SSE intrinsics
[sbcl/pkhuong.git] / src / runtime / gencgc.c
blob7ee5c9a34655d177c6bab67fd88c733120d9a626
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <string.h>
32 #include "sbcl.h"
33 #include "runtime.h"
34 #include "os.h"
35 #include "interr.h"
36 #include "globals.h"
37 #include "interrupt.h"
38 #include "validate.h"
39 #include "lispregs.h"
40 #include "arch.h"
41 #include "gc.h"
42 #include "gc-internal.h"
43 #include "thread.h"
44 #include "pseudo-atomic.h"
45 #include "alloc.h"
46 #include "genesis/vector.h"
47 #include "genesis/weak-pointer.h"
48 #include "genesis/fdefn.h"
49 #include "genesis/simple-fun.h"
50 #include "save.h"
51 #include "genesis/hash-table.h"
52 #include "genesis/instance.h"
53 #include "genesis/layout.h"
54 #include "gencgc.h"
55 #if defined(LUTEX_WIDETAG)
56 #include "pthread-lutex.h"
57 #endif
59 /* forward declarations */
60 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
61 int page_type_flag);
65 * GC parameters
68 /* Generations 0-5 are normal collected generations, 6 is only used as
69 * scratch space by the collector, and should never get collected.
71 enum {
72 SCRATCH_GENERATION = PSEUDO_STATIC_GENERATION+1,
73 NUM_GENERATIONS
76 /* Should we use page protection to help avoid the scavenging of pages
77 * that don't have pointers to younger generations? */
78 boolean enable_page_protection = 1;
80 /* the minimum size (in bytes) for a large object*/
81 long large_object_size = 4 * PAGE_BYTES;
85 * debugging
88 /* the verbosity level. All non-error messages are disabled at level 0;
89 * and only a few rare messages are printed at level 1. */
90 #if QSHOW
91 boolean gencgc_verbose = 1;
92 #else
93 boolean gencgc_verbose = 0;
94 #endif
96 /* FIXME: At some point enable the various error-checking things below
97 * and see what they say. */
99 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
100 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
101 * check. */
102 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
104 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
105 boolean pre_verify_gen_0 = 0;
107 /* Should we check for bad pointers after gc_free_heap is called
108 * from Lisp PURIFY? */
109 boolean verify_after_free_heap = 0;
111 /* Should we print a note when code objects are found in the dynamic space
112 * during a heap verify? */
113 boolean verify_dynamic_code_check = 0;
115 /* Should we check code objects for fixup errors after they are transported? */
116 boolean check_code_fixups = 0;
118 /* Should we check that newly allocated regions are zero filled? */
119 boolean gencgc_zero_check = 0;
121 /* Should we check that the free space is zero filled? */
122 boolean gencgc_enable_verify_zero_fill = 0;
124 /* Should we check that free pages are zero filled during gc_free_heap
125 * called after Lisp PURIFY? */
126 boolean gencgc_zero_check_during_free_heap = 0;
128 /* When loading a core, don't do a full scan of the memory for the
129 * memory region boundaries. (Set to true by coreparse.c if the core
130 * contained a pagetable entry).
132 boolean gencgc_partial_pickup = 0;
134 /* If defined, free pages are read-protected to ensure that nothing
135 * accesses them.
138 /* #define READ_PROTECT_FREE_PAGES */
142 * GC structures and variables
145 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
146 unsigned long bytes_allocated = 0;
147 unsigned long auto_gc_trigger = 0;
149 /* the source and destination generations. These are set before a GC starts
150 * scavenging. */
151 generation_index_t from_space;
152 generation_index_t new_space;
154 /* Set to 1 when in GC */
155 boolean gc_active_p = 0;
157 /* should the GC be conservative on stack. If false (only right before
158 * saving a core), don't scan the stack / mark pages dont_move. */
159 static boolean conservative_stack = 1;
161 /* An array of page structures is allocated on gc initialization.
162 * This helps quickly map between an address its page structure.
163 * page_table_pages is set from the size of the dynamic space. */
164 page_index_t page_table_pages;
165 struct page *page_table;
167 static inline boolean page_allocated_p(page_index_t page) {
168 return (page_table[page].allocated != FREE_PAGE_FLAG);
171 static inline boolean page_no_region_p(page_index_t page) {
172 return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
175 static inline boolean page_allocated_no_region_p(page_index_t page) {
176 return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
177 && page_no_region_p(page));
180 static inline boolean page_free_p(page_index_t page) {
181 return (page_table[page].allocated == FREE_PAGE_FLAG);
184 static inline boolean page_boxed_p(page_index_t page) {
185 return (page_table[page].allocated & BOXED_PAGE_FLAG);
188 static inline boolean code_page_p(page_index_t page) {
189 return (page_table[page].allocated & CODE_PAGE_FLAG);
192 static inline boolean page_boxed_no_region_p(page_index_t page) {
193 return page_boxed_p(page) && page_no_region_p(page);
196 static inline boolean page_unboxed_p(page_index_t page) {
197 /* Both flags set == boxed code page */
198 return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
199 && !page_boxed_p(page));
202 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
203 return (page_boxed_no_region_p(page)
204 && (page_table[page].bytes_used != 0)
205 && !page_table[page].dont_move
206 && (page_table[page].gen == generation));
209 /* To map addresses to page structures the address of the first page
210 * is needed. */
211 static void *heap_base = NULL;
213 /* Calculate the start address for the given page number. */
214 inline void *
215 page_address(page_index_t page_num)
217 return (heap_base + (page_num * PAGE_BYTES));
220 /* Calculate the address where the allocation region associated with
221 * the page starts. */
222 static inline void *
223 page_region_start(page_index_t page_index)
225 return page_address(page_index)-page_table[page_index].region_start_offset;
228 /* Find the page index within the page_table for the given
229 * address. Return -1 on failure. */
230 inline page_index_t
231 find_page_index(void *addr)
233 if (addr >= heap_base) {
234 page_index_t index = ((pointer_sized_uint_t)addr -
235 (pointer_sized_uint_t)heap_base) / PAGE_BYTES;
236 if (index < page_table_pages)
237 return (index);
239 return (-1);
242 static size_t
243 npage_bytes(long npages)
245 gc_assert(npages>=0);
246 return ((unsigned long)npages)*PAGE_BYTES;
249 /* Check that X is a higher address than Y and return offset from Y to
250 * X in bytes. */
251 static inline
252 size_t void_diff(void *x, void *y)
254 gc_assert(x >= y);
255 return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
258 /* a structure to hold the state of a generation
260 * CAUTION: If you modify this, make sure to touch up the alien
261 * definition in src/code/gc.lisp accordingly. ...or better yes,
262 * deal with the FIXME there...
264 struct generation {
266 /* the first page that gc_alloc() checks on its next call */
267 page_index_t alloc_start_page;
269 /* the first page that gc_alloc_unboxed() checks on its next call */
270 page_index_t alloc_unboxed_start_page;
272 /* the first page that gc_alloc_large (boxed) considers on its next
273 * call. (Although it always allocates after the boxed_region.) */
274 page_index_t alloc_large_start_page;
276 /* the first page that gc_alloc_large (unboxed) considers on its
277 * next call. (Although it always allocates after the
278 * current_unboxed_region.) */
279 page_index_t alloc_large_unboxed_start_page;
281 /* the bytes allocated to this generation */
282 unsigned long bytes_allocated;
284 /* the number of bytes at which to trigger a GC */
285 unsigned long gc_trigger;
287 /* to calculate a new level for gc_trigger */
288 unsigned long bytes_consed_between_gc;
290 /* the number of GCs since the last raise */
291 int num_gc;
293 /* the number of GCs to run on the generations before raising objects to the
294 * next generation */
295 int number_of_gcs_before_promotion;
297 /* the cumulative sum of the bytes allocated to this generation. It is
298 * cleared after a GC on this generations, and update before new
299 * objects are added from a GC of a younger generation. Dividing by
300 * the bytes_allocated will give the average age of the memory in
301 * this generation since its last GC. */
302 unsigned long cum_sum_bytes_allocated;
304 /* a minimum average memory age before a GC will occur helps
305 * prevent a GC when a large number of new live objects have been
306 * added, in which case a GC could be a waste of time */
307 double minimum_age_before_gc;
309 /* A linked list of lutex structures in this generation, used for
310 * implementing lutex finalization. */
311 #ifdef LUTEX_WIDETAG
312 struct lutex *lutexes;
313 #else
314 void *lutexes;
315 #endif
318 /* an array of generation structures. There needs to be one more
319 * generation structure than actual generations as the oldest
320 * generation is temporarily raised then lowered. */
321 struct generation generations[NUM_GENERATIONS];
323 /* the oldest generation that is will currently be GCed by default.
324 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
326 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
328 * Setting this to 0 effectively disables the generational nature of
329 * the GC. In some applications generational GC may not be useful
330 * because there are no long-lived objects.
332 * An intermediate value could be handy after moving long-lived data
333 * into an older generation so an unnecessary GC of this long-lived
334 * data can be avoided. */
335 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
337 /* The maximum free page in the heap is maintained and used to update
338 * ALLOCATION_POINTER which is used by the room function to limit its
339 * search of the heap. XX Gencgc obviously needs to be better
340 * integrated with the Lisp code. */
341 page_index_t last_free_page;
343 #ifdef LISP_FEATURE_SB_THREAD
344 /* This lock is to prevent multiple threads from simultaneously
345 * allocating new regions which overlap each other. Note that the
346 * majority of GC is single-threaded, but alloc() may be called from
347 * >1 thread at a time and must be thread-safe. This lock must be
348 * seized before all accesses to generations[] or to parts of
349 * page_table[] that other threads may want to see */
350 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
351 /* This lock is used to protect non-thread-local allocation. */
352 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
353 #endif
357 * miscellaneous heap functions
360 /* Count the number of pages which are write-protected within the
361 * given generation. */
362 static long
363 count_write_protect_generation_pages(generation_index_t generation)
365 page_index_t i;
366 unsigned long count = 0;
368 for (i = 0; i < last_free_page; i++)
369 if (page_allocated_p(i)
370 && (page_table[i].gen == generation)
371 && (page_table[i].write_protected == 1))
372 count++;
373 return count;
376 /* Count the number of pages within the given generation. */
377 static long
378 count_generation_pages(generation_index_t generation)
380 page_index_t i;
381 long count = 0;
383 for (i = 0; i < last_free_page; i++)
384 if (page_allocated_p(i)
385 && (page_table[i].gen == generation))
386 count++;
387 return count;
390 #if QSHOW
391 static long
392 count_dont_move_pages(void)
394 page_index_t i;
395 long count = 0;
396 for (i = 0; i < last_free_page; i++) {
397 if (page_allocated_p(i)
398 && (page_table[i].dont_move != 0)) {
399 ++count;
402 return count;
404 #endif /* QSHOW */
406 /* Work through the pages and add up the number of bytes used for the
407 * given generation. */
408 static unsigned long
409 count_generation_bytes_allocated (generation_index_t gen)
411 page_index_t i;
412 unsigned long result = 0;
413 for (i = 0; i < last_free_page; i++) {
414 if (page_allocated_p(i)
415 && (page_table[i].gen == gen))
416 result += page_table[i].bytes_used;
418 return result;
421 /* Return the average age of the memory in a generation. */
422 extern double
423 generation_average_age(generation_index_t gen)
425 if (generations[gen].bytes_allocated == 0)
426 return 0.0;
428 return
429 ((double)generations[gen].cum_sum_bytes_allocated)
430 / ((double)generations[gen].bytes_allocated);
433 /* The verbose argument controls how much to print: 0 for normal
434 * level of detail; 1 for debugging. */
435 extern void
436 print_generation_stats() /* FIXME: should take FILE argument, or construct a string */
438 generation_index_t i;
440 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
441 #define FPU_STATE_SIZE 27
442 int fpu_state[FPU_STATE_SIZE];
443 #elif defined(LISP_FEATURE_PPC)
444 #define FPU_STATE_SIZE 32
445 long long fpu_state[FPU_STATE_SIZE];
446 #endif
448 /* This code uses the FP instructions which may be set up for Lisp
449 * so they need to be saved and reset for C. */
450 fpu_save(fpu_state);
452 /* Print the heap stats. */
453 fprintf(stderr,
454 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
456 for (i = 0; i < SCRATCH_GENERATION; i++) {
457 page_index_t j;
458 long boxed_cnt = 0;
459 long unboxed_cnt = 0;
460 long large_boxed_cnt = 0;
461 long large_unboxed_cnt = 0;
462 long pinned_cnt=0;
464 for (j = 0; j < last_free_page; j++)
465 if (page_table[j].gen == i) {
467 /* Count the number of boxed pages within the given
468 * generation. */
469 if (page_boxed_p(j)) {
470 if (page_table[j].large_object)
471 large_boxed_cnt++;
472 else
473 boxed_cnt++;
475 if(page_table[j].dont_move) pinned_cnt++;
476 /* Count the number of unboxed pages within the given
477 * generation. */
478 if (page_unboxed_p(j)) {
479 if (page_table[j].large_object)
480 large_unboxed_cnt++;
481 else
482 unboxed_cnt++;
486 gc_assert(generations[i].bytes_allocated
487 == count_generation_bytes_allocated(i));
488 fprintf(stderr,
489 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
491 generations[i].alloc_start_page,
492 generations[i].alloc_unboxed_start_page,
493 generations[i].alloc_large_start_page,
494 generations[i].alloc_large_unboxed_start_page,
495 boxed_cnt,
496 unboxed_cnt,
497 large_boxed_cnt,
498 large_unboxed_cnt,
499 pinned_cnt,
500 generations[i].bytes_allocated,
501 (npage_bytes(count_generation_pages(i))
502 - generations[i].bytes_allocated),
503 generations[i].gc_trigger,
504 count_write_protect_generation_pages(i),
505 generations[i].num_gc,
506 generation_average_age(i));
508 fprintf(stderr," Total bytes allocated = %lu\n", bytes_allocated);
509 fprintf(stderr," Dynamic-space-size bytes = %u\n", dynamic_space_size);
511 fpu_restore(fpu_state);
515 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
516 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
517 #endif
519 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
520 * if zeroing it ourselves, i.e. in practice give the memory back to the
521 * OS. Generally done after a large GC.
523 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
524 int i;
525 void *addr = page_address(start), *new_addr;
526 size_t length = npage_bytes(1+end-start);
528 if (start > end)
529 return;
531 os_invalidate(addr, length);
532 new_addr = os_validate(addr, length);
533 if (new_addr == NULL || new_addr != addr) {
534 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
535 start, new_addr);
538 for (i = start; i <= end; i++) {
539 page_table[i].need_to_zero = 0;
543 /* Zero the pages from START to END (inclusive). Generally done just after
544 * a new region has been allocated.
546 static void
547 zero_pages(page_index_t start, page_index_t end) {
548 if (start > end)
549 return;
551 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
552 fast_bzero(page_address(start), npage_bytes(1+end-start));
553 #else
554 bzero(page_address(start), npage_bytes(1+end-start));
555 #endif
559 /* Zero the pages from START to END (inclusive), except for those
560 * pages that are known to already zeroed. Mark all pages in the
561 * ranges as non-zeroed.
563 static void
564 zero_dirty_pages(page_index_t start, page_index_t end) {
565 page_index_t i;
567 for (i = start; i <= end; i++) {
568 if (page_table[i].need_to_zero == 1) {
569 zero_pages(start, end);
570 break;
574 for (i = start; i <= end; i++) {
575 page_table[i].need_to_zero = 1;
581 * To support quick and inline allocation, regions of memory can be
582 * allocated and then allocated from with just a free pointer and a
583 * check against an end address.
585 * Since objects can be allocated to spaces with different properties
586 * e.g. boxed/unboxed, generation, ages; there may need to be many
587 * allocation regions.
589 * Each allocation region may start within a partly used page. Many
590 * features of memory use are noted on a page wise basis, e.g. the
591 * generation; so if a region starts within an existing allocated page
592 * it must be consistent with this page.
594 * During the scavenging of the newspace, objects will be transported
595 * into an allocation region, and pointers updated to point to this
596 * allocation region. It is possible that these pointers will be
597 * scavenged again before the allocation region is closed, e.g. due to
598 * trans_list which jumps all over the place to cleanup the list. It
599 * is important to be able to determine properties of all objects
600 * pointed to when scavenging, e.g to detect pointers to the oldspace.
601 * Thus it's important that the allocation regions have the correct
602 * properties set when allocated, and not just set when closed. The
603 * region allocation routines return regions with the specified
604 * properties, and grab all the pages, setting their properties
605 * appropriately, except that the amount used is not known.
607 * These regions are used to support quicker allocation using just a
608 * free pointer. The actual space used by the region is not reflected
609 * in the pages tables until it is closed. It can't be scavenged until
610 * closed.
612 * When finished with the region it should be closed, which will
613 * update the page tables for the actual space used returning unused
614 * space. Further it may be noted in the new regions which is
615 * necessary when scavenging the newspace.
617 * Large objects may be allocated directly without an allocation
618 * region, the page tables are updated immediately.
620 * Unboxed objects don't contain pointers to other objects and so
621 * don't need scavenging. Further they can't contain pointers to
622 * younger generations so WP is not needed. By allocating pages to
623 * unboxed objects the whole page never needs scavenging or
624 * write-protecting. */
626 /* We are only using two regions at present. Both are for the current
627 * newspace generation. */
628 struct alloc_region boxed_region;
629 struct alloc_region unboxed_region;
631 /* The generation currently being allocated to. */
632 static generation_index_t gc_alloc_generation;
634 static inline page_index_t
635 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
637 if (large) {
638 if (UNBOXED_PAGE_FLAG == page_type_flag) {
639 return generations[generation].alloc_large_unboxed_start_page;
640 } else if (BOXED_PAGE_FLAG & page_type_flag) {
641 /* Both code and data. */
642 return generations[generation].alloc_large_start_page;
643 } else {
644 lose("bad page type flag: %d", page_type_flag);
646 } else {
647 if (UNBOXED_PAGE_FLAG == page_type_flag) {
648 return generations[generation].alloc_unboxed_start_page;
649 } else if (BOXED_PAGE_FLAG & page_type_flag) {
650 /* Both code and data. */
651 return generations[generation].alloc_start_page;
652 } else {
653 lose("bad page_type_flag: %d", page_type_flag);
658 static inline void
659 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
660 page_index_t page)
662 if (large) {
663 if (UNBOXED_PAGE_FLAG == page_type_flag) {
664 generations[generation].alloc_large_unboxed_start_page = page;
665 } else if (BOXED_PAGE_FLAG & page_type_flag) {
666 /* Both code and data. */
667 generations[generation].alloc_large_start_page = page;
668 } else {
669 lose("bad page type flag: %d", page_type_flag);
671 } else {
672 if (UNBOXED_PAGE_FLAG == page_type_flag) {
673 generations[generation].alloc_unboxed_start_page = page;
674 } else if (BOXED_PAGE_FLAG & page_type_flag) {
675 /* Both code and data. */
676 generations[generation].alloc_start_page = page;
677 } else {
678 lose("bad page type flag: %d", page_type_flag);
683 /* Find a new region with room for at least the given number of bytes.
685 * It starts looking at the current generation's alloc_start_page. So
686 * may pick up from the previous region if there is enough space. This
687 * keeps the allocation contiguous when scavenging the newspace.
689 * The alloc_region should have been closed by a call to
690 * gc_alloc_update_page_tables(), and will thus be in an empty state.
692 * To assist the scavenging functions write-protected pages are not
693 * used. Free pages should not be write-protected.
695 * It is critical to the conservative GC that the start of regions be
696 * known. To help achieve this only small regions are allocated at a
697 * time.
699 * During scavenging, pointers may be found to within the current
700 * region and the page generation must be set so that pointers to the
701 * from space can be recognized. Therefore the generation of pages in
702 * the region are set to gc_alloc_generation. To prevent another
703 * allocation call using the same pages, all the pages in the region
704 * are allocated, although they will initially be empty.
706 static void
707 gc_alloc_new_region(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
709 page_index_t first_page;
710 page_index_t last_page;
711 unsigned long bytes_found;
712 page_index_t i;
713 int ret;
716 FSHOW((stderr,
717 "/alloc_new_region for %d bytes from gen %d\n",
718 nbytes, gc_alloc_generation));
721 /* Check that the region is in a reset state. */
722 gc_assert((alloc_region->first_page == 0)
723 && (alloc_region->last_page == -1)
724 && (alloc_region->free_pointer == alloc_region->end_addr));
725 ret = thread_mutex_lock(&free_pages_lock);
726 gc_assert(ret == 0);
727 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
728 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
729 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
730 + npage_bytes(last_page-first_page);
732 /* Set up the alloc_region. */
733 alloc_region->first_page = first_page;
734 alloc_region->last_page = last_page;
735 alloc_region->start_addr = page_table[first_page].bytes_used
736 + page_address(first_page);
737 alloc_region->free_pointer = alloc_region->start_addr;
738 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
740 /* Set up the pages. */
742 /* The first page may have already been in use. */
743 if (page_table[first_page].bytes_used == 0) {
744 page_table[first_page].allocated = page_type_flag;
745 page_table[first_page].gen = gc_alloc_generation;
746 page_table[first_page].large_object = 0;
747 page_table[first_page].region_start_offset = 0;
750 gc_assert(page_table[first_page].allocated == page_type_flag);
751 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
753 gc_assert(page_table[first_page].gen == gc_alloc_generation);
754 gc_assert(page_table[first_page].large_object == 0);
756 for (i = first_page+1; i <= last_page; i++) {
757 page_table[i].allocated = page_type_flag;
758 page_table[i].gen = gc_alloc_generation;
759 page_table[i].large_object = 0;
760 /* This may not be necessary for unboxed regions (think it was
761 * broken before!) */
762 page_table[i].region_start_offset =
763 void_diff(page_address(i),alloc_region->start_addr);
764 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
766 /* Bump up last_free_page. */
767 if (last_page+1 > last_free_page) {
768 last_free_page = last_page+1;
769 /* do we only want to call this on special occasions? like for
770 * boxed_region? */
771 set_alloc_pointer((lispobj)page_address(last_free_page));
773 ret = thread_mutex_unlock(&free_pages_lock);
774 gc_assert(ret == 0);
776 #ifdef READ_PROTECT_FREE_PAGES
777 os_protect(page_address(first_page),
778 npage_bytes(1+last_page-first_page),
779 OS_VM_PROT_ALL);
780 #endif
782 /* If the first page was only partial, don't check whether it's
783 * zeroed (it won't be) and don't zero it (since the parts that
784 * we're interested in are guaranteed to be zeroed).
786 if (page_table[first_page].bytes_used) {
787 first_page++;
790 zero_dirty_pages(first_page, last_page);
792 /* we can do this after releasing free_pages_lock */
793 if (gencgc_zero_check) {
794 long *p;
795 for (p = (long *)alloc_region->start_addr;
796 p < (long *)alloc_region->end_addr; p++) {
797 if (*p != 0) {
798 /* KLUDGE: It would be nice to use %lx and explicit casts
799 * (long) in code like this, so that it is less likely to
800 * break randomly when running on a machine with different
801 * word sizes. -- WHN 19991129 */
802 lose("The new region at %x is not zero (start=%p, end=%p).\n",
803 p, alloc_region->start_addr, alloc_region->end_addr);
809 /* If the record_new_objects flag is 2 then all new regions created
810 * are recorded.
812 * If it's 1 then then it is only recorded if the first page of the
813 * current region is <= new_areas_ignore_page. This helps avoid
814 * unnecessary recording when doing full scavenge pass.
816 * The new_object structure holds the page, byte offset, and size of
817 * new regions of objects. Each new area is placed in the array of
818 * these structures pointer to by new_areas. new_areas_index holds the
819 * offset into new_areas.
821 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
822 * later code must detect this and handle it, probably by doing a full
823 * scavenge of a generation. */
824 #define NUM_NEW_AREAS 512
825 static int record_new_objects = 0;
826 static page_index_t new_areas_ignore_page;
827 struct new_area {
828 page_index_t page;
829 size_t offset;
830 size_t size;
832 static struct new_area (*new_areas)[];
833 static long new_areas_index;
834 long max_new_areas;
836 /* Add a new area to new_areas. */
837 static void
838 add_new_area(page_index_t first_page, size_t offset, size_t size)
840 unsigned long new_area_start,c;
841 long i;
843 /* Ignore if full. */
844 if (new_areas_index >= NUM_NEW_AREAS)
845 return;
847 switch (record_new_objects) {
848 case 0:
849 return;
850 case 1:
851 if (first_page > new_areas_ignore_page)
852 return;
853 break;
854 case 2:
855 break;
856 default:
857 gc_abort();
860 new_area_start = npage_bytes(first_page) + offset;
862 /* Search backwards for a prior area that this follows from. If
863 found this will save adding a new area. */
864 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
865 unsigned long area_end =
866 npage_bytes((*new_areas)[i].page)
867 + (*new_areas)[i].offset
868 + (*new_areas)[i].size;
869 /*FSHOW((stderr,
870 "/add_new_area S1 %d %d %d %d\n",
871 i, c, new_area_start, area_end));*/
872 if (new_area_start == area_end) {
873 /*FSHOW((stderr,
874 "/adding to [%d] %d %d %d with %d %d %d:\n",
876 (*new_areas)[i].page,
877 (*new_areas)[i].offset,
878 (*new_areas)[i].size,
879 first_page,
880 offset,
881 size);*/
882 (*new_areas)[i].size += size;
883 return;
887 (*new_areas)[new_areas_index].page = first_page;
888 (*new_areas)[new_areas_index].offset = offset;
889 (*new_areas)[new_areas_index].size = size;
890 /*FSHOW((stderr,
891 "/new_area %d page %d offset %d size %d\n",
892 new_areas_index, first_page, offset, size));*/
893 new_areas_index++;
895 /* Note the max new_areas used. */
896 if (new_areas_index > max_new_areas)
897 max_new_areas = new_areas_index;
900 /* Update the tables for the alloc_region. The region may be added to
901 * the new_areas.
903 * When done the alloc_region is set up so that the next quick alloc
904 * will fail safely and thus a new region will be allocated. Further
905 * it is safe to try to re-update the page table of this reset
906 * alloc_region. */
907 void
908 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
910 int more;
911 page_index_t first_page;
912 page_index_t next_page;
913 unsigned long bytes_used;
914 unsigned long orig_first_page_bytes_used;
915 unsigned long region_size;
916 unsigned long byte_cnt;
917 int ret;
920 first_page = alloc_region->first_page;
922 /* Catch an unused alloc_region. */
923 if ((first_page == 0) && (alloc_region->last_page == -1))
924 return;
926 next_page = first_page+1;
928 ret = thread_mutex_lock(&free_pages_lock);
929 gc_assert(ret == 0);
930 if (alloc_region->free_pointer != alloc_region->start_addr) {
931 /* some bytes were allocated in the region */
932 orig_first_page_bytes_used = page_table[first_page].bytes_used;
934 gc_assert(alloc_region->start_addr ==
935 (page_address(first_page)
936 + page_table[first_page].bytes_used));
938 /* All the pages used need to be updated */
940 /* Update the first page. */
942 /* If the page was free then set up the gen, and
943 * region_start_offset. */
944 if (page_table[first_page].bytes_used == 0)
945 gc_assert(page_table[first_page].region_start_offset == 0);
946 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
948 gc_assert(page_table[first_page].allocated & page_type_flag);
949 gc_assert(page_table[first_page].gen == gc_alloc_generation);
950 gc_assert(page_table[first_page].large_object == 0);
952 byte_cnt = 0;
954 /* Calculate the number of bytes used in this page. This is not
955 * always the number of new bytes, unless it was free. */
956 more = 0;
957 if ((bytes_used = void_diff(alloc_region->free_pointer,
958 page_address(first_page)))
959 >PAGE_BYTES) {
960 bytes_used = PAGE_BYTES;
961 more = 1;
963 page_table[first_page].bytes_used = bytes_used;
964 byte_cnt += bytes_used;
967 /* All the rest of the pages should be free. We need to set
968 * their region_start_offset pointer to the start of the
969 * region, and set the bytes_used. */
970 while (more) {
971 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
972 gc_assert(page_table[next_page].allocated & page_type_flag);
973 gc_assert(page_table[next_page].bytes_used == 0);
974 gc_assert(page_table[next_page].gen == gc_alloc_generation);
975 gc_assert(page_table[next_page].large_object == 0);
977 gc_assert(page_table[next_page].region_start_offset ==
978 void_diff(page_address(next_page),
979 alloc_region->start_addr));
981 /* Calculate the number of bytes used in this page. */
982 more = 0;
983 if ((bytes_used = void_diff(alloc_region->free_pointer,
984 page_address(next_page)))>PAGE_BYTES) {
985 bytes_used = PAGE_BYTES;
986 more = 1;
988 page_table[next_page].bytes_used = bytes_used;
989 byte_cnt += bytes_used;
991 next_page++;
994 region_size = void_diff(alloc_region->free_pointer,
995 alloc_region->start_addr);
996 bytes_allocated += region_size;
997 generations[gc_alloc_generation].bytes_allocated += region_size;
999 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1001 /* Set the generations alloc restart page to the last page of
1002 * the region. */
1003 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1005 /* Add the region to the new_areas if requested. */
1006 if (BOXED_PAGE_FLAG & page_type_flag)
1007 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1010 FSHOW((stderr,
1011 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1012 region_size,
1013 gc_alloc_generation));
1015 } else {
1016 /* There are no bytes allocated. Unallocate the first_page if
1017 * there are 0 bytes_used. */
1018 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1019 if (page_table[first_page].bytes_used == 0)
1020 page_table[first_page].allocated = FREE_PAGE_FLAG;
1023 /* Unallocate any unused pages. */
1024 while (next_page <= alloc_region->last_page) {
1025 gc_assert(page_table[next_page].bytes_used == 0);
1026 page_table[next_page].allocated = FREE_PAGE_FLAG;
1027 next_page++;
1029 ret = thread_mutex_unlock(&free_pages_lock);
1030 gc_assert(ret == 0);
1032 /* alloc_region is per-thread, we're ok to do this unlocked */
1033 gc_set_region_empty(alloc_region);
1036 static inline void *gc_quick_alloc(long nbytes);
1038 /* Allocate a possibly large object. */
1039 void *
1040 gc_alloc_large(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
1042 page_index_t first_page;
1043 page_index_t last_page;
1044 int orig_first_page_bytes_used;
1045 long byte_cnt;
1046 int more;
1047 unsigned long bytes_used;
1048 page_index_t next_page;
1049 int ret;
1051 ret = thread_mutex_lock(&free_pages_lock);
1052 gc_assert(ret == 0);
1054 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1055 if (first_page <= alloc_region->last_page) {
1056 first_page = alloc_region->last_page+1;
1059 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1061 gc_assert(first_page > alloc_region->last_page);
1063 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1065 /* Set up the pages. */
1066 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1068 /* If the first page was free then set up the gen, and
1069 * region_start_offset. */
1070 if (page_table[first_page].bytes_used == 0) {
1071 page_table[first_page].allocated = page_type_flag;
1072 page_table[first_page].gen = gc_alloc_generation;
1073 page_table[first_page].region_start_offset = 0;
1074 page_table[first_page].large_object = 1;
1077 gc_assert(page_table[first_page].allocated == page_type_flag);
1078 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1079 gc_assert(page_table[first_page].large_object == 1);
1081 byte_cnt = 0;
1083 /* Calc. the number of bytes used in this page. This is not
1084 * always the number of new bytes, unless it was free. */
1085 more = 0;
1086 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1087 bytes_used = PAGE_BYTES;
1088 more = 1;
1090 page_table[first_page].bytes_used = bytes_used;
1091 byte_cnt += bytes_used;
1093 next_page = first_page+1;
1095 /* All the rest of the pages should be free. We need to set their
1096 * region_start_offset pointer to the start of the region, and set
1097 * the bytes_used. */
1098 while (more) {
1099 gc_assert(page_free_p(next_page));
1100 gc_assert(page_table[next_page].bytes_used == 0);
1101 page_table[next_page].allocated = page_type_flag;
1102 page_table[next_page].gen = gc_alloc_generation;
1103 page_table[next_page].large_object = 1;
1105 page_table[next_page].region_start_offset =
1106 npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1108 /* Calculate the number of bytes used in this page. */
1109 more = 0;
1110 bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1111 if (bytes_used > PAGE_BYTES) {
1112 bytes_used = PAGE_BYTES;
1113 more = 1;
1115 page_table[next_page].bytes_used = bytes_used;
1116 page_table[next_page].write_protected=0;
1117 page_table[next_page].dont_move=0;
1118 byte_cnt += bytes_used;
1119 next_page++;
1122 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1124 bytes_allocated += nbytes;
1125 generations[gc_alloc_generation].bytes_allocated += nbytes;
1127 /* Add the region to the new_areas if requested. */
1128 if (BOXED_PAGE_FLAG & page_type_flag)
1129 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1131 /* Bump up last_free_page */
1132 if (last_page+1 > last_free_page) {
1133 last_free_page = last_page+1;
1134 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1136 ret = thread_mutex_unlock(&free_pages_lock);
1137 gc_assert(ret == 0);
1139 #ifdef READ_PROTECT_FREE_PAGES
1140 os_protect(page_address(first_page),
1141 npage_bytes(1+last_page-first_page),
1142 OS_VM_PROT_ALL);
1143 #endif
1145 zero_dirty_pages(first_page, last_page);
1147 return page_address(first_page);
1150 static page_index_t gencgc_alloc_start_page = -1;
1152 void
1153 gc_heap_exhausted_error_or_lose (long available, long requested)
1155 struct thread *thread = arch_os_get_current_thread();
1156 /* Write basic information before doing anything else: if we don't
1157 * call to lisp this is a must, and even if we do there is always
1158 * the danger that we bounce back here before the error has been
1159 * handled, or indeed even printed.
1161 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1162 gc_active_p ? "garbage collection" : "allocation",
1163 available, requested);
1164 if (gc_active_p || (available == 0)) {
1165 /* If we are in GC, or totally out of memory there is no way
1166 * to sanely transfer control to the lisp-side of things.
1168 print_generation_stats();
1169 fprintf(stderr, "GC control variables:\n");
1170 fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1171 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
1172 (SymbolValue(GC_PENDING, thread) == T) ?
1173 "true" : ((SymbolValue(GC_PENDING, thread) == NIL) ?
1174 "false" : "in progress"));
1175 #ifdef LISP_FEATURE_SB_THREAD
1176 fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
1177 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
1178 #endif
1179 lose("Heap exhausted, game over.");
1181 else {
1182 /* FIXME: assert free_pages_lock held */
1183 (void)thread_mutex_unlock(&free_pages_lock);
1184 gc_assert(get_pseudo_atomic_atomic(thread));
1185 clear_pseudo_atomic_atomic(thread);
1186 if (get_pseudo_atomic_interrupted(thread))
1187 do_pending_interrupt();
1188 /* Another issue is that signalling HEAP-EXHAUSTED error leads
1189 * to running user code at arbitrary places, even in a
1190 * WITHOUT-INTERRUPTS which may lead to a deadlock without
1191 * running out of the heap. So at this point all bets are
1192 * off. */
1193 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
1194 corruption_warning_and_maybe_lose
1195 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1196 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1197 alloc_number(available), alloc_number(requested));
1198 lose("HEAP-EXHAUSTED-ERROR fell through");
1202 page_index_t
1203 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes,
1204 int page_type_flag)
1206 page_index_t first_page, last_page;
1207 page_index_t restart_page = *restart_page_ptr;
1208 long bytes_found = 0;
1209 long most_bytes_found = 0;
1210 /* FIXME: assert(free_pages_lock is held); */
1212 /* Toggled by gc_and_save for heap compaction, normally -1. */
1213 if (gencgc_alloc_start_page != -1) {
1214 restart_page = gencgc_alloc_start_page;
1217 gc_assert(nbytes>=0);
1218 if (((unsigned long)nbytes)>=PAGE_BYTES) {
1219 /* Search for a contiguous free space of at least nbytes,
1220 * aligned on a page boundary. The page-alignment is strictly
1221 * speaking needed only for objects at least large_object_size
1222 * bytes in size. */
1223 do {
1224 first_page = restart_page;
1225 while ((first_page < page_table_pages) &&
1226 page_allocated_p(first_page))
1227 first_page++;
1229 last_page = first_page;
1230 bytes_found = PAGE_BYTES;
1231 while ((bytes_found < nbytes) &&
1232 (last_page < (page_table_pages-1)) &&
1233 page_free_p(last_page+1)) {
1234 last_page++;
1235 bytes_found += PAGE_BYTES;
1236 gc_assert(0 == page_table[last_page].bytes_used);
1237 gc_assert(0 == page_table[last_page].write_protected);
1239 if (bytes_found > most_bytes_found)
1240 most_bytes_found = bytes_found;
1241 restart_page = last_page + 1;
1242 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1244 } else {
1245 /* Search for a page with at least nbytes of space. We prefer
1246 * not to split small objects on multiple pages, to reduce the
1247 * number of contiguous allocation regions spaning multiple
1248 * pages: this helps avoid excessive conservativism. */
1249 first_page = restart_page;
1250 while (first_page < page_table_pages) {
1251 if (page_free_p(first_page))
1253 gc_assert(0 == page_table[first_page].bytes_used);
1254 bytes_found = PAGE_BYTES;
1255 break;
1257 else if ((page_table[first_page].allocated == page_type_flag) &&
1258 (page_table[first_page].large_object == 0) &&
1259 (page_table[first_page].gen == gc_alloc_generation) &&
1260 (page_table[first_page].write_protected == 0) &&
1261 (page_table[first_page].dont_move == 0))
1263 bytes_found = PAGE_BYTES
1264 - page_table[first_page].bytes_used;
1265 if (bytes_found > most_bytes_found)
1266 most_bytes_found = bytes_found;
1267 if (bytes_found >= nbytes)
1268 break;
1270 first_page++;
1272 last_page = first_page;
1273 restart_page = first_page + 1;
1276 /* Check for a failure */
1277 if (bytes_found < nbytes) {
1278 gc_assert(restart_page >= page_table_pages);
1279 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1282 gc_assert(page_table[first_page].write_protected == 0);
1284 *restart_page_ptr = first_page;
1285 return last_page;
1288 /* Allocate bytes. All the rest of the special-purpose allocation
1289 * functions will eventually call this */
1291 void *
1292 gc_alloc_with_region(long nbytes,int page_type_flag, struct alloc_region *my_region,
1293 int quick_p)
1295 void *new_free_pointer;
1297 if (nbytes>=large_object_size)
1298 return gc_alloc_large(nbytes, page_type_flag, my_region);
1300 /* Check whether there is room in the current alloc region. */
1301 new_free_pointer = my_region->free_pointer + nbytes;
1303 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1304 my_region->free_pointer, new_free_pointer); */
1306 if (new_free_pointer <= my_region->end_addr) {
1307 /* If so then allocate from the current alloc region. */
1308 void *new_obj = my_region->free_pointer;
1309 my_region->free_pointer = new_free_pointer;
1311 /* Unless a `quick' alloc was requested, check whether the
1312 alloc region is almost empty. */
1313 if (!quick_p &&
1314 void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1315 /* If so, finished with the current region. */
1316 gc_alloc_update_page_tables(page_type_flag, my_region);
1317 /* Set up a new region. */
1318 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1321 return((void *)new_obj);
1324 /* Else not enough free space in the current region: retry with a
1325 * new region. */
1327 gc_alloc_update_page_tables(page_type_flag, my_region);
1328 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1329 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1332 /* these are only used during GC: all allocation from the mutator calls
1333 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1334 * region */
1336 static inline void *
1337 gc_quick_alloc(long nbytes)
1339 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
1342 static inline void *
1343 gc_quick_alloc_large(long nbytes)
1345 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG ,ALLOC_QUICK);
1348 static inline void *
1349 gc_alloc_unboxed(long nbytes)
1351 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
1354 static inline void *
1355 gc_quick_alloc_unboxed(long nbytes)
1357 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1360 static inline void *
1361 gc_quick_alloc_large_unboxed(long nbytes)
1363 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1367 /* Copy a large boxed object. If the object is in a large object
1368 * region then it is simply promoted, else it is copied. If it's large
1369 * enough then it's copied to a large object region.
1371 * Vectors may have shrunk. If the object is not copied the space
1372 * needs to be reclaimed, and the page_tables corrected. */
1373 lispobj
1374 copy_large_object(lispobj object, long nwords)
1376 int tag;
1377 lispobj *new;
1378 page_index_t first_page;
1380 gc_assert(is_lisp_pointer(object));
1381 gc_assert(from_space_p(object));
1382 gc_assert((nwords & 0x01) == 0);
1385 /* Check whether it's in a large object region. */
1386 first_page = find_page_index((void *)object);
1387 gc_assert(first_page >= 0);
1389 if (page_table[first_page].large_object) {
1391 /* Promote the object. */
1393 unsigned long remaining_bytes;
1394 page_index_t next_page;
1395 unsigned long bytes_freed;
1396 unsigned long old_bytes_used;
1398 /* Note: Any page write-protection must be removed, else a
1399 * later scavenge_newspace may incorrectly not scavenge these
1400 * pages. This would not be necessary if they are added to the
1401 * new areas, but let's do it for them all (they'll probably
1402 * be written anyway?). */
1404 gc_assert(page_table[first_page].region_start_offset == 0);
1406 next_page = first_page;
1407 remaining_bytes = nwords*N_WORD_BYTES;
1408 while (remaining_bytes > PAGE_BYTES) {
1409 gc_assert(page_table[next_page].gen == from_space);
1410 gc_assert(page_boxed_p(next_page));
1411 gc_assert(page_table[next_page].large_object);
1412 gc_assert(page_table[next_page].region_start_offset ==
1413 npage_bytes(next_page-first_page));
1414 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1416 page_table[next_page].gen = new_space;
1418 /* Remove any write-protection. We should be able to rely
1419 * on the write-protect flag to avoid redundant calls. */
1420 if (page_table[next_page].write_protected) {
1421 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1422 page_table[next_page].write_protected = 0;
1424 remaining_bytes -= PAGE_BYTES;
1425 next_page++;
1428 /* Now only one page remains, but the object may have shrunk
1429 * so there may be more unused pages which will be freed. */
1431 /* The object may have shrunk but shouldn't have grown. */
1432 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1434 page_table[next_page].gen = new_space;
1435 gc_assert(page_boxed_p(next_page));
1437 /* Adjust the bytes_used. */
1438 old_bytes_used = page_table[next_page].bytes_used;
1439 page_table[next_page].bytes_used = remaining_bytes;
1441 bytes_freed = old_bytes_used - remaining_bytes;
1443 /* Free any remaining pages; needs care. */
1444 next_page++;
1445 while ((old_bytes_used == PAGE_BYTES) &&
1446 (page_table[next_page].gen == from_space) &&
1447 page_boxed_p(next_page) &&
1448 page_table[next_page].large_object &&
1449 (page_table[next_page].region_start_offset ==
1450 npage_bytes(next_page - first_page))) {
1451 /* Checks out OK, free the page. Don't need to bother zeroing
1452 * pages as this should have been done before shrinking the
1453 * object. These pages shouldn't be write-protected as they
1454 * should be zero filled. */
1455 gc_assert(page_table[next_page].write_protected == 0);
1457 old_bytes_used = page_table[next_page].bytes_used;
1458 page_table[next_page].allocated = FREE_PAGE_FLAG;
1459 page_table[next_page].bytes_used = 0;
1460 bytes_freed += old_bytes_used;
1461 next_page++;
1464 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords
1465 + bytes_freed;
1466 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1467 bytes_allocated -= bytes_freed;
1469 /* Add the region to the new_areas if requested. */
1470 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1472 return(object);
1473 } else {
1474 /* Get tag of object. */
1475 tag = lowtag_of(object);
1477 /* Allocate space. */
1478 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1480 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1482 /* Return Lisp pointer of new object. */
1483 return ((lispobj) new) | tag;
1487 /* to copy unboxed objects */
1488 lispobj
1489 copy_unboxed_object(lispobj object, long nwords)
1491 long tag;
1492 lispobj *new;
1494 gc_assert(is_lisp_pointer(object));
1495 gc_assert(from_space_p(object));
1496 gc_assert((nwords & 0x01) == 0);
1498 /* Get tag of object. */
1499 tag = lowtag_of(object);
1501 /* Allocate space. */
1502 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1504 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1506 /* Return Lisp pointer of new object. */
1507 return ((lispobj) new) | tag;
1510 /* to copy large unboxed objects
1512 * If the object is in a large object region then it is simply
1513 * promoted, else it is copied. If it's large enough then it's copied
1514 * to a large object region.
1516 * Bignums and vectors may have shrunk. If the object is not copied
1517 * the space needs to be reclaimed, and the page_tables corrected.
1519 * KLUDGE: There's a lot of cut-and-paste duplication between this
1520 * function and copy_large_object(..). -- WHN 20000619 */
1521 lispobj
1522 copy_large_unboxed_object(lispobj object, long nwords)
1524 int tag;
1525 lispobj *new;
1526 page_index_t first_page;
1528 gc_assert(is_lisp_pointer(object));
1529 gc_assert(from_space_p(object));
1530 gc_assert((nwords & 0x01) == 0);
1532 if ((nwords > 1024*1024) && gencgc_verbose) {
1533 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n",
1534 nwords*N_WORD_BYTES));
1537 /* Check whether it's a large object. */
1538 first_page = find_page_index((void *)object);
1539 gc_assert(first_page >= 0);
1541 if (page_table[first_page].large_object) {
1542 /* Promote the object. Note: Unboxed objects may have been
1543 * allocated to a BOXED region so it may be necessary to
1544 * change the region to UNBOXED. */
1545 unsigned long remaining_bytes;
1546 page_index_t next_page;
1547 unsigned long bytes_freed;
1548 unsigned long old_bytes_used;
1550 gc_assert(page_table[first_page].region_start_offset == 0);
1552 next_page = first_page;
1553 remaining_bytes = nwords*N_WORD_BYTES;
1554 while (remaining_bytes > PAGE_BYTES) {
1555 gc_assert(page_table[next_page].gen == from_space);
1556 gc_assert(page_allocated_no_region_p(next_page));
1557 gc_assert(page_table[next_page].large_object);
1558 gc_assert(page_table[next_page].region_start_offset ==
1559 npage_bytes(next_page-first_page));
1560 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1562 page_table[next_page].gen = new_space;
1563 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1564 remaining_bytes -= PAGE_BYTES;
1565 next_page++;
1568 /* Now only one page remains, but the object may have shrunk so
1569 * there may be more unused pages which will be freed. */
1571 /* Object may have shrunk but shouldn't have grown - check. */
1572 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1574 page_table[next_page].gen = new_space;
1575 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1577 /* Adjust the bytes_used. */
1578 old_bytes_used = page_table[next_page].bytes_used;
1579 page_table[next_page].bytes_used = remaining_bytes;
1581 bytes_freed = old_bytes_used - remaining_bytes;
1583 /* Free any remaining pages; needs care. */
1584 next_page++;
1585 while ((old_bytes_used == PAGE_BYTES) &&
1586 (page_table[next_page].gen == from_space) &&
1587 page_allocated_no_region_p(next_page) &&
1588 page_table[next_page].large_object &&
1589 (page_table[next_page].region_start_offset ==
1590 npage_bytes(next_page - first_page))) {
1591 /* Checks out OK, free the page. Don't need to both zeroing
1592 * pages as this should have been done before shrinking the
1593 * object. These pages shouldn't be write-protected, even if
1594 * boxed they should be zero filled. */
1595 gc_assert(page_table[next_page].write_protected == 0);
1597 old_bytes_used = page_table[next_page].bytes_used;
1598 page_table[next_page].allocated = FREE_PAGE_FLAG;
1599 page_table[next_page].bytes_used = 0;
1600 bytes_freed += old_bytes_used;
1601 next_page++;
1604 if ((bytes_freed > 0) && gencgc_verbose) {
1605 FSHOW((stderr,
1606 "/copy_large_unboxed bytes_freed=%d\n",
1607 bytes_freed));
1610 generations[from_space].bytes_allocated -=
1611 nwords*N_WORD_BYTES + bytes_freed;
1612 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1613 bytes_allocated -= bytes_freed;
1615 return(object);
1617 else {
1618 /* Get tag of object. */
1619 tag = lowtag_of(object);
1621 /* Allocate space. */
1622 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1624 /* Copy the object. */
1625 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1627 /* Return Lisp pointer of new object. */
1628 return ((lispobj) new) | tag;
1637 * code and code-related objects
1640 static lispobj trans_fun_header(lispobj object);
1641 static lispobj trans_boxed(lispobj object);
1644 /* Scan a x86 compiled code object, looking for possible fixups that
1645 * have been missed after a move.
1647 * Two types of fixups are needed:
1648 * 1. Absolute fixups to within the code object.
1649 * 2. Relative fixups to outside the code object.
1651 * Currently only absolute fixups to the constant vector, or to the
1652 * code area are checked. */
1653 void
1654 sniff_code_object(struct code *code, unsigned long displacement)
1656 #ifdef LISP_FEATURE_X86
1657 long nheader_words, ncode_words, nwords;
1658 void *p;
1659 void *constants_start_addr = NULL, *constants_end_addr;
1660 void *code_start_addr, *code_end_addr;
1661 int fixup_found = 0;
1663 if (!check_code_fixups)
1664 return;
1666 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1668 ncode_words = fixnum_value(code->code_size);
1669 nheader_words = HeaderValue(*(lispobj *)code);
1670 nwords = ncode_words + nheader_words;
1672 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1673 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1674 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1675 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1677 /* Work through the unboxed code. */
1678 for (p = code_start_addr; p < code_end_addr; p++) {
1679 void *data = *(void **)p;
1680 unsigned d1 = *((unsigned char *)p - 1);
1681 unsigned d2 = *((unsigned char *)p - 2);
1682 unsigned d3 = *((unsigned char *)p - 3);
1683 unsigned d4 = *((unsigned char *)p - 4);
1684 #if QSHOW
1685 unsigned d5 = *((unsigned char *)p - 5);
1686 unsigned d6 = *((unsigned char *)p - 6);
1687 #endif
1689 /* Check for code references. */
1690 /* Check for a 32 bit word that looks like an absolute
1691 reference to within the code adea of the code object. */
1692 if ((data >= (code_start_addr-displacement))
1693 && (data < (code_end_addr-displacement))) {
1694 /* function header */
1695 if ((d4 == 0x5e)
1696 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1697 (unsigned)code)) {
1698 /* Skip the function header */
1699 p += 6*4 - 4 - 1;
1700 continue;
1702 /* the case of PUSH imm32 */
1703 if (d1 == 0x68) {
1704 fixup_found = 1;
1705 FSHOW((stderr,
1706 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1707 p, d6, d5, d4, d3, d2, d1, data));
1708 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1710 /* the case of MOV [reg-8],imm32 */
1711 if ((d3 == 0xc7)
1712 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1713 || d2==0x45 || d2==0x46 || d2==0x47)
1714 && (d1 == 0xf8)) {
1715 fixup_found = 1;
1716 FSHOW((stderr,
1717 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1718 p, d6, d5, d4, d3, d2, d1, data));
1719 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1721 /* the case of LEA reg,[disp32] */
1722 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1723 fixup_found = 1;
1724 FSHOW((stderr,
1725 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1726 p, d6, d5, d4, d3, d2, d1, data));
1727 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1731 /* Check for constant references. */
1732 /* Check for a 32 bit word that looks like an absolute
1733 reference to within the constant vector. Constant references
1734 will be aligned. */
1735 if ((data >= (constants_start_addr-displacement))
1736 && (data < (constants_end_addr-displacement))
1737 && (((unsigned)data & 0x3) == 0)) {
1738 /* Mov eax,m32 */
1739 if (d1 == 0xa1) {
1740 fixup_found = 1;
1741 FSHOW((stderr,
1742 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1743 p, d6, d5, d4, d3, d2, d1, data));
1744 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1747 /* the case of MOV m32,EAX */
1748 if (d1 == 0xa3) {
1749 fixup_found = 1;
1750 FSHOW((stderr,
1751 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1752 p, d6, d5, d4, d3, d2, d1, data));
1753 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1756 /* the case of CMP m32,imm32 */
1757 if ((d1 == 0x3d) && (d2 == 0x81)) {
1758 fixup_found = 1;
1759 FSHOW((stderr,
1760 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1761 p, d6, d5, d4, d3, d2, d1, data));
1762 /* XX Check this */
1763 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1766 /* Check for a mod=00, r/m=101 byte. */
1767 if ((d1 & 0xc7) == 5) {
1768 /* Cmp m32,reg */
1769 if (d2 == 0x39) {
1770 fixup_found = 1;
1771 FSHOW((stderr,
1772 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1773 p, d6, d5, d4, d3, d2, d1, data));
1774 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1776 /* the case of CMP reg32,m32 */
1777 if (d2 == 0x3b) {
1778 fixup_found = 1;
1779 FSHOW((stderr,
1780 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1781 p, d6, d5, d4, d3, d2, d1, data));
1782 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1784 /* the case of MOV m32,reg32 */
1785 if (d2 == 0x89) {
1786 fixup_found = 1;
1787 FSHOW((stderr,
1788 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1789 p, d6, d5, d4, d3, d2, d1, data));
1790 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1792 /* the case of MOV reg32,m32 */
1793 if (d2 == 0x8b) {
1794 fixup_found = 1;
1795 FSHOW((stderr,
1796 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1797 p, d6, d5, d4, d3, d2, d1, data));
1798 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1800 /* the case of LEA reg32,m32 */
1801 if (d2 == 0x8d) {
1802 fixup_found = 1;
1803 FSHOW((stderr,
1804 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1805 p, d6, d5, d4, d3, d2, d1, data));
1806 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1812 /* If anything was found, print some information on the code
1813 * object. */
1814 if (fixup_found) {
1815 FSHOW((stderr,
1816 "/compiled code object at %x: header words = %d, code words = %d\n",
1817 code, nheader_words, ncode_words));
1818 FSHOW((stderr,
1819 "/const start = %x, end = %x\n",
1820 constants_start_addr, constants_end_addr));
1821 FSHOW((stderr,
1822 "/code start = %x, end = %x\n",
1823 code_start_addr, code_end_addr));
1825 #endif
1828 void
1829 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1831 /* x86-64 uses pc-relative addressing instead of this kludge */
1832 #ifndef LISP_FEATURE_X86_64
1833 long nheader_words, ncode_words, nwords;
1834 void *constants_start_addr, *constants_end_addr;
1835 void *code_start_addr, *code_end_addr;
1836 lispobj fixups = NIL;
1837 unsigned long displacement =
1838 (unsigned long)new_code - (unsigned long)old_code;
1839 struct vector *fixups_vector;
1841 ncode_words = fixnum_value(new_code->code_size);
1842 nheader_words = HeaderValue(*(lispobj *)new_code);
1843 nwords = ncode_words + nheader_words;
1844 /* FSHOW((stderr,
1845 "/compiled code object at %x: header words = %d, code words = %d\n",
1846 new_code, nheader_words, ncode_words)); */
1847 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1848 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1849 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1850 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1852 FSHOW((stderr,
1853 "/const start = %x, end = %x\n",
1854 constants_start_addr,constants_end_addr));
1855 FSHOW((stderr,
1856 "/code start = %x; end = %x\n",
1857 code_start_addr,code_end_addr));
1860 /* The first constant should be a pointer to the fixups for this
1861 code objects. Check. */
1862 fixups = new_code->constants[0];
1864 /* It will be 0 or the unbound-marker if there are no fixups (as
1865 * will be the case if the code object has been purified, for
1866 * example) and will be an other pointer if it is valid. */
1867 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1868 !is_lisp_pointer(fixups)) {
1869 /* Check for possible errors. */
1870 if (check_code_fixups)
1871 sniff_code_object(new_code, displacement);
1873 return;
1876 fixups_vector = (struct vector *)native_pointer(fixups);
1878 /* Could be pointing to a forwarding pointer. */
1879 /* FIXME is this always in from_space? if so, could replace this code with
1880 * forwarding_pointer_p/forwarding_pointer_value */
1881 if (is_lisp_pointer(fixups) &&
1882 (find_page_index((void*)fixups_vector) != -1) &&
1883 (fixups_vector->header == 0x01)) {
1884 /* If so, then follow it. */
1885 /*SHOW("following pointer to a forwarding pointer");*/
1886 fixups_vector =
1887 (struct vector *)native_pointer((lispobj)fixups_vector->length);
1890 /*SHOW("got fixups");*/
1892 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1893 /* Got the fixups for the code block. Now work through the vector,
1894 and apply a fixup at each address. */
1895 long length = fixnum_value(fixups_vector->length);
1896 long i;
1897 for (i = 0; i < length; i++) {
1898 unsigned long offset = fixups_vector->data[i];
1899 /* Now check the current value of offset. */
1900 unsigned long old_value =
1901 *(unsigned long *)((unsigned long)code_start_addr + offset);
1903 /* If it's within the old_code object then it must be an
1904 * absolute fixup (relative ones are not saved) */
1905 if ((old_value >= (unsigned long)old_code)
1906 && (old_value < ((unsigned long)old_code
1907 + nwords*N_WORD_BYTES)))
1908 /* So add the dispacement. */
1909 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1910 old_value + displacement;
1911 else
1912 /* It is outside the old code object so it must be a
1913 * relative fixup (absolute fixups are not saved). So
1914 * subtract the displacement. */
1915 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1916 old_value - displacement;
1918 } else {
1919 /* This used to just print a note to stderr, but a bogus fixup seems to
1920 * indicate real heap corruption, so a hard hailure is in order. */
1921 lose("fixup vector %p has a bad widetag: %d\n",
1922 fixups_vector, widetag_of(fixups_vector->header));
1925 /* Check for possible errors. */
1926 if (check_code_fixups) {
1927 sniff_code_object(new_code,displacement);
1929 #endif
1933 static lispobj
1934 trans_boxed_large(lispobj object)
1936 lispobj header;
1937 unsigned long length;
1939 gc_assert(is_lisp_pointer(object));
1941 header = *((lispobj *) native_pointer(object));
1942 length = HeaderValue(header) + 1;
1943 length = CEILING(length, 2);
1945 return copy_large_object(object, length);
1948 /* Doesn't seem to be used, delete it after the grace period. */
1949 #if 0
1950 static lispobj
1951 trans_unboxed_large(lispobj object)
1953 lispobj header;
1954 unsigned long length;
1956 gc_assert(is_lisp_pointer(object));
1958 header = *((lispobj *) native_pointer(object));
1959 length = HeaderValue(header) + 1;
1960 length = CEILING(length, 2);
1962 return copy_large_unboxed_object(object, length);
1964 #endif
1968 * Lutexes. Using the normal finalization machinery for finalizing
1969 * lutexes is tricky, since the finalization depends on working lutexes.
1970 * So we track the lutexes in the GC and finalize them manually.
1973 #if defined(LUTEX_WIDETAG)
1976 * Start tracking LUTEX in the GC, by adding it to the linked list of
1977 * lutexes in the nursery generation. The caller is responsible for
1978 * locking, and GCs must be inhibited until the registration is
1979 * complete.
1981 void
1982 gencgc_register_lutex (struct lutex *lutex) {
1983 int index = find_page_index(lutex);
1984 generation_index_t gen;
1985 struct lutex *head;
1987 /* This lutex is in static space, so we don't need to worry about
1988 * finalizing it.
1990 if (index == -1)
1991 return;
1993 gen = page_table[index].gen;
1995 gc_assert(gen >= 0);
1996 gc_assert(gen < NUM_GENERATIONS);
1998 head = generations[gen].lutexes;
2000 lutex->gen = gen;
2001 lutex->next = head;
2002 lutex->prev = NULL;
2003 if (head)
2004 head->prev = lutex;
2005 generations[gen].lutexes = lutex;
2009 * Stop tracking LUTEX in the GC by removing it from the appropriate
2010 * linked lists. This will only be called during GC, so no locking is
2011 * needed.
2013 void
2014 gencgc_unregister_lutex (struct lutex *lutex) {
2015 if (lutex->prev) {
2016 lutex->prev->next = lutex->next;
2017 } else {
2018 generations[lutex->gen].lutexes = lutex->next;
2021 if (lutex->next) {
2022 lutex->next->prev = lutex->prev;
2025 lutex->next = NULL;
2026 lutex->prev = NULL;
2027 lutex->gen = -1;
2031 * Mark all lutexes in generation GEN as not live.
2033 static void
2034 unmark_lutexes (generation_index_t gen) {
2035 struct lutex *lutex = generations[gen].lutexes;
2037 while (lutex) {
2038 lutex->live = 0;
2039 lutex = lutex->next;
2044 * Finalize all lutexes in generation GEN that have not been marked live.
2046 static void
2047 reap_lutexes (generation_index_t gen) {
2048 struct lutex *lutex = generations[gen].lutexes;
2050 while (lutex) {
2051 struct lutex *next = lutex->next;
2052 if (!lutex->live) {
2053 lutex_destroy((tagged_lutex_t) lutex);
2054 gencgc_unregister_lutex(lutex);
2056 lutex = next;
2061 * Mark LUTEX as live.
2063 static void
2064 mark_lutex (lispobj tagged_lutex) {
2065 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
2067 lutex->live = 1;
2071 * Move all lutexes in generation FROM to generation TO.
2073 static void
2074 move_lutexes (generation_index_t from, generation_index_t to) {
2075 struct lutex *tail = generations[from].lutexes;
2077 /* Nothing to move */
2078 if (!tail)
2079 return;
2081 /* Change the generation of the lutexes in FROM. */
2082 while (tail->next) {
2083 tail->gen = to;
2084 tail = tail->next;
2086 tail->gen = to;
2088 /* Link the last lutex in the FROM list to the start of the TO list */
2089 tail->next = generations[to].lutexes;
2091 /* And vice versa */
2092 if (generations[to].lutexes) {
2093 generations[to].lutexes->prev = tail;
2096 /* And update the generations structures to match this */
2097 generations[to].lutexes = generations[from].lutexes;
2098 generations[from].lutexes = NULL;
2101 static long
2102 scav_lutex(lispobj *where, lispobj object)
2104 mark_lutex((lispobj) where);
2106 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2109 static lispobj
2110 trans_lutex(lispobj object)
2112 struct lutex *lutex = (struct lutex *) native_pointer(object);
2113 lispobj copied;
2114 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2115 gc_assert(is_lisp_pointer(object));
2116 copied = copy_object(object, words);
2118 /* Update the links, since the lutex moved in memory. */
2119 if (lutex->next) {
2120 lutex->next->prev = (struct lutex *) native_pointer(copied);
2123 if (lutex->prev) {
2124 lutex->prev->next = (struct lutex *) native_pointer(copied);
2125 } else {
2126 generations[lutex->gen].lutexes =
2127 (struct lutex *) native_pointer(copied);
2130 return copied;
2133 static long
2134 size_lutex(lispobj *where)
2136 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2138 #endif /* LUTEX_WIDETAG */
2142 * weak pointers
2145 /* XX This is a hack adapted from cgc.c. These don't work too
2146 * efficiently with the gencgc as a list of the weak pointers is
2147 * maintained within the objects which causes writes to the pages. A
2148 * limited attempt is made to avoid unnecessary writes, but this needs
2149 * a re-think. */
2150 #define WEAK_POINTER_NWORDS \
2151 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2153 static long
2154 scav_weak_pointer(lispobj *where, lispobj object)
2156 /* Since we overwrite the 'next' field, we have to make
2157 * sure not to do so for pointers already in the list.
2158 * Instead of searching the list of weak_pointers each
2159 * time, we ensure that next is always NULL when the weak
2160 * pointer isn't in the list, and not NULL otherwise.
2161 * Since we can't use NULL to denote end of list, we
2162 * use a pointer back to the same weak_pointer.
2164 struct weak_pointer * wp = (struct weak_pointer*)where;
2166 if (NULL == wp->next) {
2167 wp->next = weak_pointers;
2168 weak_pointers = wp;
2169 if (NULL == wp->next)
2170 wp->next = wp;
2173 /* Do not let GC scavenge the value slot of the weak pointer.
2174 * (That is why it is a weak pointer.) */
2176 return WEAK_POINTER_NWORDS;
2180 lispobj *
2181 search_read_only_space(void *pointer)
2183 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2184 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2185 if ((pointer < (void *)start) || (pointer >= (void *)end))
2186 return NULL;
2187 return (gc_search_space(start,
2188 (((lispobj *)pointer)+2)-start,
2189 (lispobj *) pointer));
2192 lispobj *
2193 search_static_space(void *pointer)
2195 lispobj *start = (lispobj *)STATIC_SPACE_START;
2196 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2197 if ((pointer < (void *)start) || (pointer >= (void *)end))
2198 return NULL;
2199 return (gc_search_space(start,
2200 (((lispobj *)pointer)+2)-start,
2201 (lispobj *) pointer));
2204 /* a faster version for searching the dynamic space. This will work even
2205 * if the object is in a current allocation region. */
2206 lispobj *
2207 search_dynamic_space(void *pointer)
2209 page_index_t page_index = find_page_index(pointer);
2210 lispobj *start;
2212 /* The address may be invalid, so do some checks. */
2213 if ((page_index == -1) || page_free_p(page_index))
2214 return NULL;
2215 start = (lispobj *)page_region_start(page_index);
2216 return (gc_search_space(start,
2217 (((lispobj *)pointer)+2)-start,
2218 (lispobj *)pointer));
2221 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2223 /* Helper for valid_lisp_pointer_p and
2224 * possibly_valid_dynamic_space_pointer.
2226 * pointer is the pointer to validate, and start_addr is the address
2227 * of the enclosing object.
2229 static int
2230 looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
2232 if (!is_lisp_pointer((lispobj)pointer)) {
2233 return 0;
2236 /* Check that the object pointed to is consistent with the pointer
2237 * low tag. */
2238 switch (lowtag_of((lispobj)pointer)) {
2239 case FUN_POINTER_LOWTAG:
2240 /* Start_addr should be the enclosing code object, or a closure
2241 * header. */
2242 switch (widetag_of(*start_addr)) {
2243 case CODE_HEADER_WIDETAG:
2244 /* This case is probably caught above. */
2245 break;
2246 case CLOSURE_HEADER_WIDETAG:
2247 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2248 if ((unsigned long)pointer !=
2249 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2250 if (gencgc_verbose) {
2251 FSHOW((stderr,
2252 "/Wf2: %x %x %x\n",
2253 pointer, start_addr, *start_addr));
2255 return 0;
2257 break;
2258 default:
2259 if (gencgc_verbose) {
2260 FSHOW((stderr,
2261 "/Wf3: %x %x %x\n",
2262 pointer, start_addr, *start_addr));
2264 return 0;
2266 break;
2267 case LIST_POINTER_LOWTAG:
2268 if ((unsigned long)pointer !=
2269 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2270 if (gencgc_verbose) {
2271 FSHOW((stderr,
2272 "/Wl1: %x %x %x\n",
2273 pointer, start_addr, *start_addr));
2275 return 0;
2277 /* Is it plausible cons? */
2278 if ((is_lisp_pointer(start_addr[0]) ||
2279 is_lisp_immediate(start_addr[0])) &&
2280 (is_lisp_pointer(start_addr[1]) ||
2281 is_lisp_immediate(start_addr[1])))
2282 break;
2283 else {
2284 if (gencgc_verbose) {
2285 FSHOW((stderr,
2286 "/Wl2: %x %x %x\n",
2287 pointer, start_addr, *start_addr));
2289 return 0;
2291 case INSTANCE_POINTER_LOWTAG:
2292 if ((unsigned long)pointer !=
2293 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2294 if (gencgc_verbose) {
2295 FSHOW((stderr,
2296 "/Wi1: %x %x %x\n",
2297 pointer, start_addr, *start_addr));
2299 return 0;
2301 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2302 if (gencgc_verbose) {
2303 FSHOW((stderr,
2304 "/Wi2: %x %x %x\n",
2305 pointer, start_addr, *start_addr));
2307 return 0;
2309 break;
2310 case OTHER_POINTER_LOWTAG:
2311 if ((unsigned long)pointer !=
2312 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2313 if (gencgc_verbose) {
2314 FSHOW((stderr,
2315 "/Wo1: %x %x %x\n",
2316 pointer, start_addr, *start_addr));
2318 return 0;
2320 /* Is it plausible? Not a cons. XXX should check the headers. */
2321 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2322 if (gencgc_verbose) {
2323 FSHOW((stderr,
2324 "/Wo2: %x %x %x\n",
2325 pointer, start_addr, *start_addr));
2327 return 0;
2329 switch (widetag_of(start_addr[0])) {
2330 case UNBOUND_MARKER_WIDETAG:
2331 case NO_TLS_VALUE_MARKER_WIDETAG:
2332 case CHARACTER_WIDETAG:
2333 #if N_WORD_BITS == 64
2334 case SINGLE_FLOAT_WIDETAG:
2335 #endif
2336 if (gencgc_verbose) {
2337 FSHOW((stderr,
2338 "*Wo3: %x %x %x\n",
2339 pointer, start_addr, *start_addr));
2341 return 0;
2343 /* only pointed to by function pointers? */
2344 case CLOSURE_HEADER_WIDETAG:
2345 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2346 if (gencgc_verbose) {
2347 FSHOW((stderr,
2348 "*Wo4: %x %x %x\n",
2349 pointer, start_addr, *start_addr));
2351 return 0;
2353 case INSTANCE_HEADER_WIDETAG:
2354 if (gencgc_verbose) {
2355 FSHOW((stderr,
2356 "*Wo5: %x %x %x\n",
2357 pointer, start_addr, *start_addr));
2359 return 0;
2361 /* the valid other immediate pointer objects */
2362 case SIMPLE_VECTOR_WIDETAG:
2363 case RATIO_WIDETAG:
2364 case COMPLEX_WIDETAG:
2365 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2366 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2367 #endif
2368 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2369 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2370 #endif
2371 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2372 case COMPLEX_LONG_FLOAT_WIDETAG:
2373 #endif
2374 #ifdef SSE_PACK_WIDETAG
2375 case SSE_PACK_WIDETAG:
2376 #endif
2377 case SIMPLE_ARRAY_WIDETAG:
2378 case COMPLEX_BASE_STRING_WIDETAG:
2379 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2380 case COMPLEX_CHARACTER_STRING_WIDETAG:
2381 #endif
2382 case COMPLEX_VECTOR_NIL_WIDETAG:
2383 case COMPLEX_BIT_VECTOR_WIDETAG:
2384 case COMPLEX_VECTOR_WIDETAG:
2385 case COMPLEX_ARRAY_WIDETAG:
2386 case VALUE_CELL_HEADER_WIDETAG:
2387 case SYMBOL_HEADER_WIDETAG:
2388 case FDEFN_WIDETAG:
2389 case CODE_HEADER_WIDETAG:
2390 case BIGNUM_WIDETAG:
2391 #if N_WORD_BITS != 64
2392 case SINGLE_FLOAT_WIDETAG:
2393 #endif
2394 case DOUBLE_FLOAT_WIDETAG:
2395 #ifdef LONG_FLOAT_WIDETAG
2396 case LONG_FLOAT_WIDETAG:
2397 #endif
2398 case SIMPLE_BASE_STRING_WIDETAG:
2399 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2400 case SIMPLE_CHARACTER_STRING_WIDETAG:
2401 #endif
2402 case SIMPLE_BIT_VECTOR_WIDETAG:
2403 case SIMPLE_ARRAY_NIL_WIDETAG:
2404 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2405 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2406 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2407 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2408 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2409 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2410 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2411 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2412 #endif
2413 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2414 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2415 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2416 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2417 #endif
2418 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2419 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2420 #endif
2421 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2422 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2423 #endif
2424 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2425 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2426 #endif
2427 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2428 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2429 #endif
2430 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2431 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2432 #endif
2433 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2434 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2435 #endif
2436 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2437 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2438 #endif
2439 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2440 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2441 #endif
2442 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2443 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2444 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2445 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2446 #endif
2447 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2448 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2449 #endif
2450 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2451 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2452 #endif
2453 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2454 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2455 #endif
2456 case SAP_WIDETAG:
2457 case WEAK_POINTER_WIDETAG:
2458 #ifdef LUTEX_WIDETAG
2459 case LUTEX_WIDETAG:
2460 #endif
2461 break;
2463 default:
2464 if (gencgc_verbose) {
2465 FSHOW((stderr,
2466 "/Wo6: %x %x %x\n",
2467 pointer, start_addr, *start_addr));
2469 return 0;
2471 break;
2472 default:
2473 if (gencgc_verbose) {
2474 FSHOW((stderr,
2475 "*W?: %x %x %x\n",
2476 pointer, start_addr, *start_addr));
2478 return 0;
2481 /* looks good */
2482 return 1;
2485 /* Used by the debugger to validate possibly bogus pointers before
2486 * calling MAKE-LISP-OBJ on them.
2488 * FIXME: We would like to make this perfect, because if the debugger
2489 * constructs a reference to a bugs lisp object, and it ends up in a
2490 * location scavenged by the GC all hell breaks loose.
2492 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2493 * and return true for all valid pointers, this could actually be eager
2494 * and lie about a few pointers without bad results... but that should
2495 * be reflected in the name.
2498 valid_lisp_pointer_p(lispobj *pointer)
2500 lispobj *start;
2501 if (((start=search_dynamic_space(pointer))!=NULL) ||
2502 ((start=search_static_space(pointer))!=NULL) ||
2503 ((start=search_read_only_space(pointer))!=NULL))
2504 return looks_like_valid_lisp_pointer_p(pointer, start);
2505 else
2506 return 0;
2509 /* Is there any possibility that pointer is a valid Lisp object
2510 * reference, and/or something else (e.g. subroutine call return
2511 * address) which should prevent us from moving the referred-to thing?
2512 * This is called from preserve_pointers() */
2513 static int
2514 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2516 lispobj *start_addr;
2518 /* Find the object start address. */
2519 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2520 return 0;
2523 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2526 /* Adjust large bignum and vector objects. This will adjust the
2527 * allocated region if the size has shrunk, and move unboxed objects
2528 * into unboxed pages. The pages are not promoted here, and the
2529 * promoted region is not added to the new_regions; this is really
2530 * only designed to be called from preserve_pointer(). Shouldn't fail
2531 * if this is missed, just may delay the moving of objects to unboxed
2532 * pages, and the freeing of pages. */
2533 static void
2534 maybe_adjust_large_object(lispobj *where)
2536 page_index_t first_page;
2537 page_index_t next_page;
2538 long nwords;
2540 unsigned long remaining_bytes;
2541 unsigned long bytes_freed;
2542 unsigned long old_bytes_used;
2544 int boxed;
2546 /* Check whether it's a vector or bignum object. */
2547 switch (widetag_of(where[0])) {
2548 case SIMPLE_VECTOR_WIDETAG:
2549 boxed = BOXED_PAGE_FLAG;
2550 break;
2551 case BIGNUM_WIDETAG:
2552 case SIMPLE_BASE_STRING_WIDETAG:
2553 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2554 case SIMPLE_CHARACTER_STRING_WIDETAG:
2555 #endif
2556 case SIMPLE_BIT_VECTOR_WIDETAG:
2557 case SIMPLE_ARRAY_NIL_WIDETAG:
2558 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2559 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2560 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2561 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2562 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2563 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2564 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2565 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2566 #endif
2567 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2568 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2569 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2570 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2571 #endif
2572 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2573 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2574 #endif
2575 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2576 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2577 #endif
2578 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2579 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2580 #endif
2581 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2582 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2583 #endif
2584 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2585 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2586 #endif
2587 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2588 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2589 #endif
2590 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2591 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2592 #endif
2593 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2594 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2595 #endif
2596 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2597 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2598 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2599 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2600 #endif
2601 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2602 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2603 #endif
2604 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2605 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2606 #endif
2607 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2608 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2609 #endif
2610 boxed = UNBOXED_PAGE_FLAG;
2611 break;
2612 default:
2613 return;
2616 /* Find its current size. */
2617 nwords = (sizetab[widetag_of(where[0])])(where);
2619 first_page = find_page_index((void *)where);
2620 gc_assert(first_page >= 0);
2622 /* Note: Any page write-protection must be removed, else a later
2623 * scavenge_newspace may incorrectly not scavenge these pages.
2624 * This would not be necessary if they are added to the new areas,
2625 * but lets do it for them all (they'll probably be written
2626 * anyway?). */
2628 gc_assert(page_table[first_page].region_start_offset == 0);
2630 next_page = first_page;
2631 remaining_bytes = nwords*N_WORD_BYTES;
2632 while (remaining_bytes > PAGE_BYTES) {
2633 gc_assert(page_table[next_page].gen == from_space);
2634 gc_assert(page_allocated_no_region_p(next_page));
2635 gc_assert(page_table[next_page].large_object);
2636 gc_assert(page_table[next_page].region_start_offset ==
2637 npage_bytes(next_page-first_page));
2638 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2640 page_table[next_page].allocated = boxed;
2642 /* Shouldn't be write-protected at this stage. Essential that the
2643 * pages aren't. */
2644 gc_assert(!page_table[next_page].write_protected);
2645 remaining_bytes -= PAGE_BYTES;
2646 next_page++;
2649 /* Now only one page remains, but the object may have shrunk so
2650 * there may be more unused pages which will be freed. */
2652 /* Object may have shrunk but shouldn't have grown - check. */
2653 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2655 page_table[next_page].allocated = boxed;
2656 gc_assert(page_table[next_page].allocated ==
2657 page_table[first_page].allocated);
2659 /* Adjust the bytes_used. */
2660 old_bytes_used = page_table[next_page].bytes_used;
2661 page_table[next_page].bytes_used = remaining_bytes;
2663 bytes_freed = old_bytes_used - remaining_bytes;
2665 /* Free any remaining pages; needs care. */
2666 next_page++;
2667 while ((old_bytes_used == PAGE_BYTES) &&
2668 (page_table[next_page].gen == from_space) &&
2669 page_allocated_no_region_p(next_page) &&
2670 page_table[next_page].large_object &&
2671 (page_table[next_page].region_start_offset ==
2672 npage_bytes(next_page - first_page))) {
2673 /* It checks out OK, free the page. We don't need to both zeroing
2674 * pages as this should have been done before shrinking the
2675 * object. These pages shouldn't be write protected as they
2676 * should be zero filled. */
2677 gc_assert(page_table[next_page].write_protected == 0);
2679 old_bytes_used = page_table[next_page].bytes_used;
2680 page_table[next_page].allocated = FREE_PAGE_FLAG;
2681 page_table[next_page].bytes_used = 0;
2682 bytes_freed += old_bytes_used;
2683 next_page++;
2686 if ((bytes_freed > 0) && gencgc_verbose) {
2687 FSHOW((stderr,
2688 "/maybe_adjust_large_object() freed %d\n",
2689 bytes_freed));
2692 generations[from_space].bytes_allocated -= bytes_freed;
2693 bytes_allocated -= bytes_freed;
2695 return;
2698 /* Take a possible pointer to a Lisp object and mark its page in the
2699 * page_table so that it will not be relocated during a GC.
2701 * This involves locating the page it points to, then backing up to
2702 * the start of its region, then marking all pages dont_move from there
2703 * up to the first page that's not full or has a different generation
2705 * It is assumed that all the page static flags have been cleared at
2706 * the start of a GC.
2708 * It is also assumed that the current gc_alloc() region has been
2709 * flushed and the tables updated. */
2711 static void
2712 preserve_pointer(void *addr)
2714 page_index_t addr_page_index = find_page_index(addr);
2715 page_index_t first_page;
2716 page_index_t i;
2717 unsigned int region_allocation;
2719 /* quick check 1: Address is quite likely to have been invalid. */
2720 if ((addr_page_index == -1)
2721 || page_free_p(addr_page_index)
2722 || (page_table[addr_page_index].bytes_used == 0)
2723 || (page_table[addr_page_index].gen != from_space)
2724 /* Skip if already marked dont_move. */
2725 || (page_table[addr_page_index].dont_move != 0))
2726 return;
2727 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2728 /* (Now that we know that addr_page_index is in range, it's
2729 * safe to index into page_table[] with it.) */
2730 region_allocation = page_table[addr_page_index].allocated;
2732 /* quick check 2: Check the offset within the page.
2735 if (((unsigned long)addr & (PAGE_BYTES - 1)) >
2736 page_table[addr_page_index].bytes_used)
2737 return;
2739 /* Filter out anything which can't be a pointer to a Lisp object
2740 * (or, as a special case which also requires dont_move, a return
2741 * address referring to something in a CodeObject). This is
2742 * expensive but important, since it vastly reduces the
2743 * probability that random garbage will be bogusly interpreted as
2744 * a pointer which prevents a page from moving. */
2745 if (!(code_page_p(addr_page_index)
2746 || (is_lisp_pointer((lispobj)addr) &&
2747 possibly_valid_dynamic_space_pointer(addr))))
2748 return;
2750 /* Find the beginning of the region. Note that there may be
2751 * objects in the region preceding the one that we were passed a
2752 * pointer to: if this is the case, we will write-protect all the
2753 * previous objects' pages too. */
2755 #if 0
2756 /* I think this'd work just as well, but without the assertions.
2757 * -dan 2004.01.01 */
2758 first_page = find_page_index(page_region_start(addr_page_index))
2759 #else
2760 first_page = addr_page_index;
2761 while (page_table[first_page].region_start_offset != 0) {
2762 --first_page;
2763 /* Do some checks. */
2764 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2765 gc_assert(page_table[first_page].gen == from_space);
2766 gc_assert(page_table[first_page].allocated == region_allocation);
2768 #endif
2770 /* Adjust any large objects before promotion as they won't be
2771 * copied after promotion. */
2772 if (page_table[first_page].large_object) {
2773 maybe_adjust_large_object(page_address(first_page));
2774 /* If a large object has shrunk then addr may now point to a
2775 * free area in which case it's ignored here. Note it gets
2776 * through the valid pointer test above because the tail looks
2777 * like conses. */
2778 if (page_free_p(addr_page_index)
2779 || (page_table[addr_page_index].bytes_used == 0)
2780 /* Check the offset within the page. */
2781 || (((unsigned long)addr & (PAGE_BYTES - 1))
2782 > page_table[addr_page_index].bytes_used)) {
2783 FSHOW((stderr,
2784 "weird? ignore ptr 0x%x to freed area of large object\n",
2785 addr));
2786 return;
2788 /* It may have moved to unboxed pages. */
2789 region_allocation = page_table[first_page].allocated;
2792 /* Now work forward until the end of this contiguous area is found,
2793 * marking all pages as dont_move. */
2794 for (i = first_page; ;i++) {
2795 gc_assert(page_table[i].allocated == region_allocation);
2797 /* Mark the page static. */
2798 page_table[i].dont_move = 1;
2800 /* Move the page to the new_space. XX I'd rather not do this
2801 * but the GC logic is not quite able to copy with the static
2802 * pages remaining in the from space. This also requires the
2803 * generation bytes_allocated counters be updated. */
2804 page_table[i].gen = new_space;
2805 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2806 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2808 /* It is essential that the pages are not write protected as
2809 * they may have pointers into the old-space which need
2810 * scavenging. They shouldn't be write protected at this
2811 * stage. */
2812 gc_assert(!page_table[i].write_protected);
2814 /* Check whether this is the last page in this contiguous block.. */
2815 if ((page_table[i].bytes_used < PAGE_BYTES)
2816 /* ..or it is PAGE_BYTES and is the last in the block */
2817 || page_free_p(i+1)
2818 || (page_table[i+1].bytes_used == 0) /* next page free */
2819 || (page_table[i+1].gen != from_space) /* diff. gen */
2820 || (page_table[i+1].region_start_offset == 0))
2821 break;
2824 /* Check that the page is now static. */
2825 gc_assert(page_table[addr_page_index].dont_move != 0);
2828 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2831 /* If the given page is not write-protected, then scan it for pointers
2832 * to younger generations or the top temp. generation, if no
2833 * suspicious pointers are found then the page is write-protected.
2835 * Care is taken to check for pointers to the current gc_alloc()
2836 * region if it is a younger generation or the temp. generation. This
2837 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2838 * the gc_alloc_generation does not need to be checked as this is only
2839 * called from scavenge_generation() when the gc_alloc generation is
2840 * younger, so it just checks if there is a pointer to the current
2841 * region.
2843 * We return 1 if the page was write-protected, else 0. */
2844 static int
2845 update_page_write_prot(page_index_t page)
2847 generation_index_t gen = page_table[page].gen;
2848 long j;
2849 int wp_it = 1;
2850 void **page_addr = (void **)page_address(page);
2851 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2853 /* Shouldn't be a free page. */
2854 gc_assert(page_allocated_p(page));
2855 gc_assert(page_table[page].bytes_used != 0);
2857 /* Skip if it's already write-protected, pinned, or unboxed */
2858 if (page_table[page].write_protected
2859 /* FIXME: What's the reason for not write-protecting pinned pages? */
2860 || page_table[page].dont_move
2861 || page_unboxed_p(page))
2862 return (0);
2864 /* Scan the page for pointers to younger generations or the
2865 * top temp. generation. */
2867 for (j = 0; j < num_words; j++) {
2868 void *ptr = *(page_addr+j);
2869 page_index_t index = find_page_index(ptr);
2871 /* Check that it's in the dynamic space */
2872 if (index != -1)
2873 if (/* Does it point to a younger or the temp. generation? */
2874 (page_allocated_p(index)
2875 && (page_table[index].bytes_used != 0)
2876 && ((page_table[index].gen < gen)
2877 || (page_table[index].gen == SCRATCH_GENERATION)))
2879 /* Or does it point within a current gc_alloc() region? */
2880 || ((boxed_region.start_addr <= ptr)
2881 && (ptr <= boxed_region.free_pointer))
2882 || ((unboxed_region.start_addr <= ptr)
2883 && (ptr <= unboxed_region.free_pointer))) {
2884 wp_it = 0;
2885 break;
2889 if (wp_it == 1) {
2890 /* Write-protect the page. */
2891 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2893 os_protect((void *)page_addr,
2894 PAGE_BYTES,
2895 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2897 /* Note the page as protected in the page tables. */
2898 page_table[page].write_protected = 1;
2901 return (wp_it);
2904 /* Scavenge all generations from FROM to TO, inclusive, except for
2905 * new_space which needs special handling, as new objects may be
2906 * added which are not checked here - use scavenge_newspace generation.
2908 * Write-protected pages should not have any pointers to the
2909 * from_space so do need scavenging; thus write-protected pages are
2910 * not always scavenged. There is some code to check that these pages
2911 * are not written; but to check fully the write-protected pages need
2912 * to be scavenged by disabling the code to skip them.
2914 * Under the current scheme when a generation is GCed the younger
2915 * generations will be empty. So, when a generation is being GCed it
2916 * is only necessary to scavenge the older generations for pointers
2917 * not the younger. So a page that does not have pointers to younger
2918 * generations does not need to be scavenged.
2920 * The write-protection can be used to note pages that don't have
2921 * pointers to younger pages. But pages can be written without having
2922 * pointers to younger generations. After the pages are scavenged here
2923 * they can be scanned for pointers to younger generations and if
2924 * there are none the page can be write-protected.
2926 * One complication is when the newspace is the top temp. generation.
2928 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2929 * that none were written, which they shouldn't be as they should have
2930 * no pointers to younger generations. This breaks down for weak
2931 * pointers as the objects contain a link to the next and are written
2932 * if a weak pointer is scavenged. Still it's a useful check. */
2933 static void
2934 scavenge_generations(generation_index_t from, generation_index_t to)
2936 page_index_t i;
2937 int num_wp = 0;
2939 #define SC_GEN_CK 0
2940 #if SC_GEN_CK
2941 /* Clear the write_protected_cleared flags on all pages. */
2942 for (i = 0; i < page_table_pages; i++)
2943 page_table[i].write_protected_cleared = 0;
2944 #endif
2946 for (i = 0; i < last_free_page; i++) {
2947 generation_index_t generation = page_table[i].gen;
2948 if (page_boxed_p(i)
2949 && (page_table[i].bytes_used != 0)
2950 && (generation != new_space)
2951 && (generation >= from)
2952 && (generation <= to)) {
2953 page_index_t last_page,j;
2954 int write_protected=1;
2956 /* This should be the start of a region */
2957 gc_assert(page_table[i].region_start_offset == 0);
2959 /* Now work forward until the end of the region */
2960 for (last_page = i; ; last_page++) {
2961 write_protected =
2962 write_protected && page_table[last_page].write_protected;
2963 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2964 /* Or it is PAGE_BYTES and is the last in the block */
2965 || (!page_boxed_p(last_page+1))
2966 || (page_table[last_page+1].bytes_used == 0)
2967 || (page_table[last_page+1].gen != generation)
2968 || (page_table[last_page+1].region_start_offset == 0))
2969 break;
2971 if (!write_protected) {
2972 scavenge(page_address(i),
2973 ((unsigned long)(page_table[last_page].bytes_used
2974 + npage_bytes(last_page-i)))
2975 /N_WORD_BYTES);
2977 /* Now scan the pages and write protect those that
2978 * don't have pointers to younger generations. */
2979 if (enable_page_protection) {
2980 for (j = i; j <= last_page; j++) {
2981 num_wp += update_page_write_prot(j);
2984 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2985 FSHOW((stderr,
2986 "/write protected %d pages within generation %d\n",
2987 num_wp, generation));
2990 i = last_page;
2994 #if SC_GEN_CK
2995 /* Check that none of the write_protected pages in this generation
2996 * have been written to. */
2997 for (i = 0; i < page_table_pages; i++) {
2998 if (page_allocated_p(i)
2999 && (page_table[i].bytes_used != 0)
3000 && (page_table[i].gen == generation)
3001 && (page_table[i].write_protected_cleared != 0)) {
3002 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
3003 FSHOW((stderr,
3004 "/page bytes_used=%d region_start_offset=%lu dont_move=%d\n",
3005 page_table[i].bytes_used,
3006 page_table[i].region_start_offset,
3007 page_table[i].dont_move));
3008 lose("write to protected page %d in scavenge_generation()\n", i);
3011 #endif
3015 /* Scavenge a newspace generation. As it is scavenged new objects may
3016 * be allocated to it; these will also need to be scavenged. This
3017 * repeats until there are no more objects unscavenged in the
3018 * newspace generation.
3020 * To help improve the efficiency, areas written are recorded by
3021 * gc_alloc() and only these scavenged. Sometimes a little more will be
3022 * scavenged, but this causes no harm. An easy check is done that the
3023 * scavenged bytes equals the number allocated in the previous
3024 * scavenge.
3026 * Write-protected pages are not scanned except if they are marked
3027 * dont_move in which case they may have been promoted and still have
3028 * pointers to the from space.
3030 * Write-protected pages could potentially be written by alloc however
3031 * to avoid having to handle re-scavenging of write-protected pages
3032 * gc_alloc() does not write to write-protected pages.
3034 * New areas of objects allocated are recorded alternatively in the two
3035 * new_areas arrays below. */
3036 static struct new_area new_areas_1[NUM_NEW_AREAS];
3037 static struct new_area new_areas_2[NUM_NEW_AREAS];
3039 /* Do one full scan of the new space generation. This is not enough to
3040 * complete the job as new objects may be added to the generation in
3041 * the process which are not scavenged. */
3042 static void
3043 scavenge_newspace_generation_one_scan(generation_index_t generation)
3045 page_index_t i;
3047 FSHOW((stderr,
3048 "/starting one full scan of newspace generation %d\n",
3049 generation));
3050 for (i = 0; i < last_free_page; i++) {
3051 /* Note that this skips over open regions when it encounters them. */
3052 if (page_boxed_p(i)
3053 && (page_table[i].bytes_used != 0)
3054 && (page_table[i].gen == generation)
3055 && ((page_table[i].write_protected == 0)
3056 /* (This may be redundant as write_protected is now
3057 * cleared before promotion.) */
3058 || (page_table[i].dont_move == 1))) {
3059 page_index_t last_page;
3060 int all_wp=1;
3062 /* The scavenge will start at the region_start_offset of
3063 * page i.
3065 * We need to find the full extent of this contiguous
3066 * block in case objects span pages.
3068 * Now work forward until the end of this contiguous area
3069 * is found. A small area is preferred as there is a
3070 * better chance of its pages being write-protected. */
3071 for (last_page = i; ;last_page++) {
3072 /* If all pages are write-protected and movable,
3073 * then no need to scavenge */
3074 all_wp=all_wp && page_table[last_page].write_protected &&
3075 !page_table[last_page].dont_move;
3077 /* Check whether this is the last page in this
3078 * contiguous block */
3079 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3080 /* Or it is PAGE_BYTES and is the last in the block */
3081 || (!page_boxed_p(last_page+1))
3082 || (page_table[last_page+1].bytes_used == 0)
3083 || (page_table[last_page+1].gen != generation)
3084 || (page_table[last_page+1].region_start_offset == 0))
3085 break;
3088 /* Do a limited check for write-protected pages. */
3089 if (!all_wp) {
3090 long nwords = (((unsigned long)
3091 (page_table[last_page].bytes_used
3092 + npage_bytes(last_page-i)
3093 + page_table[i].region_start_offset))
3094 / N_WORD_BYTES);
3095 new_areas_ignore_page = last_page;
3097 scavenge(page_region_start(i), nwords);
3100 i = last_page;
3103 FSHOW((stderr,
3104 "/done with one full scan of newspace generation %d\n",
3105 generation));
3108 /* Do a complete scavenge of the newspace generation. */
3109 static void
3110 scavenge_newspace_generation(generation_index_t generation)
3112 long i;
3114 /* the new_areas array currently being written to by gc_alloc() */
3115 struct new_area (*current_new_areas)[] = &new_areas_1;
3116 long current_new_areas_index;
3118 /* the new_areas created by the previous scavenge cycle */
3119 struct new_area (*previous_new_areas)[] = NULL;
3120 long previous_new_areas_index;
3122 /* Flush the current regions updating the tables. */
3123 gc_alloc_update_all_page_tables();
3125 /* Turn on the recording of new areas by gc_alloc(). */
3126 new_areas = current_new_areas;
3127 new_areas_index = 0;
3129 /* Don't need to record new areas that get scavenged anyway during
3130 * scavenge_newspace_generation_one_scan. */
3131 record_new_objects = 1;
3133 /* Start with a full scavenge. */
3134 scavenge_newspace_generation_one_scan(generation);
3136 /* Record all new areas now. */
3137 record_new_objects = 2;
3139 /* Give a chance to weak hash tables to make other objects live.
3140 * FIXME: The algorithm implemented here for weak hash table gcing
3141 * is O(W^2+N) as Bruno Haible warns in
3142 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3143 * see "Implementation 2". */
3144 scav_weak_hash_tables();
3146 /* Flush the current regions updating the tables. */
3147 gc_alloc_update_all_page_tables();
3149 /* Grab new_areas_index. */
3150 current_new_areas_index = new_areas_index;
3152 /*FSHOW((stderr,
3153 "The first scan is finished; current_new_areas_index=%d.\n",
3154 current_new_areas_index));*/
3156 while (current_new_areas_index > 0) {
3157 /* Move the current to the previous new areas */
3158 previous_new_areas = current_new_areas;
3159 previous_new_areas_index = current_new_areas_index;
3161 /* Scavenge all the areas in previous new areas. Any new areas
3162 * allocated are saved in current_new_areas. */
3164 /* Allocate an array for current_new_areas; alternating between
3165 * new_areas_1 and 2 */
3166 if (previous_new_areas == &new_areas_1)
3167 current_new_areas = &new_areas_2;
3168 else
3169 current_new_areas = &new_areas_1;
3171 /* Set up for gc_alloc(). */
3172 new_areas = current_new_areas;
3173 new_areas_index = 0;
3175 /* Check whether previous_new_areas had overflowed. */
3176 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3178 /* New areas of objects allocated have been lost so need to do a
3179 * full scan to be sure! If this becomes a problem try
3180 * increasing NUM_NEW_AREAS. */
3181 if (gencgc_verbose) {
3182 SHOW("new_areas overflow, doing full scavenge");
3185 /* Don't need to record new areas that get scavenged
3186 * anyway during scavenge_newspace_generation_one_scan. */
3187 record_new_objects = 1;
3189 scavenge_newspace_generation_one_scan(generation);
3191 /* Record all new areas now. */
3192 record_new_objects = 2;
3194 scav_weak_hash_tables();
3196 /* Flush the current regions updating the tables. */
3197 gc_alloc_update_all_page_tables();
3199 } else {
3201 /* Work through previous_new_areas. */
3202 for (i = 0; i < previous_new_areas_index; i++) {
3203 page_index_t page = (*previous_new_areas)[i].page;
3204 size_t offset = (*previous_new_areas)[i].offset;
3205 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3206 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3207 scavenge(page_address(page)+offset, size);
3210 scav_weak_hash_tables();
3212 /* Flush the current regions updating the tables. */
3213 gc_alloc_update_all_page_tables();
3216 current_new_areas_index = new_areas_index;
3218 /*FSHOW((stderr,
3219 "The re-scan has finished; current_new_areas_index=%d.\n",
3220 current_new_areas_index));*/
3223 /* Turn off recording of areas allocated by gc_alloc(). */
3224 record_new_objects = 0;
3226 #if SC_NS_GEN_CK
3227 /* Check that none of the write_protected pages in this generation
3228 * have been written to. */
3229 for (i = 0; i < page_table_pages; i++) {
3230 if (page_allocated_p(i)
3231 && (page_table[i].bytes_used != 0)
3232 && (page_table[i].gen == generation)
3233 && (page_table[i].write_protected_cleared != 0)
3234 && (page_table[i].dont_move == 0)) {
3235 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3236 i, generation, page_table[i].dont_move);
3239 #endif
3242 /* Un-write-protect all the pages in from_space. This is done at the
3243 * start of a GC else there may be many page faults while scavenging
3244 * the newspace (I've seen drive the system time to 99%). These pages
3245 * would need to be unprotected anyway before unmapping in
3246 * free_oldspace; not sure what effect this has on paging.. */
3247 static void
3248 unprotect_oldspace(void)
3250 page_index_t i;
3252 for (i = 0; i < last_free_page; i++) {
3253 if (page_allocated_p(i)
3254 && (page_table[i].bytes_used != 0)
3255 && (page_table[i].gen == from_space)) {
3256 void *page_start;
3258 page_start = (void *)page_address(i);
3260 /* Remove any write-protection. We should be able to rely
3261 * on the write-protect flag to avoid redundant calls. */
3262 if (page_table[i].write_protected) {
3263 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3264 page_table[i].write_protected = 0;
3270 /* Work through all the pages and free any in from_space. This
3271 * assumes that all objects have been copied or promoted to an older
3272 * generation. Bytes_allocated and the generation bytes_allocated
3273 * counter are updated. The number of bytes freed is returned. */
3274 static unsigned long
3275 free_oldspace(void)
3277 unsigned long bytes_freed = 0;
3278 page_index_t first_page, last_page;
3280 first_page = 0;
3282 do {
3283 /* Find a first page for the next region of pages. */
3284 while ((first_page < last_free_page)
3285 && (page_free_p(first_page)
3286 || (page_table[first_page].bytes_used == 0)
3287 || (page_table[first_page].gen != from_space)))
3288 first_page++;
3290 if (first_page >= last_free_page)
3291 break;
3293 /* Find the last page of this region. */
3294 last_page = first_page;
3296 do {
3297 /* Free the page. */
3298 bytes_freed += page_table[last_page].bytes_used;
3299 generations[page_table[last_page].gen].bytes_allocated -=
3300 page_table[last_page].bytes_used;
3301 page_table[last_page].allocated = FREE_PAGE_FLAG;
3302 page_table[last_page].bytes_used = 0;
3304 /* Remove any write-protection. We should be able to rely
3305 * on the write-protect flag to avoid redundant calls. */
3307 void *page_start = (void *)page_address(last_page);
3309 if (page_table[last_page].write_protected) {
3310 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3311 page_table[last_page].write_protected = 0;
3314 last_page++;
3316 while ((last_page < last_free_page)
3317 && page_allocated_p(last_page)
3318 && (page_table[last_page].bytes_used != 0)
3319 && (page_table[last_page].gen == from_space));
3321 #ifdef READ_PROTECT_FREE_PAGES
3322 os_protect(page_address(first_page),
3323 npage_bytes(last_page-first_page),
3324 OS_VM_PROT_NONE);
3325 #endif
3326 first_page = last_page;
3327 } while (first_page < last_free_page);
3329 bytes_allocated -= bytes_freed;
3330 return bytes_freed;
3333 #if 0
3334 /* Print some information about a pointer at the given address. */
3335 static void
3336 print_ptr(lispobj *addr)
3338 /* If addr is in the dynamic space then out the page information. */
3339 page_index_t pi1 = find_page_index((void*)addr);
3341 if (pi1 != -1)
3342 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
3343 (unsigned long) addr,
3344 pi1,
3345 page_table[pi1].allocated,
3346 page_table[pi1].gen,
3347 page_table[pi1].bytes_used,
3348 page_table[pi1].region_start_offset,
3349 page_table[pi1].dont_move);
3350 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3351 *(addr-4),
3352 *(addr-3),
3353 *(addr-2),
3354 *(addr-1),
3355 *(addr-0),
3356 *(addr+1),
3357 *(addr+2),
3358 *(addr+3),
3359 *(addr+4));
3361 #endif
3363 static void
3364 verify_space(lispobj *start, size_t words)
3366 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3367 int is_in_readonly_space =
3368 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3369 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3371 while (words > 0) {
3372 size_t count = 1;
3373 lispobj thing = *(lispobj*)start;
3375 if (is_lisp_pointer(thing)) {
3376 page_index_t page_index = find_page_index((void*)thing);
3377 long to_readonly_space =
3378 (READ_ONLY_SPACE_START <= thing &&
3379 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3380 long to_static_space =
3381 (STATIC_SPACE_START <= thing &&
3382 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3384 /* Does it point to the dynamic space? */
3385 if (page_index != -1) {
3386 /* If it's within the dynamic space it should point to a used
3387 * page. XX Could check the offset too. */
3388 if (page_allocated_p(page_index)
3389 && (page_table[page_index].bytes_used == 0))
3390 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3391 /* Check that it doesn't point to a forwarding pointer! */
3392 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3393 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3395 /* Check that its not in the RO space as it would then be a
3396 * pointer from the RO to the dynamic space. */
3397 if (is_in_readonly_space) {
3398 lose("ptr to dynamic space %x from RO space %x\n",
3399 thing, start);
3401 /* Does it point to a plausible object? This check slows
3402 * it down a lot (so it's commented out).
3404 * "a lot" is serious: it ate 50 minutes cpu time on
3405 * my duron 950 before I came back from lunch and
3406 * killed it.
3408 * FIXME: Add a variable to enable this
3409 * dynamically. */
3411 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3412 lose("ptr %x to invalid object %x\n", thing, start);
3415 } else {
3416 /* Verify that it points to another valid space. */
3417 if (!to_readonly_space && !to_static_space) {
3418 lose("Ptr %x @ %x sees junk.\n", thing, start);
3421 } else {
3422 if (!(fixnump(thing))) {
3423 /* skip fixnums */
3424 switch(widetag_of(*start)) {
3426 /* boxed objects */
3427 case SIMPLE_VECTOR_WIDETAG:
3428 case RATIO_WIDETAG:
3429 case COMPLEX_WIDETAG:
3430 case SIMPLE_ARRAY_WIDETAG:
3431 case COMPLEX_BASE_STRING_WIDETAG:
3432 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3433 case COMPLEX_CHARACTER_STRING_WIDETAG:
3434 #endif
3435 case COMPLEX_VECTOR_NIL_WIDETAG:
3436 case COMPLEX_BIT_VECTOR_WIDETAG:
3437 case COMPLEX_VECTOR_WIDETAG:
3438 case COMPLEX_ARRAY_WIDETAG:
3439 case CLOSURE_HEADER_WIDETAG:
3440 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3441 case VALUE_CELL_HEADER_WIDETAG:
3442 case SYMBOL_HEADER_WIDETAG:
3443 case CHARACTER_WIDETAG:
3444 #if N_WORD_BITS == 64
3445 case SINGLE_FLOAT_WIDETAG:
3446 #endif
3447 case UNBOUND_MARKER_WIDETAG:
3448 case FDEFN_WIDETAG:
3449 count = 1;
3450 break;
3452 case INSTANCE_HEADER_WIDETAG:
3454 lispobj nuntagged;
3455 long ntotal = HeaderValue(thing);
3456 lispobj layout = ((struct instance *)start)->slots[0];
3457 if (!layout) {
3458 count = 1;
3459 break;
3461 nuntagged = ((struct layout *)
3462 native_pointer(layout))->n_untagged_slots;
3463 verify_space(start + 1,
3464 ntotal - fixnum_value(nuntagged));
3465 count = ntotal + 1;
3466 break;
3468 case CODE_HEADER_WIDETAG:
3470 lispobj object = *start;
3471 struct code *code;
3472 long nheader_words, ncode_words, nwords;
3473 lispobj fheaderl;
3474 struct simple_fun *fheaderp;
3476 code = (struct code *) start;
3478 /* Check that it's not in the dynamic space.
3479 * FIXME: Isn't is supposed to be OK for code
3480 * objects to be in the dynamic space these days? */
3481 if (is_in_dynamic_space
3482 /* It's ok if it's byte compiled code. The trace
3483 * table offset will be a fixnum if it's x86
3484 * compiled code - check.
3486 * FIXME: #^#@@! lack of abstraction here..
3487 * This line can probably go away now that
3488 * there's no byte compiler, but I've got
3489 * too much to worry about right now to try
3490 * to make sure. -- WHN 2001-10-06 */
3491 && fixnump(code->trace_table_offset)
3492 /* Only when enabled */
3493 && verify_dynamic_code_check) {
3494 FSHOW((stderr,
3495 "/code object at %x in the dynamic space\n",
3496 start));
3499 ncode_words = fixnum_value(code->code_size);
3500 nheader_words = HeaderValue(object);
3501 nwords = ncode_words + nheader_words;
3502 nwords = CEILING(nwords, 2);
3503 /* Scavenge the boxed section of the code data block */
3504 verify_space(start + 1, nheader_words - 1);
3506 /* Scavenge the boxed section of each function
3507 * object in the code data block. */
3508 fheaderl = code->entry_points;
3509 while (fheaderl != NIL) {
3510 fheaderp =
3511 (struct simple_fun *) native_pointer(fheaderl);
3512 gc_assert(widetag_of(fheaderp->header) ==
3513 SIMPLE_FUN_HEADER_WIDETAG);
3514 verify_space(&fheaderp->name, 1);
3515 verify_space(&fheaderp->arglist, 1);
3516 verify_space(&fheaderp->type, 1);
3517 fheaderl = fheaderp->next;
3519 count = nwords;
3520 break;
3523 /* unboxed objects */
3524 case BIGNUM_WIDETAG:
3525 #if N_WORD_BITS != 64
3526 case SINGLE_FLOAT_WIDETAG:
3527 #endif
3528 case DOUBLE_FLOAT_WIDETAG:
3529 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3530 case LONG_FLOAT_WIDETAG:
3531 #endif
3532 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3533 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3534 #endif
3535 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3536 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3537 #endif
3538 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3539 case COMPLEX_LONG_FLOAT_WIDETAG:
3540 #endif
3541 #ifdef SSE_PACK_WIDETAG
3542 case SSE_PACK_WIDETAG:
3543 #endif
3544 case SIMPLE_BASE_STRING_WIDETAG:
3545 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3546 case SIMPLE_CHARACTER_STRING_WIDETAG:
3547 #endif
3548 case SIMPLE_BIT_VECTOR_WIDETAG:
3549 case SIMPLE_ARRAY_NIL_WIDETAG:
3550 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3551 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3552 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3553 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3554 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3555 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3556 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3557 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3558 #endif
3559 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3560 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3561 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3562 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3563 #endif
3564 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3565 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3566 #endif
3567 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3568 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3569 #endif
3570 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3571 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3572 #endif
3573 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3574 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3575 #endif
3576 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3577 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3578 #endif
3579 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3580 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3581 #endif
3582 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3583 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3584 #endif
3585 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3586 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3587 #endif
3588 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3589 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3590 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3591 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3592 #endif
3593 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3594 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3595 #endif
3596 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3597 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3598 #endif
3599 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3600 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3601 #endif
3602 case SAP_WIDETAG:
3603 case WEAK_POINTER_WIDETAG:
3604 #ifdef LUTEX_WIDETAG
3605 case LUTEX_WIDETAG:
3606 #endif
3607 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3608 case NO_TLS_VALUE_MARKER_WIDETAG:
3609 #endif
3610 count = (sizetab[widetag_of(*start)])(start);
3611 break;
3613 default:
3614 lose("Unhandled widetag 0x%x at 0x%x\n",
3615 widetag_of(*start), start);
3619 start += count;
3620 words -= count;
3624 static void
3625 verify_gc(void)
3627 /* FIXME: It would be nice to make names consistent so that
3628 * foo_size meant size *in* *bytes* instead of size in some
3629 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3630 * Some counts of lispobjs are called foo_count; it might be good
3631 * to grep for all foo_size and rename the appropriate ones to
3632 * foo_count. */
3633 long read_only_space_size =
3634 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3635 - (lispobj*)READ_ONLY_SPACE_START;
3636 long static_space_size =
3637 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3638 - (lispobj*)STATIC_SPACE_START;
3639 struct thread *th;
3640 for_each_thread(th) {
3641 long binding_stack_size =
3642 (lispobj*)get_binding_stack_pointer(th)
3643 - (lispobj*)th->binding_stack_start;
3644 verify_space(th->binding_stack_start, binding_stack_size);
3646 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3647 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3650 static void
3651 verify_generation(generation_index_t generation)
3653 page_index_t i;
3655 for (i = 0; i < last_free_page; i++) {
3656 if (page_allocated_p(i)
3657 && (page_table[i].bytes_used != 0)
3658 && (page_table[i].gen == generation)) {
3659 page_index_t last_page;
3660 int region_allocation = page_table[i].allocated;
3662 /* This should be the start of a contiguous block */
3663 gc_assert(page_table[i].region_start_offset == 0);
3665 /* Need to find the full extent of this contiguous block in case
3666 objects span pages. */
3668 /* Now work forward until the end of this contiguous area is
3669 found. */
3670 for (last_page = i; ;last_page++)
3671 /* Check whether this is the last page in this contiguous
3672 * block. */
3673 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3674 /* Or it is PAGE_BYTES and is the last in the block */
3675 || (page_table[last_page+1].allocated != region_allocation)
3676 || (page_table[last_page+1].bytes_used == 0)
3677 || (page_table[last_page+1].gen != generation)
3678 || (page_table[last_page+1].region_start_offset == 0))
3679 break;
3681 verify_space(page_address(i),
3682 ((unsigned long)
3683 (page_table[last_page].bytes_used
3684 + npage_bytes(last_page-i)))
3685 / N_WORD_BYTES);
3686 i = last_page;
3691 /* Check that all the free space is zero filled. */
3692 static void
3693 verify_zero_fill(void)
3695 page_index_t page;
3697 for (page = 0; page < last_free_page; page++) {
3698 if (page_free_p(page)) {
3699 /* The whole page should be zero filled. */
3700 long *start_addr = (long *)page_address(page);
3701 long size = 1024;
3702 long i;
3703 for (i = 0; i < size; i++) {
3704 if (start_addr[i] != 0) {
3705 lose("free page not zero at %x\n", start_addr + i);
3708 } else {
3709 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3710 if (free_bytes > 0) {
3711 long *start_addr = (long *)((unsigned long)page_address(page)
3712 + page_table[page].bytes_used);
3713 long size = free_bytes / N_WORD_BYTES;
3714 long i;
3715 for (i = 0; i < size; i++) {
3716 if (start_addr[i] != 0) {
3717 lose("free region not zero at %x\n", start_addr + i);
3725 /* External entry point for verify_zero_fill */
3726 void
3727 gencgc_verify_zero_fill(void)
3729 /* Flush the alloc regions updating the tables. */
3730 gc_alloc_update_all_page_tables();
3731 SHOW("verifying zero fill");
3732 verify_zero_fill();
3735 static void
3736 verify_dynamic_space(void)
3738 generation_index_t i;
3740 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3741 verify_generation(i);
3743 if (gencgc_enable_verify_zero_fill)
3744 verify_zero_fill();
3747 /* Write-protect all the dynamic boxed pages in the given generation. */
3748 static void
3749 write_protect_generation_pages(generation_index_t generation)
3751 page_index_t start;
3753 gc_assert(generation < SCRATCH_GENERATION);
3755 for (start = 0; start < last_free_page; start++) {
3756 if (protect_page_p(start, generation)) {
3757 void *page_start;
3758 page_index_t last;
3760 /* Note the page as protected in the page tables. */
3761 page_table[start].write_protected = 1;
3763 for (last = start + 1; last < last_free_page; last++) {
3764 if (!protect_page_p(last, generation))
3765 break;
3766 page_table[last].write_protected = 1;
3769 page_start = (void *)page_address(start);
3771 os_protect(page_start,
3772 npage_bytes(last - start),
3773 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3775 start = last;
3779 if (gencgc_verbose > 1) {
3780 FSHOW((stderr,
3781 "/write protected %d of %d pages in generation %d\n",
3782 count_write_protect_generation_pages(generation),
3783 count_generation_pages(generation),
3784 generation));
3788 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3790 static void
3791 scavenge_control_stack()
3793 unsigned long control_stack_size;
3795 /* This is going to be a big problem when we try to port threads
3796 * to PPC... CLH */
3797 struct thread *th = arch_os_get_current_thread();
3798 lispobj *control_stack =
3799 (lispobj *)(th->control_stack_start);
3801 control_stack_size = current_control_stack_pointer - control_stack;
3802 scavenge(control_stack, control_stack_size);
3805 /* Scavenging Interrupt Contexts */
3807 static int boxed_registers[] = BOXED_REGISTERS;
3809 static void
3810 scavenge_interrupt_context(os_context_t * context)
3812 int i;
3814 #ifdef reg_LIP
3815 unsigned long lip;
3816 unsigned long lip_offset;
3817 int lip_register_pair;
3818 #endif
3819 unsigned long pc_code_offset;
3821 #ifdef ARCH_HAS_LINK_REGISTER
3822 unsigned long lr_code_offset;
3823 #endif
3824 #ifdef ARCH_HAS_NPC_REGISTER
3825 unsigned long npc_code_offset;
3826 #endif
3828 #ifdef reg_LIP
3829 /* Find the LIP's register pair and calculate it's offset */
3830 /* before we scavenge the context. */
3833 * I (RLT) think this is trying to find the boxed register that is
3834 * closest to the LIP address, without going past it. Usually, it's
3835 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3837 lip = *os_context_register_addr(context, reg_LIP);
3838 lip_offset = 0x7FFFFFFF;
3839 lip_register_pair = -1;
3840 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3841 unsigned long reg;
3842 long offset;
3843 int index;
3845 index = boxed_registers[i];
3846 reg = *os_context_register_addr(context, index);
3847 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3848 offset = lip - reg;
3849 if (offset < lip_offset) {
3850 lip_offset = offset;
3851 lip_register_pair = index;
3855 #endif /* reg_LIP */
3857 /* Compute the PC's offset from the start of the CODE */
3858 /* register. */
3859 pc_code_offset = *os_context_pc_addr(context)
3860 - *os_context_register_addr(context, reg_CODE);
3861 #ifdef ARCH_HAS_NPC_REGISTER
3862 npc_code_offset = *os_context_npc_addr(context)
3863 - *os_context_register_addr(context, reg_CODE);
3864 #endif /* ARCH_HAS_NPC_REGISTER */
3866 #ifdef ARCH_HAS_LINK_REGISTER
3867 lr_code_offset =
3868 *os_context_lr_addr(context) -
3869 *os_context_register_addr(context, reg_CODE);
3870 #endif
3872 /* Scanvenge all boxed registers in the context. */
3873 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3874 int index;
3875 lispobj foo;
3877 index = boxed_registers[i];
3878 foo = *os_context_register_addr(context, index);
3879 scavenge(&foo, 1);
3880 *os_context_register_addr(context, index) = foo;
3882 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3885 #ifdef reg_LIP
3886 /* Fix the LIP */
3889 * But what happens if lip_register_pair is -1?
3890 * *os_context_register_addr on Solaris (see
3891 * solaris_register_address in solaris-os.c) will return
3892 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3893 * that what we really want? My guess is that that is not what we
3894 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3895 * all. But maybe it doesn't really matter if LIP is trashed?
3897 if (lip_register_pair >= 0) {
3898 *os_context_register_addr(context, reg_LIP) =
3899 *os_context_register_addr(context, lip_register_pair)
3900 + lip_offset;
3902 #endif /* reg_LIP */
3904 /* Fix the PC if it was in from space */
3905 if (from_space_p(*os_context_pc_addr(context)))
3906 *os_context_pc_addr(context) =
3907 *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3909 #ifdef ARCH_HAS_LINK_REGISTER
3910 /* Fix the LR ditto; important if we're being called from
3911 * an assembly routine that expects to return using blr, otherwise
3912 * harmless */
3913 if (from_space_p(*os_context_lr_addr(context)))
3914 *os_context_lr_addr(context) =
3915 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3916 #endif
3918 #ifdef ARCH_HAS_NPC_REGISTER
3919 if (from_space_p(*os_context_npc_addr(context)))
3920 *os_context_npc_addr(context) =
3921 *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3922 #endif /* ARCH_HAS_NPC_REGISTER */
3925 void
3926 scavenge_interrupt_contexts(void)
3928 int i, index;
3929 os_context_t *context;
3931 struct thread *th=arch_os_get_current_thread();
3933 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3935 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3936 printf("Number of active contexts: %d\n", index);
3937 #endif
3939 for (i = 0; i < index; i++) {
3940 context = th->interrupt_contexts[i];
3941 scavenge_interrupt_context(context);
3945 #endif
3947 #if defined(LISP_FEATURE_SB_THREAD)
3948 static void
3949 preserve_context_registers (os_context_t *c)
3951 void **ptr;
3952 /* On Darwin the signal context isn't a contiguous block of memory,
3953 * so just preserve_pointering its contents won't be sufficient.
3955 #if defined(LISP_FEATURE_DARWIN)
3956 #if defined LISP_FEATURE_X86
3957 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3958 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3959 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3960 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3961 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3962 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3963 preserve_pointer((void*)*os_context_pc_addr(c));
3964 #elif defined LISP_FEATURE_X86_64
3965 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3966 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3967 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3968 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3969 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3970 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3971 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3972 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3973 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3974 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3975 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3976 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3977 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3978 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3979 preserve_pointer((void*)*os_context_pc_addr(c));
3980 #else
3981 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3982 #endif
3983 #endif
3984 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3985 preserve_pointer(*ptr);
3988 #endif
3990 /* Garbage collect a generation. If raise is 0 then the remains of the
3991 * generation are not raised to the next generation. */
3992 static void
3993 garbage_collect_generation(generation_index_t generation, int raise)
3995 unsigned long bytes_freed;
3996 page_index_t i;
3997 unsigned long static_space_size;
3998 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3999 struct thread *th;
4000 #endif
4001 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
4003 /* The oldest generation can't be raised. */
4004 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
4006 /* Check if weak hash tables were processed in the previous GC. */
4007 gc_assert(weak_hash_tables == NULL);
4009 /* Initialize the weak pointer list. */
4010 weak_pointers = NULL;
4012 #ifdef LUTEX_WIDETAG
4013 unmark_lutexes(generation);
4014 #endif
4016 /* When a generation is not being raised it is transported to a
4017 * temporary generation (NUM_GENERATIONS), and lowered when
4018 * done. Set up this new generation. There should be no pages
4019 * allocated to it yet. */
4020 if (!raise) {
4021 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
4024 /* Set the global src and dest. generations */
4025 from_space = generation;
4026 if (raise)
4027 new_space = generation+1;
4028 else
4029 new_space = SCRATCH_GENERATION;
4031 /* Change to a new space for allocation, resetting the alloc_start_page */
4032 gc_alloc_generation = new_space;
4033 generations[new_space].alloc_start_page = 0;
4034 generations[new_space].alloc_unboxed_start_page = 0;
4035 generations[new_space].alloc_large_start_page = 0;
4036 generations[new_space].alloc_large_unboxed_start_page = 0;
4038 /* Before any pointers are preserved, the dont_move flags on the
4039 * pages need to be cleared. */
4040 for (i = 0; i < last_free_page; i++)
4041 if(page_table[i].gen==from_space)
4042 page_table[i].dont_move = 0;
4044 /* Un-write-protect the old-space pages. This is essential for the
4045 * promoted pages as they may contain pointers into the old-space
4046 * which need to be scavenged. It also helps avoid unnecessary page
4047 * faults as forwarding pointers are written into them. They need to
4048 * be un-protected anyway before unmapping later. */
4049 unprotect_oldspace();
4051 /* Scavenge the stacks' conservative roots. */
4053 /* there are potentially two stacks for each thread: the main
4054 * stack, which may contain Lisp pointers, and the alternate stack.
4055 * We don't ever run Lisp code on the altstack, but it may
4056 * host a sigcontext with lisp objects in it */
4058 /* what we need to do: (1) find the stack pointer for the main
4059 * stack; scavenge it (2) find the interrupt context on the
4060 * alternate stack that might contain lisp values, and scavenge
4061 * that */
4063 /* we assume that none of the preceding applies to the thread that
4064 * initiates GC. If you ever call GC from inside an altstack
4065 * handler, you will lose. */
4067 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
4068 /* And if we're saving a core, there's no point in being conservative. */
4069 if (conservative_stack) {
4070 for_each_thread(th) {
4071 void **ptr;
4072 void **esp=(void **)-1;
4073 #ifdef LISP_FEATURE_SB_THREAD
4074 long i,free;
4075 if(th==arch_os_get_current_thread()) {
4076 /* Somebody is going to burn in hell for this, but casting
4077 * it in two steps shuts gcc up about strict aliasing. */
4078 esp = (void **)((void *)&raise);
4079 } else {
4080 void **esp1;
4081 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
4082 for(i=free-1;i>=0;i--) {
4083 os_context_t *c=th->interrupt_contexts[i];
4084 esp1 = (void **) *os_context_register_addr(c,reg_SP);
4085 if (esp1>=(void **)th->control_stack_start &&
4086 esp1<(void **)th->control_stack_end) {
4087 if(esp1<esp) esp=esp1;
4088 preserve_context_registers(c);
4092 #else
4093 esp = (void **)((void *)&raise);
4094 #endif
4095 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
4096 preserve_pointer(*ptr);
4100 #endif
4102 #if QSHOW
4103 if (gencgc_verbose > 1) {
4104 long num_dont_move_pages = count_dont_move_pages();
4105 fprintf(stderr,
4106 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
4107 num_dont_move_pages,
4108 npage_bytes(num_dont_move_pages));
4110 #endif
4112 /* Scavenge all the rest of the roots. */
4114 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
4116 * If not x86, we need to scavenge the interrupt context(s) and the
4117 * control stack.
4119 scavenge_interrupt_contexts();
4120 scavenge_control_stack();
4121 #endif
4123 /* Scavenge the Lisp functions of the interrupt handlers, taking
4124 * care to avoid SIG_DFL and SIG_IGN. */
4125 for (i = 0; i < NSIG; i++) {
4126 union interrupt_handler handler = interrupt_handlers[i];
4127 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
4128 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
4129 scavenge((lispobj *)(interrupt_handlers + i), 1);
4132 /* Scavenge the binding stacks. */
4134 struct thread *th;
4135 for_each_thread(th) {
4136 long len= (lispobj *)get_binding_stack_pointer(th) -
4137 th->binding_stack_start;
4138 scavenge((lispobj *) th->binding_stack_start,len);
4139 #ifdef LISP_FEATURE_SB_THREAD
4140 /* do the tls as well */
4141 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4142 (sizeof (struct thread))/(sizeof (lispobj));
4143 scavenge((lispobj *) (th+1),len);
4144 #endif
4148 /* The original CMU CL code had scavenge-read-only-space code
4149 * controlled by the Lisp-level variable
4150 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4151 * wasn't documented under what circumstances it was useful or
4152 * safe to turn it on, so it's been turned off in SBCL. If you
4153 * want/need this functionality, and can test and document it,
4154 * please submit a patch. */
4155 #if 0
4156 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4157 unsigned long read_only_space_size =
4158 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4159 (lispobj*)READ_ONLY_SPACE_START;
4160 FSHOW((stderr,
4161 "/scavenge read only space: %d bytes\n",
4162 read_only_space_size * sizeof(lispobj)));
4163 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4165 #endif
4167 /* Scavenge static space. */
4168 static_space_size =
4169 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4170 (lispobj *)STATIC_SPACE_START;
4171 if (gencgc_verbose > 1) {
4172 FSHOW((stderr,
4173 "/scavenge static space: %d bytes\n",
4174 static_space_size * sizeof(lispobj)));
4176 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4178 /* All generations but the generation being GCed need to be
4179 * scavenged. The new_space generation needs special handling as
4180 * objects may be moved in - it is handled separately below. */
4181 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4183 /* Finally scavenge the new_space generation. Keep going until no
4184 * more objects are moved into the new generation */
4185 scavenge_newspace_generation(new_space);
4187 /* FIXME: I tried reenabling this check when debugging unrelated
4188 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4189 * Since the current GC code seems to work well, I'm guessing that
4190 * this debugging code is just stale, but I haven't tried to
4191 * figure it out. It should be figured out and then either made to
4192 * work or just deleted. */
4193 #define RESCAN_CHECK 0
4194 #if RESCAN_CHECK
4195 /* As a check re-scavenge the newspace once; no new objects should
4196 * be found. */
4198 long old_bytes_allocated = bytes_allocated;
4199 long bytes_allocated;
4201 /* Start with a full scavenge. */
4202 scavenge_newspace_generation_one_scan(new_space);
4204 /* Flush the current regions, updating the tables. */
4205 gc_alloc_update_all_page_tables();
4207 bytes_allocated = bytes_allocated - old_bytes_allocated;
4209 if (bytes_allocated != 0) {
4210 lose("Rescan of new_space allocated %d more bytes.\n",
4211 bytes_allocated);
4214 #endif
4216 scan_weak_hash_tables();
4217 scan_weak_pointers();
4219 /* Flush the current regions, updating the tables. */
4220 gc_alloc_update_all_page_tables();
4222 /* Free the pages in oldspace, but not those marked dont_move. */
4223 bytes_freed = free_oldspace();
4225 /* If the GC is not raising the age then lower the generation back
4226 * to its normal generation number */
4227 if (!raise) {
4228 for (i = 0; i < last_free_page; i++)
4229 if ((page_table[i].bytes_used != 0)
4230 && (page_table[i].gen == SCRATCH_GENERATION))
4231 page_table[i].gen = generation;
4232 gc_assert(generations[generation].bytes_allocated == 0);
4233 generations[generation].bytes_allocated =
4234 generations[SCRATCH_GENERATION].bytes_allocated;
4235 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4238 /* Reset the alloc_start_page for generation. */
4239 generations[generation].alloc_start_page = 0;
4240 generations[generation].alloc_unboxed_start_page = 0;
4241 generations[generation].alloc_large_start_page = 0;
4242 generations[generation].alloc_large_unboxed_start_page = 0;
4244 if (generation >= verify_gens) {
4245 if (gencgc_verbose) {
4246 SHOW("verifying");
4248 verify_gc();
4249 verify_dynamic_space();
4252 /* Set the new gc trigger for the GCed generation. */
4253 generations[generation].gc_trigger =
4254 generations[generation].bytes_allocated
4255 + generations[generation].bytes_consed_between_gc;
4257 if (raise)
4258 generations[generation].num_gc = 0;
4259 else
4260 ++generations[generation].num_gc;
4262 #ifdef LUTEX_WIDETAG
4263 reap_lutexes(generation);
4264 if (raise)
4265 move_lutexes(generation, generation+1);
4266 #endif
4269 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4270 long
4271 update_dynamic_space_free_pointer(void)
4273 page_index_t last_page = -1, i;
4275 for (i = 0; i < last_free_page; i++)
4276 if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
4277 last_page = i;
4279 last_free_page = last_page+1;
4281 set_alloc_pointer((lispobj)(page_address(last_free_page)));
4282 return 0; /* dummy value: return something ... */
4285 static void
4286 remap_free_pages (page_index_t from, page_index_t to)
4288 page_index_t first_page, last_page;
4290 for (first_page = from; first_page <= to; first_page++) {
4291 if (page_allocated_p(first_page) ||
4292 (page_table[first_page].need_to_zero == 0)) {
4293 continue;
4296 last_page = first_page + 1;
4297 while (page_free_p(last_page) &&
4298 (last_page < to) &&
4299 (page_table[last_page].need_to_zero == 1)) {
4300 last_page++;
4303 /* There's a mysterious Solaris/x86 problem with using mmap
4304 * tricks for memory zeroing. See sbcl-devel thread
4305 * "Re: patch: standalone executable redux".
4307 #if defined(LISP_FEATURE_SUNOS)
4308 zero_pages(first_page, last_page-1);
4309 #else
4310 zero_pages_with_mmap(first_page, last_page-1);
4311 #endif
4313 first_page = last_page;
4317 generation_index_t small_generation_limit = 1;
4319 /* GC all generations newer than last_gen, raising the objects in each
4320 * to the next older generation - we finish when all generations below
4321 * last_gen are empty. Then if last_gen is due for a GC, or if
4322 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4323 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4325 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4326 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4327 void
4328 collect_garbage(generation_index_t last_gen)
4330 generation_index_t gen = 0, i;
4331 int raise;
4332 int gen_to_wp;
4333 /* The largest value of last_free_page seen since the time
4334 * remap_free_pages was called. */
4335 static page_index_t high_water_mark = 0;
4337 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4339 gc_active_p = 1;
4341 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4342 FSHOW((stderr,
4343 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4344 last_gen));
4345 last_gen = 0;
4348 /* Flush the alloc regions updating the tables. */
4349 gc_alloc_update_all_page_tables();
4351 /* Verify the new objects created by Lisp code. */
4352 if (pre_verify_gen_0) {
4353 FSHOW((stderr, "pre-checking generation 0\n"));
4354 verify_generation(0);
4357 if (gencgc_verbose > 1)
4358 print_generation_stats();
4360 do {
4361 /* Collect the generation. */
4363 if (gen >= gencgc_oldest_gen_to_gc) {
4364 /* Never raise the oldest generation. */
4365 raise = 0;
4366 } else {
4367 raise =
4368 (gen < last_gen)
4369 || (generations[gen].num_gc >= generations[gen].number_of_gcs_before_promotion);
4372 if (gencgc_verbose > 1) {
4373 FSHOW((stderr,
4374 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4375 gen,
4376 raise,
4377 generations[gen].bytes_allocated,
4378 generations[gen].gc_trigger,
4379 generations[gen].num_gc));
4382 /* If an older generation is being filled, then update its
4383 * memory age. */
4384 if (raise == 1) {
4385 generations[gen+1].cum_sum_bytes_allocated +=
4386 generations[gen+1].bytes_allocated;
4389 garbage_collect_generation(gen, raise);
4391 /* Reset the memory age cum_sum. */
4392 generations[gen].cum_sum_bytes_allocated = 0;
4394 if (gencgc_verbose > 1) {
4395 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4396 print_generation_stats();
4399 gen++;
4400 } while ((gen <= gencgc_oldest_gen_to_gc)
4401 && ((gen < last_gen)
4402 || ((gen <= gencgc_oldest_gen_to_gc)
4403 && raise
4404 && (generations[gen].bytes_allocated
4405 > generations[gen].gc_trigger)
4406 && (generation_average_age(gen)
4407 > generations[gen].minimum_age_before_gc))));
4409 /* Now if gen-1 was raised all generations before gen are empty.
4410 * If it wasn't raised then all generations before gen-1 are empty.
4412 * Now objects within this gen's pages cannot point to younger
4413 * generations unless they are written to. This can be exploited
4414 * by write-protecting the pages of gen; then when younger
4415 * generations are GCed only the pages which have been written
4416 * need scanning. */
4417 if (raise)
4418 gen_to_wp = gen;
4419 else
4420 gen_to_wp = gen - 1;
4422 /* There's not much point in WPing pages in generation 0 as it is
4423 * never scavenged (except promoted pages). */
4424 if ((gen_to_wp > 0) && enable_page_protection) {
4425 /* Check that they are all empty. */
4426 for (i = 0; i < gen_to_wp; i++) {
4427 if (generations[i].bytes_allocated)
4428 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4429 gen_to_wp, i);
4431 write_protect_generation_pages(gen_to_wp);
4434 /* Set gc_alloc() back to generation 0. The current regions should
4435 * be flushed after the above GCs. */
4436 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4437 gc_alloc_generation = 0;
4439 /* Save the high-water mark before updating last_free_page */
4440 if (last_free_page > high_water_mark)
4441 high_water_mark = last_free_page;
4443 update_dynamic_space_free_pointer();
4445 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4446 if(gencgc_verbose)
4447 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4448 auto_gc_trigger);
4450 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4451 * back to the OS.
4453 if (gen > small_generation_limit) {
4454 if (last_free_page > high_water_mark)
4455 high_water_mark = last_free_page;
4456 remap_free_pages(0, high_water_mark);
4457 high_water_mark = 0;
4460 gc_active_p = 0;
4462 SHOW("returning from collect_garbage");
4465 /* This is called by Lisp PURIFY when it is finished. All live objects
4466 * will have been moved to the RO and Static heaps. The dynamic space
4467 * will need a full re-initialization. We don't bother having Lisp
4468 * PURIFY flush the current gc_alloc() region, as the page_tables are
4469 * re-initialized, and every page is zeroed to be sure. */
4470 void
4471 gc_free_heap(void)
4473 page_index_t page;
4475 if (gencgc_verbose > 1) {
4476 SHOW("entering gc_free_heap");
4479 for (page = 0; page < page_table_pages; page++) {
4480 /* Skip free pages which should already be zero filled. */
4481 if (page_allocated_p(page)) {
4482 void *page_start, *addr;
4484 /* Mark the page free. The other slots are assumed invalid
4485 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4486 * should not be write-protected -- except that the
4487 * generation is used for the current region but it sets
4488 * that up. */
4489 page_table[page].allocated = FREE_PAGE_FLAG;
4490 page_table[page].bytes_used = 0;
4492 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
4493 * about this change. */
4494 /* Zero the page. */
4495 page_start = (void *)page_address(page);
4497 /* First, remove any write-protection. */
4498 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4499 page_table[page].write_protected = 0;
4501 os_invalidate(page_start,PAGE_BYTES);
4502 addr = os_validate(page_start,PAGE_BYTES);
4503 if (addr == NULL || addr != page_start) {
4504 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4505 page_start,
4506 addr);
4508 #else
4509 page_table[page].write_protected = 0;
4510 #endif
4511 } else if (gencgc_zero_check_during_free_heap) {
4512 /* Double-check that the page is zero filled. */
4513 long *page_start;
4514 page_index_t i;
4515 gc_assert(page_free_p(page));
4516 gc_assert(page_table[page].bytes_used == 0);
4517 page_start = (long *)page_address(page);
4518 for (i=0; i<1024; i++) {
4519 if (page_start[i] != 0) {
4520 lose("free region not zero at %x\n", page_start + i);
4526 bytes_allocated = 0;
4528 /* Initialize the generations. */
4529 for (page = 0; page < NUM_GENERATIONS; page++) {
4530 generations[page].alloc_start_page = 0;
4531 generations[page].alloc_unboxed_start_page = 0;
4532 generations[page].alloc_large_start_page = 0;
4533 generations[page].alloc_large_unboxed_start_page = 0;
4534 generations[page].bytes_allocated = 0;
4535 generations[page].gc_trigger = 2000000;
4536 generations[page].num_gc = 0;
4537 generations[page].cum_sum_bytes_allocated = 0;
4538 generations[page].lutexes = NULL;
4541 if (gencgc_verbose > 1)
4542 print_generation_stats();
4544 /* Initialize gc_alloc(). */
4545 gc_alloc_generation = 0;
4547 gc_set_region_empty(&boxed_region);
4548 gc_set_region_empty(&unboxed_region);
4550 last_free_page = 0;
4551 set_alloc_pointer((lispobj)((char *)heap_base));
4553 if (verify_after_free_heap) {
4554 /* Check whether purify has left any bad pointers. */
4555 FSHOW((stderr, "checking after free_heap\n"));
4556 verify_gc();
4560 void
4561 gc_init(void)
4563 page_index_t i;
4565 /* Compute the number of pages needed for the dynamic space.
4566 * Dynamic space size should be aligned on page size. */
4567 page_table_pages = dynamic_space_size/PAGE_BYTES;
4568 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4570 page_table = calloc(page_table_pages, sizeof(struct page));
4571 gc_assert(page_table);
4573 gc_init_tables();
4574 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4575 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4577 #ifdef LUTEX_WIDETAG
4578 scavtab[LUTEX_WIDETAG] = scav_lutex;
4579 transother[LUTEX_WIDETAG] = trans_lutex;
4580 sizetab[LUTEX_WIDETAG] = size_lutex;
4581 #endif
4583 heap_base = (void*)DYNAMIC_SPACE_START;
4585 /* Initialize each page structure. */
4586 for (i = 0; i < page_table_pages; i++) {
4587 /* Initialize all pages as free. */
4588 page_table[i].allocated = FREE_PAGE_FLAG;
4589 page_table[i].bytes_used = 0;
4591 /* Pages are not write-protected at startup. */
4592 page_table[i].write_protected = 0;
4595 bytes_allocated = 0;
4597 /* Initialize the generations.
4599 * FIXME: very similar to code in gc_free_heap(), should be shared */
4600 for (i = 0; i < NUM_GENERATIONS; i++) {
4601 generations[i].alloc_start_page = 0;
4602 generations[i].alloc_unboxed_start_page = 0;
4603 generations[i].alloc_large_start_page = 0;
4604 generations[i].alloc_large_unboxed_start_page = 0;
4605 generations[i].bytes_allocated = 0;
4606 generations[i].gc_trigger = 2000000;
4607 generations[i].num_gc = 0;
4608 generations[i].cum_sum_bytes_allocated = 0;
4609 /* the tune-able parameters */
4610 generations[i].bytes_consed_between_gc = 2000000;
4611 generations[i].number_of_gcs_before_promotion = 1;
4612 generations[i].minimum_age_before_gc = 0.75;
4613 generations[i].lutexes = NULL;
4616 /* Initialize gc_alloc. */
4617 gc_alloc_generation = 0;
4618 gc_set_region_empty(&boxed_region);
4619 gc_set_region_empty(&unboxed_region);
4621 last_free_page = 0;
4624 /* Pick up the dynamic space from after a core load.
4626 * The ALLOCATION_POINTER points to the end of the dynamic space.
4629 static void
4630 gencgc_pickup_dynamic(void)
4632 page_index_t page = 0;
4633 void *alloc_ptr = (void *)get_alloc_pointer();
4634 lispobj *prev=(lispobj *)page_address(page);
4635 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4636 do {
4637 lispobj *first,*ptr= (lispobj *)page_address(page);
4638 page_table[page].gen = gen;
4639 page_table[page].bytes_used = PAGE_BYTES;
4640 page_table[page].large_object = 0;
4641 page_table[page].write_protected = 0;
4642 page_table[page].write_protected_cleared = 0;
4643 page_table[page].dont_move = 0;
4644 page_table[page].need_to_zero = 1;
4646 if (!gencgc_partial_pickup) {
4647 page_table[page].allocated = BOXED_PAGE_FLAG;
4648 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4649 if(ptr == first)
4650 prev=ptr;
4651 page_table[page].region_start_offset =
4652 page_address(page) - (void *)prev;
4654 page++;
4655 } while (page_address(page) < alloc_ptr);
4657 #ifdef LUTEX_WIDETAG
4658 /* Lutexes have been registered in generation 0 by coreparse, and
4659 * need to be moved to the right one manually.
4661 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4662 #endif
4664 last_free_page = page;
4666 generations[gen].bytes_allocated = npage_bytes(page);
4667 bytes_allocated = npage_bytes(page);
4669 gc_alloc_update_all_page_tables();
4670 write_protect_generation_pages(gen);
4673 void
4674 gc_initialize_pointers(void)
4676 gencgc_pickup_dynamic();
4680 /* alloc(..) is the external interface for memory allocation. It
4681 * allocates to generation 0. It is not called from within the garbage
4682 * collector as it is only external uses that need the check for heap
4683 * size (GC trigger) and to disable the interrupts (interrupts are
4684 * always disabled during a GC).
4686 * The vops that call alloc(..) assume that the returned space is zero-filled.
4687 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4689 * The check for a GC trigger is only performed when the current
4690 * region is full, so in most cases it's not needed. */
4692 static inline lispobj *
4693 general_alloc_internal(long nbytes, int page_type_flag, struct alloc_region *region,
4694 struct thread *thread)
4696 #ifndef LISP_FEATURE_WIN32
4697 lispobj alloc_signal;
4698 #endif
4699 void *new_obj;
4700 void *new_free_pointer;
4702 gc_assert(nbytes>0);
4704 /* Check for alignment allocation problems. */
4705 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4706 && ((nbytes & LOWTAG_MASK) == 0));
4708 /* Must be inside a PA section. */
4709 gc_assert(get_pseudo_atomic_atomic(thread));
4711 /* maybe we can do this quickly ... */
4712 new_free_pointer = region->free_pointer + nbytes;
4713 if (new_free_pointer <= region->end_addr) {
4714 new_obj = (void*)(region->free_pointer);
4715 region->free_pointer = new_free_pointer;
4716 return(new_obj); /* yup */
4719 /* we have to go the long way around, it seems. Check whether we
4720 * should GC in the near future
4722 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4723 /* Don't flood the system with interrupts if the need to gc is
4724 * already noted. This can happen for example when SUB-GC
4725 * allocates or after a gc triggered in a WITHOUT-GCING. */
4726 if (SymbolValue(GC_PENDING,thread) == NIL) {
4727 /* set things up so that GC happens when we finish the PA
4728 * section */
4729 SetSymbolValue(GC_PENDING,T,thread);
4730 if (SymbolValue(GC_INHIBIT,thread) == NIL) {
4731 set_pseudo_atomic_interrupted(thread);
4732 #ifdef LISP_FEATURE_PPC
4733 /* PPC calls alloc() from a trap or from pa_alloc(),
4734 * look up the most context if it's from a trap. */
4736 os_context_t *context =
4737 thread->interrupt_data->allocation_trap_context;
4738 maybe_save_gc_mask_and_block_deferrables
4739 (context ? os_context_sigmask_addr(context) : NULL);
4741 #else
4742 maybe_save_gc_mask_and_block_deferrables(NULL);
4743 #endif
4747 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4749 #ifndef LISP_FEATURE_WIN32
4750 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4751 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4752 if ((signed long) alloc_signal <= 0) {
4753 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4754 raise(SIGPROF);
4755 } else {
4756 SetSymbolValue(ALLOC_SIGNAL,
4757 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4758 thread);
4761 #endif
4763 return (new_obj);
4766 lispobj *
4767 general_alloc(long nbytes, int page_type_flag)
4769 struct thread *thread = arch_os_get_current_thread();
4770 /* Select correct region, and call general_alloc_internal with it.
4771 * For other then boxed allocation we must lock first, since the
4772 * region is shared. */
4773 if (BOXED_PAGE_FLAG & page_type_flag) {
4774 #ifdef LISP_FEATURE_SB_THREAD
4775 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4776 #else
4777 struct alloc_region *region = &boxed_region;
4778 #endif
4779 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4780 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4781 lispobj * obj;
4782 gc_assert(0 == thread_mutex_lock(&allocation_lock));
4783 obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4784 gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4785 return obj;
4786 } else {
4787 lose("bad page type flag: %d", page_type_flag);
4791 lispobj *
4792 alloc(long nbytes)
4794 gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4795 return general_alloc(nbytes, BOXED_PAGE_FLAG);
4799 * shared support for the OS-dependent signal handlers which
4800 * catch GENCGC-related write-protect violations
4802 void unhandled_sigmemoryfault(void* addr);
4804 /* Depending on which OS we're running under, different signals might
4805 * be raised for a violation of write protection in the heap. This
4806 * function factors out the common generational GC magic which needs
4807 * to invoked in this case, and should be called from whatever signal
4808 * handler is appropriate for the OS we're running under.
4810 * Return true if this signal is a normal generational GC thing that
4811 * we were able to handle, or false if it was abnormal and control
4812 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4815 gencgc_handle_wp_violation(void* fault_addr)
4817 page_index_t page_index = find_page_index(fault_addr);
4819 #if QSHOW_SIGNALS
4820 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4821 fault_addr, page_index));
4822 #endif
4824 /* Check whether the fault is within the dynamic space. */
4825 if (page_index == (-1)) {
4827 /* It can be helpful to be able to put a breakpoint on this
4828 * case to help diagnose low-level problems. */
4829 unhandled_sigmemoryfault(fault_addr);
4831 /* not within the dynamic space -- not our responsibility */
4832 return 0;
4834 } else {
4835 int ret;
4836 ret = thread_mutex_lock(&free_pages_lock);
4837 gc_assert(ret == 0);
4838 if (page_table[page_index].write_protected) {
4839 /* Unprotect the page. */
4840 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4841 page_table[page_index].write_protected_cleared = 1;
4842 page_table[page_index].write_protected = 0;
4843 } else {
4844 /* The only acceptable reason for this signal on a heap
4845 * access is that GENCGC write-protected the page.
4846 * However, if two CPUs hit a wp page near-simultaneously,
4847 * we had better not have the second one lose here if it
4848 * does this test after the first one has already set wp=0
4850 if(page_table[page_index].write_protected_cleared != 1)
4851 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4852 page_index, boxed_region.first_page,
4853 boxed_region.last_page);
4855 ret = thread_mutex_unlock(&free_pages_lock);
4856 gc_assert(ret == 0);
4857 /* Don't worry, we can handle it. */
4858 return 1;
4861 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4862 * it's not just a case of the program hitting the write barrier, and
4863 * are about to let Lisp deal with it. It's basically just a
4864 * convenient place to set a gdb breakpoint. */
4865 void
4866 unhandled_sigmemoryfault(void *addr)
4869 void gc_alloc_update_all_page_tables(void)
4871 /* Flush the alloc regions updating the tables. */
4872 struct thread *th;
4873 for_each_thread(th)
4874 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4875 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4876 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4879 void
4880 gc_set_region_empty(struct alloc_region *region)
4882 region->first_page = 0;
4883 region->last_page = -1;
4884 region->start_addr = page_address(0);
4885 region->free_pointer = page_address(0);
4886 region->end_addr = page_address(0);
4889 static void
4890 zero_all_free_pages()
4892 page_index_t i;
4894 for (i = 0; i < last_free_page; i++) {
4895 if (page_free_p(i)) {
4896 #ifdef READ_PROTECT_FREE_PAGES
4897 os_protect(page_address(i),
4898 PAGE_BYTES,
4899 OS_VM_PROT_ALL);
4900 #endif
4901 zero_pages(i, i);
4906 /* Things to do before doing a final GC before saving a core (without
4907 * purify).
4909 * + Pages in large_object pages aren't moved by the GC, so we need to
4910 * unset that flag from all pages.
4911 * + The pseudo-static generation isn't normally collected, but it seems
4912 * reasonable to collect it at least when saving a core. So move the
4913 * pages to a normal generation.
4915 static void
4916 prepare_for_final_gc ()
4918 page_index_t i;
4919 for (i = 0; i < last_free_page; i++) {
4920 page_table[i].large_object = 0;
4921 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4922 int used = page_table[i].bytes_used;
4923 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4924 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4925 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4931 /* Do a non-conservative GC, and then save a core with the initial
4932 * function being set to the value of the static symbol
4933 * SB!VM:RESTART-LISP-FUNCTION */
4934 void
4935 gc_and_save(char *filename, boolean prepend_runtime,
4936 boolean save_runtime_options)
4938 FILE *file;
4939 void *runtime_bytes = NULL;
4940 size_t runtime_size;
4942 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4943 &runtime_size);
4944 if (file == NULL)
4945 return;
4947 conservative_stack = 0;
4949 /* The filename might come from Lisp, and be moved by the now
4950 * non-conservative GC. */
4951 filename = strdup(filename);
4953 /* Collect twice: once into relatively high memory, and then back
4954 * into low memory. This compacts the retained data into the lower
4955 * pages, minimizing the size of the core file.
4957 prepare_for_final_gc();
4958 gencgc_alloc_start_page = last_free_page;
4959 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4961 prepare_for_final_gc();
4962 gencgc_alloc_start_page = -1;
4963 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4965 if (prepend_runtime)
4966 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4968 /* The dumper doesn't know that pages need to be zeroed before use. */
4969 zero_all_free_pages();
4970 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4971 prepend_runtime, save_runtime_options);
4972 /* Oops. Save still managed to fail. Since we've mangled the stack
4973 * beyond hope, there's not much we can do.
4974 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4975 * going to be rather unsatisfactory too... */
4976 lose("Attempt to save core after non-conservative GC failed.\n");