1 ;;;; This file contains the definitions of float-specific number
2 ;;;; support (other than irrational stuff, which is in irrat.) There is
3 ;;;; code in here that assumes there are only two float formats: IEEE
4 ;;;; single and double. (LONG-FLOAT support has been added, but bugs
5 ;;;; may still remain due to old code which assumes this dichotomy.)
7 ;;;; This software is part of the SBCL system. See the README file for
10 ;;;; This software is derived from the CMU CL system, which was
11 ;;;; written at Carnegie Mellon University and released into the
12 ;;;; public domain. The software is in the public domain and is
13 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
14 ;;;; files for more information.
16 (in-package "SB!KERNEL")
18 ;;;; float predicates and environment query
21 (declaim (maybe-inline float-denormalized-p float-infinity-p float-nan-p
22 float-trapping-nan-p
))
24 (defun float-denormalized-p (x)
26 "Return true if the float X is denormalized."
27 (number-dispatch ((x float
))
29 (and (zerop (ldb sb
!vm
:single-float-exponent-byte
(single-float-bits x
)))
32 (and (zerop (ldb sb
!vm
:double-float-exponent-byte
33 (double-float-high-bits x
)))
35 #!+(and long-float x86
)
37 (and (zerop (ldb sb
!vm
:long-float-exponent-byte
(long-float-exp-bits x
)))
40 (defmacro !define-float-dispatching-function
41 (name doc single double
#!+(and long-float x86
) long
)
44 (number-dispatch ((x float
))
46 (let ((bits (single-float-bits x
)))
47 (and (> (ldb sb
!vm
:single-float-exponent-byte bits
)
48 sb
!vm
:single-float-normal-exponent-max
)
51 (let ((hi (double-float-high-bits x
))
52 (lo (double-float-low-bits x
)))
53 (declare (ignorable lo
))
54 (and (> (ldb sb
!vm
:double-float-exponent-byte hi
)
55 sb
!vm
:double-float-normal-exponent-max
)
57 #!+(and long-float x86
)
59 (let ((exp (long-float-exp-bits x
))
60 (hi (long-float-high-bits x
))
61 (lo (long-float-low-bits x
)))
62 (declare (ignorable lo
))
63 (and (> (ldb sb
!vm
:long-float-exponent-byte exp
)
64 sb
!vm
:long-float-normal-exponent-max
)
67 (!define-float-dispatching-function float-infinity-p
68 "Return true if the float X is an infinity (+ or -)."
69 (zerop (ldb sb
!vm
:single-float-significand-byte bits
))
70 (and (zerop (ldb sb
!vm
:double-float-significand-byte hi
))
72 #!+(and long-float x86
)
73 (and (zerop (ldb sb
!vm
:long-float-significand-byte hi
))
76 (!define-float-dispatching-function float-nan-p
77 "Return true if the float X is a NaN (Not a Number)."
79 (not (zerop (ldb sb
!vm
:single-float-significand-byte bits
)))
81 (zerop (logand (ldb sb
!vm
:single-float-significand-byte bits
)
82 sb
!vm
:single-float-trapping-nan-bit
))
84 (or (not (zerop (ldb sb
!vm
:double-float-significand-byte hi
)))
87 (zerop (logand (ldb sb
!vm
:double-float-significand-byte hi
)
88 sb
!vm
:double-float-trapping-nan-bit
))
89 #!+(and long-float x86
)
90 (or (not (zerop (ldb sb
!vm
:long-float-significand-byte hi
)))
93 (!define-float-dispatching-function float-trapping-nan-p
94 "Return true if the float X is a trapping NaN (Not a Number)."
96 (zerop (logand (ldb sb
!vm
:single-float-significand-byte bits
)
97 sb
!vm
:single-float-trapping-nan-bit
))
99 (not (zerop (ldb sb
!vm
:single-float-significand-byte bits
)))
101 (zerop (logand (ldb sb
!vm
:double-float-significand-byte hi
)
102 sb
!vm
:double-float-trapping-nan-bit
))
104 (or (not (zerop (ldb sb
!vm
:double-float-significand-byte hi
)))
106 #!+(and long-float x86
)
107 (zerop (logand (ldb sb
!vm
:long-float-significand-byte hi
)
108 sb
!vm
:long-float-trapping-nan-bit
)))
110 ;;; If denormalized, use a subfunction from INTEGER-DECODE-FLOAT to find the
111 ;;; actual exponent (and hence how denormalized it is), otherwise we just
112 ;;; return the number of digits or 0.
113 #!-sb-fluid
(declaim (maybe-inline float-precision
))
114 (defun float-precision (f)
116 "Return a non-negative number of significant digits in its float argument.
117 Will be less than FLOAT-DIGITS if denormalized or zero."
118 (macrolet ((frob (digits bias decode
)
120 ((float-denormalized-p f
)
121 (multiple-value-bind (ignore exp
) (,decode f
)
122 (declare (ignore ignore
))
124 (+ ,digits
(1- ,digits
) ,bias exp
))))
127 (number-dispatch ((f float
))
129 (frob sb
!vm
:single-float-digits sb
!vm
:single-float-bias
130 integer-decode-single-denorm
))
132 (frob sb
!vm
:double-float-digits sb
!vm
:double-float-bias
133 integer-decode-double-denorm
))
136 (frob sb
!vm
:long-float-digits sb
!vm
:long-float-bias
137 integer-decode-long-denorm
)))))
139 (defun float-sign (float1 &optional
(float2 (float 1 float1
)))
141 "Return a floating-point number that has the same sign as
142 FLOAT1 and, if FLOAT2 is given, has the same absolute value
144 (declare (float float1 float2
))
145 (* (if (etypecase float1
146 (single-float (minusp (single-float-bits float1
)))
147 (double-float (minusp (double-float-high-bits float1
)))
149 (long-float (minusp (long-float-exp-bits float1
))))
154 (defun float-format-digits (format)
156 ((short-float single-float
) sb
!vm
:single-float-digits
)
157 ((double-float #!-long-float long-float
) sb
!vm
:double-float-digits
)
159 (long-float sb
!vm
:long-float-digits
)))
161 #!-sb-fluid
(declaim (inline float-digits float-radix
))
163 (defun float-digits (f)
164 (number-dispatch ((f float
))
165 ((single-float) sb
!vm
:single-float-digits
)
166 ((double-float) sb
!vm
:double-float-digits
)
168 ((long-float) sb
!vm
:long-float-digits
)))
170 (defun float-radix (x)
172 "Return (as an integer) the radix b of its floating-point argument."
176 ;;;; INTEGER-DECODE-FLOAT and DECODE-FLOAT
179 (declaim (maybe-inline integer-decode-single-float
180 integer-decode-double-float
))
182 ;;; Handle the denormalized case of INTEGER-DECODE-FLOAT for SINGLE-FLOAT.
183 (defun integer-decode-single-denorm (x)
184 (declare (type single-float x
))
185 (let* ((bits (single-float-bits (abs x
)))
186 (sig (ash (ldb sb
!vm
:single-float-significand-byte bits
) 1))
188 (declare (type (unsigned-byte 24) sig
)
189 (type (integer 0 23) extra-bias
))
191 (unless (zerop (logand sig sb
!vm
:single-float-hidden-bit
))
193 (setq sig
(ash sig
1))
196 (- (- sb
!vm
:single-float-bias
)
197 sb
!vm
:single-float-digits
199 (if (minusp (float-sign x
)) -
1 1))))
201 ;;; Handle the single-float case of INTEGER-DECODE-FLOAT. If an infinity or
202 ;;; NaN, error. If a denorm, call i-d-s-DENORM to handle it.
203 (defun integer-decode-single-float (x)
204 (declare (single-float x
))
205 (let* ((bits (single-float-bits (abs x
)))
206 (exp (ldb sb
!vm
:single-float-exponent-byte bits
))
207 (sig (ldb sb
!vm
:single-float-significand-byte bits
))
208 (sign (if (minusp (float-sign x
)) -
1 1))
209 (biased (- exp sb
!vm
:single-float-bias sb
!vm
:single-float-digits
)))
210 (declare (fixnum biased
))
211 (unless (<= exp sb
!vm
:single-float-normal-exponent-max
)
212 (error "can't decode NaN or infinity: ~S" x
))
213 (cond ((and (zerop exp
) (zerop sig
))
214 (values 0 biased sign
))
215 ((< exp sb
!vm
:single-float-normal-exponent-min
)
216 (integer-decode-single-denorm x
))
218 (values (logior sig sb
!vm
:single-float-hidden-bit
) biased sign
)))))
220 ;;; like INTEGER-DECODE-SINGLE-DENORM, only doubly so
221 (defun integer-decode-double-denorm (x)
222 (declare (type double-float x
))
223 (let* ((high-bits (double-float-high-bits (abs x
)))
224 (sig-high (ldb sb
!vm
:double-float-significand-byte high-bits
))
225 (low-bits (double-float-low-bits x
))
226 (sign (if (minusp (float-sign x
)) -
1 1))
227 (biased (- (- sb
!vm
:double-float-bias
) sb
!vm
:double-float-digits
)))
230 (extra-bias (- sb
!vm
:double-float-digits
33))
232 (declare (type (unsigned-byte 32) sig
) (fixnum extra-bias
))
234 (unless (zerop (logand sig bit
)) (return))
235 (setq sig
(ash sig
1))
237 (values (ash sig
(- sb
!vm
:double-float-digits
32))
238 (truly-the fixnum
(- biased extra-bias
))
240 (let ((sig (ash sig-high
1))
242 (declare (type (unsigned-byte 32) sig
) (fixnum extra-bias
))
244 (unless (zerop (logand sig sb
!vm
:double-float-hidden-bit
))
246 (setq sig
(ash sig
1))
248 (values (logior (ash sig
32) (ash low-bits
(1- extra-bias
)))
249 (truly-the fixnum
(- biased extra-bias
))
252 ;;; like INTEGER-DECODE-SINGLE-FLOAT, only doubly so
253 (defun integer-decode-double-float (x)
254 (declare (double-float x
))
256 (hi (double-float-high-bits abs
))
257 (lo (double-float-low-bits abs
))
258 (exp (ldb sb
!vm
:double-float-exponent-byte hi
))
259 (sig (ldb sb
!vm
:double-float-significand-byte hi
))
260 (sign (if (minusp (float-sign x
)) -
1 1))
261 (biased (- exp sb
!vm
:double-float-bias sb
!vm
:double-float-digits
)))
262 (declare (fixnum biased
))
263 (unless (<= exp sb
!vm
:double-float-normal-exponent-max
)
264 (error "Can't decode NaN or infinity: ~S." x
))
265 (cond ((and (zerop exp
) (zerop sig
) (zerop lo
))
266 (values 0 biased sign
))
267 ((< exp sb
!vm
:double-float-normal-exponent-min
)
268 (integer-decode-double-denorm x
))
271 (logior (ash (logior (ldb sb
!vm
:double-float-significand-byte hi
)
272 sb
!vm
:double-float-hidden-bit
)
277 #!+(and long-float x86
)
278 (defun integer-decode-long-denorm (x)
279 (declare (type long-float x
))
280 (let* ((high-bits (long-float-high-bits (abs x
)))
281 (sig-high (ldb sb
!vm
:long-float-significand-byte high-bits
))
282 (low-bits (long-float-low-bits x
))
283 (sign (if (minusp (float-sign x
)) -
1 1))
284 (biased (- (- sb
!vm
:long-float-bias
) sb
!vm
:long-float-digits
)))
287 (extra-bias (- sb
!vm
:long-float-digits
33))
289 (declare (type (unsigned-byte 32) sig
) (fixnum extra-bias
))
291 (unless (zerop (logand sig bit
)) (return))
292 (setq sig
(ash sig
1))
294 (values (ash sig
(- sb
!vm
:long-float-digits
32))
295 (truly-the fixnum
(- biased extra-bias
))
297 (let ((sig (ash sig-high
1))
299 (declare (type (unsigned-byte 32) sig
) (fixnum extra-bias
))
301 (unless (zerop (logand sig sb
!vm
:long-float-hidden-bit
))
303 (setq sig
(ash sig
1))
305 (values (logior (ash sig
32) (ash low-bits
(1- extra-bias
)))
306 (truly-the fixnum
(- biased extra-bias
))
309 #!+(and long-float x86
)
310 (defun integer-decode-long-float (x)
311 (declare (long-float x
))
312 (let* ((hi (long-float-high-bits x
))
313 (lo (long-float-low-bits x
))
314 (exp-bits (long-float-exp-bits x
))
315 (exp (ldb sb
!vm
:long-float-exponent-byte exp-bits
))
316 (sign (if (minusp exp-bits
) -
1 1))
317 (biased (- exp sb
!vm
:long-float-bias sb
!vm
:long-float-digits
)))
318 (declare (fixnum biased
))
319 (unless (<= exp sb
!vm
:long-float-normal-exponent-max
)
320 (error "can't decode NaN or infinity: ~S" x
))
321 (cond ((and (zerop exp
) (zerop hi
) (zerop lo
))
322 (values 0 biased sign
))
323 ((< exp sb
!vm
:long-float-normal-exponent-min
)
324 (integer-decode-long-denorm x
))
326 (values (logior (ash hi
32) lo
) biased sign
)))))
328 ;;; Dispatch to the correct type-specific i-d-f function.
329 (defun integer-decode-float (x)
331 "Return three values:
332 1) an integer representation of the significand.
333 2) the exponent for the power of 2 that the significand must be multiplied
334 by to get the actual value. This differs from the DECODE-FLOAT exponent
335 by FLOAT-DIGITS, since the significand has been scaled to have all its
336 digits before the radix point.
337 3) -1 or 1 (i.e. the sign of the argument.)"
338 (number-dispatch ((x float
))
340 (integer-decode-single-float x
))
342 (integer-decode-double-float x
))
345 (integer-decode-long-float x
))))
347 #!-sb-fluid
(declaim (maybe-inline decode-single-float decode-double-float
))
349 ;;; Handle the denormalized case of DECODE-SINGLE-FLOAT. We call
350 ;;; INTEGER-DECODE-SINGLE-DENORM and then make the result into a float.
351 (defun decode-single-denorm (x)
352 (declare (type single-float x
))
353 (multiple-value-bind (sig exp sign
) (integer-decode-single-denorm x
)
354 (values (make-single-float
355 (dpb sig sb
!vm
:single-float-significand-byte
356 (dpb sb
!vm
:single-float-bias
357 sb
!vm
:single-float-exponent-byte
359 (truly-the fixnum
(+ exp sb
!vm
:single-float-digits
))
362 ;;; Handle the single-float case of DECODE-FLOAT. If an infinity or NaN,
363 ;;; error. If a denorm, call d-s-DENORM to handle it.
364 (defun decode-single-float (x)
365 (declare (single-float x
))
366 (let* ((bits (single-float-bits (abs x
)))
367 (exp (ldb sb
!vm
:single-float-exponent-byte bits
))
368 (sign (float-sign x
))
369 (biased (truly-the single-float-exponent
370 (- exp sb
!vm
:single-float-bias
))))
371 (unless (<= exp sb
!vm
:single-float-normal-exponent-max
)
372 (error "can't decode NaN or infinity: ~S" x
))
374 (values 0.0f0 biased sign
))
375 ((< exp sb
!vm
:single-float-normal-exponent-min
)
376 (decode-single-denorm x
))
378 (values (make-single-float
379 (dpb sb
!vm
:single-float-bias
380 sb
!vm
:single-float-exponent-byte
384 ;;; like DECODE-SINGLE-DENORM, only doubly so
385 (defun decode-double-denorm (x)
386 (declare (double-float x
))
387 (multiple-value-bind (sig exp sign
) (integer-decode-double-denorm x
)
388 (values (make-double-float
389 (dpb (logand (ash sig -
32) (lognot sb
!vm
:double-float-hidden-bit
))
390 sb
!vm
:double-float-significand-byte
391 (dpb sb
!vm
:double-float-bias
392 sb
!vm
:double-float-exponent-byte
0))
393 (ldb (byte 32 0) sig
))
394 (truly-the fixnum
(+ exp sb
!vm
:double-float-digits
))
397 ;;; like DECODE-SINGLE-FLOAT, only doubly so
398 (defun decode-double-float (x)
399 (declare (double-float x
))
401 (hi (double-float-high-bits abs
))
402 (lo (double-float-low-bits abs
))
403 (exp (ldb sb
!vm
:double-float-exponent-byte hi
))
404 (sign (float-sign x
))
405 (biased (truly-the double-float-exponent
406 (- exp sb
!vm
:double-float-bias
))))
407 (unless (<= exp sb
!vm
:double-float-normal-exponent-max
)
408 (error "can't decode NaN or infinity: ~S" x
))
410 (values 0.0d0 biased sign
))
411 ((< exp sb
!vm
:double-float-normal-exponent-min
)
412 (decode-double-denorm x
))
414 (values (make-double-float
415 (dpb sb
!vm
:double-float-bias
416 sb
!vm
:double-float-exponent-byte hi
)
420 #!+(and long-float x86
)
421 (defun decode-long-denorm (x)
422 (declare (long-float x
))
423 (multiple-value-bind (sig exp sign
) (integer-decode-long-denorm x
)
424 (values (make-long-float sb
!vm
:long-float-bias
(ash sig -
32)
425 (ldb (byte 32 0) sig
))
426 (truly-the fixnum
(+ exp sb
!vm
:long-float-digits
))
429 #!+(and long-float x86
)
430 (defun decode-long-float (x)
431 (declare (long-float x
))
432 (let* ((hi (long-float-high-bits x
))
433 (lo (long-float-low-bits x
))
434 (exp-bits (long-float-exp-bits x
))
435 (exp (ldb sb
!vm
:long-float-exponent-byte exp-bits
))
436 (sign (if (minusp exp-bits
) -
1l0 1l0))
437 (biased (truly-the long-float-exponent
438 (- exp sb
!vm
:long-float-bias
))))
439 (unless (<= exp sb
!vm
:long-float-normal-exponent-max
)
440 (error "can't decode NaN or infinity: ~S" x
))
442 (values 0.0l0 biased sign
))
443 ((< exp sb
!vm
:long-float-normal-exponent-min
)
444 (decode-long-denorm x
))
446 (values (make-long-float
447 (dpb sb
!vm
:long-float-bias sb
!vm
:long-float-exponent-byte
453 ;;; Dispatch to the appropriate type-specific function.
454 (defun decode-float (f)
456 "Return three values:
457 1) a floating-point number representing the significand. This is always
458 between 0.5 (inclusive) and 1.0 (exclusive).
459 2) an integer representing the exponent.
460 3) -1.0 or 1.0 (i.e. the sign of the argument.)"
461 (number-dispatch ((f float
))
463 (decode-single-float f
))
465 (decode-double-float f
))
468 (decode-long-float f
))))
472 #!-sb-fluid
(declaim (maybe-inline scale-single-float scale-double-float
))
474 ;;; Handle float scaling where the X is denormalized or the result is
475 ;;; denormalized or underflows to 0.
476 (defun scale-float-maybe-underflow (x exp
)
477 (multiple-value-bind (sig old-exp
) (integer-decode-float x
)
478 (let* ((digits (float-digits x
))
479 (new-exp (+ exp old-exp digits
481 (single-float sb
!vm
:single-float-bias
)
482 (double-float sb
!vm
:double-float-bias
))))
483 (sign (if (minusp (float-sign x
)) 1 0)))
487 (single-float sb
!vm
:single-float-normal-exponent-min
)
488 (double-float sb
!vm
:double-float-normal-exponent-min
)))
489 (when (sb!vm
:current-float-trap
:inexact
)
490 (error 'floating-point-inexact
:operation
'scale-float
491 :operands
(list x exp
)))
492 (when (sb!vm
:current-float-trap
:underflow
)
493 (error 'floating-point-underflow
:operation
'scale-float
494 :operands
(list x exp
)))
495 (let ((shift (1- new-exp
)))
496 (if (< shift
(- (1- digits
)))
499 (single-float (single-from-bits sign
0 (ash sig shift
)))
500 (double-float (double-from-bits sign
0 (ash sig shift
)))))))
503 (single-float (single-from-bits sign new-exp sig
))
504 (double-float (double-from-bits sign new-exp sig
))))))))
506 ;;; Called when scaling a float overflows, or the original float was a
507 ;;; NaN or infinity. If overflow errors are trapped, then error,
508 ;;; otherwise return the appropriate infinity. If a NaN, signal or not
510 (defun scale-float-maybe-overflow (x exp
)
512 ((float-infinity-p x
)
513 ;; Infinity is infinity, no matter how small...
516 (when (and (float-trapping-nan-p x
)
517 (sb!vm
:current-float-trap
:invalid
))
518 (error 'floating-point-invalid-operation
:operation
'scale-float
519 :operands
(list x exp
)))
522 (when (sb!vm
:current-float-trap
:overflow
)
523 (error 'floating-point-overflow
:operation
'scale-float
524 :operands
(list x exp
)))
525 (when (sb!vm
:current-float-trap
:inexact
)
526 (error 'floating-point-inexact
:operation
'scale-float
527 :operands
(list x exp
)))
531 ;; SINGLE-FLOAT-POSITIVE-INFINITY
532 (single-from-bits 0 (1+ sb
!vm
:single-float-normal-exponent-max
) 0))
534 ;; DOUBLE-FLOAT-POSITIVE-INFINITY
535 (double-from-bits 0 (1+ sb
!vm
:double-float-normal-exponent-max
) 0)))))))
537 ;;; Scale a single or double float, calling the correct over/underflow
539 (defun scale-single-float (x exp
)
540 (declare (single-float x
) (integer exp
))
543 (let* ((bits (single-float-bits x
))
544 (old-exp (ldb sb
!vm
:single-float-exponent-byte bits
))
545 (new-exp (+ old-exp exp
)))
548 ((or (< old-exp sb
!vm
:single-float-normal-exponent-min
)
549 (< new-exp sb
!vm
:single-float-normal-exponent-min
))
550 (scale-float-maybe-underflow x exp
))
551 ((or (> old-exp sb
!vm
:single-float-normal-exponent-max
)
552 (> new-exp sb
!vm
:single-float-normal-exponent-max
))
553 (scale-float-maybe-overflow x exp
))
555 (make-single-float (dpb new-exp
556 sb
!vm
:single-float-exponent-byte
558 (unsigned-byte (scale-float-maybe-overflow x exp
))
559 ((integer * 0) (scale-float-maybe-underflow x exp
))))
560 (defun scale-double-float (x exp
)
561 (declare (double-float x
) (integer exp
))
564 (let* ((hi (double-float-high-bits x
))
565 (lo (double-float-low-bits x
))
566 (old-exp (ldb sb
!vm
:double-float-exponent-byte hi
))
567 (new-exp (+ old-exp exp
)))
570 ((or (< old-exp sb
!vm
:double-float-normal-exponent-min
)
571 (< new-exp sb
!vm
:double-float-normal-exponent-min
))
572 (scale-float-maybe-underflow x exp
))
573 ((or (> old-exp sb
!vm
:double-float-normal-exponent-max
)
574 (> new-exp sb
!vm
:double-float-normal-exponent-max
))
575 (scale-float-maybe-overflow x exp
))
577 (make-double-float (dpb new-exp sb
!vm
:double-float-exponent-byte hi
)
579 (unsigned-byte (scale-float-maybe-overflow x exp
))
580 ((integer * 0) (scale-float-maybe-underflow x exp
))))
582 #!+(and x86 long-float
)
583 (defun scale-long-float (x exp
)
584 (declare (long-float x
) (integer exp
))
587 ;;; Dispatch to the correct type-specific scale-float function.
588 (defun scale-float (f ex
)
590 "Return the value (* f (expt (float 2 f) ex)), but with no unnecessary loss
591 of precision or overflow."
592 (number-dispatch ((f float
))
594 (scale-single-float f ex
))
596 (scale-double-float f ex
))
599 (scale-long-float f ex
))))
601 ;;;; converting to/from floats
603 (defun float (number &optional
(other () otherp
))
605 "Converts any REAL to a float. If OTHER is not provided, it returns a
606 SINGLE-FLOAT if NUMBER is not already a FLOAT. If OTHER is provided, the
607 result is the same float format as OTHER."
609 (number-dispatch ((number real
) (other float
))
610 (((foreach rational single-float double-float
#!+long-float long-float
)
611 (foreach single-float double-float
#!+long-float long-float
))
612 (coerce number
'(dispatch-type other
))))
615 (coerce number
'single-float
))))
617 (macrolet ((frob (name type
)
619 (number-dispatch ((x real
))
620 (((foreach single-float double-float
#!+long-float long-float
624 (bignum-to-float x
',type
))
626 (float-ratio x
',type
))))))
627 (frob %single-float single-float
)
628 (frob %double-float double-float
)
630 (frob %long-float long-float
))
632 ;;; Convert a ratio to a float. We avoid any rounding error by doing an
633 ;;; integer division. Accuracy is important to preserve read/print
634 ;;; consistency, since this is ultimately how the reader reads a float. We
635 ;;; scale the numerator by a power of two until the division results in the
636 ;;; desired number of fraction bits, then do round-to-nearest.
637 (defun float-ratio (x format
)
638 (let* ((signed-num (numerator x
))
639 (plusp (plusp signed-num
))
640 (num (if plusp signed-num
(- signed-num
)))
641 (den (denominator x
))
642 (digits (float-format-digits format
))
644 (declare (fixnum digits scale
))
645 ;; Strip any trailing zeros from the denominator and move it into the scale
646 ;; factor (to minimize the size of the operands.)
647 (let ((den-twos (1- (integer-length (logxor den
(1- den
))))))
648 (declare (fixnum den-twos
))
649 (decf scale den-twos
)
650 (setq den
(ash den
(- den-twos
))))
651 ;; Guess how much we need to scale by from the magnitudes of the numerator
652 ;; and denominator. We want one extra bit for a guard bit.
653 (let* ((num-len (integer-length num
))
654 (den-len (integer-length den
))
655 (delta (- den-len num-len
))
656 (shift (1+ (the fixnum
(+ delta digits
))))
657 (shifted-num (ash num shift
)))
658 (declare (fixnum delta shift
))
660 (labels ((float-and-scale (bits)
661 (let* ((bits (ash bits -
1))
662 (len (integer-length bits
)))
663 (cond ((> len digits
)
664 (aver (= len
(the fixnum
(1+ digits
))))
665 (scale-float (floatit (ash bits -
1)) (1+ scale
)))
667 (scale-float (floatit bits
) scale
)))))
669 (let ((sign (if plusp
0 1)))
672 (single-from-bits sign sb
!vm
:single-float-bias bits
))
674 (double-from-bits sign sb
!vm
:double-float-bias bits
))
677 (long-from-bits sign sb
!vm
:long-float-bias bits
))))))
679 (multiple-value-bind (fraction-and-guard rem
)
680 (truncate shifted-num den
)
681 (let ((extra (- (integer-length fraction-and-guard
) digits
)))
682 (declare (fixnum extra
))
685 ((oddp fraction-and-guard
)
689 (if (zerop (logand fraction-and-guard
2))
691 (1+ fraction-and-guard
)))
692 (float-and-scale (1+ fraction-and-guard
)))))
694 (return (float-and-scale fraction-and-guard
)))))
695 (setq shifted-num
(ash shifted-num -
1))
699 These might be useful if we ever have a machine without float
/integer
700 conversion hardware. For now
, we
'll use special ops that
701 uninterruptibly frob the rounding modes
& do ieee round-to-integer.
703 ;;; The compiler compiles a call to this when we are doing %UNARY-TRUNCATE
704 ;;; and the result is known to be a fixnum. We can avoid some generic
705 ;;; arithmetic in this case.
706 (defun %unary-truncate-single-float
/fixnum
(x)
707 (declare (single-float x
) (values fixnum
))
708 (locally (declare (optimize (speed 3) (safety 0)))
709 (let* ((bits (single-float-bits x
))
710 (exp (ldb sb
!vm
:single-float-exponent-byte bits
))
711 (frac (logior (ldb sb
!vm
:single-float-significand-byte bits
)
712 sb
!vm
:single-float-hidden-bit
))
713 (shift (- exp sb
!vm
:single-float-digits sb
!vm
:single-float-bias
)))
714 (when (> exp sb
!vm
:single-float-normal-exponent-max
)
715 (error 'floating-point-invalid-operation
:operator
'truncate
717 (if (<= shift
(- sb
!vm
:single-float-digits
))
719 (let ((res (ash frac shift
)))
720 (declare (type (unsigned-byte 31) res
))
725 ;;; Double-float version of this operation (see above single op).
726 (defun %unary-truncate-double-float
/fixnum
(x)
727 (declare (double-float x
) (values fixnum
))
728 (locally (declare (optimize (speed 3) (safety 0)))
729 (let* ((hi-bits (double-float-high-bits x
))
730 (exp (ldb sb
!vm
:double-float-exponent-byte hi-bits
))
731 (frac (logior (ldb sb
!vm
:double-float-significand-byte hi-bits
)
732 sb
!vm
:double-float-hidden-bit
))
733 (shift (- exp
(- sb
!vm
:double-float-digits sb
!vm
:n-word-bits
)
734 sb
!vm
:double-float-bias
)))
735 (when (> exp sb
!vm
:double-float-normal-exponent-max
)
736 (error 'floating-point-invalid-operation
:operator
'truncate
738 (if (<= shift
(- sb
!vm
:n-word-bits sb
!vm
:double-float-digits
))
740 (let* ((res-hi (ash frac shift
))
741 (res (if (plusp shift
)
744 (ash (double-float-low-bits x
)
745 (- shift sb
!vm
:n-word-bits
))))
747 (declare (type (unsigned-byte 31) res-hi res
))
753 ;;; This function is called when we are doing a truncate without any funky
754 ;;; divisor, i.e. converting a float or ratio to an integer. Note that we do
755 ;;; *not* return the second value of truncate, so it must be computed by the
756 ;;; caller if needed.
758 ;;; In the float case, we pick off small arguments so that compiler can use
759 ;;; special-case operations. We use an exclusive test, since (due to round-off
760 ;;; error), (float most-positive-fixnum) may be greater than
761 ;;; most-positive-fixnum.
762 (defun %unary-truncate
(number)
763 (number-dispatch ((number real
))
765 ((ratio) (values (truncate (numerator number
) (denominator number
))))
766 (((foreach single-float double-float
#!+long-float long-float
))
767 (if (< (float most-negative-fixnum number
)
769 (float most-positive-fixnum number
))
770 (truly-the fixnum
(%unary-truncate number
))
771 (multiple-value-bind (bits exp
) (integer-decode-float number
)
772 (let ((res (ash bits exp
)))
777 ;;; Similar to %UNARY-TRUNCATE, but rounds to the nearest integer. If we
778 ;;; can't use the round primitive, then we do our own round-to-nearest on the
779 ;;; result of i-d-f. [Note that this rounding will really only happen with
780 ;;; double floats, since the whole single-float fraction will fit in a fixnum,
781 ;;; so all single-floats larger than most-positive-fixnum can be precisely
782 ;;; represented by an integer.]
783 (defun %unary-round
(number)
784 (number-dispatch ((number real
))
786 ((ratio) (values (round (numerator number
) (denominator number
))))
787 (((foreach single-float double-float
#!+long-float long-float
))
788 (if (< (float most-negative-fixnum number
)
790 (float most-positive-fixnum number
))
791 (truly-the fixnum
(%unary-round number
))
792 (multiple-value-bind (bits exp
) (integer-decode-float number
)
793 (let* ((shifted (ash bits exp
))
794 (rounded (if (and (minusp exp
)
797 (lognot (ash -
1 (- exp
))))
805 (defun %unary-ftruncate
(number)
806 (number-dispatch ((number real
))
807 ((integer) (float number
))
808 ((ratio) (float (truncate (numerator number
) (denominator number
))))
809 (((foreach single-float double-float
#!+long-float long-float
))
810 (%unary-ftruncate number
))))
814 "RATIONAL produces a rational number for any real numeric argument. This is
815 more efficient than RATIONALIZE, but it assumes that floating-point is
816 completely accurate, giving a result that isn't as pretty."
817 (number-dispatch ((x real
))
818 (((foreach single-float double-float
#!+long-float long-float
))
819 (multiple-value-bind (bits exp
) (integer-decode-float x
)
822 (let* ((int (if (minusp x
) (- bits
) bits
))
823 (digits (float-digits x
))
826 (integer-/-integer int
(ash 1 (+ digits
(- ex
))))
827 (integer-/-integer
(ash int ex
) (ash 1 digits
)))))))
830 ;;; This algorithm for RATIONALIZE, due to Bruno Haible, is included
833 ;;; Algorithm (recursively presented):
834 ;;; If x is a rational number, return x.
835 ;;; If x = 0.0, return 0.
836 ;;; If x < 0.0, return (- (rationalize (- x))).
838 ;;; Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
840 ;;; If m = 0 or e >= 0: return x = m*2^e.
841 ;;; Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
842 ;;; with smallest possible numerator and denominator.
843 ;;; Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
844 ;;; But in this case the result will be x itself anyway, regardless of
845 ;;; the choice of a. Therefore we can simply ignore this case.
846 ;;; Note 2: At first, we need to consider the closed interval [a,b].
847 ;;; but since a and b have the denominator 2^(|e|+1) whereas x itself
848 ;;; has a denominator <= 2^|e|, we can restrict the seach to the open
850 ;;; So, for given a and b (0 < a < b) we are searching a rational number
851 ;;; y with a <= y <= b.
852 ;;; Recursive algorithm fraction_between(a,b):
855 ;;; then return c ; because a <= c < b, c integer
857 ;;; ; a is not integer (otherwise we would have had c = a < b)
858 ;;; k := c-1 ; k = floor(a), k < a < b <= k+1
859 ;;; return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
860 ;;; ; note 1 <= 1/(b-k) < 1/(a-k)
862 ;;; You can see that we are actually computing a continued fraction expansion.
864 ;;; Algorithm (iterative):
865 ;;; If x is rational, return x.
866 ;;; Call (integer-decode-float x). It returns a m,e,s (mantissa,
868 ;;; If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
869 ;;; Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
870 ;;; (positive and already in lowest terms because the denominator is a
871 ;;; power of two and the numerator is odd).
872 ;;; Start a continued fraction expansion
873 ;;; p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
877 ;;; then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
879 ;;; finally partial_quotient(c).
880 ;;; Here partial_quotient(c) denotes the iteration
881 ;;; i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
882 ;;; At the end, return s * (p[i]/q[i]).
883 ;;; This rational number is already in lowest terms because
884 ;;; p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
887 ;;; Hardy, Wright: An introduction to number theory
889 ;;; <http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture17/lecture17/>
890 ;;; <http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture17/lecture18/>
892 (defun rationalize (x)
893 "Converts any REAL to a RATIONAL. Floats are converted to a simple rational
894 representation exploiting the assumption that floats are only accurate to
895 their precision. RATIONALIZE (and also RATIONAL) preserve the invariant:
896 (= x (float (rationalize x) x))"
897 (number-dispatch ((x real
))
898 (((foreach single-float double-float
#!+long-float long-float
))
899 ;; This is a fairly straigtforward implementation of the
900 ;; iterative algorithm above.
901 (multiple-value-bind (frac expo sign
)
902 (integer-decode-float x
)
903 (cond ((or (zerop frac
) (>= expo
0))
908 ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e),
909 ;; so build the fraction up immediately, without having to do
911 (let ((a (build-ratio (- (* 2 frac
) 1) (ash 1 (- 1 expo
))))
912 (b (build-ratio (+ (* 2 frac
) 1) (ash 1 (- 1 expo
))))
917 (do ((c (ceiling a
) (ceiling a
)))
919 (let ((top (+ (* c p1
) p0
))
920 (bot (+ (* c q1
) q0
)))
921 (build-ratio (if (minusp sign
)
927 (q2 (+ (* k q1
) q0
)))