long *start_addr
= (long *)page_address(page
);
3703 for (i
= 0; i
< size
; i
++) {
3704 if (start_addr
[i
] != 0) {
3705 lose("free page not zero at %x\n", start_addr
+ i
);
3709 long free_bytes
= PAGE_BYTES
- page_table
[page
].bytes_used
;
3710 if (free_bytes
> 0) {
3711 long *start_addr
= (long *)((unsigned long)page_address(page
)
3712 + page_table
[page
].bytes_used
);
3713 long size
= free_bytes
/ N_WORD_BYTES
;
3715 for (i
= 0; i
< size
; i
++) {
3716 if (start_addr
[i
] != 0) {
3717 lose("free region not zero at %x\n", start_addr
+ i
);
3725 /* External entry point for verify_zero_fill */
3727 gencgc_verify_zero_fill(void)
3729 /* Flush the alloc regions updating the tables. */
3730 gc_alloc_update_all_page_tables();
3731 SHOW("verifying zero fill");
3736 verify_dynamic_space(void)
3738 generation_index_t i
;
3740 for (i
= 0; i
<= HIGHEST_NORMAL_GENERATION
; i
++)
3741 verify_generation(i
);
3743 if (gencgc_enable_verify_zero_fill
)
3747 /* Write-protect all the dynamic boxed pages in the given generation. */
3749 write_protect_generation_pages(generation_index_t generation
)
3753 gc_assert(generation
< SCRATCH_GENERATION
);
3755 for (start
= 0; start
< last_free_page
; start
++) {
3756 if (protect_page_p(start
, generation
)) {
3760 /* Note the page as protected in the page tables. */
3761 page_table
[start
].write_protected
= 1;
3763 for (last
= start
+ 1; last
< last_free_page
; last
++) {
3764 if (!protect_page_p(last
, generation
))
3766 page_table
[last
].write_protected
= 1;
3769 page_start
= (void *)page_address(start
);
3771 os_protect(page_start
,
3772 npage_bytes(last
- start
),
3773 OS_VM_PROT_READ
| OS_VM_PROT_EXECUTE
);
3779 if (gencgc_verbose
> 1) {
3781 "/write protected %d of %d pages in generation %d\n",
3782 count_write_protect_generation_pages(generation
),
3783 count_generation_pages(generation
),
3788 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3791 scavenge_control_stack()
3793 unsigned long control_stack_size
;
3795 /* This is going to be a big problem when we try to port threads
3797 struct thread
*th
= arch_os_get_current_thread();
3798 lispobj
*control_stack
=
3799 (lispobj
*)(th
->control_stack_start
);
3801 control_stack_size
= current_control_stack_pointer
- control_stack
;
3802 scavenge(control_stack
, control_stack_size
);
3805 /* Scavenging Interrupt Contexts */
3807 static int boxed_registers
[] = BOXED_REGISTERS
;
3810 scavenge_interrupt_context(os_context_t
* context
)
3816 unsigned long lip_offset
;
3817 int lip_register_pair
;
3819 unsigned long pc_code_offset
;
3821 #ifdef ARCH_HAS_LINK_REGISTER
3822 unsigned long lr_code_offset
;
3824 #ifdef ARCH_HAS_NPC_REGISTER
3825 unsigned long npc_code_offset
;
3829 /* Find the LIP's register pair and calculate it's offset */
3830 /* before we scavenge the context. */
3833 * I (RLT) think this is trying to find the boxed register that is
3834 * closest to the LIP address, without going past it. Usually, it's
3835 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3837 lip
= *os_context_register_addr(context
, reg_LIP
);
3838 lip_offset
= 0x7FFFFFFF;
3839 lip_register_pair
= -1;
3840 for (i
= 0; i
< (sizeof(boxed_registers
) / sizeof(int)); i
++) {
3845 index
= boxed_registers
[i
];
3846 reg
= *os_context_register_addr(context
, index
);
3847 if ((reg
& ~((1L<<N_LOWTAG_BITS
)-1)) <= lip
) {
3849 if (offset
< lip_offset
) {
3850 lip_offset
= offset
;
3851 lip_register_pair
= index
;
3855 #endif /* reg_LIP */
3857 /* Compute the PC's offset from the start of the CODE */
3859 pc_code_offset
= *os_context_pc_addr(context
)
3860 - *os_context_register_addr(context
, reg_CODE
);
3861 #ifdef ARCH_HAS_NPC_REGISTER
3862 npc_code_offset
= *os_context_npc_addr(context
)
3863 - *os_context_register_addr(context
, reg_CODE
);
3864 #endif /* ARCH_HAS_NPC_REGISTER */
3866 #ifdef ARCH_HAS_LINK_REGISTER
3868 *os_context_lr_addr(context
) -
3869 *os_context_register_addr(context
, reg_CODE
);
3872 /* Scanvenge all boxed registers in the context. */
3873 for (i
= 0; i
< (sizeof(boxed_registers
) / sizeof(int)); i
++) {
3877 index
= boxed_registers
[i
];
3878 foo
= *os_context_register_addr(context
, index
);
3880 *os_context_register_addr(context
, index
) = foo
;
3882 scavenge((lispobj
*) &(*os_context_register_addr(context
, index
)), 1);
3889 * But what happens if lip_register_pair is -1?
3890 * *os_context_register_addr on Solaris (see
3891 * solaris_register_address in solaris-os.c) will return
3892 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3893 * that what we really want? My guess is that that is not what we
3894 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3895 * all. But maybe it doesn't really matter if LIP is trashed?
3897 if (lip_register_pair
>= 0) {
3898 *os_context_register_addr(context
, reg_LIP
) =
3899 *os_context_register_addr(context
, lip_register_pair
)
3902 #endif /* reg_LIP */
3904 /* Fix the PC if it was in from space */
3905 if (from_space_p(*os_context_pc_addr(context
)))
3906 *os_context_pc_addr(context
) =
3907 *os_context_register_addr(context
, reg_CODE
) + pc_code_offset
;
3909 #ifdef ARCH_HAS_LINK_REGISTER
3910 /* Fix the LR ditto; important if we're being called from
3911 * an assembly routine that expects to return using blr, otherwise
3913 if (from_space_p(*os_context_lr_addr(context
)))
3914 *os_context_lr_addr(context
) =
3915 *os_context_register_addr(context
, reg_CODE
) + lr_code_offset
;
3918 #ifdef ARCH_HAS_NPC_REGISTER
3919 if (from_space_p(*os_context_npc_addr(context
)))
3920 *os_context_npc_addr(context
) =
3921 *os_context_register_addr(context
, reg_CODE
) + npc_code_offset
;
3922 #endif /* ARCH_HAS_NPC_REGISTER */
3926 scavenge_interrupt_contexts(void)
3929 os_context_t
*context
;
3931 struct thread
*th
=arch_os_get_current_thread();
3933 index
= fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX
,0));
3935 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3936 printf("Number of active contexts: %d\n", index
);
3939 for (i
= 0; i
< index
; i
++) {
3940 context
= th
->interrupt_contexts
[i
];
3941 scavenge_interrupt_context(context
);
3947 #if defined(LISP_FEATURE_SB_THREAD)
3949 preserve_context_registers (os_context_t
*c
)
3952 /* On Darwin the signal context isn't a contiguous block of memory,
3953 * so just preserve_pointering its contents won't be sufficient.
3955 #if defined(LISP_FEATURE_DARWIN)
3956 #if defined LISP_FEATURE_X86
3957 preserve_pointer((void*)*os_context_register_addr(c
,reg_EAX
));
3958 preserve_pointer((void*)*os_context_register_addr(c
,reg_ECX
));
3959 preserve_pointer((void*)*os_context_register_addr(c
,reg_EDX
));
3960 preserve_pointer((void*)*os_context_register_addr(c
,reg_EBX
));
3961 preserve_pointer((void*)*os_context_register_addr(c
,reg_ESI
));
3962 preserve_pointer((void*)*os_context_register_addr(c
,reg_EDI
));
3963 preserve_pointer((void*)*os_context_pc_addr(c
));
3964 #elif defined LISP_FEATURE_X86_64
3965 preserve_pointer((void*)*os_context_register_addr(c
,reg_RAX
));
3966 preserve_pointer((void*)*os_context_register_addr(c
,reg_RCX
));
3967 preserve_pointer((void*)*os_context_register_addr(c
,reg_RDX
));
3968 preserve_pointer((void*)*os_context_register_addr(c
,reg_RBX
));
3969 preserve_pointer((void*)*os_context_register_addr(c
,reg_RSI
));
3970 preserve_pointer((void*)*os_context_register_addr(c
,reg_RDI
));
3971 preserve_pointer((void*)*os_context_register_addr(c
,reg_R8
));
3972 preserve_pointer((void*)*os_context_register_addr(c
,reg_R9
));
3973 preserve_pointer((void*)*os_context_register_addr(c
,reg_R10
));
3974 preserve_pointer((void*)*os_context_register_addr(c
,reg_R11
));
3975 preserve_pointer((void*)*os_context_register_addr(c
,reg_R12
));
3976 preserve_pointer((void*)*os_context_register_addr(c
,reg_R13
));
3977 preserve_pointer((void*)*os_context_register_addr(c
,reg_R14
));
3978 preserve_pointer((void*)*os_context_register_addr(c
,reg_R15
));
3979 preserve_pointer((void*)*os_context_pc_addr(c
));
3981 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3984 for(ptr
= ((void **)(c
+1))-1; ptr
>=(void **)c
; ptr
--) {
3985 preserve_pointer(*ptr
);
3990 /* Garbage collect a generation. If raise is 0 then the remains of the
3991 * generation are not raised to the next generation. */
3993 garbage_collect_generation(generation_index_t generation
, int raise
)
3995 unsigned long bytes_freed
;
3997 unsigned long static_space_size
;
3998 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
4001 gc_assert(generation
<= HIGHEST_NORMAL_GENERATION
);
4003 /* The oldest generation can't be raised. */
4004 gc_assert((generation
!= HIGHEST_NORMAL_GENERATION
) || (raise
== 0));
4006 /* Check if weak hash tables were processed in the previous GC. */
4007 gc_assert(weak_hash_tables
== NULL
);
4009 /* Initialize the weak pointer list. */
4010 weak_pointers
= NULL
;
4012 #ifdef LUTEX_WIDETAG
4013 unmark_lutexes(generation
);
4016 /* When a generation is not being raised it is transported to a
4017 * temporary generation (NUM_GENERATIONS), and lowered when
4018 * done. Set up this new generation. There should be no pages
4019 * allocated to it yet. */
4021 gc_assert(generations
[SCRATCH_GENERATION
].bytes_allocated
== 0);
4024 /* Set the global src and dest. generations */
4025 from_space
= generation
;
4027 new_space
= generation
+1;
4029 new_space
= SCRATCH_GENERATION
;
4031 /* Change to a new space for allocation, resetting the alloc_start_page */
4032 gc_alloc_generation
= new_space
;
4033 generations
[new_space
].alloc_start_page
= 0;
4034 generations
[new_space
].alloc_unboxed_start_page
= 0;
4035 generations
[new_space
].alloc_large_start_page
= 0;
4036 generations
[new_space
].alloc_large_unboxed_start_page
= 0;
4038 /* Before any pointers are preserved, the dont_move flags on the
4039 * pages need to be cleared. */
4040 for (i
= 0; i
< last_free_page
; i
++)
4041 if(page_table
[i
].gen
==from_space
)
4042 page_table
[i
].dont_move
= 0;
4044 /* Un-write-protect the old-space pages. This is essential for the
4045 * promoted pages as they may contain pointers into the old-space
4046 * which need to be scavenged. It also helps avoid unnecessary page
4047 * faults as forwarding pointers are written into them. They need to
4048 * be un-protected anyway before unmapping later. */
4049 unprotect_oldspace();
4051 /* Scavenge the stacks' conservative roots. */
4053 /* there are potentially two stacks for each thread: the main
4054 * stack, which may contain Lisp pointers, and the alternate stack.
4055 * We don't ever run Lisp code on the altstack, but it may
4056 * host a sigcontext with lisp objects in it */
4058 /* what we need to do: (1) find the stack pointer for the main
4059 * stack; scavenge it (2) find the interrupt context on the
4060 * alternate stack that might contain lisp values, and scavenge
4063 /* we assume that none of the preceding applies to the thread that
4064 * initiates GC. If you ever call GC from inside an altstack
4065 * handler, you will lose. */
4067 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
4068 /* And if we're saving a core, there's no point in being conservative. */
4069 if (conservative_stack
) {
4070 for_each_thread(th
) {
4072 void **esp
=(void **)-1;
4073 #ifdef LISP_FEATURE_SB_THREAD
4075 if(th
==arch_os_get_current_thread()) {
4076 /* Somebody is going to burn in hell for this, but casting
4077 * it in two steps shuts gcc up about strict aliasing. */
4078 esp
= (void **)((void *)&raise
);
4081 free
=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX
,th
));
4082 for(i
=free
-1;i
>=0;i
--) {
4083 os_context_t
*c
=th
->interrupt_contexts
[i
];
4084 esp1
= (void **) *os_context_register_addr(c
,reg_SP
);
4085 if (esp1
>=(void **)th
->control_stack_start
&&
4086 esp1
<(void **)th
->control_stack_end
) {
4087 if(esp1
<esp
) esp
=esp1
;
4088 preserve_context_registers(c
);
4093 esp
= (void **)((void *)&raise
);
4095 for (ptr
= ((void **)th
->control_stack_end
)-1; ptr
>= esp
; ptr
--) {
4096 preserve_pointer(*ptr
);
4103 if (gencgc_verbose
> 1) {
4104 long num_dont_move_pages
= count_dont_move_pages();
4106 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
4107 num_dont_move_pages
,
4108 npage_bytes(num_dont_move_pages
));
4112 /* Scavenge all the rest of the roots. */
4114 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
4116 * If not x86, we need to scavenge the interrupt context(s) and the
4119 scavenge_interrupt_contexts();
4120 scavenge_control_stack();
4123 /* Scavenge the Lisp functions of the interrupt handlers, taking
4124 * care to avoid SIG_DFL and SIG_IGN. */
4125 for (i
= 0; i
< NSIG
; i
++) {
4126 union interrupt_handler handler
= interrupt_handlers
[i
];
4127 if (!ARE_SAME_HANDLER(handler
.c
, SIG_IGN
) &&
4128 !ARE_SAME_HANDLER(handler
.c
, SIG_DFL
)) {
4129 scavenge((lispobj
*)(interrupt_handlers
+ i
), 1);
4132 /* Scavenge the binding stacks. */
4135 for_each_thread(th
) {
4136 long len
= (lispobj
*)get_binding_stack_pointer(th
) -
4137 th
->binding_stack_start
;
4138 scavenge((lispobj
*) th
->binding_stack_start
,len
);
4139 #ifdef LISP_FEATURE_SB_THREAD
4140 /* do the tls as well */
4141 len
=fixnum_value(SymbolValue(FREE_TLS_INDEX
,0)) -
4142 (sizeof (struct thread
))/(sizeof (lispobj
));
4143 scavenge((lispobj
*) (th
+1),len
);
4148 /* The original CMU CL code had scavenge-read-only-space code
4149 * controlled by the Lisp-level variable
4150 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4151 * wasn't documented under what circumstances it was useful or
4152 * safe to turn it on, so it's been turned off in SBCL. If you
4153 * want/need this functionality, and can test and document it,
4154 * please submit a patch. */
4156 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE
) != NIL
) {
4157 unsigned long read_only_space_size
=
4158 (lispobj
*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER
) -
4159 (lispobj
*)READ_ONLY_SPACE_START
;
4161 "/scavenge read only space: %d bytes\n",
4162 read_only_space_size
* sizeof(lispobj
)));
4163 scavenge( (lispobj
*) READ_ONLY_SPACE_START
, read_only_space_size
);
4167 /* Scavenge static space. */
4169 (lispobj
*)SymbolValue(STATIC_SPACE_FREE_POINTER
,0) -
4170 (lispobj
*)STATIC_SPACE_START
;
4171 if (gencgc_verbose
> 1) {
4173 "/scavenge static space: %d bytes\n",
4174 static_space_size
* sizeof(lispobj
)));
4176 scavenge( (lispobj
*) STATIC_SPACE_START
, static_space_size
);
4178 /* All generations but the generation being GCed need to be
4179 * scavenged. The new_space generation needs special handling as
4180 * objects may be moved in - it is handled separately below. */
4181 scavenge_generations(generation
+1, PSEUDO_STATIC_GENERATION
);
4183 /* Finally scavenge the new_space generation. Keep going until no
4184 * more objects are moved into the new generation */
4185 scavenge_newspace_generation(new_space
);
4187 /* FIXME: I tried reenabling this check when debugging unrelated
4188 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4189 * Since the current GC code seems to work well, I'm guessing that
4190 * this debugging code is just stale, but I haven't tried to
4191 * figure it out. It should be figured out and then either made to
4192 * work or just deleted. */
4193 #define RESCAN_CHECK 0
4195 /* As a check re-scavenge the newspace once; no new objects should
4198 long old_bytes_allocated
= bytes_allocated
;
4199 long bytes_allocated
;
4201 /* Start with a full scavenge. */
4202 scavenge_newspace_generation_one_scan(new_space
);
4204 /* Flush the current regions, updating the tables. */
4205 gc_alloc_update_all_page_tables();
4207 bytes_allocated
= bytes_allocated
- old_bytes_allocated
;
4209 if (bytes_allocated
!= 0) {
4210 lose("Rescan of new_space allocated %d more bytes.\n",
4216 scan_weak_hash_tables();
4217 scan_weak_pointers();
4219 /* Flush the current regions, updating the tables. */
4220 gc_alloc_update_all_page_tables();
4222 /* Free the pages in oldspace, but not those marked dont_move. */
4223 bytes_freed
= free_oldspace();
4225 /* If the GC is not raising the age then lower the generation back
4226 * to its normal generation number */
4228 for (i
= 0; i
< last_free_page
; i
++)
4229 if ((page_table
[i
].bytes_used
!= 0)
4230 && (page_table
[i
].gen
== SCRATCH_GENERATION
))
4231 page_table
[i
].gen
= generation
;
4232 gc_assert(generations
[generation
].bytes_allocated
== 0);
4233 generations
[generation
].bytes_allocated
=
4234 generations
[SCRATCH_GENERATION
].bytes_allocated
;
4235 generations
[SCRATCH_GENERATION
].bytes_allocated
= 0;
4238 /* Reset the alloc_start_page for generation. */
4239 generations
[generation
].alloc_start_page
= 0;
4240 generations
[generation
].alloc_unboxed_start_page
= 0;
4241 generations
[generation
].alloc_large_start_page
= 0;
4242 generations
[generation
].alloc_large_unboxed_start_page
= 0;
4244 if (generation
>= verify_gens
) {
4245 if (gencgc_verbose
) {
4249 verify_dynamic_space();
4252 /* Set the new gc trigger for the GCed generation. */
4253 generations
[generation
].gc_trigger
=
4254 generations
[generation
].bytes_allocated
4255 + generations
[generation
].bytes_consed_between_gc
;
4258 generations
[generation
].num_gc
= 0;
4260 ++generations
[generation
].num_gc
;
4262 #ifdef LUTEX_WIDETAG
4263 reap_lutexes(generation
);
4265 move_lutexes(generation
, generation
+1);
4269 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4271 update_dynamic_space_free_pointer(void)
4273 page_index_t last_page
= -1, i
;
4275 for (i
= 0; i
< last_free_page
; i
++)
4276 if (page_allocated_p(i
) && (page_table
[i
].bytes_used
!= 0))
4279 last_free_page
= last_page
+1;
4281 set_alloc_pointer((lispobj
)(page_address(last_free_page
)));
4282 return 0; /* dummy value: return something ... */
4286 remap_free_pages (page_index_t from
, page_index_t to
)
4288 page_index_t first_page
, last_page
;
4290 for (first_page
= from
; first_page
<= to
; first_page
++) {
4291 if (page_allocated_p(first_page
) ||
4292 (page_table
[first_page
].need_to_zero
== 0)) {
4296 last_page
= first_page
+ 1;
4297 while (page_free_p(last_page
) &&
4299 (page_table
[last_page
].need_to_zero
== 1)) {
4303 /* There's a mysterious Solaris/x86 problem with using mmap
4304 * tricks for memory zeroing. See sbcl-devel thread
4305 * "Re: patch: standalone executable redux".
4307 #if defined(LISP_FEATURE_SUNOS)
4308 zero_pages(first_page
, last_page
-1);
4310 zero_pages_with_mmap(first_page
, last_page
-1);
4313 first_page
= last_page
;
4317 generation_index_t small_generation_limit
= 1;
4319 /* GC all generations newer than last_gen, raising the objects in each
4320 * to the next older generation - we finish when all generations below
4321 * last_gen are empty. Then if last_gen is due for a GC, or if
4322 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4323 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4325 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4326 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4328 collect_garbage(generation_index_t last_gen
)
4330 generation_index_t gen
= 0, i
;
4333 /* The largest value of last_free_page seen since the time
4334 * remap_free_pages was called. */
4335 static page_index_t high_water_mark
= 0;
4337 FSHOW((stderr
, "/entering collect_garbage(%d)\n", last_gen
));
4341 if (last_gen
> HIGHEST_NORMAL_GENERATION
+1) {
4343 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4348 /* Flush the alloc regions updating the tables. */
4349 gc_alloc_update_all_page_tables();
4351 /* Verify the new objects created by Lisp code. */
4352 if (pre_verify_gen_0
) {
4353 FSHOW((stderr
, "pre-checking generation 0\n"));
4354 verify_generation(0);
4357 if (gencgc_verbose
> 1)
4358 print_generation_stats();
4361 /* Collect the generation. */
4363 if (gen
>= gencgc_oldest_gen_to_gc
) {
4364 /* Never raise the oldest generation. */
4369 || (generations
[gen
].num_gc
>= generations
[gen
].number_of_gcs_before_promotion
);
4372 if (gencgc_verbose
> 1) {
4374 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4377 generations
[gen
].bytes_allocated
,
4378 generations
[gen
].gc_trigger
,
4379 generations
[gen
].num_gc
));
4382 /* If an older generation is being filled, then update its
4385 generations
[gen
+1].cum_sum_bytes_allocated
+=
4386 generations
[gen
+1].bytes_allocated
;
4389 garbage_collect_generation(gen
, raise
);
4391 /* Reset the memory age cum_sum. */
4392 generations
[gen
].cum_sum_bytes_allocated
= 0;
4394 if (gencgc_verbose
> 1) {
4395 FSHOW((stderr
, "GC of generation %d finished:\n", gen
));
4396 print_generation_stats();
4400 } while ((gen
<= gencgc_oldest_gen_to_gc
)
4401 && ((gen
< last_gen
)
4402 || ((gen
<= gencgc_oldest_gen_to_gc
)
4404 && (generations
[gen
].bytes_allocated
4405 > generations
[gen
].gc_trigger
)
4406 && (generation_average_age(gen
)
4407 > generations
[gen
].minimum_age_before_gc
))));
4409 /* Now if gen-1 was raised all generations before gen are empty.
4410 * If it wasn't raised then all generations before gen-1 are empty.
4412 * Now objects within this gen's pages cannot point to younger
4413 * generations unless they are written to. This can be exploited
4414 * by write-protecting the pages of gen; then when younger
4415 * generations are GCed only the pages which have been written
4420 gen_to_wp
= gen
- 1;
4422 /* There's not much point in WPing pages in generation 0 as it is
4423 * never scavenged (except promoted pages). */
4424 if ((gen_to_wp
> 0) && enable_page_protection
) {
4425 /* Check that they are all empty. */
4426 for (i
= 0; i
< gen_to_wp
; i
++) {
4427 if (generations
[i
].bytes_allocated
)
4428 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4431 write_protect_generation_pages(gen_to_wp
);
4434 /* Set gc_alloc() back to generation 0. The current regions should
4435 * be flushed after the above GCs. */
4436 gc_assert((boxed_region
.free_pointer
- boxed_region
.start_addr
) == 0);
4437 gc_alloc_generation
= 0;
4439 /* Save the high-water mark before updating last_free_page */
4440 if (last_free_page
> high_water_mark
)
4441 high_water_mark
= last_free_page
;
4443 update_dynamic_space_free_pointer();
4445 auto_gc_trigger
= bytes_allocated
+ bytes_consed_between_gcs
;
4447 fprintf(stderr
,"Next gc when %ld bytes have been consed\n",
4450 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4453 if (gen
> small_generation_limit
) {
4454 if (last_free_page
> high_water_mark
)
4455 high_water_mark
= last_free_page
;
4456 remap_free_pages(0, high_water_mark
);
4457 high_water_mark
= 0;
4462 SHOW("returning from collect_garbage");
4465 /* This is called by Lisp PURIFY when it is finished. All live objects
4466 * will have been moved to the RO and Static heaps. The dynamic space
4467 * will need a full re-initialization. We don't bother having Lisp
4468 * PURIFY flush the current gc_alloc() region, as the page_tables are
4469 * re-initialized, and every page is zeroed to be sure. */
4475 if (gencgc_verbose
> 1) {
4476 SHOW("entering gc_free_heap");
4479 for (page
= 0; page
< page_table_pages
; page
++) {
4480 /* Skip free pages which should already be zero filled. */
4481 if (page_allocated_p(page
)) {
4482 void *page_start
, *addr
;
4484 /* Mark the page free. The other slots are assumed invalid
4485 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4486 * should not be write-protected -- except that the
4487 * generation is used for the current region but it sets
4489 page_table
[page
].allocated
= FREE_PAGE_FLAG
;
4490 page_table
[page
].bytes_used
= 0;
4492 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
4493 * about this change. */
4494 /* Zero the page. */
4495 page_start
= (void *)page_address(page
);
4497 /* First, remove any write-protection. */
4498 os_protect(page_start
, PAGE_BYTES
, OS_VM_PROT_ALL
);
4499 page_table
[page
].write_protected
= 0;
4501 os_invalidate(page_start
,PAGE_BYTES
);
4502 addr
= os_validate(page_start
,PAGE_BYTES
);
4503 if (addr
== NULL
|| addr
!= page_start
) {
4504 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4509 page_table
[page
].write_protected
= 0;
4511 } else if (gencgc_zero_check_during_free_heap
) {
4512 /* Double-check that the page is zero filled. */
4515 gc_assert(page_free_p(page
));
4516 gc_assert(page_table
[page
].bytes_used
== 0);
4517 page_start
= (long *)page_address(page
);
4518 for (i
=0; i
<1024; i
++) {
4519 if (page_start
[i
] != 0) {
4520 lose("free region not zero at %x\n", page_start
+ i
);
4526 bytes_allocated
= 0;
4528 /* Initialize the generations. */
4529 for (page
= 0; page
< NUM_GENERATIONS
; page
++) {
4530 generations
[page
].alloc_start_page
= 0;
4531 generations
[page
].alloc_unboxed_start_page
= 0;
4532 generations
[page
].alloc_large_start_page
= 0;
4533 generations
[page
].alloc_large_unboxed_start_page
= 0;
4534 generations
[page
].bytes_allocated
= 0;
4535 generations
[page
].gc_trigger
= 2000000;
4536 generations
[page
].num_gc
= 0;
4537 generations
[page
].cum_sum_bytes_allocated
= 0;
4538 generations
[page
].lutexes
= NULL
;
4541 if (gencgc_verbose
> 1)
4542 print_generation_stats();
4544 /* Initialize gc_alloc(). */
4545 gc_alloc_generation
= 0;
4547 gc_set_region_empty(&boxed_region
);
4548 gc_set_region_empty(&unboxed_region
);
4551 set_alloc_pointer((lispobj
)((char *)heap_base
));
4553 if (verify_after_free_heap
) {
4554 /* Check whether purify has left any bad pointers. */
4555 FSHOW((stderr
, "checking after free_heap\n"));
4565 /* Compute the number of pages needed for the dynamic space.
4566 * Dynamic space size should be aligned on page size. */
4567 page_table_pages
= dynamic_space_size
/PAGE_BYTES
;
4568 gc_assert(dynamic_space_size
== npage_bytes(page_table_pages
));
4570 page_table
= calloc(page_table_pages
, sizeof(struct page
));
4571 gc_assert(page_table
);
4574 scavtab
[WEAK_POINTER_WIDETAG
] = scav_weak_pointer
;
4575 transother
[SIMPLE_ARRAY_WIDETAG
] = trans_boxed_large
;
4577 #ifdef LUTEX_WIDETAG
4578 scavtab
[LUTEX_WIDETAG
] = scav_lutex
;
4579 transother
[LUTEX_WIDETAG
] = trans_lutex
;
4580 sizetab
[LUTEX_WIDETAG
] = size_lutex
;
4583 heap_base
= (void*)DYNAMIC_SPACE_START
;
4585 /* Initialize each page structure. */
4586 for (i
= 0; i
< page_table_pages
; i
++) {
4587 /* Initialize all pages as free. */
4588 page_table
[i
].allocated
= FREE_PAGE_FLAG
;
4589 page_table
[i
].bytes_used
= 0;
4591 /* Pages are not write-protected at startup. */
4592 page_table
[i
].write_protected
= 0;
4595 bytes_allocated
= 0;
4597 /* Initialize the generations.
4599 * FIXME: very similar to code in gc_free_heap(), should be shared */
4600 for (i
= 0; i
< NUM_GENERATIONS
; i
++) {
4601 generations
[i
].alloc_start_page
= 0;
4602 generations
[i
].alloc_unboxed_start_page
= 0;
4603 generations
[i
].alloc_large_start_page
= 0;
4604 generations
[i
].alloc_large_unboxed_start_page
= 0;
4605 generations
[i
].bytes_allocated
= 0;
4606 generations
[i
].gc_trigger
= 2000000;
4607 generations
[i
].num_gc
= 0;
4608 generations
[i
].cum_sum_bytes_allocated
= 0;
4609 /* the tune-able parameters */
4610 generations
[i
].bytes_consed_between_gc
= 2000000;
4611 generations
[i
].number_of_gcs_before_promotion
= 1;
4612 generations
[i
].minimum_age_before_gc
= 0.75;
4613 generations
[i
].lutexes
= NULL
;
4616 /* Initialize gc_alloc. */
4617 gc_alloc_generation
= 0;
4618 gc_set_region_empty(&boxed_region
);
4619 gc_set_region_empty(&unboxed_region
);
4624 /* Pick up the dynamic space from after a core load.
4626 * The ALLOCATION_POINTER points to the end of the dynamic space.
4630 gencgc_pickup_dynamic(void)
4632 page_index_t page
= 0;
4633 void *alloc_ptr
= (void *)get_alloc_pointer();
4634 lispobj
*prev
=(lispobj
*)page_address(page
);
4635 generation_index_t gen
= PSEUDO_STATIC_GENERATION
;
4637 lispobj
*first
,*ptr
= (lispobj
*)page_address(page
);
4638 page_table
[page
].gen
= gen
;
4639 page_table
[page
].bytes_used
= PAGE_BYTES
;
4640 page_table
[page
].large_object
= 0;
4641 page_table
[page
].write_protected
= 0;
4642 page_table
[page
].write_protected_cleared
= 0;
4643 page_table
[page
].dont_move
= 0;
4644 page_table
[page
].need_to_zero
= 1;
4646 if (!gencgc_partial_pickup
) {
4647 page_table
[page
].allocated
= BOXED_PAGE_FLAG
;
4648 first
=gc_search_space(prev
,(ptr
+2)-prev
,ptr
);
4651 page_table
[page
].region_start_offset
=
4652 page_address(page
) - (void *)prev
;
4655 } while (page_address(page
) < alloc_ptr
);
4657 #ifdef LUTEX_WIDETAG
4658 /* Lutexes have been registered in generation 0 by coreparse, and
4659 * need to be moved to the right one manually.
4661 move_lutexes(0, PSEUDO_STATIC_GENERATION
);
4664 last_free_page
= page
;
4666 generations
[gen
].bytes_allocated
= npage_bytes(page
);
4667 bytes_allocated
= npage_bytes(page
);
4669 gc_alloc_update_all_page_tables();
4670 write_protect_generation_pages(gen
);
4674 gc_initialize_pointers(void)
4676 gencgc_pickup_dynamic();
4680 /* alloc(..) is the external interface for memory allocation. It
4681 * allocates to generation 0. It is not called from within the garbage
4682 * collector as it is only external uses that need the check for heap
4683 * size (GC trigger) and to disable the interrupts (interrupts are
4684 * always disabled during a GC).
4686 * The vops that call alloc(..) assume that the returned space is zero-filled.
4687 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4689 * The check for a GC trigger is only performed when the current
4690 * region is full, so in most cases it's not needed. */
4692 static inline lispobj
*
4693 general_alloc_internal(long nbytes
, int page_type_flag
, struct alloc_region
*region
,
4694 struct thread
*thread
)
4696 #ifndef LISP_FEATURE_WIN32
4697 lispobj alloc_signal
;
4700 void *new_free_pointer
;
4702 gc_assert(nbytes
>0);
4704 /* Check for alignment allocation problems. */
4705 gc_assert((((unsigned long)region
->free_pointer
& LOWTAG_MASK
) == 0)
4706 && ((nbytes
& LOWTAG_MASK
) == 0));
4708 /* Must be inside a PA section. */
4709 gc_assert(get_pseudo_atomic_atomic(thread
));
4711 /* maybe we can do this quickly ... */
4712 new_free_pointer
= region
->free_pointer
+ nbytes
;
4713 if (new_free_pointer
<= region
->end_addr
) {
4714 new_obj
= (void*)(region
->free_pointer
);
4715 region
->free_pointer
= new_free_pointer
;
4716 return(new_obj
); /* yup */
4719 /* we have to go the long way around, it seems. Check whether we
4720 * should GC in the near future
4722 if (auto_gc_trigger
&& bytes_allocated
> auto_gc_trigger
) {
4723 /* Don't flood the system with interrupts if the need to gc is
4724 * already noted. This can happen for example when SUB-GC
4725 * allocates or after a gc triggered in a WITHOUT-GCING. */
4726 if (SymbolValue(GC_PENDING
,thread
) == NIL
) {
4727 /* set things up so that GC happens when we finish the PA
4729 SetSymbolValue(GC_PENDING
,T
,thread
);
4730 if (SymbolValue(GC_INHIBIT
,thread
) == NIL
) {
4731 set_pseudo_atomic_interrupted(thread
);
4732 #ifdef LISP_FEATURE_PPC
4733 /* PPC calls alloc() from a trap or from pa_alloc(),
4734 * look up the most context if it's from a trap. */
4736 os_context_t
*context
=
4737 thread
->interrupt_data
->allocation_trap_context
;
4738 maybe_save_gc_mask_and_block_deferrables
4739 (context
? os_context_sigmask_addr(context
) : NULL
);
4742 maybe_save_gc_mask_and_block_deferrables(NULL
);
4747 new_obj
= gc_alloc_with_region(nbytes
, page_type_flag
, region
, 0);
4749 #ifndef LISP_FEATURE_WIN32
4750 alloc_signal
= SymbolValue(ALLOC_SIGNAL
,thread
);
4751 if ((alloc_signal
& FIXNUM_TAG_MASK
) == 0) {
4752 if ((signed long) alloc_signal
<= 0) {
4753 SetSymbolValue(ALLOC_SIGNAL
, T
, thread
);
4756 SetSymbolValue(ALLOC_SIGNAL
,
4757 alloc_signal
- (1 << N_FIXNUM_TAG_BITS
),
4767 general_alloc(long nbytes
, int page_type_flag
)
4769 struct thread
*thread
= arch_os_get_current_thread();
4770 /* Select correct region, and call general_alloc_internal with it.
4771 * For other then boxed allocation we must lock first, since the
4772 * region is shared. */
4773 if (BOXED_PAGE_FLAG
& page_type_flag
) {
4774 #ifdef LISP_FEATURE_SB_THREAD
4775 struct alloc_region
*region
= (thread
? &(thread
->alloc_region
) : &boxed_region
);
4777 struct alloc_region
*region
= &boxed_region
;
4779 return general_alloc_internal(nbytes
, page_type_flag
, region
, thread
);
4780 } else if (UNBOXED_PAGE_FLAG
== page_type_flag
) {
4782 gc_assert(0 == thread_mutex_lock(&allocation_lock
));
4783 obj
= general_alloc_internal(nbytes
, page_type_flag
, &unboxed_region
, thread
);
4784 gc_assert(0 == thread_mutex_unlock(&allocation_lock
));
4787 lose("bad page type flag: %d", page_type_flag
);
4794 gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4795 return general_alloc(nbytes
, BOXED_PAGE_FLAG
);
4799 * shared support for the OS-dependent signal handlers which
4800 * catch GENCGC-related write-protect violations
4802 void unhandled_sigmemoryfault(void* addr
);
4804 /* Depending on which OS we're running under, different signals might
4805 * be raised for a violation of write protection in the heap. This
4806 * function factors out the common generational GC magic which needs
4807 * to invoked in this case, and should be called from whatever signal
4808 * handler is appropriate for the OS we're running under.
4810 * Return true if this signal is a normal generational GC thing that
4811 * we were able to handle, or false if it was abnormal and control
4812 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4815 gencgc_handle_wp_violation(void* fault_addr
)
4817 page_index_t page_index
= find_page_index(fault_addr
);
4820 FSHOW((stderr
, "heap WP violation? fault_addr=%x, page_index=%d\n",
4821 fault_addr
, page_index
));
4824 /* Check whether the fault is within the dynamic space. */
4825 if (page_index
== (-1)) {
4827 /* It can be helpful to be able to put a breakpoint on this
4828 * case to help diagnose low-level problems. */
4829 unhandled_sigmemoryfault(fault_addr
);
4831 /* not within the dynamic space -- not our responsibility */
4836 ret
= thread_mutex_lock(&free_pages_lock
);
4837 gc_assert(ret
== 0);
4838 if (page_table
[page_index
].write_protected
) {
4839 /* Unprotect the page. */
4840 os_protect(page_address(page_index
), PAGE_BYTES
, OS_VM_PROT_ALL
);
4841 page_table
[page_index
].write_protected_cleared
= 1;
4842 page_table
[page_index
].write_protected
= 0;
4844 /* The only acceptable reason for this signal on a heap
4845 * access is that GENCGC write-protected the page.
4846 * However, if two CPUs hit a wp page near-simultaneously,
4847 * we had better not have the second one lose here if it
4848 * does this test after the first one has already set wp=0
4850 if(page_table
[page_index
].write_protected_cleared
!= 1)
4851 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4852 page_index
, boxed_region
.first_page
,
4853 boxed_region
.last_page
);
4855 ret
= thread_mutex_unlock(&free_pages_lock
);
4856 gc_assert(ret
== 0);
4857 /* Don't worry, we can handle it. */
4861 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4862 * it's not just a case of the program hitting the write barrier, and
4863 * are about to let Lisp deal with it. It's basically just a
4864 * convenient place to set a gdb breakpoint. */
4866 unhandled_sigmemoryfault(void *addr
)
4869 void gc_alloc_update_all_page_tables(void)
4871 /* Flush the alloc regions updating the tables. */
4874 gc_alloc_update_page_tables(BOXED_PAGE_FLAG
, &th
->alloc_region
);
4875 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG
, &unboxed_region
);
4876 gc_alloc_update_page_tables(BOXED_PAGE_FLAG
, &boxed_region
);
4880 gc_set_region_empty(struct alloc_region
*region
)
4882 region
->first_page
= 0;
4883 region
->last_page
= -1;
4884 region
->start_addr
= page_address(0);
4885 region
->free_pointer
= page_address(0);
4886 region
->end_addr
= page_address(0);
4890 zero_all_free_pages()
4894 for (i
= 0; i
< last_free_page
; i
++) {
4895 if (page_free_p(i
)) {
4896 #ifdef READ_PROTECT_FREE_PAGES
4897 os_protect(page_address(i
),
4906 /* Things to do before doing a final GC before saving a core (without
4909 * + Pages in large_object pages aren't moved by the GC, so we need to
4910 * unset that flag from all pages.
4911 * + The pseudo-static generation isn't normally collected, but it seems
4912 * reasonable to collect it at least when saving a core. So move the
4913 * pages to a normal generation.
4916 prepare_for_final_gc ()
4919 for (i
= 0; i
< last_free_page
; i
++) {
4920 page_table
[i
].large_object
= 0;
4921 if (page_table
[i
].gen
== PSEUDO_STATIC_GENERATION
) {
4922 int used
= page_table
[i
].bytes_used
;
4923 page_table
[i
].gen
= HIGHEST_NORMAL_GENERATION
;
4924 generations
[PSEUDO_STATIC_GENERATION
].bytes_allocated
-= used
;
4925 generations
[HIGHEST_NORMAL_GENERATION
].bytes_allocated
+= used
;
4931 /* Do a non-conservative GC, and then save a core with the initial
4932 * function being set to the value of the static symbol
4933 * SB!VM:RESTART-LISP-FUNCTION */
4935 gc_and_save(char *filename
, boolean prepend_runtime
,
4936 boolean save_runtime_options
)
4939 void *runtime_bytes
= NULL
;
4940 size_t runtime_size
;
4942 file
= prepare_to_save(filename
, prepend_runtime
, &runtime_bytes
,
4947 conservative_stack
= 0;
4949 /* The filename might come from Lisp, and be moved by the now
4950 * non-conservative GC. */
4951 filename
= strdup(filename
);
4953 /* Collect twice: once into relatively high memory, and then back
4954 * into low memory. This compacts the retained data into the lower
4955 * pages, minimizing the size of the core file.
4957 prepare_for_final_gc();
4958 gencgc_alloc_start_page
= last_free_page
;
4959 collect_garbage(HIGHEST_NORMAL_GENERATION
+1);
4961 prepare_for_final_gc();
4962 gencgc_alloc_start_page
= -1;
4963 collect_garbage(HIGHEST_NORMAL_GENERATION
+1);
4965 if (prepend_runtime
)
4966 save_runtime_to_filehandle(file
, runtime_bytes
, runtime_size
);
4968 /* The dumper doesn't know that pages need to be zeroed before use. */
4969 zero_all_free_pages();
4970 save_to_filehandle(file
, filename
, SymbolValue(RESTART_LISP_FUNCTION
,0),
4971 prepend_runtime
, save_runtime_options
);
4972 /* Oops. Save still managed to fail. Since we've mangled the stack
4973 * beyond hope, there's not much we can do.
4974 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4975 * going to be rather unsatisfactory too... */
4976 lose("Attempt to save core after non-conservative GC failed.\n");