1.0.18.17: Alter some STYLE-WARNING names introduced in 1.0.18.16.
[sbcl/pkhuong.git] / src / code / debug-int.lisp
blob4052fdce917e4242e21daabda901bb5c26046183
1 ;;;; the implementation of the programmer's interface to writing
2 ;;;; debugging tools
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!DI")
15 ;;; FIXME: There are an awful lot of package prefixes in this code.
16 ;;; Couldn't we have SB-DI use the SB-C and SB-VM packages?
18 ;;;; conditions
20 ;;;; The interface to building debugging tools signals conditions that
21 ;;;; prevent it from adhering to its contract. These are
22 ;;;; serious-conditions because the program using the interface must
23 ;;;; handle them before it can correctly continue execution. These
24 ;;;; debugging conditions are not errors since it is no fault of the
25 ;;;; programmers that the conditions occur. The interface does not
26 ;;;; provide for programs to detect these situations other than
27 ;;;; calling a routine that detects them and signals a condition. For
28 ;;;; example, programmers call A which may fail to return successfully
29 ;;;; due to a lack of debug information, and there is no B the they
30 ;;;; could have called to realize A would fail. It is not an error to
31 ;;;; have called A, but it is an error for the program to then ignore
32 ;;;; the signal generated by A since it cannot continue without A's
33 ;;;; correctly returning a value or performing some operation.
34 ;;;;
35 ;;;; Use DEBUG-SIGNAL to signal these conditions.
37 (define-condition debug-condition (serious-condition)
39 #!+sb-doc
40 (:documentation
41 "All DEBUG-CONDITIONs inherit from this type. These are serious conditions
42 that must be handled, but they are not programmer errors."))
44 (define-condition no-debug-fun-returns (debug-condition)
45 ((debug-fun :reader no-debug-fun-returns-debug-fun
46 :initarg :debug-fun))
47 #!+sb-doc
48 (:documentation
49 "The system could not return values from a frame with DEBUG-FUN since
50 it lacked information about returning values.")
51 (:report (lambda (condition stream)
52 (let ((fun (debug-fun-fun
53 (no-debug-fun-returns-debug-fun condition))))
54 (format stream
55 "~&Cannot return values from ~:[frame~;~:*~S~] since ~
56 the debug information lacks details about returning ~
57 values here."
58 fun)))))
60 (define-condition no-debug-blocks (debug-condition)
61 ((debug-fun :reader no-debug-blocks-debug-fun
62 :initarg :debug-fun))
63 #!+sb-doc
64 (:documentation "The debug-fun has no debug-block information.")
65 (:report (lambda (condition stream)
66 (format stream "~&~S has no debug-block information."
67 (no-debug-blocks-debug-fun condition)))))
69 (define-condition no-debug-vars (debug-condition)
70 ((debug-fun :reader no-debug-vars-debug-fun
71 :initarg :debug-fun))
72 #!+sb-doc
73 (:documentation "The DEBUG-FUN has no DEBUG-VAR information.")
74 (:report (lambda (condition stream)
75 (format stream "~&~S has no debug variable information."
76 (no-debug-vars-debug-fun condition)))))
78 (define-condition lambda-list-unavailable (debug-condition)
79 ((debug-fun :reader lambda-list-unavailable-debug-fun
80 :initarg :debug-fun))
81 #!+sb-doc
82 (:documentation
83 "The DEBUG-FUN has no lambda list since argument DEBUG-VARs are
84 unavailable.")
85 (:report (lambda (condition stream)
86 (format stream "~&~S has no lambda-list information available."
87 (lambda-list-unavailable-debug-fun condition)))))
89 (define-condition invalid-value (debug-condition)
90 ((debug-var :reader invalid-value-debug-var :initarg :debug-var)
91 (frame :reader invalid-value-frame :initarg :frame))
92 (:report (lambda (condition stream)
93 (format stream "~&~S has :invalid or :unknown value in ~S."
94 (invalid-value-debug-var condition)
95 (invalid-value-frame condition)))))
97 (define-condition ambiguous-var-name (debug-condition)
98 ((name :reader ambiguous-var-name-name :initarg :name)
99 (frame :reader ambiguous-var-name-frame :initarg :frame))
100 (:report (lambda (condition stream)
101 (format stream "~&~S names more than one valid variable in ~S."
102 (ambiguous-var-name-name condition)
103 (ambiguous-var-name-frame condition)))))
105 ;;;; errors and DEBUG-SIGNAL
107 ;;; The debug-internals code tries to signal all programmer errors as
108 ;;; subtypes of DEBUG-ERROR. There are calls to ERROR signalling
109 ;;; SIMPLE-ERRORs, but these dummy checks in the code and shouldn't
110 ;;; come up.
112 ;;; While under development, this code also signals errors in code
113 ;;; branches that remain unimplemented.
115 (define-condition debug-error (error) ()
116 #!+sb-doc
117 (:documentation
118 "All programmer errors from using the interface for building debugging
119 tools inherit from this type."))
121 (define-condition unhandled-debug-condition (debug-error)
122 ((condition :reader unhandled-debug-condition-condition :initarg :condition))
123 (:report (lambda (condition stream)
124 (format stream "~&unhandled DEBUG-CONDITION:~%~A"
125 (unhandled-debug-condition-condition condition)))))
127 (define-condition unknown-code-location (debug-error)
128 ((code-location :reader unknown-code-location-code-location
129 :initarg :code-location))
130 (:report (lambda (condition stream)
131 (format stream "~&invalid use of an unknown code-location: ~S"
132 (unknown-code-location-code-location condition)))))
134 (define-condition unknown-debug-var (debug-error)
135 ((debug-var :reader unknown-debug-var-debug-var :initarg :debug-var)
136 (debug-fun :reader unknown-debug-var-debug-fun
137 :initarg :debug-fun))
138 (:report (lambda (condition stream)
139 (format stream "~&~S is not in ~S."
140 (unknown-debug-var-debug-var condition)
141 (unknown-debug-var-debug-fun condition)))))
143 (define-condition invalid-control-stack-pointer (debug-error)
145 (:report (lambda (condition stream)
146 (declare (ignore condition))
147 (fresh-line stream)
148 (write-string "invalid control stack pointer" stream))))
150 (define-condition frame-fun-mismatch (debug-error)
151 ((code-location :reader frame-fun-mismatch-code-location
152 :initarg :code-location)
153 (frame :reader frame-fun-mismatch-frame :initarg :frame)
154 (form :reader frame-fun-mismatch-form :initarg :form))
155 (:report (lambda (condition stream)
156 (format
157 stream
158 "~&Form was preprocessed for ~S,~% but called on ~S:~% ~S"
159 (frame-fun-mismatch-code-location condition)
160 (frame-fun-mismatch-frame condition)
161 (frame-fun-mismatch-form condition)))))
163 ;;; This signals debug-conditions. If they go unhandled, then signal
164 ;;; an UNHANDLED-DEBUG-CONDITION error.
166 ;;; ??? Get SIGNAL in the right package!
167 (defmacro debug-signal (datum &rest arguments)
168 `(let ((condition (make-condition ,datum ,@arguments)))
169 (signal condition)
170 (error 'unhandled-debug-condition :condition condition)))
172 ;;;; structures
173 ;;;;
174 ;;;; Most of these structures model information stored in internal
175 ;;;; data structures created by the compiler. Whenever comments
176 ;;;; preface an object or type with "compiler", they refer to the
177 ;;;; internal compiler thing, not to the object or type with the same
178 ;;;; name in the "SB-DI" package.
180 ;;;; DEBUG-VARs
182 ;;; These exist for caching data stored in packed binary form in
183 ;;; compiler DEBUG-FUNs.
184 (defstruct (debug-var (:constructor nil)
185 (:copier nil))
186 ;; the name of the variable
187 (symbol (missing-arg) :type symbol)
188 ;; a unique integer identification relative to other variables with the same
189 ;; symbol
190 (id 0 :type index)
191 ;; Does the variable always have a valid value?
192 (alive-p nil :type boolean))
193 (def!method print-object ((debug-var debug-var) stream)
194 (print-unreadable-object (debug-var stream :type t :identity t)
195 (format stream
196 "~S ~W"
197 (debug-var-symbol debug-var)
198 (debug-var-id debug-var))))
200 #!+sb-doc
201 (setf (fdocumentation 'debug-var-id 'function)
202 "Return the integer that makes DEBUG-VAR's name and package unique
203 with respect to other DEBUG-VARs in the same function.")
205 (defstruct (compiled-debug-var
206 (:include debug-var)
207 (:constructor make-compiled-debug-var
208 (symbol id alive-p sc-offset save-sc-offset))
209 (:copier nil))
210 ;; storage class and offset (unexported)
211 (sc-offset nil :type sb!c:sc-offset)
212 ;; storage class and offset when saved somewhere
213 (save-sc-offset nil :type (or sb!c:sc-offset null)))
215 ;;;; frames
217 ;;; These represent call frames on the stack.
218 (defstruct (frame (:constructor nil)
219 (:copier nil))
220 ;; the next frame up, or NIL when top frame
221 (up nil :type (or frame null))
222 ;; the previous frame down, or NIL when the bottom frame. Before
223 ;; computing the next frame down, this slot holds the frame pointer
224 ;; to the control stack for the given frame. This lets us get the
225 ;; next frame down and the return-pc for that frame.
226 (%down :unparsed :type (or frame (member nil :unparsed)))
227 ;; the DEBUG-FUN for the function whose call this frame represents
228 (debug-fun nil :type debug-fun)
229 ;; the CODE-LOCATION where the frame's DEBUG-FUN will continue
230 ;; running when program execution returns to this frame. If someone
231 ;; interrupted this frame, the result could be an unknown
232 ;; CODE-LOCATION.
233 (code-location nil :type code-location)
234 ;; an a-list of catch-tags to code-locations
235 (%catches :unparsed :type (or list (member :unparsed)))
236 ;; pointer to frame on control stack (unexported)
237 pointer
238 ;; This is the frame's number for prompt printing. Top is zero.
239 (number 0 :type index))
241 (defstruct (compiled-frame
242 (:include frame)
243 (:constructor make-compiled-frame
244 (pointer up debug-fun code-location number
245 &optional escaped))
246 (:copier nil))
247 ;; This indicates whether someone interrupted the frame.
248 ;; (unexported). If escaped, this is a pointer to the state that was
249 ;; saved when we were interrupted, an os_context_t, i.e. the third
250 ;; argument to an SA_SIGACTION-style signal handler.
251 escaped)
252 (def!method print-object ((obj compiled-frame) str)
253 (print-unreadable-object (obj str :type t)
254 (format str
255 "~S~:[~;, interrupted~]"
256 (debug-fun-name (frame-debug-fun obj))
257 (compiled-frame-escaped obj))))
259 ;;;; DEBUG-FUNs
261 ;;; These exist for caching data stored in packed binary form in
262 ;;; compiler DEBUG-FUNs. *COMPILED-DEBUG-FUNS* maps a SB!C::DEBUG-FUN
263 ;;; to a DEBUG-FUN. There should only be one DEBUG-FUN in existence
264 ;;; for any function; that is, all CODE-LOCATIONs and other objects
265 ;;; that reference DEBUG-FUNs point to unique objects. This is
266 ;;; due to the overhead in cached information.
267 (defstruct (debug-fun (:constructor nil)
268 (:copier nil))
269 ;; some representation of the function arguments. See
270 ;; DEBUG-FUN-LAMBDA-LIST.
271 ;; NOTE: must parse vars before parsing arg list stuff.
272 (%lambda-list :unparsed)
273 ;; cached DEBUG-VARS information (unexported).
274 ;; These are sorted by their name.
275 (%debug-vars :unparsed :type (or simple-vector null (member :unparsed)))
276 ;; cached debug-block information. This is NIL when we have tried to
277 ;; parse the packed binary info, but none is available.
278 (blocks :unparsed :type (or simple-vector null (member :unparsed)))
279 ;; the actual function if available
280 (%function :unparsed :type (or null function (member :unparsed))))
281 (def!method print-object ((obj debug-fun) stream)
282 (print-unreadable-object (obj stream :type t)
283 (prin1 (debug-fun-name obj) stream)))
285 (defstruct (compiled-debug-fun
286 (:include debug-fun)
287 (:constructor %make-compiled-debug-fun
288 (compiler-debug-fun component))
289 (:copier nil))
290 ;; compiler's dumped DEBUG-FUN information (unexported)
291 (compiler-debug-fun nil :type sb!c::compiled-debug-fun)
292 ;; code object (unexported).
293 component
294 ;; the :FUN-START breakpoint (if any) used to facilitate
295 ;; function end breakpoints
296 (end-starter nil :type (or null breakpoint)))
298 ;;; This maps SB!C::COMPILED-DEBUG-FUNs to
299 ;;; COMPILED-DEBUG-FUNs, so we can get at cached stuff and not
300 ;;; duplicate COMPILED-DEBUG-FUN structures.
301 (defvar *compiled-debug-funs* (make-hash-table :test 'eq))
303 ;;; Make a COMPILED-DEBUG-FUN for a SB!C::COMPILER-DEBUG-FUN and its
304 ;;; component. This maps the latter to the former in
305 ;;; *COMPILED-DEBUG-FUNS*. If there already is a COMPILED-DEBUG-FUN,
306 ;;; then this returns it from *COMPILED-DEBUG-FUNS*.
308 ;;; FIXME: It seems this table can potentially grow without bounds,
309 ;;; and retains roots to functions that might otherwise be collected.
310 (defun make-compiled-debug-fun (compiler-debug-fun component)
311 (let ((table *compiled-debug-funs*))
312 (with-locked-hash-table (table)
313 (or (gethash compiler-debug-fun table)
314 (setf (gethash compiler-debug-fun table)
315 (%make-compiled-debug-fun compiler-debug-fun component))))))
317 (defstruct (bogus-debug-fun
318 (:include debug-fun)
319 (:constructor make-bogus-debug-fun
320 (%name &aux
321 (%lambda-list nil)
322 (%debug-vars nil)
323 (blocks nil)
324 (%function nil)))
325 (:copier nil))
326 %name)
328 ;;;; DEBUG-BLOCKs
330 ;;; These exist for caching data stored in packed binary form in compiler
331 ;;; DEBUG-BLOCKs.
332 (defstruct (debug-block (:constructor nil)
333 (:copier nil))
334 ;; Code-locations where execution continues after this block.
335 (successors nil :type list)
336 ;; This indicates whether the block is a special glob of code shared
337 ;; by various functions and tucked away elsewhere in a component.
338 ;; This kind of block has no start code-location. This slot is in
339 ;; all debug-blocks since it is an exported interface.
340 (elsewhere-p nil :type boolean))
341 (def!method print-object ((obj debug-block) str)
342 (print-unreadable-object (obj str :type t)
343 (prin1 (debug-block-fun-name obj) str)))
345 #!+sb-doc
346 (setf (fdocumentation 'debug-block-successors 'function)
347 "Return the list of possible code-locations where execution may continue
348 when the basic-block represented by debug-block completes its execution.")
350 #!+sb-doc
351 (setf (fdocumentation 'debug-block-elsewhere-p 'function)
352 "Return whether debug-block represents elsewhere code.")
354 (defstruct (compiled-debug-block (:include debug-block)
355 (:constructor
356 make-compiled-debug-block
357 (code-locations successors elsewhere-p))
358 (:copier nil))
359 ;; code-location information for the block
360 (code-locations nil :type simple-vector))
362 ;;;; breakpoints
364 ;;; This is an internal structure that manages information about a
365 ;;; breakpoint locations. See *COMPONENT-BREAKPOINT-OFFSETS*.
366 (defstruct (breakpoint-data (:constructor make-breakpoint-data
367 (component offset))
368 (:copier nil))
369 ;; This is the component in which the breakpoint lies.
370 component
371 ;; This is the byte offset into the component.
372 (offset nil :type index)
373 ;; The original instruction replaced by the breakpoint.
374 (instruction nil :type (or null sb!vm::word))
375 ;; A list of user breakpoints at this location.
376 (breakpoints nil :type list))
377 (def!method print-object ((obj breakpoint-data) str)
378 (print-unreadable-object (obj str :type t)
379 (format str "~S at ~S"
380 (debug-fun-name
381 (debug-fun-from-pc (breakpoint-data-component obj)
382 (breakpoint-data-offset obj)))
383 (breakpoint-data-offset obj))))
385 (defstruct (breakpoint (:constructor %make-breakpoint
386 (hook-fun what kind %info))
387 (:copier nil))
388 ;; This is the function invoked when execution encounters the
389 ;; breakpoint. It takes a frame, the breakpoint, and optionally a
390 ;; list of values. Values are supplied for :FUN-END breakpoints as
391 ;; values to return for the function containing the breakpoint.
392 ;; :FUN-END breakpoint hook functions also take a cookie argument.
393 ;; See the COOKIE-FUN slot.
394 (hook-fun (required-arg) :type function)
395 ;; CODE-LOCATION or DEBUG-FUN
396 (what nil :type (or code-location debug-fun))
397 ;; :CODE-LOCATION, :FUN-START, or :FUN-END for that kind
398 ;; of breakpoint. :UNKNOWN-RETURN-PARTNER if this is the partner of
399 ;; a :code-location breakpoint at an :UNKNOWN-RETURN code-location.
400 (kind nil :type (member :code-location :fun-start :fun-end
401 :unknown-return-partner))
402 ;; Status helps the user and the implementation.
403 (status :inactive :type (member :active :inactive :deleted))
404 ;; This is a backpointer to a breakpoint-data.
405 (internal-data nil :type (or null breakpoint-data))
406 ;; With code-locations whose type is :UNKNOWN-RETURN, there are
407 ;; really two breakpoints: one at the multiple-value entry point,
408 ;; and one at the single-value entry point. This slot holds the
409 ;; breakpoint for the other one, or NIL if this isn't at an
410 ;; :UNKNOWN-RETURN code location.
411 (unknown-return-partner nil :type (or null breakpoint))
412 ;; :FUN-END breakpoints use a breakpoint at the :FUN-START
413 ;; to establish the end breakpoint upon function entry. We do this
414 ;; by frobbing the LRA to jump to a special piece of code that
415 ;; breaks and provides the return values for the returnee. This slot
416 ;; points to the start breakpoint, so we can activate, deactivate,
417 ;; and delete it.
418 (start-helper nil :type (or null breakpoint))
419 ;; This is a hook users supply to get a dynamically unique cookie
420 ;; for identifying :FUN-END breakpoint executions. That is, if
421 ;; there is one :FUN-END breakpoint, but there may be multiple
422 ;; pending calls of its function on the stack. This function takes
423 ;; the cookie, and the hook function takes the cookie too.
424 (cookie-fun nil :type (or null function))
425 ;; This slot users can set with whatever information they find useful.
426 %info)
427 (def!method print-object ((obj breakpoint) str)
428 (let ((what (breakpoint-what obj)))
429 (print-unreadable-object (obj str :type t)
430 (format str
431 "~S~:[~;~:*~S~]"
432 (etypecase what
433 (code-location what)
434 (debug-fun (debug-fun-name what)))
435 (etypecase what
436 (code-location nil)
437 (debug-fun (breakpoint-kind obj)))))))
439 ;;;; CODE-LOCATIONs
441 (defstruct (code-location (:constructor nil)
442 (:copier nil))
443 ;; the DEBUG-FUN containing this CODE-LOCATION
444 (debug-fun nil :type debug-fun)
445 ;; This is initially :UNSURE. Upon first trying to access an
446 ;; :UNPARSED slot, if the data is unavailable, then this becomes T,
447 ;; and the code-location is unknown. If the data is available, this
448 ;; becomes NIL, a known location. We can't use a separate type
449 ;; code-location for this since we must return code-locations before
450 ;; we can tell whether they're known or unknown. For example, when
451 ;; parsing the stack, we don't want to unpack all the variables and
452 ;; blocks just to make frames.
453 (%unknown-p :unsure :type (member t nil :unsure))
454 ;; the DEBUG-BLOCK containing CODE-LOCATION. XXX Possibly toss this
455 ;; out and just find it in the blocks cache in DEBUG-FUN.
456 (%debug-block :unparsed :type (or debug-block (member :unparsed)))
457 ;; This is the number of forms processed by the compiler or loader
458 ;; before the top level form containing this code-location.
459 (%tlf-offset :unparsed :type (or index (member :unparsed)))
460 ;; This is the depth-first number of the node that begins
461 ;; code-location within its top level form.
462 (%form-number :unparsed :type (or index (member :unparsed))))
463 (def!method print-object ((obj code-location) str)
464 (print-unreadable-object (obj str :type t)
465 (prin1 (debug-fun-name (code-location-debug-fun obj))
466 str)))
468 (defstruct (compiled-code-location
469 (:include code-location)
470 (:constructor make-known-code-location
471 (pc debug-fun %tlf-offset %form-number
472 %live-set kind step-info &aux (%unknown-p nil)))
473 (:constructor make-compiled-code-location (pc debug-fun))
474 (:copier nil))
475 ;; an index into DEBUG-FUN's component slot
476 (pc nil :type index)
477 ;; a bit-vector indexed by a variable's position in
478 ;; DEBUG-FUN-DEBUG-VARS indicating whether the variable has a
479 ;; valid value at this code-location. (unexported).
480 (%live-set :unparsed :type (or simple-bit-vector (member :unparsed)))
481 ;; (unexported) To see SB!C::LOCATION-KIND, do
482 ;; (SB!KERNEL:TYPE-EXPAND 'SB!C::LOCATION-KIND).
483 (kind :unparsed :type (or (member :unparsed) sb!c::location-kind))
484 (step-info :unparsed :type (or (member :unparsed :foo) simple-string)))
486 ;;;; DEBUG-SOURCEs
488 ;;; Return the number of top level forms processed by the compiler
489 ;;; before compiling this source. If this source is uncompiled, this
490 ;;; is zero. This may be zero even if the source is compiled since the
491 ;;; first form in the first file compiled in one compilation, for
492 ;;; example, must have a root number of zero -- the compiler saw no
493 ;;; other top level forms before it.
494 (defun debug-source-root-number (debug-source)
495 (sb!c::debug-source-source-root debug-source))
497 ;;;; frames
499 ;;; This is used in FIND-ESCAPED-FRAME and with the bogus components
500 ;;; and LRAs used for :FUN-END breakpoints. When a component's
501 ;;; debug-info slot is :BOGUS-LRA, then the REAL-LRA-SLOT contains the
502 ;;; real component to continue executing, as opposed to the bogus
503 ;;; component which appeared in some frame's LRA location.
504 (defconstant real-lra-slot sb!vm:code-constants-offset)
506 ;;; These are magically converted by the compiler.
507 (defun current-sp () (current-sp))
508 (defun current-fp () (current-fp))
509 (defun stack-ref (s n) (stack-ref s n))
510 (defun %set-stack-ref (s n value) (%set-stack-ref s n value))
511 (defun fun-code-header (fun) (fun-code-header fun))
512 (defun lra-code-header (lra) (lra-code-header lra))
513 (defun %make-lisp-obj (value) (%make-lisp-obj value))
514 (defun get-lisp-obj-address (thing) (get-lisp-obj-address thing))
515 (defun fun-word-offset (fun) (fun-word-offset fun))
517 #!-sb-fluid (declaim (inline control-stack-pointer-valid-p))
518 (defun control-stack-pointer-valid-p (x)
519 (declare (type system-area-pointer x))
520 (let* (#!-stack-grows-downward-not-upward
521 (control-stack-start
522 (descriptor-sap *control-stack-start*))
523 #!+stack-grows-downward-not-upward
524 (control-stack-end
525 (descriptor-sap *control-stack-end*)))
526 #!-stack-grows-downward-not-upward
527 (and (sap< x (current-sp))
528 (sap<= control-stack-start x)
529 (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask)))
530 #!+stack-grows-downward-not-upward
531 (and (sap>= x (current-sp))
532 (sap> control-stack-end x)
533 (zerop (logand (sap-int x) sb!vm:fixnum-tag-mask)))))
535 (declaim (inline component-ptr-from-pc))
536 (sb!alien:define-alien-routine component-ptr-from-pc (system-area-pointer)
537 (pc system-area-pointer))
539 #!+(or x86 x86-64)
540 (sb!alien:define-alien-routine valid-lisp-pointer-p sb!alien:int
541 (pointer system-area-pointer))
543 (declaim (inline component-from-component-ptr))
544 (defun component-from-component-ptr (component-ptr)
545 (declare (type system-area-pointer component-ptr))
546 (make-lisp-obj (logior (sap-int component-ptr)
547 sb!vm:other-pointer-lowtag)))
549 ;;;; (OR X86 X86-64) support
551 (defun compute-lra-data-from-pc (pc)
552 (declare (type system-area-pointer pc))
553 (let ((component-ptr (component-ptr-from-pc pc)))
554 (unless (sap= component-ptr (int-sap #x0))
555 (let* ((code (component-from-component-ptr component-ptr))
556 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes))
557 (pc-offset (- (sap-int pc)
558 (- (get-lisp-obj-address code)
559 sb!vm:other-pointer-lowtag)
560 code-header-len)))
561 ; (format t "c-lra-fpc ~A ~A ~A~%" pc code pc-offset)
562 (values pc-offset code)))))
564 #!+(or x86 x86-64)
565 (progn
567 (defconstant sb!vm::nargs-offset #.sb!vm::ecx-offset)
569 ;;; Check for a valid return address - it could be any valid C/Lisp
570 ;;; address.
572 ;;; XXX Could be a little smarter.
573 #!-sb-fluid (declaim (inline ra-pointer-valid-p))
574 (defun ra-pointer-valid-p (ra)
575 (declare (type system-area-pointer ra))
576 (and
577 ;; not the first page (which is unmapped)
579 ;; FIXME: Where is this documented? Is it really true of every CPU
580 ;; architecture? Is it even necessarily true in current SBCL?
581 (>= (sap-int ra) 4096)
582 ;; not a Lisp stack pointer
583 (not (control-stack-pointer-valid-p ra))))
585 ;;; Try to find a valid previous stack. This is complex on the x86 as
586 ;;; it can jump between C and Lisp frames. To help find a valid frame
587 ;;; it searches backwards.
589 ;;; XXX Should probably check whether it has reached the bottom of the
590 ;;; stack.
592 ;;; XXX Should handle interrupted frames, both Lisp and C. At present
593 ;;; it manages to find a fp trail, see linux hack below.
594 (declaim (maybe-inline x86-call-context))
595 (defun x86-call-context (fp)
596 (declare (type system-area-pointer fp))
597 (labels ((fail ()
598 (values nil
599 (int-sap 0)
600 (int-sap 0)))
601 (handle (fp)
602 (cond
603 ((not (control-stack-pointer-valid-p fp))
604 (fail))
606 ;; Check the two possible frame pointers.
607 (let ((lisp-ocfp (sap-ref-sap fp (- (* (1+ ocfp-save-offset)
608 sb!vm::n-word-bytes))))
609 (lisp-ra (sap-ref-sap fp (- (* (1+ return-pc-save-offset)
610 sb!vm::n-word-bytes))))
611 (c-ocfp (sap-ref-sap fp (* 0 sb!vm:n-word-bytes)))
612 (c-ra (sap-ref-sap fp (* 1 sb!vm:n-word-bytes))))
613 (cond ((and (sap> lisp-ocfp fp)
614 (control-stack-pointer-valid-p lisp-ocfp)
615 (ra-pointer-valid-p lisp-ra)
616 (sap> c-ocfp fp)
617 (control-stack-pointer-valid-p c-ocfp)
618 (ra-pointer-valid-p c-ra))
619 ;; Look forward another step to check their validity.
620 (let ((lisp-ok (handle lisp-ocfp))
621 (c-ok (handle c-ocfp)))
622 (cond ((and lisp-ok c-ok)
623 ;; Both still seem valid - choose the lisp frame.
624 #!+freebsd
625 (if (sap> lisp-ocfp c-ocfp)
626 (values t lisp-ra lisp-ocfp)
627 (values t c-ra c-ocfp))
628 #!-freebsd
629 (values t lisp-ra lisp-ocfp))
630 (lisp-ok
631 ;; The lisp convention is looking good.
632 (values t lisp-ra lisp-ocfp))
633 (c-ok
634 ;; The C convention is looking good.
635 (values t c-ra c-ocfp))
637 ;; Neither seems right?
638 (fail)))))
639 ((and (sap> lisp-ocfp fp)
640 (control-stack-pointer-valid-p lisp-ocfp)
641 (ra-pointer-valid-p lisp-ra))
642 ;; The lisp convention is looking good.
643 (values t lisp-ra lisp-ocfp))
644 ((and (sap> c-ocfp fp)
645 (control-stack-pointer-valid-p c-ocfp)
646 #!-linux (ra-pointer-valid-p c-ra))
647 ;; The C convention is looking good.
648 (values t c-ra c-ocfp))
650 (fail))))))))
651 (handle fp)))
653 ) ; #+x86 PROGN
655 ;;; Convert the descriptor into a SAP. The bits all stay the same, we just
656 ;;; change our notion of what we think they are.
657 #!-sb-fluid (declaim (inline descriptor-sap))
658 (defun descriptor-sap (x)
659 (int-sap (get-lisp-obj-address x)))
661 ;;; Return the top frame of the control stack as it was before calling
662 ;;; this function.
663 (defun top-frame ()
664 (/noshow0 "entering TOP-FRAME")
665 (multiple-value-bind (fp pc) (%caller-frame-and-pc)
666 (compute-calling-frame (descriptor-sap fp) pc nil)))
668 ;;; Flush all of the frames above FRAME, and renumber all the frames
669 ;;; below FRAME.
670 (defun flush-frames-above (frame)
671 (setf (frame-up frame) nil)
672 (do ((number 0 (1+ number))
673 (frame frame (frame-%down frame)))
674 ((not (frame-p frame)))
675 (setf (frame-number frame) number)))
677 ;;; Return the frame immediately below FRAME on the stack; or when
678 ;;; FRAME is the bottom of the stack, return NIL.
679 (defun frame-down (frame)
680 (/noshow0 "entering FRAME-DOWN")
681 ;; We have to access the old-fp and return-pc out of frame and pass
682 ;; them to COMPUTE-CALLING-FRAME.
683 (let ((down (frame-%down frame)))
684 (if (eq down :unparsed)
685 (let ((debug-fun (frame-debug-fun frame)))
686 (/noshow0 "in DOWN :UNPARSED case")
687 (setf (frame-%down frame)
688 (etypecase debug-fun
689 (compiled-debug-fun
690 (let ((c-d-f (compiled-debug-fun-compiler-debug-fun
691 debug-fun)))
692 (compute-calling-frame
693 (descriptor-sap
694 (get-context-value
695 frame ocfp-save-offset
696 (sb!c::compiled-debug-fun-old-fp c-d-f)))
697 (get-context-value
698 frame lra-save-offset
699 (sb!c::compiled-debug-fun-return-pc c-d-f))
700 frame)))
701 (bogus-debug-fun
702 (let ((fp (frame-pointer frame)))
703 (when (control-stack-pointer-valid-p fp)
704 #!+(or x86 x86-64)
705 (multiple-value-bind (ok ra ofp) (x86-call-context fp)
706 (and ok
707 (compute-calling-frame ofp ra frame)))
708 #!-(or x86 x86-64)
709 (compute-calling-frame
710 #!-alpha
711 (sap-ref-sap fp (* ocfp-save-offset
712 sb!vm:n-word-bytes))
713 #!+alpha
714 (int-sap
715 (sap-ref-32 fp (* ocfp-save-offset
716 sb!vm:n-word-bytes)))
718 (stack-ref fp lra-save-offset)
720 frame)))))))
721 down)))
723 ;;; Get the old FP or return PC out of FRAME. STACK-SLOT is the
724 ;;; standard save location offset on the stack. LOC is the saved
725 ;;; SC-OFFSET describing the main location.
726 (defun get-context-value (frame stack-slot loc)
727 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
728 (type sb!c:sc-offset loc))
729 (let ((pointer (frame-pointer frame))
730 (escaped (compiled-frame-escaped frame)))
731 (if escaped
732 (sub-access-debug-var-slot pointer loc escaped)
733 #!-(or x86 x86-64)
734 (stack-ref pointer stack-slot)
735 #!+(or x86 x86-64)
736 (ecase stack-slot
737 (#.ocfp-save-offset
738 (stack-ref pointer stack-slot))
739 (#.lra-save-offset
740 (sap-ref-sap pointer (- (* (1+ stack-slot)
741 sb!vm::n-word-bytes))))))))
743 (defun (setf get-context-value) (value frame stack-slot loc)
744 (declare (type compiled-frame frame) (type unsigned-byte stack-slot)
745 (type sb!c:sc-offset loc))
746 (let ((pointer (frame-pointer frame))
747 (escaped (compiled-frame-escaped frame)))
748 (if escaped
749 (sub-set-debug-var-slot pointer loc value escaped)
750 #!-(or x86 x86-64)
751 (setf (stack-ref pointer stack-slot) value)
752 #!+(or x86 x86-64)
753 (ecase stack-slot
754 (#.ocfp-save-offset
755 (setf (stack-ref pointer stack-slot) value))
756 (#.lra-save-offset
757 (setf (sap-ref-sap pointer (- (* (1+ stack-slot)
758 sb!vm::n-word-bytes))) value))))))
760 (defun foreign-function-backtrace-name (sap)
761 (let ((name (sap-foreign-symbol sap)))
762 (if name
763 (format nil "foreign function: ~A" name)
764 (format nil "foreign function: #x~X" (sap-int sap)))))
766 ;;; This returns a frame for the one existing in time immediately
767 ;;; prior to the frame referenced by current-fp. This is current-fp's
768 ;;; caller or the next frame down the control stack. If there is no
769 ;;; down frame, this returns NIL for the bottom of the stack. UP-FRAME
770 ;;; is the up link for the resulting frame object, and it is null when
771 ;;; we call this to get the top of the stack.
773 ;;; The current frame contains the pointer to the temporally previous
774 ;;; frame we want, and the current frame contains the pc at which we
775 ;;; will continue executing upon returning to that previous frame.
777 ;;; Note: Sometimes LRA is actually a fixnum. This happens when lisp
778 ;;; calls into C. In this case, the code object is stored on the stack
779 ;;; after the LRA, and the LRA is the word offset.
780 #!-(or x86 x86-64)
781 (defun compute-calling-frame (caller lra up-frame)
782 (declare (type system-area-pointer caller))
783 (/noshow0 "entering COMPUTE-CALLING-FRAME")
784 (when (control-stack-pointer-valid-p caller)
785 (/noshow0 "in WHEN")
786 (multiple-value-bind (code pc-offset escaped)
787 (if lra
788 (multiple-value-bind (word-offset code)
789 (if (fixnump lra)
790 (let ((fp (frame-pointer up-frame)))
791 (values lra
792 (stack-ref fp (1+ lra-save-offset))))
793 (values (get-header-data lra)
794 (lra-code-header lra)))
795 (if code
796 (values code
797 (* (1+ (- word-offset (get-header-data code)))
798 sb!vm:n-word-bytes)
799 nil)
800 (values :foreign-function
802 nil)))
803 (find-escaped-frame caller))
804 (if (and (code-component-p code)
805 (eq (%code-debug-info code) :bogus-lra))
806 (let ((real-lra (code-header-ref code real-lra-slot)))
807 (compute-calling-frame caller real-lra up-frame))
808 (let ((d-fun (case code
809 (:undefined-function
810 (make-bogus-debug-fun
811 "undefined function"))
812 (:foreign-function
813 (make-bogus-debug-fun
814 (foreign-function-backtrace-name
815 (int-sap (get-lisp-obj-address lra)))))
816 ((nil)
817 (make-bogus-debug-fun
818 "bogus stack frame"))
820 (debug-fun-from-pc code pc-offset)))))
821 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
822 (make-compiled-frame caller up-frame d-fun
823 (code-location-from-pc d-fun pc-offset
824 escaped)
825 (if up-frame (1+ (frame-number up-frame)) 0)
826 escaped))))))
828 #!+(or x86 x86-64)
829 (defun compute-calling-frame (caller ra up-frame)
830 (declare (type system-area-pointer caller ra))
831 (/noshow0 "entering COMPUTE-CALLING-FRAME")
832 (when (control-stack-pointer-valid-p caller)
833 (/noshow0 "in WHEN")
834 ;; First check for an escaped frame.
835 (multiple-value-bind (code pc-offset escaped) (find-escaped-frame caller)
836 (/noshow0 "at COND")
837 (cond (code
838 ;; If it's escaped it may be a function end breakpoint trap.
839 (when (and (code-component-p code)
840 (eq (%code-debug-info code) :bogus-lra))
841 ;; If :bogus-lra grab the real lra.
842 (setq pc-offset (code-header-ref
843 code (1+ real-lra-slot)))
844 (setq code (code-header-ref code real-lra-slot))
845 (aver code)))
846 ((not escaped)
847 (multiple-value-setq (pc-offset code)
848 (compute-lra-data-from-pc ra))
849 (unless code
850 (setf code :foreign-function
851 pc-offset 0))))
852 (let ((d-fun (case code
853 (:undefined-function
854 (make-bogus-debug-fun
855 "undefined function"))
856 (:foreign-function
857 (make-bogus-debug-fun
858 (foreign-function-backtrace-name ra)))
859 ((nil)
860 (make-bogus-debug-fun
861 "bogus stack frame"))
863 (debug-fun-from-pc code pc-offset)))))
864 (/noshow0 "returning MAKE-COMPILED-FRAME from COMPUTE-CALLING-FRAME")
865 (make-compiled-frame caller up-frame d-fun
866 (code-location-from-pc d-fun pc-offset
867 escaped)
868 (if up-frame (1+ (frame-number up-frame)) 0)
869 escaped)))))
871 (defun nth-interrupt-context (n)
872 (declare (type (unsigned-byte 32) n)
873 (optimize (speed 3) (safety 0)))
874 (sb!alien:sap-alien (sb!vm::current-thread-offset-sap
875 (+ sb!vm::thread-interrupt-contexts-offset n))
876 (* os-context-t)))
878 #!+(or x86 x86-64)
879 (defun find-escaped-frame (frame-pointer)
880 (declare (type system-area-pointer frame-pointer))
881 (/noshow0 "entering FIND-ESCAPED-FRAME")
882 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
883 (/noshow0 "at head of WITH-ALIEN")
884 (let ((context (nth-interrupt-context index)))
885 (/noshow0 "got CONTEXT")
886 (when (= (sap-int frame-pointer)
887 (sb!vm:context-register context sb!vm::cfp-offset))
888 (without-gcing
889 (/noshow0 "in WITHOUT-GCING")
890 (let* ((component-ptr (component-ptr-from-pc
891 (sb!vm:context-pc context)))
892 (code (unless (sap= component-ptr (int-sap #x0))
893 (component-from-component-ptr component-ptr))))
894 (/noshow0 "got CODE")
895 (when (null code)
896 (return (values code 0 context)))
897 (let* ((code-header-len (* (get-header-data code)
898 sb!vm:n-word-bytes))
899 (pc-offset
900 (- (sap-int (sb!vm:context-pc context))
901 (- (get-lisp-obj-address code)
902 sb!vm:other-pointer-lowtag)
903 code-header-len)))
904 (/noshow "got PC-OFFSET")
905 (unless (<= 0 pc-offset
906 (* (code-header-ref code sb!vm:code-code-size-slot)
907 sb!vm:n-word-bytes))
908 ;; We were in an assembly routine. Therefore, use the
909 ;; LRA as the pc.
911 ;; FIXME: Should this be WARN or ERROR or what?
912 (format t "** pc-offset ~S not in code obj ~S?~%"
913 pc-offset code))
914 (/noshow0 "returning from FIND-ESCAPED-FRAME")
915 (return
916 (values code pc-offset context)))))))))
918 #!-(or x86 x86-64)
919 (defun find-escaped-frame (frame-pointer)
920 (declare (type system-area-pointer frame-pointer))
921 (/noshow0 "entering FIND-ESCAPED-FRAME")
922 (dotimes (index *free-interrupt-context-index* (values nil 0 nil))
923 (/noshow0 "at head of WITH-ALIEN")
924 (let ((scp (nth-interrupt-context index)))
925 (/noshow0 "got SCP")
926 (when (= (sap-int frame-pointer)
927 (sb!vm:context-register scp sb!vm::cfp-offset))
928 (without-gcing
929 (/noshow0 "in WITHOUT-GCING")
930 (let ((code (code-object-from-bits
931 (sb!vm:context-register scp sb!vm::code-offset))))
932 (/noshow0 "got CODE")
933 (when (symbolp code)
934 (return (values code 0 scp)))
935 (let* ((code-header-len (* (get-header-data code)
936 sb!vm:n-word-bytes))
937 (pc-offset
938 (- (sap-int (sb!vm:context-pc scp))
939 (- (get-lisp-obj-address code)
940 sb!vm:other-pointer-lowtag)
941 code-header-len)))
942 (let ((code-size (* (code-header-ref code
943 sb!vm:code-code-size-slot)
944 sb!vm:n-word-bytes)))
945 (unless (<= 0 pc-offset code-size)
946 ;; We were in an assembly routine.
947 (multiple-value-bind (new-pc-offset computed-return)
948 (find-pc-from-assembly-fun code scp)
949 (setf pc-offset new-pc-offset)
950 (unless (<= 0 pc-offset code-size)
951 (cerror
952 "Set PC-OFFSET to zero and continue backtrace."
953 'bug
954 :format-control
955 "~@<PC-OFFSET (~D) not in code object. Frame details:~
956 ~2I~:@_PC: #X~X~:@_CODE: ~S~:@_CODE FUN: ~S~:@_LRA: ~
957 #X~X~:@_COMPUTED RETURN: #X~X.~:>"
958 :format-arguments
959 (list pc-offset
960 (sap-int (sb!vm:context-pc scp))
961 code
962 (%code-entry-points code)
963 (sb!vm:context-register scp sb!vm::lra-offset)
964 computed-return))
965 ;; We failed to pinpoint where PC is, but set
966 ;; pc-offset to 0 to keep the backtrace from
967 ;; exploding.
968 (setf pc-offset 0)))))
969 (/noshow0 "returning from FIND-ESCAPED-FRAME")
970 (return
971 (if (eq (%code-debug-info code) :bogus-lra)
972 (let ((real-lra (code-header-ref code
973 real-lra-slot)))
974 (values (lra-code-header real-lra)
975 (get-header-data real-lra)
976 nil))
977 (values code pc-offset scp))))))))))
979 #!-(or x86 x86-64)
980 (defun find-pc-from-assembly-fun (code scp)
981 "Finds the PC for the return from an assembly routine properly.
982 For some architectures (such as PPC) this will not be the $LRA
983 register."
984 (let ((return-machine-address (sb!vm::return-machine-address scp))
985 (code-header-len (* (get-header-data code) sb!vm:n-word-bytes)))
986 (values (- return-machine-address
987 (- (get-lisp-obj-address code)
988 sb!vm:other-pointer-lowtag)
989 code-header-len)
990 return-machine-address)))
992 ;;; Find the code object corresponding to the object represented by
993 ;;; bits and return it. We assume bogus functions correspond to the
994 ;;; undefined-function.
995 #!-(or x86 x86-64)
996 (defun code-object-from-bits (bits)
997 (declare (type (unsigned-byte 32) bits))
998 (let ((object (make-lisp-obj bits nil)))
999 (if (functionp object)
1000 (or (fun-code-header object)
1001 :undefined-function)
1002 (let ((lowtag (lowtag-of object)))
1003 (when (= lowtag sb!vm:other-pointer-lowtag)
1004 (let ((widetag (widetag-of object)))
1005 (cond ((= widetag sb!vm:code-header-widetag)
1006 object)
1007 ((= widetag sb!vm:return-pc-header-widetag)
1008 (lra-code-header object))
1010 nil))))))))
1012 ;;;; frame utilities
1014 ;;; This returns a COMPILED-DEBUG-FUN for COMPONENT and PC. We fetch the
1015 ;;; SB!C::DEBUG-INFO and run down its FUN-MAP to get a
1016 ;;; SB!C::COMPILED-DEBUG-FUN from the PC. The result only needs to
1017 ;;; reference the COMPONENT, for function constants, and the
1018 ;;; SB!C::COMPILED-DEBUG-FUN.
1019 (defun debug-fun-from-pc (component pc)
1020 (let ((info (%code-debug-info component)))
1021 (cond
1022 ((not info)
1023 ;; FIXME: It seems that most of these (at least on x86) are
1024 ;; actually assembler routines, and could be named by looking
1025 ;; at the sb-fasl:*assembler-routines*.
1026 (make-bogus-debug-fun "no debug information for frame"))
1027 ((eq info :bogus-lra)
1028 (make-bogus-debug-fun "function end breakpoint"))
1030 (let* ((fun-map (sb!c::compiled-debug-info-fun-map info))
1031 (len (length fun-map)))
1032 (declare (type simple-vector fun-map))
1033 (if (= len 1)
1034 (make-compiled-debug-fun (svref fun-map 0) component)
1035 (let ((i 1)
1036 (elsewhere-p
1037 (>= pc (sb!c::compiled-debug-fun-elsewhere-pc
1038 (svref fun-map 0)))))
1039 (declare (type sb!int:index i))
1040 (loop
1041 (when (or (= i len)
1042 (< pc (if elsewhere-p
1043 (sb!c::compiled-debug-fun-elsewhere-pc
1044 (svref fun-map (1+ i)))
1045 (svref fun-map i))))
1046 (return (make-compiled-debug-fun
1047 (svref fun-map (1- i))
1048 component)))
1049 (incf i 2)))))))))
1051 ;;; This returns a code-location for the COMPILED-DEBUG-FUN,
1052 ;;; DEBUG-FUN, and the pc into its code vector. If we stopped at a
1053 ;;; breakpoint, find the CODE-LOCATION for that breakpoint. Otherwise,
1054 ;;; make an :UNSURE code location, so it can be filled in when we
1055 ;;; figure out what is going on.
1056 (defun code-location-from-pc (debug-fun pc escaped)
1057 (or (and (compiled-debug-fun-p debug-fun)
1058 escaped
1059 (let ((data (breakpoint-data
1060 (compiled-debug-fun-component debug-fun)
1061 pc nil)))
1062 (when (and data (breakpoint-data-breakpoints data))
1063 (let ((what (breakpoint-what
1064 (first (breakpoint-data-breakpoints data)))))
1065 (when (compiled-code-location-p what)
1066 what)))))
1067 (make-compiled-code-location pc debug-fun)))
1069 ;;; Return an alist mapping catch tags to CODE-LOCATIONs. These are
1070 ;;; CODE-LOCATIONs at which execution would continue with frame as the
1071 ;;; top frame if someone threw to the corresponding tag.
1072 (defun frame-catches (frame)
1073 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1074 (reversed-result nil)
1075 (fp (frame-pointer frame)))
1076 (loop until (zerop (sap-int catch))
1077 finally (return (nreverse reversed-result))
1079 (when (sap= fp
1080 #!-alpha
1081 (sap-ref-sap catch
1082 (* sb!vm:catch-block-current-cont-slot
1083 sb!vm:n-word-bytes))
1084 #!+alpha
1085 (int-sap
1086 (sap-ref-32 catch
1087 (* sb!vm:catch-block-current-cont-slot
1088 sb!vm:n-word-bytes))))
1089 (let* (#!-(or x86 x86-64)
1090 (lra (stack-ref catch sb!vm:catch-block-entry-pc-slot))
1091 #!+(or x86 x86-64)
1092 (ra (sap-ref-sap
1093 catch (* sb!vm:catch-block-entry-pc-slot
1094 sb!vm:n-word-bytes)))
1095 #!-(or x86 x86-64)
1096 (component
1097 (stack-ref catch sb!vm:catch-block-current-code-slot))
1098 #!+(or x86 x86-64)
1099 (component (component-from-component-ptr
1100 (component-ptr-from-pc ra)))
1101 (offset
1102 #!-(or x86 x86-64)
1103 (* (- (1+ (get-header-data lra))
1104 (get-header-data component))
1105 sb!vm:n-word-bytes)
1106 #!+(or x86 x86-64)
1107 (- (sap-int ra)
1108 (- (get-lisp-obj-address component)
1109 sb!vm:other-pointer-lowtag)
1110 (* (get-header-data component) sb!vm:n-word-bytes))))
1111 (push (cons #!-(or x86 x86-64)
1112 (stack-ref catch sb!vm:catch-block-tag-slot)
1113 #!+(or x86 x86-64)
1114 (make-lisp-obj
1115 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1116 sb!vm:n-word-bytes)))
1117 (make-compiled-code-location
1118 offset (frame-debug-fun frame)))
1119 reversed-result)))
1120 (setf catch
1121 #!-alpha
1122 (sap-ref-sap catch
1123 (* sb!vm:catch-block-previous-catch-slot
1124 sb!vm:n-word-bytes))
1125 #!+alpha
1126 (int-sap
1127 (sap-ref-32 catch
1128 (* sb!vm:catch-block-previous-catch-slot
1129 sb!vm:n-word-bytes)))))))
1131 ;;; Modify the value of the OLD-TAG catches in FRAME to NEW-TAG
1132 (defun replace-frame-catch-tag (frame old-tag new-tag)
1133 (let ((catch (descriptor-sap sb!vm:*current-catch-block*))
1134 (fp (frame-pointer frame)))
1135 (loop until (zerop (sap-int catch))
1136 do (when (sap= fp
1137 #!-alpha
1138 (sap-ref-sap catch
1139 (* sb!vm:catch-block-current-cont-slot
1140 sb!vm:n-word-bytes))
1141 #!+alpha
1142 (int-sap
1143 (sap-ref-32 catch
1144 (* sb!vm:catch-block-current-cont-slot
1145 sb!vm:n-word-bytes))))
1146 (let ((current-tag
1147 #!-(or x86 x86-64)
1148 (stack-ref catch sb!vm:catch-block-tag-slot)
1149 #!+(or x86 x86-64)
1150 (make-lisp-obj
1151 (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1152 sb!vm:n-word-bytes)))))
1153 (when (eq current-tag old-tag)
1154 #!-(or x86 x86-64)
1155 (setf (stack-ref catch sb!vm:catch-block-tag-slot) new-tag)
1156 #!+(or x86 x86-64)
1157 (setf (sap-ref-word catch (* sb!vm:catch-block-tag-slot
1158 sb!vm:n-word-bytes))
1159 (get-lisp-obj-address new-tag)))))
1160 do (setf catch
1161 #!-alpha
1162 (sap-ref-sap catch
1163 (* sb!vm:catch-block-previous-catch-slot
1164 sb!vm:n-word-bytes))
1165 #!+alpha
1166 (int-sap
1167 (sap-ref-32 catch
1168 (* sb!vm:catch-block-previous-catch-slot
1169 sb!vm:n-word-bytes)))))))
1173 ;;;; operations on DEBUG-FUNs
1175 ;;; Execute the forms in a context with BLOCK-VAR bound to each
1176 ;;; DEBUG-BLOCK in DEBUG-FUN successively. Result is an optional
1177 ;;; form to execute for return values, and DO-DEBUG-FUN-BLOCKS
1178 ;;; returns nil if there is no result form. This signals a
1179 ;;; NO-DEBUG-BLOCKS condition when the DEBUG-FUN lacks
1180 ;;; DEBUG-BLOCK information.
1181 (defmacro do-debug-fun-blocks ((block-var debug-fun &optional result)
1182 &body body)
1183 (let ((blocks (gensym))
1184 (i (gensym)))
1185 `(let ((,blocks (debug-fun-debug-blocks ,debug-fun)))
1186 (declare (simple-vector ,blocks))
1187 (dotimes (,i (length ,blocks) ,result)
1188 (let ((,block-var (svref ,blocks ,i)))
1189 ,@body)))))
1191 ;;; Execute body in a context with VAR bound to each DEBUG-VAR in
1192 ;;; DEBUG-FUN. This returns the value of executing result (defaults to
1193 ;;; nil). This may iterate over only some of DEBUG-FUN's variables or
1194 ;;; none depending on debug policy; for example, possibly the
1195 ;;; compilation only preserved argument information.
1196 (defmacro do-debug-fun-vars ((var debug-fun &optional result) &body body)
1197 (let ((vars (gensym))
1198 (i (gensym)))
1199 `(let ((,vars (debug-fun-debug-vars ,debug-fun)))
1200 (declare (type (or null simple-vector) ,vars))
1201 (if ,vars
1202 (dotimes (,i (length ,vars) ,result)
1203 (let ((,var (svref ,vars ,i)))
1204 ,@body))
1205 ,result))))
1207 ;;; Return the object of type FUNCTION associated with the DEBUG-FUN,
1208 ;;; or NIL if the function is unavailable or is non-existent as a user
1209 ;;; callable function object.
1210 (defun debug-fun-fun (debug-fun)
1211 (let ((cached-value (debug-fun-%function debug-fun)))
1212 (if (eq cached-value :unparsed)
1213 (setf (debug-fun-%function debug-fun)
1214 (etypecase debug-fun
1215 (compiled-debug-fun
1216 (let ((component
1217 (compiled-debug-fun-component debug-fun))
1218 (start-pc
1219 (sb!c::compiled-debug-fun-start-pc
1220 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1221 (do ((entry (%code-entry-points component)
1222 (%simple-fun-next entry)))
1223 ((null entry) nil)
1224 (when (= start-pc
1225 (sb!c::compiled-debug-fun-start-pc
1226 (compiled-debug-fun-compiler-debug-fun
1227 (fun-debug-fun entry))))
1228 (return entry)))))
1229 (bogus-debug-fun nil)))
1230 cached-value)))
1232 ;;; Return the name of the function represented by DEBUG-FUN. This may
1233 ;;; be a string or a cons; do not assume it is a symbol.
1234 (defun debug-fun-name (debug-fun)
1235 (declare (type debug-fun debug-fun))
1236 (etypecase debug-fun
1237 (compiled-debug-fun
1238 (sb!c::compiled-debug-fun-name
1239 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1240 (bogus-debug-fun
1241 (bogus-debug-fun-%name debug-fun))))
1243 ;;; Return a DEBUG-FUN that represents debug information for FUN.
1244 (defun fun-debug-fun (fun)
1245 (declare (type function fun))
1246 (ecase (widetag-of fun)
1247 (#.sb!vm:closure-header-widetag
1248 (fun-debug-fun (%closure-fun fun)))
1249 (#.sb!vm:funcallable-instance-header-widetag
1250 (fun-debug-fun (funcallable-instance-fun fun)))
1251 (#.sb!vm:simple-fun-header-widetag
1252 (let* ((name (%simple-fun-name fun))
1253 (component (fun-code-header fun))
1254 (res (find-if
1255 (lambda (x)
1256 (and (sb!c::compiled-debug-fun-p x)
1257 (eq (sb!c::compiled-debug-fun-name x) name)
1258 (eq (sb!c::compiled-debug-fun-kind x) nil)))
1259 (sb!c::compiled-debug-info-fun-map
1260 (%code-debug-info component)))))
1261 (if res
1262 (make-compiled-debug-fun res component)
1263 ;; KLUDGE: comment from CMU CL:
1264 ;; This used to be the non-interpreted branch, but
1265 ;; William wrote it to return the debug-fun of fun's XEP
1266 ;; instead of fun's debug-fun. The above code does this
1267 ;; more correctly, but it doesn't get or eliminate all
1268 ;; appropriate cases. It mostly works, and probably
1269 ;; works for all named functions anyway.
1270 ;; -- WHN 20000120
1271 (debug-fun-from-pc component
1272 (* (- (fun-word-offset fun)
1273 (get-header-data component))
1274 sb!vm:n-word-bytes)))))))
1276 ;;; Return the kind of the function, which is one of :OPTIONAL,
1277 ;;; :EXTERNAL, :TOPLEVEL, :CLEANUP, or NIL.
1278 (defun debug-fun-kind (debug-fun)
1279 ;; FIXME: This "is one of" information should become part of the function
1280 ;; declamation, not just a doc string
1281 (etypecase debug-fun
1282 (compiled-debug-fun
1283 (sb!c::compiled-debug-fun-kind
1284 (compiled-debug-fun-compiler-debug-fun debug-fun)))
1285 (bogus-debug-fun
1286 nil)))
1288 ;;; Is there any variable information for DEBUG-FUN?
1289 (defun debug-var-info-available (debug-fun)
1290 (not (not (debug-fun-debug-vars debug-fun))))
1292 ;;; Return a list of DEBUG-VARs in DEBUG-FUN having the same name
1293 ;;; and package as SYMBOL. If SYMBOL is uninterned, then this returns
1294 ;;; a list of DEBUG-VARs without package names and with the same name
1295 ;;; as symbol. The result of this function is limited to the
1296 ;;; availability of variable information in DEBUG-FUN; for
1297 ;;; example, possibly DEBUG-FUN only knows about its arguments.
1298 (defun debug-fun-symbol-vars (debug-fun symbol)
1299 (let ((vars (ambiguous-debug-vars debug-fun (symbol-name symbol)))
1300 (package (and (symbol-package symbol)
1301 (package-name (symbol-package symbol)))))
1302 (delete-if (if (stringp package)
1303 (lambda (var)
1304 (let ((p (debug-var-package-name var)))
1305 (or (not (stringp p))
1306 (string/= p package))))
1307 (lambda (var)
1308 (stringp (debug-var-package-name var))))
1309 vars)))
1311 ;;; Return a list of DEBUG-VARs in DEBUG-FUN whose names contain
1312 ;;; NAME-PREFIX-STRING as an initial substring. The result of this
1313 ;;; function is limited to the availability of variable information in
1314 ;;; debug-fun; for example, possibly debug-fun only knows
1315 ;;; about its arguments.
1316 (defun ambiguous-debug-vars (debug-fun name-prefix-string)
1317 (declare (simple-string name-prefix-string))
1318 (let ((variables (debug-fun-debug-vars debug-fun)))
1319 (declare (type (or null simple-vector) variables))
1320 (if variables
1321 (let* ((len (length variables))
1322 (prefix-len (length name-prefix-string))
1323 (pos (find-var name-prefix-string variables len))
1324 (res nil))
1325 (when pos
1326 ;; Find names from pos to variable's len that contain prefix.
1327 (do ((i pos (1+ i)))
1328 ((= i len))
1329 (let* ((var (svref variables i))
1330 (name (debug-var-symbol-name var))
1331 (name-len (length name)))
1332 (declare (simple-string name))
1333 (when (/= (or (string/= name-prefix-string name
1334 :end1 prefix-len :end2 name-len)
1335 prefix-len)
1336 prefix-len)
1337 (return))
1338 (push var res)))
1339 (setq res (nreverse res)))
1340 res))))
1342 ;;; This returns a position in VARIABLES for one containing NAME as an
1343 ;;; initial substring. END is the length of VARIABLES if supplied.
1344 (defun find-var (name variables &optional end)
1345 (declare (simple-vector variables)
1346 (simple-string name))
1347 (let ((name-len (length name)))
1348 (position name variables
1349 :test (lambda (x y)
1350 (let* ((y (debug-var-symbol-name y))
1351 (y-len (length y)))
1352 (declare (simple-string y))
1353 (and (>= y-len name-len)
1354 (string= x y :end1 name-len :end2 name-len))))
1355 :end (or end (length variables)))))
1357 ;;; Return a list representing the lambda-list for DEBUG-FUN. The
1358 ;;; list has the following structure:
1359 ;;; (required-var1 required-var2
1360 ;;; ...
1361 ;;; (:optional var3 suppliedp-var4)
1362 ;;; (:optional var5)
1363 ;;; ...
1364 ;;; (:rest var6) (:rest var7)
1365 ;;; ...
1366 ;;; (:keyword keyword-symbol var8 suppliedp-var9)
1367 ;;; (:keyword keyword-symbol var10)
1368 ;;; ...
1369 ;;; )
1370 ;;; Each VARi is a DEBUG-VAR; however it may be the symbol :DELETED if
1371 ;;; it is unreferenced in DEBUG-FUN. This signals a
1372 ;;; LAMBDA-LIST-UNAVAILABLE condition when there is no argument list
1373 ;;; information.
1374 (defun debug-fun-lambda-list (debug-fun)
1375 (etypecase debug-fun
1376 (compiled-debug-fun (compiled-debug-fun-lambda-list debug-fun))
1377 (bogus-debug-fun nil)))
1379 ;;; Note: If this has to compute the lambda list, it caches it in DEBUG-FUN.
1380 (defun compiled-debug-fun-lambda-list (debug-fun)
1381 (let ((lambda-list (debug-fun-%lambda-list debug-fun)))
1382 (cond ((eq lambda-list :unparsed)
1383 (multiple-value-bind (args argsp)
1384 (parse-compiled-debug-fun-lambda-list debug-fun)
1385 (setf (debug-fun-%lambda-list debug-fun) args)
1386 (if argsp
1387 args
1388 (debug-signal 'lambda-list-unavailable
1389 :debug-fun debug-fun))))
1390 (lambda-list)
1391 ((bogus-debug-fun-p debug-fun)
1392 nil)
1393 ((sb!c::compiled-debug-fun-arguments
1394 (compiled-debug-fun-compiler-debug-fun debug-fun))
1395 ;; If the packed information is there (whether empty or not) as
1396 ;; opposed to being nil, then returned our cached value (nil).
1397 nil)
1399 ;; Our cached value is nil, and the packed lambda-list information
1400 ;; is nil, so we don't have anything available.
1401 (debug-signal 'lambda-list-unavailable
1402 :debug-fun debug-fun)))))
1404 ;;; COMPILED-DEBUG-FUN-LAMBDA-LIST calls this when a
1405 ;;; COMPILED-DEBUG-FUN has no lambda list information cached. It
1406 ;;; returns the lambda list as the first value and whether there was
1407 ;;; any argument information as the second value. Therefore,
1408 ;;; (VALUES NIL T) means there were no arguments, but (VALUES NIL NIL)
1409 ;;; means there was no argument information.
1410 (defun parse-compiled-debug-fun-lambda-list (debug-fun)
1411 (let ((args (sb!c::compiled-debug-fun-arguments
1412 (compiled-debug-fun-compiler-debug-fun debug-fun))))
1413 (cond
1414 ((not args)
1415 (values nil nil))
1416 ((eq args :minimal)
1417 (values (coerce (debug-fun-debug-vars debug-fun) 'list)
1420 (let ((vars (debug-fun-debug-vars debug-fun))
1421 (i 0)
1422 (len (length args))
1423 (res nil)
1424 (optionalp nil))
1425 (declare (type (or null simple-vector) vars))
1426 (loop
1427 (when (>= i len) (return))
1428 (let ((ele (aref args i)))
1429 (cond
1430 ((symbolp ele)
1431 (case ele
1432 (sb!c::deleted
1433 ;; Deleted required arg at beginning of args array.
1434 (push :deleted res))
1435 (sb!c::optional-args
1436 (setf optionalp t))
1437 (sb!c::supplied-p
1438 ;; SUPPLIED-P var immediately following keyword or
1439 ;; optional. Stick the extra var in the result
1440 ;; element representing the keyword or optional,
1441 ;; which is the previous one.
1443 ;; FIXME: NCONC used for side-effect: the effect is defined,
1444 ;; but this is bad style no matter what.
1445 (nconc (car res)
1446 (list (compiled-debug-fun-lambda-list-var
1447 args (incf i) vars))))
1448 (sb!c::rest-arg
1449 (push (list :rest
1450 (compiled-debug-fun-lambda-list-var
1451 args (incf i) vars))
1452 res))
1453 (sb!c::more-arg
1454 ;; Just ignore the fact that the next two args are
1455 ;; the &MORE arg context and count, and act like they
1456 ;; are regular arguments.
1457 nil)
1459 ;; &KEY arg
1460 (push (list :keyword
1462 (compiled-debug-fun-lambda-list-var
1463 args (incf i) vars))
1464 res))))
1465 (optionalp
1466 ;; We saw an optional marker, so the following
1467 ;; non-symbols are indexes indicating optional
1468 ;; variables.
1469 (push (list :optional (svref vars ele)) res))
1471 ;; Required arg at beginning of args array.
1472 (push (svref vars ele) res))))
1473 (incf i))
1474 (values (nreverse res) t))))))
1476 ;;; This is used in COMPILED-DEBUG-FUN-LAMBDA-LIST.
1477 (defun compiled-debug-fun-lambda-list-var (args i vars)
1478 (declare (type (simple-array * (*)) args)
1479 (simple-vector vars))
1480 (let ((ele (aref args i)))
1481 (cond ((not (symbolp ele)) (svref vars ele))
1482 ((eq ele 'sb!c::deleted) :deleted)
1483 (t (error "malformed arguments description")))))
1485 (defun compiled-debug-fun-debug-info (debug-fun)
1486 (%code-debug-info (compiled-debug-fun-component debug-fun)))
1488 ;;;; unpacking variable and basic block data
1490 (defvar *parsing-buffer*
1491 (make-array 20 :adjustable t :fill-pointer t))
1492 (defvar *other-parsing-buffer*
1493 (make-array 20 :adjustable t :fill-pointer t))
1494 ;;; PARSE-DEBUG-BLOCKS and PARSE-DEBUG-VARS
1495 ;;; use this to unpack binary encoded information. It returns the
1496 ;;; values returned by the last form in body.
1498 ;;; This binds buffer-var to *parsing-buffer*, makes sure it starts at
1499 ;;; element zero, and makes sure if we unwind, we nil out any set
1500 ;;; elements for GC purposes.
1502 ;;; This also binds other-var to *other-parsing-buffer* when it is
1503 ;;; supplied, making sure it starts at element zero and that we nil
1504 ;;; out any elements if we unwind.
1506 ;;; This defines the local macro RESULT that takes a buffer, copies
1507 ;;; its elements to a resulting simple-vector, nil's out elements, and
1508 ;;; restarts the buffer at element zero. RESULT returns the
1509 ;;; simple-vector.
1510 (eval-when (:compile-toplevel :execute)
1511 (sb!xc:defmacro with-parsing-buffer ((buffer-var &optional other-var)
1512 &body body)
1513 (let ((len (gensym))
1514 (res (gensym)))
1515 `(unwind-protect
1516 (let ((,buffer-var *parsing-buffer*)
1517 ,@(if other-var `((,other-var *other-parsing-buffer*))))
1518 (setf (fill-pointer ,buffer-var) 0)
1519 ,@(if other-var `((setf (fill-pointer ,other-var) 0)))
1520 (macrolet ((result (buf)
1521 `(let* ((,',len (length ,buf))
1522 (,',res (make-array ,',len)))
1523 (replace ,',res ,buf :end1 ,',len :end2 ,',len)
1524 (fill ,buf nil :end ,',len)
1525 (setf (fill-pointer ,buf) 0)
1526 ,',res)))
1527 ,@body))
1528 (fill *parsing-buffer* nil)
1529 ,@(if other-var `((fill *other-parsing-buffer* nil))))))
1530 ) ; EVAL-WHEN
1532 ;;; The argument is a debug internals structure. This returns the
1533 ;;; DEBUG-BLOCKs for DEBUG-FUN, regardless of whether we have unpacked
1534 ;;; them yet. It signals a NO-DEBUG-BLOCKS condition if it can't
1535 ;;; return the blocks.
1536 (defun debug-fun-debug-blocks (debug-fun)
1537 (let ((blocks (debug-fun-blocks debug-fun)))
1538 (cond ((eq blocks :unparsed)
1539 (setf (debug-fun-blocks debug-fun)
1540 (parse-debug-blocks debug-fun))
1541 (unless (debug-fun-blocks debug-fun)
1542 (debug-signal 'no-debug-blocks
1543 :debug-fun debug-fun))
1544 (debug-fun-blocks debug-fun))
1545 (blocks)
1547 (debug-signal 'no-debug-blocks
1548 :debug-fun debug-fun)))))
1550 ;;; Return a SIMPLE-VECTOR of DEBUG-BLOCKs or NIL. NIL indicates there
1551 ;;; was no basic block information.
1552 (defun parse-debug-blocks (debug-fun)
1553 (etypecase debug-fun
1554 (compiled-debug-fun
1555 (parse-compiled-debug-blocks debug-fun))
1556 (bogus-debug-fun
1557 (debug-signal 'no-debug-blocks :debug-fun debug-fun))))
1559 ;;; This does some of the work of PARSE-DEBUG-BLOCKS.
1560 (defun parse-compiled-debug-blocks (debug-fun)
1561 (let* ((var-count (length (debug-fun-debug-vars debug-fun)))
1562 (compiler-debug-fun (compiled-debug-fun-compiler-debug-fun
1563 debug-fun))
1564 (blocks (sb!c::compiled-debug-fun-blocks compiler-debug-fun))
1565 ;; KLUDGE: 8 is a hard-wired constant in the compiler for the
1566 ;; element size of the packed binary representation of the
1567 ;; blocks data.
1568 (live-set-len (ceiling var-count 8))
1569 (tlf-number (sb!c::compiled-debug-fun-tlf-number compiler-debug-fun)))
1570 (unless blocks
1571 (return-from parse-compiled-debug-blocks nil))
1572 (macrolet ((aref+ (a i) `(prog1 (aref ,a ,i) (incf ,i))))
1573 (with-parsing-buffer (blocks-buffer locations-buffer)
1574 (let ((i 0)
1575 (len (length blocks))
1576 (last-pc 0))
1577 (loop
1578 (when (>= i len) (return))
1579 (let ((succ-and-flags (aref+ blocks i))
1580 (successors nil))
1581 (declare (type (unsigned-byte 8) succ-and-flags)
1582 (list successors))
1583 (dotimes (k (ldb sb!c::compiled-debug-block-nsucc-byte
1584 succ-and-flags))
1585 (push (sb!c:read-var-integer blocks i) successors))
1586 (let* ((locations
1587 (dotimes (k (sb!c:read-var-integer blocks i)
1588 (result locations-buffer))
1589 (let ((kind (svref sb!c::*compiled-code-location-kinds*
1590 (aref+ blocks i)))
1591 (pc (+ last-pc
1592 (sb!c:read-var-integer blocks i)))
1593 (tlf-offset (or tlf-number
1594 (sb!c:read-var-integer blocks i)))
1595 (form-number (sb!c:read-var-integer blocks i))
1596 (live-set (sb!c:read-packed-bit-vector
1597 live-set-len blocks i))
1598 (step-info (sb!c:read-var-string blocks i)))
1599 (vector-push-extend (make-known-code-location
1600 pc debug-fun tlf-offset
1601 form-number live-set kind
1602 step-info)
1603 locations-buffer)
1604 (setf last-pc pc))))
1605 (block (make-compiled-debug-block
1606 locations successors
1607 (not (zerop (logand
1608 sb!c::compiled-debug-block-elsewhere-p
1609 succ-and-flags))))))
1610 (vector-push-extend block blocks-buffer)
1611 (dotimes (k (length locations))
1612 (setf (code-location-%debug-block (svref locations k))
1613 block))))))
1614 (let ((res (result blocks-buffer)))
1615 (declare (simple-vector res))
1616 (dotimes (i (length res))
1617 (let* ((block (svref res i))
1618 (succs nil))
1619 (dolist (ele (debug-block-successors block))
1620 (push (svref res ele) succs))
1621 (setf (debug-block-successors block) succs)))
1622 res)))))
1624 ;;; The argument is a debug internals structure. This returns NIL if
1625 ;;; there is no variable information. It returns an empty
1626 ;;; simple-vector if there were no locals in the function. Otherwise
1627 ;;; it returns a SIMPLE-VECTOR of DEBUG-VARs.
1628 (defun debug-fun-debug-vars (debug-fun)
1629 (let ((vars (debug-fun-%debug-vars debug-fun)))
1630 (if (eq vars :unparsed)
1631 (setf (debug-fun-%debug-vars debug-fun)
1632 (etypecase debug-fun
1633 (compiled-debug-fun
1634 (parse-compiled-debug-vars debug-fun))
1635 (bogus-debug-fun nil)))
1636 vars)))
1638 ;;; VARS is the parsed variables for a minimal debug function. We need
1639 ;;; to assign names of the form ARG-NNN. We must pad with leading
1640 ;;; zeros, since the arguments must be in alphabetical order.
1641 (defun assign-minimal-var-names (vars)
1642 (declare (simple-vector vars))
1643 (let* ((len (length vars))
1644 (width (length (format nil "~W" (1- len)))))
1645 (dotimes (i len)
1646 (without-package-locks
1647 (setf (compiled-debug-var-symbol (svref vars i))
1648 (intern (format nil "ARG-~V,'0D" width i)
1649 ;; KLUDGE: It's somewhat nasty to have a bare
1650 ;; package name string here. It would be
1651 ;; nicer to have #.(FIND-PACKAGE "SB!DEBUG")
1652 ;; instead, since then at least it would transform
1653 ;; correctly under package renaming and stuff.
1654 ;; However, genesis can't handle dumped packages..
1655 ;; -- WHN 20000129
1657 ;; FIXME: Maybe this could be fixed by moving the
1658 ;; whole debug-int.lisp file to warm init? (after
1659 ;; which dumping a #.(FIND-PACKAGE ..) expression
1660 ;; would work fine) If this is possible, it would
1661 ;; probably be a good thing, since minimizing the
1662 ;; amount of stuff in cold init is basically good.
1663 (or (find-package "SB-DEBUG")
1664 (find-package "SB!DEBUG"))))))))
1666 ;;; Parse the packed representation of DEBUG-VARs from
1667 ;;; DEBUG-FUN's SB!C::COMPILED-DEBUG-FUN, returning a vector
1668 ;;; of DEBUG-VARs, or NIL if there was no information to parse.
1669 (defun parse-compiled-debug-vars (debug-fun)
1670 (let* ((cdebug-fun (compiled-debug-fun-compiler-debug-fun
1671 debug-fun))
1672 (packed-vars (sb!c::compiled-debug-fun-vars cdebug-fun))
1673 (args-minimal (eq (sb!c::compiled-debug-fun-arguments cdebug-fun)
1674 :minimal)))
1675 (when packed-vars
1676 (do ((i 0)
1677 (buffer (make-array 0 :fill-pointer 0 :adjustable t)))
1678 ((>= i (length packed-vars))
1679 (let ((result (coerce buffer 'simple-vector)))
1680 (when args-minimal
1681 (assign-minimal-var-names result))
1682 result))
1683 (flet ((geti () (prog1 (aref packed-vars i) (incf i))))
1684 (let* ((flags (geti))
1685 (minimal (logtest sb!c::compiled-debug-var-minimal-p flags))
1686 (deleted (logtest sb!c::compiled-debug-var-deleted-p flags))
1687 (live (logtest sb!c::compiled-debug-var-environment-live
1688 flags))
1689 (save (logtest sb!c::compiled-debug-var-save-loc-p flags))
1690 (symbol (if minimal nil (geti)))
1691 (id (if (logtest sb!c::compiled-debug-var-id-p flags)
1692 (geti)
1694 (sc-offset (if deleted 0 (geti)))
1695 (save-sc-offset (if save (geti) nil)))
1696 (aver (not (and args-minimal (not minimal))))
1697 (vector-push-extend (make-compiled-debug-var symbol
1699 live
1700 sc-offset
1701 save-sc-offset)
1702 buffer)))))))
1704 ;;;; CODE-LOCATIONs
1706 ;;; If we're sure of whether code-location is known, return T or NIL.
1707 ;;; If we're :UNSURE, then try to fill in the code-location's slots.
1708 ;;; This determines whether there is any debug-block information, and
1709 ;;; if code-location is known.
1711 ;;; ??? IF this conses closures every time it's called, then break off the
1712 ;;; :UNSURE part to get the HANDLER-CASE into another function.
1713 (defun code-location-unknown-p (basic-code-location)
1714 (ecase (code-location-%unknown-p basic-code-location)
1715 ((t) t)
1716 ((nil) nil)
1717 (:unsure
1718 (setf (code-location-%unknown-p basic-code-location)
1719 (handler-case (not (fill-in-code-location basic-code-location))
1720 (no-debug-blocks () t))))))
1722 ;;; Return the DEBUG-BLOCK containing code-location if it is available.
1723 ;;; Some debug policies inhibit debug-block information, and if none
1724 ;;; is available, then this signals a NO-DEBUG-BLOCKS condition.
1725 (defun code-location-debug-block (basic-code-location)
1726 (let ((block (code-location-%debug-block basic-code-location)))
1727 (if (eq block :unparsed)
1728 (etypecase basic-code-location
1729 (compiled-code-location
1730 (compute-compiled-code-location-debug-block basic-code-location))
1731 ;; (There used to be more cases back before sbcl-0.7.0, when
1732 ;; we did special tricks to debug the IR1 interpreter.)
1734 block)))
1736 ;;; Store and return BASIC-CODE-LOCATION's debug-block. We determines
1737 ;;; the correct one using the code-location's pc. We use
1738 ;;; DEBUG-FUN-DEBUG-BLOCKS to return the cached block information
1739 ;;; or signal a NO-DEBUG-BLOCKS condition. The blocks are sorted by
1740 ;;; their first code-location's pc, in ascending order. Therefore, as
1741 ;;; soon as we find a block that starts with a pc greater than
1742 ;;; basic-code-location's pc, we know the previous block contains the
1743 ;;; pc. If we get to the last block, then the code-location is either
1744 ;;; in the second to last block or the last block, and we have to be
1745 ;;; careful in determining this since the last block could be code at
1746 ;;; the end of the function. We have to check for the last block being
1747 ;;; code first in order to see how to compare the code-location's pc.
1748 (defun compute-compiled-code-location-debug-block (basic-code-location)
1749 (let* ((pc (compiled-code-location-pc basic-code-location))
1750 (debug-fun (code-location-debug-fun
1751 basic-code-location))
1752 (blocks (debug-fun-debug-blocks debug-fun))
1753 (len (length blocks)))
1754 (declare (simple-vector blocks))
1755 (setf (code-location-%debug-block basic-code-location)
1756 (if (= len 1)
1757 (svref blocks 0)
1758 (do ((i 1 (1+ i))
1759 (end (1- len)))
1760 ((= i end)
1761 (let ((last (svref blocks end)))
1762 (cond
1763 ((debug-block-elsewhere-p last)
1764 (if (< pc
1765 (sb!c::compiled-debug-fun-elsewhere-pc
1766 (compiled-debug-fun-compiler-debug-fun
1767 debug-fun)))
1768 (svref blocks (1- end))
1769 last))
1770 ((< pc
1771 (compiled-code-location-pc
1772 (svref (compiled-debug-block-code-locations last)
1773 0)))
1774 (svref blocks (1- end)))
1775 (t last))))
1776 (declare (type index i end))
1777 (when (< pc
1778 (compiled-code-location-pc
1779 (svref (compiled-debug-block-code-locations
1780 (svref blocks i))
1781 0)))
1782 (return (svref blocks (1- i)))))))))
1784 ;;; Return the CODE-LOCATION's DEBUG-SOURCE.
1785 (defun code-location-debug-source (code-location)
1786 (let ((info (compiled-debug-fun-debug-info
1787 (code-location-debug-fun code-location))))
1788 (or (sb!c::debug-info-source info)
1789 (debug-signal 'no-debug-blocks :debug-fun
1790 (code-location-debug-fun code-location)))))
1792 ;;; Returns the number of top level forms before the one containing
1793 ;;; CODE-LOCATION as seen by the compiler in some compilation unit. (A
1794 ;;; compilation unit is not necessarily a single file, see the section
1795 ;;; on debug-sources.)
1796 (defun code-location-toplevel-form-offset (code-location)
1797 (when (code-location-unknown-p code-location)
1798 (error 'unknown-code-location :code-location code-location))
1799 (let ((tlf-offset (code-location-%tlf-offset code-location)))
1800 (cond ((eq tlf-offset :unparsed)
1801 (etypecase code-location
1802 (compiled-code-location
1803 (unless (fill-in-code-location code-location)
1804 ;; This check should be unnecessary. We're missing
1805 ;; debug info the compiler should have dumped.
1806 (bug "unknown code location"))
1807 (code-location-%tlf-offset code-location))
1808 ;; (There used to be more cases back before sbcl-0.7.0,,
1809 ;; when we did special tricks to debug the IR1
1810 ;; interpreter.)
1812 (t tlf-offset))))
1814 ;;; Return the number of the form corresponding to CODE-LOCATION. The
1815 ;;; form number is derived by a walking the subforms of a top level
1816 ;;; form in depth-first order.
1817 (defun code-location-form-number (code-location)
1818 (when (code-location-unknown-p code-location)
1819 (error 'unknown-code-location :code-location code-location))
1820 (let ((form-num (code-location-%form-number code-location)))
1821 (cond ((eq form-num :unparsed)
1822 (etypecase code-location
1823 (compiled-code-location
1824 (unless (fill-in-code-location code-location)
1825 ;; This check should be unnecessary. We're missing
1826 ;; debug info the compiler should have dumped.
1827 (bug "unknown code location"))
1828 (code-location-%form-number code-location))
1829 ;; (There used to be more cases back before sbcl-0.7.0,,
1830 ;; when we did special tricks to debug the IR1
1831 ;; interpreter.)
1833 (t form-num))))
1835 ;;; Return the kind of CODE-LOCATION, one of:
1836 ;;; :INTERPRETED, :UNKNOWN-RETURN, :KNOWN-RETURN, :INTERNAL-ERROR,
1837 ;;; :NON-LOCAL-EXIT, :BLOCK-START, :CALL-SITE, :SINGLE-VALUE-RETURN,
1838 ;;; :NON-LOCAL-ENTRY
1839 (defun code-location-kind (code-location)
1840 (when (code-location-unknown-p code-location)
1841 (error 'unknown-code-location :code-location code-location))
1842 (etypecase code-location
1843 (compiled-code-location
1844 (let ((kind (compiled-code-location-kind code-location)))
1845 (cond ((not (eq kind :unparsed)) kind)
1846 ((not (fill-in-code-location code-location))
1847 ;; This check should be unnecessary. We're missing
1848 ;; debug info the compiler should have dumped.
1849 (bug "unknown code location"))
1851 (compiled-code-location-kind code-location)))))
1852 ;; (There used to be more cases back before sbcl-0.7.0,,
1853 ;; when we did special tricks to debug the IR1
1854 ;; interpreter.)
1857 ;;; This returns CODE-LOCATION's live-set if it is available. If
1858 ;;; there is no debug-block information, this returns NIL.
1859 (defun compiled-code-location-live-set (code-location)
1860 (if (code-location-unknown-p code-location)
1862 (let ((live-set (compiled-code-location-%live-set code-location)))
1863 (cond ((eq live-set :unparsed)
1864 (unless (fill-in-code-location code-location)
1865 ;; This check should be unnecessary. We're missing
1866 ;; debug info the compiler should have dumped.
1868 ;; FIXME: This error and comment happen over and over again.
1869 ;; Make them a shared function.
1870 (bug "unknown code location"))
1871 (compiled-code-location-%live-set code-location))
1872 (t live-set)))))
1874 ;;; true if OBJ1 and OBJ2 are the same place in the code
1875 (defun code-location= (obj1 obj2)
1876 (etypecase obj1
1877 (compiled-code-location
1878 (etypecase obj2
1879 (compiled-code-location
1880 (and (eq (code-location-debug-fun obj1)
1881 (code-location-debug-fun obj2))
1882 (sub-compiled-code-location= obj1 obj2)))
1883 ;; (There used to be more cases back before sbcl-0.7.0,,
1884 ;; when we did special tricks to debug the IR1
1885 ;; interpreter.)
1887 ;; (There used to be more cases back before sbcl-0.7.0,,
1888 ;; when we did special tricks to debug IR1-interpreted code.)
1890 (defun sub-compiled-code-location= (obj1 obj2)
1891 (= (compiled-code-location-pc obj1)
1892 (compiled-code-location-pc obj2)))
1894 ;;; Fill in CODE-LOCATION's :UNPARSED slots, returning T or NIL
1895 ;;; depending on whether the code-location was known in its
1896 ;;; DEBUG-FUN's debug-block information. This may signal a
1897 ;;; NO-DEBUG-BLOCKS condition due to DEBUG-FUN-DEBUG-BLOCKS, and
1898 ;;; it assumes the %UNKNOWN-P slot is already set or going to be set.
1899 (defun fill-in-code-location (code-location)
1900 (declare (type compiled-code-location code-location))
1901 (let* ((debug-fun (code-location-debug-fun code-location))
1902 (blocks (debug-fun-debug-blocks debug-fun)))
1903 (declare (simple-vector blocks))
1904 (dotimes (i (length blocks) nil)
1905 (let* ((block (svref blocks i))
1906 (locations (compiled-debug-block-code-locations block)))
1907 (declare (simple-vector locations))
1908 (dotimes (j (length locations))
1909 (let ((loc (svref locations j)))
1910 (when (sub-compiled-code-location= code-location loc)
1911 (setf (code-location-%debug-block code-location) block)
1912 (setf (code-location-%tlf-offset code-location)
1913 (code-location-%tlf-offset loc))
1914 (setf (code-location-%form-number code-location)
1915 (code-location-%form-number loc))
1916 (setf (compiled-code-location-%live-set code-location)
1917 (compiled-code-location-%live-set loc))
1918 (setf (compiled-code-location-kind code-location)
1919 (compiled-code-location-kind loc))
1920 (setf (compiled-code-location-step-info code-location)
1921 (compiled-code-location-step-info loc))
1922 (return-from fill-in-code-location t))))))))
1924 ;;;; operations on DEBUG-BLOCKs
1926 ;;; Execute FORMS in a context with CODE-VAR bound to each
1927 ;;; CODE-LOCATION in DEBUG-BLOCK, and return the value of RESULT.
1928 (defmacro do-debug-block-locations ((code-var debug-block &optional result)
1929 &body body)
1930 (let ((code-locations (gensym))
1931 (i (gensym)))
1932 `(let ((,code-locations (debug-block-code-locations ,debug-block)))
1933 (declare (simple-vector ,code-locations))
1934 (dotimes (,i (length ,code-locations) ,result)
1935 (let ((,code-var (svref ,code-locations ,i)))
1936 ,@body)))))
1938 ;;; Return the name of the function represented by DEBUG-FUN.
1939 ;;; This may be a string or a cons; do not assume it is a symbol.
1940 (defun debug-block-fun-name (debug-block)
1941 (etypecase debug-block
1942 (compiled-debug-block
1943 (let ((code-locs (compiled-debug-block-code-locations debug-block)))
1944 (declare (simple-vector code-locs))
1945 (if (zerop (length code-locs))
1946 "??? Can't get name of debug-block's function."
1947 (debug-fun-name
1948 (code-location-debug-fun (svref code-locs 0))))))
1949 ;; (There used to be more cases back before sbcl-0.7.0, when we
1950 ;; did special tricks to debug the IR1 interpreter.)
1953 (defun debug-block-code-locations (debug-block)
1954 (etypecase debug-block
1955 (compiled-debug-block
1956 (compiled-debug-block-code-locations debug-block))
1957 ;; (There used to be more cases back before sbcl-0.7.0, when we
1958 ;; did special tricks to debug the IR1 interpreter.)
1961 ;;;; operations on debug variables
1963 (defun debug-var-symbol-name (debug-var)
1964 (symbol-name (debug-var-symbol debug-var)))
1966 ;;; FIXME: Make sure that this isn't called anywhere that it wouldn't
1967 ;;; be acceptable to have NIL returned, or that it's only called on
1968 ;;; DEBUG-VARs whose symbols have non-NIL packages.
1969 (defun debug-var-package-name (debug-var)
1970 (package-name (symbol-package (debug-var-symbol debug-var))))
1972 ;;; Return the value stored for DEBUG-VAR in frame, or if the value is
1973 ;;; not :VALID, then signal an INVALID-VALUE error.
1974 (defun debug-var-valid-value (debug-var frame)
1975 (unless (eq (debug-var-validity debug-var (frame-code-location frame))
1976 :valid)
1977 (error 'invalid-value :debug-var debug-var :frame frame))
1978 (debug-var-value debug-var frame))
1980 ;;; Returns the value stored for DEBUG-VAR in frame. The value may be
1981 ;;; invalid. This is SETFable.
1982 (defun debug-var-value (debug-var frame)
1983 (aver (typep frame 'compiled-frame))
1984 (let ((res (access-compiled-debug-var-slot debug-var frame)))
1985 (if (indirect-value-cell-p res)
1986 (value-cell-ref res)
1987 res)))
1989 ;;; This returns what is stored for the variable represented by
1990 ;;; DEBUG-VAR relative to the FRAME. This may be an indirect value
1991 ;;; cell if the variable is both closed over and set.
1992 (defun access-compiled-debug-var-slot (debug-var frame)
1993 (declare (optimize (speed 1)))
1994 (let ((escaped (compiled-frame-escaped frame)))
1995 (if escaped
1996 (sub-access-debug-var-slot
1997 (frame-pointer frame)
1998 (compiled-debug-var-sc-offset debug-var)
1999 escaped)
2000 (sub-access-debug-var-slot
2001 (frame-pointer frame)
2002 (or (compiled-debug-var-save-sc-offset debug-var)
2003 (compiled-debug-var-sc-offset debug-var))))))
2005 ;;; a helper function for working with possibly-invalid values:
2006 ;;; Do (%MAKE-LISP-OBJ VAL) only if the value looks valid.
2008 ;;; (Such values can arise in registers on machines with conservative
2009 ;;; GC, and might also arise in debug variable locations when
2010 ;;; those variables are invalid.)
2011 (defun make-lisp-obj (val &optional (errorp t))
2012 (if (or
2013 ;; fixnum
2014 (zerop (logand val sb!vm:fixnum-tag-mask))
2015 ;; immediate single float, 64-bit only
2016 #!+#.(cl:if (cl:= sb!vm::n-machine-word-bits 64) '(and) '(or))
2017 (= (logand val #xff) sb!vm:single-float-widetag)
2018 ;; character
2019 (and (zerop (logandc2 val #x1fffffff)) ; Top bits zero
2020 (= (logand val #xff) sb!vm:character-widetag)) ; char tag
2021 ;; unbound marker
2022 (= val sb!vm:unbound-marker-widetag)
2023 ;; pointer
2024 #!+(or x86 x86-64)
2025 (not (zerop (valid-lisp-pointer-p (int-sap val))))
2026 ;; FIXME: There is no fundamental reason not to use the above
2027 ;; function on other platforms as well, but I didn't have
2028 ;; others available while doing this. --NS 2007-06-21
2029 #!-(or x86 x86-64)
2030 (and (logbitp 0 val)
2031 (or (< sb!vm:read-only-space-start val
2032 (* sb!vm:*read-only-space-free-pointer*
2033 sb!vm:n-word-bytes))
2034 (< sb!vm:static-space-start val
2035 (* sb!vm:*static-space-free-pointer*
2036 sb!vm:n-word-bytes))
2037 (< (current-dynamic-space-start) val
2038 (sap-int (dynamic-space-free-pointer))))))
2039 (values (%make-lisp-obj val) t)
2040 (if errorp
2041 (error "~S is not a valid argument to ~S"
2042 val 'make-lisp-obj)
2043 (values (make-unprintable-object (format nil "invalid object #x~X" val))
2044 nil))))
2046 #!-(or x86 x86-64)
2047 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2048 (macrolet ((with-escaped-value ((var) &body forms)
2049 `(if escaped
2050 (let ((,var (sb!vm:context-register
2051 escaped
2052 (sb!c:sc-offset-offset sc-offset))))
2053 ,@forms)
2054 :invalid-value-for-unescaped-register-storage))
2055 (escaped-float-value (format)
2056 `(if escaped
2057 (sb!vm:context-float-register
2058 escaped
2059 (sb!c:sc-offset-offset sc-offset)
2060 ',format)
2061 :invalid-value-for-unescaped-register-storage))
2062 (with-nfp ((var) &body body)
2063 `(let ((,var (if escaped
2064 (sb!sys:int-sap
2065 (sb!vm:context-register escaped
2066 sb!vm::nfp-offset))
2067 #!-alpha
2068 (sb!sys:sap-ref-sap fp (* nfp-save-offset
2069 sb!vm:n-word-bytes))
2070 #!+alpha
2071 (sb!vm::make-number-stack-pointer
2072 (sb!sys:sap-ref-32 fp (* nfp-save-offset
2073 sb!vm:n-word-bytes))))))
2074 ,@body)))
2075 (ecase (sb!c:sc-offset-scn sc-offset)
2076 ((#.sb!vm:any-reg-sc-number
2077 #.sb!vm:descriptor-reg-sc-number
2078 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2079 (sb!sys:without-gcing
2080 (with-escaped-value (val)
2081 (make-lisp-obj val nil))))
2082 (#.sb!vm:character-reg-sc-number
2083 (with-escaped-value (val)
2084 (code-char val)))
2085 (#.sb!vm:sap-reg-sc-number
2086 (with-escaped-value (val)
2087 (sb!sys:int-sap val)))
2088 (#.sb!vm:signed-reg-sc-number
2089 (with-escaped-value (val)
2090 (if (logbitp (1- sb!vm:n-word-bits) val)
2091 (logior val (ash -1 sb!vm:n-word-bits))
2092 val)))
2093 (#.sb!vm:unsigned-reg-sc-number
2094 (with-escaped-value (val)
2095 val))
2096 (#.sb!vm:non-descriptor-reg-sc-number
2097 (error "Local non-descriptor register access?"))
2098 (#.sb!vm:interior-reg-sc-number
2099 (error "Local interior register access?"))
2100 (#.sb!vm:single-reg-sc-number
2101 (escaped-float-value single-float))
2102 (#.sb!vm:double-reg-sc-number
2103 (escaped-float-value double-float))
2104 #!+long-float
2105 (#.sb!vm:long-reg-sc-number
2106 (escaped-float-value long-float))
2107 (#.sb!vm:complex-single-reg-sc-number
2108 (if escaped
2109 (complex
2110 (sb!vm:context-float-register
2111 escaped (sb!c:sc-offset-offset sc-offset) 'single-float)
2112 (sb!vm:context-float-register
2113 escaped (1+ (sb!c:sc-offset-offset sc-offset)) 'single-float))
2114 :invalid-value-for-unescaped-register-storage))
2115 (#.sb!vm:complex-double-reg-sc-number
2116 (if escaped
2117 (complex
2118 (sb!vm:context-float-register
2119 escaped (sb!c:sc-offset-offset sc-offset) 'double-float)
2120 (sb!vm:context-float-register
2121 escaped (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 2 #!-sparc 1)
2122 'double-float))
2123 :invalid-value-for-unescaped-register-storage))
2124 #!+long-float
2125 (#.sb!vm:complex-long-reg-sc-number
2126 (if escaped
2127 (complex
2128 (sb!vm:context-float-register
2129 escaped (sb!c:sc-offset-offset sc-offset) 'long-float)
2130 (sb!vm:context-float-register
2131 escaped (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2132 'long-float))
2133 :invalid-value-for-unescaped-register-storage))
2134 (#.sb!vm:single-stack-sc-number
2135 (with-nfp (nfp)
2136 (sb!sys:sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2137 sb!vm:n-word-bytes))))
2138 (#.sb!vm:double-stack-sc-number
2139 (with-nfp (nfp)
2140 (sb!sys:sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2141 sb!vm:n-word-bytes))))
2142 #!+long-float
2143 (#.sb!vm:long-stack-sc-number
2144 (with-nfp (nfp)
2145 (sb!sys:sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2146 sb!vm:n-word-bytes))))
2147 (#.sb!vm:complex-single-stack-sc-number
2148 (with-nfp (nfp)
2149 (complex
2150 (sb!sys:sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2151 sb!vm:n-word-bytes))
2152 (sb!sys:sap-ref-single nfp (* (1+ (sb!c:sc-offset-offset sc-offset))
2153 sb!vm:n-word-bytes)))))
2154 (#.sb!vm:complex-double-stack-sc-number
2155 (with-nfp (nfp)
2156 (complex
2157 (sb!sys:sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2158 sb!vm:n-word-bytes))
2159 (sb!sys:sap-ref-double nfp (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2160 sb!vm:n-word-bytes)))))
2161 #!+long-float
2162 (#.sb!vm:complex-long-stack-sc-number
2163 (with-nfp (nfp)
2164 (complex
2165 (sb!sys:sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2166 sb!vm:n-word-bytes))
2167 (sb!sys:sap-ref-long nfp (* (+ (sb!c:sc-offset-offset sc-offset)
2168 #!+sparc 4)
2169 sb!vm:n-word-bytes)))))
2170 (#.sb!vm:control-stack-sc-number
2171 (sb!kernel:stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2172 (#.sb!vm:character-stack-sc-number
2173 (with-nfp (nfp)
2174 (code-char (sb!sys:sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2175 sb!vm:n-word-bytes)))))
2176 (#.sb!vm:unsigned-stack-sc-number
2177 (with-nfp (nfp)
2178 (sb!sys:sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2179 sb!vm:n-word-bytes))))
2180 (#.sb!vm:signed-stack-sc-number
2181 (with-nfp (nfp)
2182 (sb!sys:signed-sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2183 sb!vm:n-word-bytes))))
2184 (#.sb!vm:sap-stack-sc-number
2185 (with-nfp (nfp)
2186 (sb!sys:sap-ref-sap nfp (* (sb!c:sc-offset-offset sc-offset)
2187 sb!vm:n-word-bytes)))))))
2189 #!+(or x86 x86-64)
2190 (defun sub-access-debug-var-slot (fp sc-offset &optional escaped)
2191 (declare (type system-area-pointer fp))
2192 (macrolet ((with-escaped-value ((var) &body forms)
2193 `(if escaped
2194 (let ((,var (sb!vm:context-register
2195 escaped
2196 (sb!c:sc-offset-offset sc-offset))))
2197 ,@forms)
2198 :invalid-value-for-unescaped-register-storage))
2199 (escaped-float-value (format)
2200 `(if escaped
2201 (sb!vm:context-float-register
2202 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2203 :invalid-value-for-unescaped-register-storage))
2204 (escaped-complex-float-value (format)
2205 `(if escaped
2206 (complex
2207 (sb!vm:context-float-register
2208 escaped (sb!c:sc-offset-offset sc-offset) ',format)
2209 (sb!vm:context-float-register
2210 escaped (1+ (sb!c:sc-offset-offset sc-offset)) ',format))
2211 :invalid-value-for-unescaped-register-storage)))
2212 (ecase (sb!c:sc-offset-scn sc-offset)
2213 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2214 (without-gcing
2215 (with-escaped-value (val)
2216 (make-lisp-obj val nil))))
2217 (#.sb!vm:character-reg-sc-number
2218 (with-escaped-value (val)
2219 (code-char val)))
2220 (#.sb!vm:sap-reg-sc-number
2221 (with-escaped-value (val)
2222 (int-sap val)))
2223 (#.sb!vm:signed-reg-sc-number
2224 (with-escaped-value (val)
2225 (if (logbitp (1- sb!vm:n-word-bits) val)
2226 (logior val (ash -1 sb!vm:n-word-bits))
2227 val)))
2228 (#.sb!vm:unsigned-reg-sc-number
2229 (with-escaped-value (val)
2230 val))
2231 (#.sb!vm:single-reg-sc-number
2232 (escaped-float-value single-float))
2233 (#.sb!vm:double-reg-sc-number
2234 (escaped-float-value double-float))
2235 #!+long-float
2236 (#.sb!vm:long-reg-sc-number
2237 (escaped-float-value long-float))
2238 (#.sb!vm:complex-single-reg-sc-number
2239 (escaped-complex-float-value single-float))
2240 (#.sb!vm:complex-double-reg-sc-number
2241 (escaped-complex-float-value double-float))
2242 #!+long-float
2243 (#.sb!vm:complex-long-reg-sc-number
2244 (escaped-complex-float-value long-float))
2245 (#.sb!vm:single-stack-sc-number
2246 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2247 sb!vm:n-word-bytes))))
2248 (#.sb!vm:double-stack-sc-number
2249 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2250 sb!vm:n-word-bytes))))
2251 #!+long-float
2252 (#.sb!vm:long-stack-sc-number
2253 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2254 sb!vm:n-word-bytes))))
2255 (#.sb!vm:complex-single-stack-sc-number
2256 (complex
2257 (sap-ref-single fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2258 sb!vm:n-word-bytes)))
2259 (sap-ref-single fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2260 sb!vm:n-word-bytes)))))
2261 (#.sb!vm:complex-double-stack-sc-number
2262 (complex
2263 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2264 sb!vm:n-word-bytes)))
2265 (sap-ref-double fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2266 sb!vm:n-word-bytes)))))
2267 #!+long-float
2268 (#.sb!vm:complex-long-stack-sc-number
2269 (complex
2270 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2271 sb!vm:n-word-bytes)))
2272 (sap-ref-long fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2273 sb!vm:n-word-bytes)))))
2274 (#.sb!vm:control-stack-sc-number
2275 (stack-ref fp (sb!c:sc-offset-offset sc-offset)))
2276 (#.sb!vm:character-stack-sc-number
2277 (code-char
2278 (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2279 sb!vm:n-word-bytes)))))
2280 (#.sb!vm:unsigned-stack-sc-number
2281 (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2282 sb!vm:n-word-bytes))))
2283 (#.sb!vm:signed-stack-sc-number
2284 (signed-sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2285 sb!vm:n-word-bytes))))
2286 (#.sb!vm:sap-stack-sc-number
2287 (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2288 sb!vm:n-word-bytes)))))))
2290 ;;; This stores value as the value of DEBUG-VAR in FRAME. In the
2291 ;;; COMPILED-DEBUG-VAR case, access the current value to determine if
2292 ;;; it is an indirect value cell. This occurs when the variable is
2293 ;;; both closed over and set.
2294 (defun %set-debug-var-value (debug-var frame new-value)
2295 (aver (typep frame 'compiled-frame))
2296 (let ((old-value (access-compiled-debug-var-slot debug-var frame)))
2297 (if (indirect-value-cell-p old-value)
2298 (value-cell-set old-value new-value)
2299 (set-compiled-debug-var-slot debug-var frame new-value)))
2300 new-value)
2302 ;;; This stores VALUE for the variable represented by debug-var
2303 ;;; relative to the frame. This assumes the location directly contains
2304 ;;; the variable's value; that is, there is no indirect value cell
2305 ;;; currently there in case the variable is both closed over and set.
2306 (defun set-compiled-debug-var-slot (debug-var frame value)
2307 (let ((escaped (compiled-frame-escaped frame)))
2308 (if escaped
2309 (sub-set-debug-var-slot (frame-pointer frame)
2310 (compiled-debug-var-sc-offset debug-var)
2311 value escaped)
2312 (sub-set-debug-var-slot
2313 (frame-pointer frame)
2314 (or (compiled-debug-var-save-sc-offset debug-var)
2315 (compiled-debug-var-sc-offset debug-var))
2316 value))))
2318 #!-(or x86 x86-64)
2319 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2320 (macrolet ((set-escaped-value (val)
2321 `(if escaped
2322 (setf (sb!vm:context-register
2323 escaped
2324 (sb!c:sc-offset-offset sc-offset))
2325 ,val)
2326 value))
2327 (set-escaped-float-value (format val)
2328 `(if escaped
2329 (setf (sb!vm:context-float-register
2330 escaped
2331 (sb!c:sc-offset-offset sc-offset)
2332 ',format)
2333 ,val)
2334 value))
2335 (with-nfp ((var) &body body)
2336 `(let ((,var (if escaped
2337 (int-sap
2338 (sb!vm:context-register escaped
2339 sb!vm::nfp-offset))
2340 #!-alpha
2341 (sap-ref-sap fp
2342 (* nfp-save-offset
2343 sb!vm:n-word-bytes))
2344 #!+alpha
2345 (sb!vm::make-number-stack-pointer
2346 (sap-ref-32 fp
2347 (* nfp-save-offset
2348 sb!vm:n-word-bytes))))))
2349 ,@body)))
2350 (ecase (sb!c:sc-offset-scn sc-offset)
2351 ((#.sb!vm:any-reg-sc-number
2352 #.sb!vm:descriptor-reg-sc-number
2353 #!+rt #.sb!vm:word-pointer-reg-sc-number)
2354 (without-gcing
2355 (set-escaped-value
2356 (get-lisp-obj-address value))))
2357 (#.sb!vm:character-reg-sc-number
2358 (set-escaped-value (char-code value)))
2359 (#.sb!vm:sap-reg-sc-number
2360 (set-escaped-value (sap-int value)))
2361 (#.sb!vm:signed-reg-sc-number
2362 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2363 (#.sb!vm:unsigned-reg-sc-number
2364 (set-escaped-value value))
2365 (#.sb!vm:non-descriptor-reg-sc-number
2366 (error "Local non-descriptor register access?"))
2367 (#.sb!vm:interior-reg-sc-number
2368 (error "Local interior register access?"))
2369 (#.sb!vm:single-reg-sc-number
2370 (set-escaped-float-value single-float value))
2371 (#.sb!vm:double-reg-sc-number
2372 (set-escaped-float-value double-float value))
2373 #!+long-float
2374 (#.sb!vm:long-reg-sc-number
2375 (set-escaped-float-value long-float value))
2376 (#.sb!vm:complex-single-reg-sc-number
2377 (when escaped
2378 (setf (sb!vm:context-float-register escaped
2379 (sb!c:sc-offset-offset sc-offset)
2380 'single-float)
2381 (realpart value))
2382 (setf (sb!vm:context-float-register
2383 escaped (1+ (sb!c:sc-offset-offset sc-offset))
2384 'single-float)
2385 (imagpart value)))
2386 value)
2387 (#.sb!vm:complex-double-reg-sc-number
2388 (when escaped
2389 (setf (sb!vm:context-float-register
2390 escaped (sb!c:sc-offset-offset sc-offset) 'double-float)
2391 (realpart value))
2392 (setf (sb!vm:context-float-register
2393 escaped
2394 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 2 #!-sparc 1)
2395 'double-float)
2396 (imagpart value)))
2397 value)
2398 #!+long-float
2399 (#.sb!vm:complex-long-reg-sc-number
2400 (when escaped
2401 (setf (sb!vm:context-float-register
2402 escaped (sb!c:sc-offset-offset sc-offset) 'long-float)
2403 (realpart value))
2404 (setf (sb!vm:context-float-register
2405 escaped
2406 (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2407 'long-float)
2408 (imagpart value)))
2409 value)
2410 (#.sb!vm:single-stack-sc-number
2411 (with-nfp (nfp)
2412 (setf (sap-ref-single nfp (* (sb!c:sc-offset-offset sc-offset)
2413 sb!vm:n-word-bytes))
2414 (the single-float value))))
2415 (#.sb!vm:double-stack-sc-number
2416 (with-nfp (nfp)
2417 (setf (sap-ref-double nfp (* (sb!c:sc-offset-offset sc-offset)
2418 sb!vm:n-word-bytes))
2419 (the double-float value))))
2420 #!+long-float
2421 (#.sb!vm:long-stack-sc-number
2422 (with-nfp (nfp)
2423 (setf (sap-ref-long nfp (* (sb!c:sc-offset-offset sc-offset)
2424 sb!vm:n-word-bytes))
2425 (the long-float value))))
2426 (#.sb!vm:complex-single-stack-sc-number
2427 (with-nfp (nfp)
2428 (setf (sap-ref-single
2429 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2430 (the single-float (realpart value)))
2431 (setf (sap-ref-single
2432 nfp (* (1+ (sb!c:sc-offset-offset sc-offset))
2433 sb!vm:n-word-bytes))
2434 (the single-float (realpart value)))))
2435 (#.sb!vm:complex-double-stack-sc-number
2436 (with-nfp (nfp)
2437 (setf (sap-ref-double
2438 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2439 (the double-float (realpart value)))
2440 (setf (sap-ref-double
2441 nfp (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2442 sb!vm:n-word-bytes))
2443 (the double-float (realpart value)))))
2444 #!+long-float
2445 (#.sb!vm:complex-long-stack-sc-number
2446 (with-nfp (nfp)
2447 (setf (sap-ref-long
2448 nfp (* (sb!c:sc-offset-offset sc-offset) sb!vm:n-word-bytes))
2449 (the long-float (realpart value)))
2450 (setf (sap-ref-long
2451 nfp (* (+ (sb!c:sc-offset-offset sc-offset) #!+sparc 4)
2452 sb!vm:n-word-bytes))
2453 (the long-float (realpart value)))))
2454 (#.sb!vm:control-stack-sc-number
2455 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2456 (#.sb!vm:character-stack-sc-number
2457 (with-nfp (nfp)
2458 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2459 sb!vm:n-word-bytes))
2460 (char-code (the character value)))))
2461 (#.sb!vm:unsigned-stack-sc-number
2462 (with-nfp (nfp)
2463 (setf (sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2464 sb!vm:n-word-bytes))
2465 (the (unsigned-byte 32) value))))
2466 (#.sb!vm:signed-stack-sc-number
2467 (with-nfp (nfp)
2468 (setf (signed-sap-ref-32 nfp (* (sb!c:sc-offset-offset sc-offset)
2469 sb!vm:n-word-bytes))
2470 (the (signed-byte 32) value))))
2471 (#.sb!vm:sap-stack-sc-number
2472 (with-nfp (nfp)
2473 (setf (sap-ref-sap nfp (* (sb!c:sc-offset-offset sc-offset)
2474 sb!vm:n-word-bytes))
2475 (the system-area-pointer value)))))))
2477 #!+(or x86 x86-64)
2478 (defun sub-set-debug-var-slot (fp sc-offset value &optional escaped)
2479 (macrolet ((set-escaped-value (val)
2480 `(if escaped
2481 (setf (sb!vm:context-register
2482 escaped
2483 (sb!c:sc-offset-offset sc-offset))
2484 ,val)
2485 value)))
2486 (ecase (sb!c:sc-offset-scn sc-offset)
2487 ((#.sb!vm:any-reg-sc-number #.sb!vm:descriptor-reg-sc-number)
2488 (without-gcing
2489 (set-escaped-value
2490 (get-lisp-obj-address value))))
2491 (#.sb!vm:character-reg-sc-number
2492 (set-escaped-value (char-code value)))
2493 (#.sb!vm:sap-reg-sc-number
2494 (set-escaped-value (sap-int value)))
2495 (#.sb!vm:signed-reg-sc-number
2496 (set-escaped-value (logand value (1- (ash 1 sb!vm:n-word-bits)))))
2497 (#.sb!vm:unsigned-reg-sc-number
2498 (set-escaped-value value))
2499 (#.sb!vm:single-reg-sc-number
2500 #+nil ;; don't have escaped floats.
2501 (set-escaped-float-value single-float value))
2502 (#.sb!vm:double-reg-sc-number
2503 #+nil ;; don't have escaped floats -- still in npx?
2504 (set-escaped-float-value double-float value))
2505 #!+long-float
2506 (#.sb!vm:long-reg-sc-number
2507 #+nil ;; don't have escaped floats -- still in npx?
2508 (set-escaped-float-value long-float value))
2509 (#.sb!vm:single-stack-sc-number
2510 (setf (sap-ref-single
2511 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2512 sb!vm:n-word-bytes)))
2513 (the single-float value)))
2514 (#.sb!vm:double-stack-sc-number
2515 (setf (sap-ref-double
2516 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2517 sb!vm:n-word-bytes)))
2518 (the double-float value)))
2519 #!+long-float
2520 (#.sb!vm:long-stack-sc-number
2521 (setf (sap-ref-long
2522 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2523 sb!vm:n-word-bytes)))
2524 (the long-float value)))
2525 (#.sb!vm:complex-single-stack-sc-number
2526 (setf (sap-ref-single
2527 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2528 sb!vm:n-word-bytes)))
2529 (realpart (the (complex single-float) value)))
2530 (setf (sap-ref-single
2531 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2532 sb!vm:n-word-bytes)))
2533 (imagpart (the (complex single-float) value))))
2534 (#.sb!vm:complex-double-stack-sc-number
2535 (setf (sap-ref-double
2536 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 2)
2537 sb!vm:n-word-bytes)))
2538 (realpart (the (complex double-float) value)))
2539 (setf (sap-ref-double
2540 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 4)
2541 sb!vm:n-word-bytes)))
2542 (imagpart (the (complex double-float) value))))
2543 #!+long-float
2544 (#.sb!vm:complex-long-stack-sc-number
2545 (setf (sap-ref-long
2546 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 3)
2547 sb!vm:n-word-bytes)))
2548 (realpart (the (complex long-float) value)))
2549 (setf (sap-ref-long
2550 fp (- (* (+ (sb!c:sc-offset-offset sc-offset) 6)
2551 sb!vm:n-word-bytes)))
2552 (imagpart (the (complex long-float) value))))
2553 (#.sb!vm:control-stack-sc-number
2554 (setf (stack-ref fp (sb!c:sc-offset-offset sc-offset)) value))
2555 (#.sb!vm:character-stack-sc-number
2556 (setf (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2557 sb!vm:n-word-bytes)))
2558 (char-code (the character value))))
2559 (#.sb!vm:unsigned-stack-sc-number
2560 (setf (sap-ref-word fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2561 sb!vm:n-word-bytes)))
2562 (the sb!vm:word value)))
2563 (#.sb!vm:signed-stack-sc-number
2564 (setf (signed-sap-ref-word
2565 fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2566 sb!vm:n-word-bytes)))
2567 (the (signed-byte #.sb!vm:n-word-bits) value)))
2568 (#.sb!vm:sap-stack-sc-number
2569 (setf (sap-ref-sap fp (- (* (1+ (sb!c:sc-offset-offset sc-offset))
2570 sb!vm:n-word-bytes)))
2571 (the system-area-pointer value))))))
2573 ;;; The method for setting and accessing COMPILED-DEBUG-VAR values use
2574 ;;; this to determine if the value stored is the actual value or an
2575 ;;; indirection cell.
2576 (defun indirect-value-cell-p (x)
2577 (and (= (lowtag-of x) sb!vm:other-pointer-lowtag)
2578 (= (widetag-of x) sb!vm:value-cell-header-widetag)))
2580 ;;; Return three values reflecting the validity of DEBUG-VAR's value
2581 ;;; at BASIC-CODE-LOCATION:
2582 ;;; :VALID The value is known to be available.
2583 ;;; :INVALID The value is known to be unavailable.
2584 ;;; :UNKNOWN The value's availability is unknown.
2586 ;;; If the variable is always alive, then it is valid. If the
2587 ;;; code-location is unknown, then the variable's validity is
2588 ;;; :unknown. Once we've called CODE-LOCATION-UNKNOWN-P, we know the
2589 ;;; live-set information has been cached in the code-location.
2590 (defun debug-var-validity (debug-var basic-code-location)
2591 (etypecase debug-var
2592 (compiled-debug-var
2593 (compiled-debug-var-validity debug-var basic-code-location))
2594 ;; (There used to be more cases back before sbcl-0.7.0, when
2595 ;; we did special tricks to debug the IR1 interpreter.)
2598 ;;; This is the method for DEBUG-VAR-VALIDITY for COMPILED-DEBUG-VARs.
2599 ;;; For safety, make sure basic-code-location is what we think.
2600 (defun compiled-debug-var-validity (debug-var basic-code-location)
2601 (declare (type compiled-code-location basic-code-location))
2602 (cond ((debug-var-alive-p debug-var)
2603 (let ((debug-fun (code-location-debug-fun basic-code-location)))
2604 (if (>= (compiled-code-location-pc basic-code-location)
2605 (sb!c::compiled-debug-fun-start-pc
2606 (compiled-debug-fun-compiler-debug-fun debug-fun)))
2607 :valid
2608 :invalid)))
2609 ((code-location-unknown-p basic-code-location) :unknown)
2611 (let ((pos (position debug-var
2612 (debug-fun-debug-vars
2613 (code-location-debug-fun
2614 basic-code-location)))))
2615 (unless pos
2616 (error 'unknown-debug-var
2617 :debug-var debug-var
2618 :debug-fun
2619 (code-location-debug-fun basic-code-location)))
2620 ;; There must be live-set info since basic-code-location is known.
2621 (if (zerop (sbit (compiled-code-location-live-set
2622 basic-code-location)
2623 pos))
2624 :invalid
2625 :valid)))))
2627 ;;;; sources
2629 ;;; This code produces and uses what we call source-paths. A
2630 ;;; source-path is a list whose first element is a form number as
2631 ;;; returned by CODE-LOCATION-FORM-NUMBER and whose last element is a
2632 ;;; top level form number as returned by
2633 ;;; CODE-LOCATION-TOPLEVEL-FORM-NUMBER. The elements from the last to
2634 ;;; the first, exclusively, are the numbered subforms into which to
2635 ;;; descend. For example:
2636 ;;; (defun foo (x)
2637 ;;; (let ((a (aref x 3)))
2638 ;;; (cons a 3)))
2639 ;;; The call to AREF in this example is form number 5. Assuming this
2640 ;;; DEFUN is the 11'th top level form, the source-path for the AREF
2641 ;;; call is as follows:
2642 ;;; (5 1 0 1 3 11)
2643 ;;; Given the DEFUN, 3 gets you the LET, 1 gets you the bindings, 0
2644 ;;; gets the first binding, and 1 gets the AREF form.
2646 ;;; This returns a table mapping form numbers to source-paths. A
2647 ;;; source-path indicates a descent into the TOPLEVEL-FORM form,
2648 ;;; going directly to the subform corressponding to the form number.
2650 ;;; The vector elements are in the same format as the compiler's
2651 ;;; NODE-SOURCE-PATH; that is, the first element is the form number and
2652 ;;; the last is the TOPLEVEL-FORM number.
2653 (defun form-number-translations (form tlf-number)
2654 (let ((seen nil)
2655 (translations (make-array 12 :fill-pointer 0 :adjustable t)))
2656 (labels ((translate1 (form path)
2657 (unless (member form seen)
2658 (push form seen)
2659 (vector-push-extend (cons (fill-pointer translations) path)
2660 translations)
2661 (let ((pos 0)
2662 (subform form)
2663 (trail form))
2664 (declare (fixnum pos))
2665 (macrolet ((frob ()
2666 '(progn
2667 (when (atom subform) (return))
2668 (let ((fm (car subform)))
2669 (when (consp fm)
2670 (translate1 fm (cons pos path)))
2671 (incf pos))
2672 (setq subform (cdr subform))
2673 (when (eq subform trail) (return)))))
2674 (loop
2675 (frob)
2676 (frob)
2677 (setq trail (cdr trail))))))))
2678 (translate1 form (list tlf-number)))
2679 (coerce translations 'simple-vector)))
2681 ;;; FORM is a top level form, and path is a source-path into it. This
2682 ;;; returns the form indicated by the source-path. Context is the
2683 ;;; number of enclosing forms to return instead of directly returning
2684 ;;; the source-path form. When context is non-zero, the form returned
2685 ;;; contains a marker, #:****HERE****, immediately before the form
2686 ;;; indicated by path.
2687 (defun source-path-context (form path context)
2688 (declare (type unsigned-byte context))
2689 ;; Get to the form indicated by path or the enclosing form indicated
2690 ;; by context and path.
2691 (let ((path (reverse (butlast (cdr path)))))
2692 (dotimes (i (- (length path) context))
2693 (let ((index (first path)))
2694 (unless (and (listp form) (< index (length form)))
2695 (error "Source path no longer exists."))
2696 (setq form (elt form index))
2697 (setq path (rest path))))
2698 ;; Recursively rebuild the source form resulting from the above
2699 ;; descent, copying the beginning of each subform up to the next
2700 ;; subform we descend into according to path. At the bottom of the
2701 ;; recursion, we return the form indicated by path preceded by our
2702 ;; marker, and this gets spliced into the resulting list structure
2703 ;; on the way back up.
2704 (labels ((frob (form path level)
2705 (if (or (zerop level) (null path))
2706 (if (zerop context)
2707 form
2708 `(#:***here*** ,form))
2709 (let ((n (first path)))
2710 (unless (and (listp form) (< n (length form)))
2711 (error "Source path no longer exists."))
2712 (let ((res (frob (elt form n) (rest path) (1- level))))
2713 (nconc (subseq form 0 n)
2714 (cons res (nthcdr (1+ n) form))))))))
2715 (frob form path context))))
2717 ;;;; PREPROCESS-FOR-EVAL
2719 ;;; Return a function of one argument that evaluates form in the
2720 ;;; lexical context of the BASIC-CODE-LOCATION LOC, or signal a
2721 ;;; NO-DEBUG-VARS condition when the LOC's DEBUG-FUN has no
2722 ;;; DEBUG-VAR information available.
2724 ;;; The returned function takes the frame to get values from as its
2725 ;;; argument, and it returns the values of FORM. The returned function
2726 ;;; can signal the following conditions: INVALID-VALUE,
2727 ;;; AMBIGUOUS-VAR-NAME, and FRAME-FUN-MISMATCH.
2728 (defun preprocess-for-eval (form loc)
2729 (declare (type code-location loc))
2730 (let ((n-frame (gensym))
2731 (fun (code-location-debug-fun loc)))
2732 (unless (debug-var-info-available fun)
2733 (debug-signal 'no-debug-vars :debug-fun fun))
2734 (sb!int:collect ((binds)
2735 (specs))
2736 (do-debug-fun-vars (var fun)
2737 (let ((validity (debug-var-validity var loc)))
2738 (unless (eq validity :invalid)
2739 (let* ((sym (debug-var-symbol var))
2740 (found (assoc sym (binds))))
2741 (if found
2742 (setf (second found) :ambiguous)
2743 (binds (list sym validity var)))))))
2744 (dolist (bind (binds))
2745 (let ((name (first bind))
2746 (var (third bind)))
2747 (ecase (second bind)
2748 (:valid
2749 (specs `(,name (debug-var-value ',var ,n-frame))))
2750 (:unknown
2751 (specs `(,name (debug-signal 'invalid-value
2752 :debug-var ',var
2753 :frame ,n-frame))))
2754 (:ambiguous
2755 (specs `(,name (debug-signal 'ambiguous-var-name
2756 :name ',name
2757 :frame ,n-frame)))))))
2758 (let ((res (coerce `(lambda (,n-frame)
2759 (declare (ignorable ,n-frame))
2760 (symbol-macrolet ,(specs) ,form))
2761 'function)))
2762 (lambda (frame)
2763 ;; This prevents these functions from being used in any
2764 ;; location other than a function return location, so maybe
2765 ;; this should only check whether FRAME's DEBUG-FUN is the
2766 ;; same as LOC's.
2767 (unless (code-location= (frame-code-location frame) loc)
2768 (debug-signal 'frame-fun-mismatch
2769 :code-location loc :form form :frame frame))
2770 (funcall res frame))))))
2772 ;;;; breakpoints
2774 ;;;; user-visible interface
2776 ;;; Create and return a breakpoint. When program execution encounters
2777 ;;; the breakpoint, the system calls HOOK-FUN. HOOK-FUN takes the
2778 ;;; current frame for the function in which the program is running and
2779 ;;; the breakpoint object.
2781 ;;; WHAT and KIND determine where in a function the system invokes
2782 ;;; HOOK-FUN. WHAT is either a code-location or a DEBUG-FUN. KIND is
2783 ;;; one of :CODE-LOCATION, :FUN-START, or :FUN-END. Since the starts
2784 ;;; and ends of functions may not have code-locations representing
2785 ;;; them, designate these places by supplying WHAT as a DEBUG-FUN and
2786 ;;; KIND indicating the :FUN-START or :FUN-END. When WHAT is a
2787 ;;; DEBUG-FUN and kind is :FUN-END, then HOOK-FUN must take two
2788 ;;; additional arguments, a list of values returned by the function
2789 ;;; and a FUN-END-COOKIE.
2791 ;;; INFO is information supplied by and used by the user.
2793 ;;; FUN-END-COOKIE is a function. To implement :FUN-END
2794 ;;; breakpoints, the system uses starter breakpoints to establish the
2795 ;;; :FUN-END breakpoint for each invocation of the function. Upon
2796 ;;; each entry, the system creates a unique cookie to identify the
2797 ;;; invocation, and when the user supplies a function for this
2798 ;;; argument, the system invokes it on the frame and the cookie. The
2799 ;;; system later invokes the :FUN-END breakpoint hook on the same
2800 ;;; cookie. The user may save the cookie for comparison in the hook
2801 ;;; function.
2803 ;;; Signal an error if WHAT is an unknown code-location.
2804 (defun make-breakpoint (hook-fun what
2805 &key (kind :code-location) info fun-end-cookie)
2806 (etypecase what
2807 (code-location
2808 (when (code-location-unknown-p what)
2809 (error "cannot make a breakpoint at an unknown code location: ~S"
2810 what))
2811 (aver (eq kind :code-location))
2812 (let ((bpt (%make-breakpoint hook-fun what kind info)))
2813 (etypecase what
2814 (compiled-code-location
2815 ;; This slot is filled in due to calling CODE-LOCATION-UNKNOWN-P.
2816 (when (eq (compiled-code-location-kind what) :unknown-return)
2817 (let ((other-bpt (%make-breakpoint hook-fun what
2818 :unknown-return-partner
2819 info)))
2820 (setf (breakpoint-unknown-return-partner bpt) other-bpt)
2821 (setf (breakpoint-unknown-return-partner other-bpt) bpt))))
2822 ;; (There used to be more cases back before sbcl-0.7.0,,
2823 ;; when we did special tricks to debug the IR1
2824 ;; interpreter.)
2826 bpt))
2827 (compiled-debug-fun
2828 (ecase kind
2829 (:fun-start
2830 (%make-breakpoint hook-fun what kind info))
2831 (:fun-end
2832 (unless (eq (sb!c::compiled-debug-fun-returns
2833 (compiled-debug-fun-compiler-debug-fun what))
2834 :standard)
2835 (error ":FUN-END breakpoints are currently unsupported ~
2836 for the known return convention."))
2838 (let* ((bpt (%make-breakpoint hook-fun what kind info))
2839 (starter (compiled-debug-fun-end-starter what)))
2840 (unless starter
2841 (setf starter (%make-breakpoint #'list what :fun-start nil))
2842 (setf (breakpoint-hook-fun starter)
2843 (fun-end-starter-hook starter what))
2844 (setf (compiled-debug-fun-end-starter what) starter))
2845 (setf (breakpoint-start-helper bpt) starter)
2846 (push bpt (breakpoint-%info starter))
2847 (setf (breakpoint-cookie-fun bpt) fun-end-cookie)
2848 bpt))))))
2850 ;;; These are unique objects created upon entry into a function by a
2851 ;;; :FUN-END breakpoint's starter hook. These are only created
2852 ;;; when users supply :FUN-END-COOKIE to MAKE-BREAKPOINT. Also,
2853 ;;; the :FUN-END breakpoint's hook is called on the same cookie
2854 ;;; when it is created.
2855 (defstruct (fun-end-cookie
2856 (:print-object (lambda (obj str)
2857 (print-unreadable-object (obj str :type t))))
2858 (:constructor make-fun-end-cookie (bogus-lra debug-fun))
2859 (:copier nil))
2860 ;; a pointer to the bogus-lra created for :FUN-END breakpoints
2861 bogus-lra
2862 ;; the DEBUG-FUN associated with this cookie
2863 debug-fun)
2865 ;;; This maps bogus-lra-components to cookies, so that
2866 ;;; HANDLE-FUN-END-BREAKPOINT can find the appropriate cookie for the
2867 ;;; breakpoint hook.
2868 (defvar *fun-end-cookies* (make-hash-table :test 'eq :synchronized t))
2870 ;;; This returns a hook function for the start helper breakpoint
2871 ;;; associated with a :FUN-END breakpoint. The returned function
2872 ;;; makes a fake LRA that all returns go through, and this piece of
2873 ;;; fake code actually breaks. Upon return from the break, the code
2874 ;;; provides the returnee with any values. Since the returned function
2875 ;;; effectively activates FUN-END-BPT on each entry to DEBUG-FUN's
2876 ;;; function, we must establish breakpoint-data about FUN-END-BPT.
2877 (defun fun-end-starter-hook (starter-bpt debug-fun)
2878 (declare (type breakpoint starter-bpt)
2879 (type compiled-debug-fun debug-fun))
2880 (lambda (frame breakpoint)
2881 (declare (ignore breakpoint)
2882 (type frame frame))
2883 (let ((lra-sc-offset
2884 (sb!c::compiled-debug-fun-return-pc
2885 (compiled-debug-fun-compiler-debug-fun debug-fun))))
2886 (multiple-value-bind (lra component offset)
2887 (make-bogus-lra
2888 (get-context-value frame
2889 lra-save-offset
2890 lra-sc-offset))
2891 (setf (get-context-value frame
2892 lra-save-offset
2893 lra-sc-offset)
2894 lra)
2895 (let ((end-bpts (breakpoint-%info starter-bpt)))
2896 (let ((data (breakpoint-data component offset)))
2897 (setf (breakpoint-data-breakpoints data) end-bpts)
2898 (dolist (bpt end-bpts)
2899 (setf (breakpoint-internal-data bpt) data)))
2900 (let ((cookie (make-fun-end-cookie lra debug-fun)))
2901 (setf (gethash component *fun-end-cookies*) cookie)
2902 (dolist (bpt end-bpts)
2903 (let ((fun (breakpoint-cookie-fun bpt)))
2904 (when fun (funcall fun frame cookie))))))))))
2906 ;;; This takes a FUN-END-COOKIE and a frame, and it returns
2907 ;;; whether the cookie is still valid. A cookie becomes invalid when
2908 ;;; the frame that established the cookie has exited. Sometimes cookie
2909 ;;; holders are unaware of cookie invalidation because their
2910 ;;; :FUN-END breakpoint hooks didn't run due to THROW'ing.
2912 ;;; This takes a frame as an efficiency hack since the user probably
2913 ;;; has a frame object in hand when using this routine, and it saves
2914 ;;; repeated parsing of the stack and consing when asking whether a
2915 ;;; series of cookies is valid.
2916 (defun fun-end-cookie-valid-p (frame cookie)
2917 (let ((lra (fun-end-cookie-bogus-lra cookie))
2918 (lra-sc-offset (sb!c::compiled-debug-fun-return-pc
2919 (compiled-debug-fun-compiler-debug-fun
2920 (fun-end-cookie-debug-fun cookie)))))
2921 (do ((frame frame (frame-down frame)))
2922 ((not frame) nil)
2923 (when (and (compiled-frame-p frame)
2924 (#!-(or x86 x86-64) eq #!+(or x86 x86-64) sap=
2926 (get-context-value frame lra-save-offset lra-sc-offset)))
2927 (return t)))))
2929 ;;;; ACTIVATE-BREAKPOINT
2931 ;;; Cause the system to invoke the breakpoint's hook function until
2932 ;;; the next call to DEACTIVATE-BREAKPOINT or DELETE-BREAKPOINT. The
2933 ;;; system invokes breakpoint hook functions in the opposite order
2934 ;;; that you activate them.
2935 (defun activate-breakpoint (breakpoint)
2936 (when (eq (breakpoint-status breakpoint) :deleted)
2937 (error "cannot activate a deleted breakpoint: ~S" breakpoint))
2938 (unless (eq (breakpoint-status breakpoint) :active)
2939 (ecase (breakpoint-kind breakpoint)
2940 (:code-location
2941 (let ((loc (breakpoint-what breakpoint)))
2942 (etypecase loc
2943 (compiled-code-location
2944 (activate-compiled-code-location-breakpoint breakpoint)
2945 (let ((other (breakpoint-unknown-return-partner breakpoint)))
2946 (when other
2947 (activate-compiled-code-location-breakpoint other))))
2948 ;; (There used to be more cases back before sbcl-0.7.0, when
2949 ;; we did special tricks to debug the IR1 interpreter.)
2951 (:fun-start
2952 (etypecase (breakpoint-what breakpoint)
2953 (compiled-debug-fun
2954 (activate-compiled-fun-start-breakpoint breakpoint))
2955 ;; (There used to be more cases back before sbcl-0.7.0, when
2956 ;; we did special tricks to debug the IR1 interpreter.)
2958 (:fun-end
2959 (etypecase (breakpoint-what breakpoint)
2960 (compiled-debug-fun
2961 (let ((starter (breakpoint-start-helper breakpoint)))
2962 (unless (eq (breakpoint-status starter) :active)
2963 ;; may already be active by some other :FUN-END breakpoint
2964 (activate-compiled-fun-start-breakpoint starter)))
2965 (setf (breakpoint-status breakpoint) :active))
2966 ;; (There used to be more cases back before sbcl-0.7.0, when
2967 ;; we did special tricks to debug the IR1 interpreter.)
2968 ))))
2969 breakpoint)
2971 (defun activate-compiled-code-location-breakpoint (breakpoint)
2972 (declare (type breakpoint breakpoint))
2973 (let ((loc (breakpoint-what breakpoint)))
2974 (declare (type compiled-code-location loc))
2975 (sub-activate-breakpoint
2976 breakpoint
2977 (breakpoint-data (compiled-debug-fun-component
2978 (code-location-debug-fun loc))
2979 (+ (compiled-code-location-pc loc)
2980 (if (or (eq (breakpoint-kind breakpoint)
2981 :unknown-return-partner)
2982 (eq (compiled-code-location-kind loc)
2983 :single-value-return))
2984 sb!vm:single-value-return-byte-offset
2985 0))))))
2987 (defun activate-compiled-fun-start-breakpoint (breakpoint)
2988 (declare (type breakpoint breakpoint))
2989 (let ((debug-fun (breakpoint-what breakpoint)))
2990 (sub-activate-breakpoint
2991 breakpoint
2992 (breakpoint-data (compiled-debug-fun-component debug-fun)
2993 (sb!c::compiled-debug-fun-start-pc
2994 (compiled-debug-fun-compiler-debug-fun
2995 debug-fun))))))
2997 (defun sub-activate-breakpoint (breakpoint data)
2998 (declare (type breakpoint breakpoint)
2999 (type breakpoint-data data))
3000 (setf (breakpoint-status breakpoint) :active)
3001 (without-interrupts
3002 (unless (breakpoint-data-breakpoints data)
3003 (setf (breakpoint-data-instruction data)
3004 (without-gcing
3005 (breakpoint-install (get-lisp-obj-address
3006 (breakpoint-data-component data))
3007 (breakpoint-data-offset data)))))
3008 (setf (breakpoint-data-breakpoints data)
3009 (append (breakpoint-data-breakpoints data) (list breakpoint)))
3010 (setf (breakpoint-internal-data breakpoint) data)))
3012 ;;;; DEACTIVATE-BREAKPOINT
3014 ;;; Stop the system from invoking the breakpoint's hook function.
3015 (defun deactivate-breakpoint (breakpoint)
3016 (when (eq (breakpoint-status breakpoint) :active)
3017 (without-interrupts
3018 (let ((loc (breakpoint-what breakpoint)))
3019 (etypecase loc
3020 ((or compiled-code-location compiled-debug-fun)
3021 (deactivate-compiled-breakpoint breakpoint)
3022 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3023 (when other
3024 (deactivate-compiled-breakpoint other))))
3025 ;; (There used to be more cases back before sbcl-0.7.0, when
3026 ;; we did special tricks to debug the IR1 interpreter.)
3027 ))))
3028 breakpoint)
3030 (defun deactivate-compiled-breakpoint (breakpoint)
3031 (if (eq (breakpoint-kind breakpoint) :fun-end)
3032 (let ((starter (breakpoint-start-helper breakpoint)))
3033 (unless (find-if (lambda (bpt)
3034 (and (not (eq bpt breakpoint))
3035 (eq (breakpoint-status bpt) :active)))
3036 (breakpoint-%info starter))
3037 (deactivate-compiled-breakpoint starter)))
3038 (let* ((data (breakpoint-internal-data breakpoint))
3039 (bpts (delete breakpoint (breakpoint-data-breakpoints data))))
3040 (setf (breakpoint-internal-data breakpoint) nil)
3041 (setf (breakpoint-data-breakpoints data) bpts)
3042 (unless bpts
3043 (without-gcing
3044 (breakpoint-remove (get-lisp-obj-address
3045 (breakpoint-data-component data))
3046 (breakpoint-data-offset data)
3047 (breakpoint-data-instruction data)))
3048 (delete-breakpoint-data data))))
3049 (setf (breakpoint-status breakpoint) :inactive)
3050 breakpoint)
3052 ;;;; BREAKPOINT-INFO
3054 ;;; Return the user-maintained info associated with breakpoint. This
3055 ;;; is SETF'able.
3056 (defun breakpoint-info (breakpoint)
3057 (breakpoint-%info breakpoint))
3058 (defun %set-breakpoint-info (breakpoint value)
3059 (setf (breakpoint-%info breakpoint) value)
3060 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3061 (when other
3062 (setf (breakpoint-%info other) value))))
3064 ;;;; BREAKPOINT-ACTIVE-P and DELETE-BREAKPOINT
3066 (defun breakpoint-active-p (breakpoint)
3067 (ecase (breakpoint-status breakpoint)
3068 (:active t)
3069 ((:inactive :deleted) nil)))
3071 ;;; Free system storage and remove computational overhead associated
3072 ;;; with breakpoint. After calling this, breakpoint is completely
3073 ;;; impotent and can never become active again.
3074 (defun delete-breakpoint (breakpoint)
3075 (let ((status (breakpoint-status breakpoint)))
3076 (unless (eq status :deleted)
3077 (when (eq status :active)
3078 (deactivate-breakpoint breakpoint))
3079 (setf (breakpoint-status breakpoint) :deleted)
3080 (let ((other (breakpoint-unknown-return-partner breakpoint)))
3081 (when other
3082 (setf (breakpoint-status other) :deleted)))
3083 (when (eq (breakpoint-kind breakpoint) :fun-end)
3084 (let* ((starter (breakpoint-start-helper breakpoint))
3085 (breakpoints (delete breakpoint
3086 (the list (breakpoint-info starter)))))
3087 (setf (breakpoint-info starter) breakpoints)
3088 (unless breakpoints
3089 (delete-breakpoint starter)
3090 (setf (compiled-debug-fun-end-starter
3091 (breakpoint-what breakpoint))
3092 nil))))))
3093 breakpoint)
3095 ;;;; C call out stubs
3097 ;;; This actually installs the break instruction in the component. It
3098 ;;; returns the overwritten bits. You must call this in a context in
3099 ;;; which GC is disabled, so that Lisp doesn't move objects around
3100 ;;; that C is pointing to.
3101 (sb!alien:define-alien-routine "breakpoint_install" sb!alien:unsigned-int
3102 (code-obj sb!alien:unsigned-long)
3103 (pc-offset sb!alien:int))
3105 ;;; This removes the break instruction and replaces the original
3106 ;;; instruction. You must call this in a context in which GC is disabled
3107 ;;; so Lisp doesn't move objects around that C is pointing to.
3108 (sb!alien:define-alien-routine "breakpoint_remove" sb!alien:void
3109 (code-obj sb!alien:unsigned-long)
3110 (pc-offset sb!alien:int)
3111 (old-inst sb!alien:unsigned-int))
3113 (sb!alien:define-alien-routine "breakpoint_do_displaced_inst" sb!alien:void
3114 (scp (* os-context-t))
3115 (orig-inst sb!alien:unsigned-int))
3117 ;;;; breakpoint handlers (layer between C and exported interface)
3119 ;;; This maps components to a mapping of offsets to BREAKPOINT-DATAs.
3120 (defvar *component-breakpoint-offsets* (make-hash-table :test 'eq :synchronized t))
3122 ;;; This returns the BREAKPOINT-DATA object associated with component cross
3123 ;;; offset. If none exists, this makes one, installs it, and returns it.
3124 (defun breakpoint-data (component offset &optional (create t))
3125 (flet ((install-breakpoint-data ()
3126 (when create
3127 (let ((data (make-breakpoint-data component offset)))
3128 (push (cons offset data)
3129 (gethash component *component-breakpoint-offsets*))
3130 data))))
3131 (let ((offsets (gethash component *component-breakpoint-offsets*)))
3132 (if offsets
3133 (let ((data (assoc offset offsets)))
3134 (if data
3135 (cdr data)
3136 (install-breakpoint-data)))
3137 (install-breakpoint-data)))))
3139 ;;; We use this when there are no longer any active breakpoints
3140 ;;; corresponding to DATA.
3141 (defun delete-breakpoint-data (data)
3142 ;; Again, this looks brittle. Is there no danger of being interrupted
3143 ;; here?
3144 (let* ((component (breakpoint-data-component data))
3145 (offsets (delete (breakpoint-data-offset data)
3146 (gethash component *component-breakpoint-offsets*)
3147 :key #'car)))
3148 (if offsets
3149 (setf (gethash component *component-breakpoint-offsets*) offsets)
3150 (remhash component *component-breakpoint-offsets*)))
3151 (values))
3153 ;;; The C handler for interrupts calls this when it has a
3154 ;;; debugging-tool break instruction. This does *not* handle all
3155 ;;; breaks; for example, it does not handle breaks for internal
3156 ;;; errors.
3157 (defun handle-breakpoint (offset component signal-context)
3158 (let ((data (breakpoint-data component offset nil)))
3159 (unless data
3160 (error "unknown breakpoint in ~S at offset ~S"
3161 (debug-fun-name (debug-fun-from-pc component offset))
3162 offset))
3163 (let ((breakpoints (breakpoint-data-breakpoints data)))
3164 (if (or (null breakpoints)
3165 (eq (breakpoint-kind (car breakpoints)) :fun-end))
3166 (handle-fun-end-breakpoint-aux breakpoints data signal-context)
3167 (handle-breakpoint-aux breakpoints data
3168 offset component signal-context)))))
3170 ;;; This holds breakpoint-datas while invoking the breakpoint hooks
3171 ;;; associated with that particular component and location. While they
3172 ;;; are executing, if we hit the location again, we ignore the
3173 ;;; breakpoint to avoid infinite recursion. fun-end breakpoints
3174 ;;; must work differently since the breakpoint-data is unique for each
3175 ;;; invocation.
3176 (defvar *executing-breakpoint-hooks* nil)
3178 ;;; This handles code-location and DEBUG-FUN :FUN-START
3179 ;;; breakpoints.
3180 (defun handle-breakpoint-aux (breakpoints data offset component signal-context)
3181 (unless breakpoints
3182 (bug "breakpoint that nobody wants"))
3183 (unless (member data *executing-breakpoint-hooks*)
3184 (let ((*executing-breakpoint-hooks* (cons data
3185 *executing-breakpoint-hooks*)))
3186 (invoke-breakpoint-hooks breakpoints signal-context)))
3187 ;; At this point breakpoints may not hold the same list as
3188 ;; BREAKPOINT-DATA-BREAKPOINTS since invoking hooks may have allowed
3189 ;; a breakpoint deactivation. In fact, if all breakpoints were
3190 ;; deactivated then data is invalid since it was deleted and so the
3191 ;; correct one must be looked up if it is to be used. If there are
3192 ;; no more breakpoints active at this location, then the normal
3193 ;; instruction has been put back, and we do not need to
3194 ;; DO-DISPLACED-INST.
3195 (setf data (breakpoint-data component offset nil))
3196 (when (and data (breakpoint-data-breakpoints data))
3197 ;; The breakpoint is still active, so we need to execute the
3198 ;; displaced instruction and leave the breakpoint instruction
3199 ;; behind. The best way to do this is different on each machine,
3200 ;; so we just leave it up to the C code.
3201 (breakpoint-do-displaced-inst signal-context
3202 (breakpoint-data-instruction data))
3203 ;; Some platforms have no usable sigreturn() call. If your
3204 ;; implementation of arch_do_displaced_inst() _does_ sigreturn(),
3205 ;; it's polite to warn here
3206 #!+(and sparc solaris)
3207 (error "BREAKPOINT-DO-DISPLACED-INST returned?")))
3209 (defun invoke-breakpoint-hooks (breakpoints signal-context)
3210 (let* ((frame (signal-context-frame signal-context)))
3211 (dolist (bpt breakpoints)
3212 (funcall (breakpoint-hook-fun bpt)
3213 frame
3214 ;; If this is an :UNKNOWN-RETURN-PARTNER, then pass the
3215 ;; hook function the original breakpoint, so that users
3216 ;; aren't forced to confront the fact that some
3217 ;; breakpoints really are two.
3218 (if (eq (breakpoint-kind bpt) :unknown-return-partner)
3219 (breakpoint-unknown-return-partner bpt)
3220 bpt)))))
3222 (defun signal-context-frame (signal-context)
3223 (let* ((scp
3224 (locally
3225 (declare (optimize (inhibit-warnings 3)))
3226 (sb!alien:sap-alien signal-context (* os-context-t))))
3227 (cfp (int-sap (sb!vm:context-register scp sb!vm::cfp-offset))))
3228 (compute-calling-frame cfp
3229 (sb!vm:context-pc scp)
3230 nil)))
3232 (defun handle-fun-end-breakpoint (offset component context)
3233 (let ((data (breakpoint-data component offset nil)))
3234 (unless data
3235 (error "unknown breakpoint in ~S at offset ~S"
3236 (debug-fun-name (debug-fun-from-pc component offset))
3237 offset))
3238 (let ((breakpoints (breakpoint-data-breakpoints data)))
3239 (when breakpoints
3240 (aver (eq (breakpoint-kind (car breakpoints)) :fun-end))
3241 (handle-fun-end-breakpoint-aux breakpoints data context)))))
3243 ;;; Either HANDLE-BREAKPOINT calls this for :FUN-END breakpoints
3244 ;;; [old C code] or HANDLE-FUN-END-BREAKPOINT calls this directly
3245 ;;; [new C code].
3246 (defun handle-fun-end-breakpoint-aux (breakpoints data signal-context)
3247 ;; FIXME: This looks brittle: what if we are interrupted somewhere
3248 ;; here? ...or do we have interrupts disabled here?
3249 (delete-breakpoint-data data)
3250 (let* ((scp
3251 (locally
3252 (declare (optimize (inhibit-warnings 3)))
3253 (sb!alien:sap-alien signal-context (* os-context-t))))
3254 (frame (signal-context-frame signal-context))
3255 (component (breakpoint-data-component data))
3256 (cookie (gethash component *fun-end-cookies*)))
3257 (remhash component *fun-end-cookies*)
3258 (dolist (bpt breakpoints)
3259 (funcall (breakpoint-hook-fun bpt)
3260 frame bpt
3261 (get-fun-end-breakpoint-values scp)
3262 cookie))))
3264 (defun get-fun-end-breakpoint-values (scp)
3265 (let ((ocfp (int-sap (sb!vm:context-register
3267 #!-(or x86 x86-64) sb!vm::ocfp-offset
3268 #!+(or x86 x86-64) sb!vm::ebx-offset)))
3269 (nargs (make-lisp-obj
3270 (sb!vm:context-register scp sb!vm::nargs-offset)))
3271 (reg-arg-offsets '#.sb!vm::*register-arg-offsets*)
3272 (results nil))
3273 (without-gcing
3274 (dotimes (arg-num nargs)
3275 (push (if reg-arg-offsets
3276 (make-lisp-obj
3277 (sb!vm:context-register scp (pop reg-arg-offsets)))
3278 (stack-ref ocfp arg-num))
3279 results)))
3280 (nreverse results)))
3282 ;;;; MAKE-BOGUS-LRA (used for :FUN-END breakpoints)
3284 (defconstant bogus-lra-constants
3285 #!-(or x86 x86-64) 2 #!+(or x86 x86-64) 3)
3286 (defconstant known-return-p-slot
3287 (+ sb!vm:code-constants-offset #!-(or x86 x86-64) 1 #!+(or x86 x86-64) 2))
3289 ;;; Make a bogus LRA object that signals a breakpoint trap when
3290 ;;; returned to. If the breakpoint trap handler returns, REAL-LRA is
3291 ;;; returned to. Three values are returned: the bogus LRA object, the
3292 ;;; code component it is part of, and the PC offset for the trap
3293 ;;; instruction.
3294 (defun make-bogus-lra (real-lra &optional known-return-p)
3295 (without-gcing
3296 ;; These are really code labels, not variables: but this way we get
3297 ;; their addresses.
3298 (let* ((src-start (foreign-symbol-sap "fun_end_breakpoint_guts"))
3299 (src-end (foreign-symbol-sap "fun_end_breakpoint_end"))
3300 (trap-loc (foreign-symbol-sap "fun_end_breakpoint_trap"))
3301 (length (sap- src-end src-start))
3302 (code-object
3303 (%primitive sb!c:allocate-code-object (1+ bogus-lra-constants)
3304 length))
3305 (dst-start (code-instructions code-object)))
3306 (declare (type system-area-pointer
3307 src-start src-end dst-start trap-loc)
3308 (type index length))
3309 (setf (%code-debug-info code-object) :bogus-lra)
3310 (setf (code-header-ref code-object sb!vm:code-trace-table-offset-slot)
3311 length)
3312 #!-(or x86 x86-64)
3313 (setf (code-header-ref code-object real-lra-slot) real-lra)
3314 #!+(or x86 x86-64)
3315 (multiple-value-bind (offset code) (compute-lra-data-from-pc real-lra)
3316 (setf (code-header-ref code-object real-lra-slot) code)
3317 (setf (code-header-ref code-object (1+ real-lra-slot)) offset))
3318 (setf (code-header-ref code-object known-return-p-slot)
3319 known-return-p)
3320 (system-area-ub8-copy src-start 0 dst-start 0 length)
3321 (sb!vm:sanctify-for-execution code-object)
3322 #!+(or x86 x86-64)
3323 (values dst-start code-object (sap- trap-loc src-start))
3324 #!-(or x86 x86-64)
3325 (let ((new-lra (make-lisp-obj (+ (sap-int dst-start)
3326 sb!vm:other-pointer-lowtag))))
3327 (set-header-data
3328 new-lra
3329 (logandc2 (+ sb!vm:code-constants-offset bogus-lra-constants 1)
3331 (sb!vm:sanctify-for-execution code-object)
3332 (values new-lra code-object (sap- trap-loc src-start))))))
3334 ;;;; miscellaneous
3336 ;;; This appears here because it cannot go with the DEBUG-FUN
3337 ;;; interface since DO-DEBUG-BLOCK-LOCATIONS isn't defined until after
3338 ;;; the DEBUG-FUN routines.
3340 ;;; Return a code-location before the body of a function and after all
3341 ;;; the arguments are in place; or if that location can't be
3342 ;;; determined due to a lack of debug information, return NIL.
3343 (defun debug-fun-start-location (debug-fun)
3344 (etypecase debug-fun
3345 (compiled-debug-fun
3346 (code-location-from-pc debug-fun
3347 (sb!c::compiled-debug-fun-start-pc
3348 (compiled-debug-fun-compiler-debug-fun
3349 debug-fun))
3350 nil))
3351 ;; (There used to be more cases back before sbcl-0.7.0, when
3352 ;; we did special tricks to debug the IR1 interpreter.)
3356 ;;;; Single-stepping
3358 ;;; The single-stepper works by inserting conditional trap instructions
3359 ;;; into the generated code (see src/compiler/*/call.lisp), currently:
3361 ;;; 1) Before the code generated for a function call that was
3362 ;;; translated to a VOP
3363 ;;; 2) Just before the call instruction for a full call
3365 ;;; In both cases, the trap will only be executed if stepping has been
3366 ;;; enabled, in which case it'll ultimately be handled by
3367 ;;; HANDLE-SINGLE-STEP-TRAP, which will either signal a stepping condition,
3368 ;;; or replace the function that's about to be called with a wrapper
3369 ;;; which will signal the condition.
3371 (defun handle-single-step-trap (kind callee-register-offset)
3372 (let ((context (nth-interrupt-context (1- *free-interrupt-context-index*))))
3373 ;; The following calls must get tail-call eliminated for
3374 ;; *STEP-FRAME* to get set correctly on non-x86.
3375 (if (= kind single-step-before-trap)
3376 (handle-single-step-before-trap context)
3377 (handle-single-step-around-trap context callee-register-offset))))
3379 (defvar *step-frame* nil)
3381 (defun handle-single-step-before-trap (context)
3382 (let ((step-info (single-step-info-from-context context)))
3383 ;; If there was not enough debug information available, there's no
3384 ;; sense in signaling the condition.
3385 (when step-info
3386 (let ((*step-frame*
3387 #+(or x86 x86-64)
3388 (signal-context-frame (sb!alien::alien-sap context))
3389 #-(or x86 x86-64)
3390 ;; KLUDGE: Use the first non-foreign frame as the
3391 ;; *STACK-TOP-HINT*. Getting the frame from the signal
3392 ;; context as on x86 would be cleaner, but
3393 ;; SIGNAL-CONTEXT-FRAME doesn't seem seem to work at all
3394 ;; on non-x86.
3395 (loop with frame = (frame-down (top-frame))
3396 while frame
3397 for dfun = (frame-debug-fun frame)
3398 do (when (typep dfun 'compiled-debug-fun)
3399 (return frame))
3400 do (setf frame (frame-down frame)))))
3401 (sb!impl::step-form step-info
3402 ;; We could theoretically store information in
3403 ;; the debug-info about to determine the
3404 ;; arguments here, but for now let's just pass
3405 ;; on it.
3406 :unknown)))))
3408 ;;; This function will replace the fdefn / function that was in the
3409 ;;; register at CALLEE-REGISTER-OFFSET with a wrapper function. To
3410 ;;; ensure that the full call will use the wrapper instead of the
3411 ;;; original, conditional trap must be emitted before the fdefn /
3412 ;;; function is converted into a raw address.
3413 (defun handle-single-step-around-trap (context callee-register-offset)
3414 ;; Fetch the function / fdefn we're about to call from the
3415 ;; appropriate register.
3416 (let* ((callee (make-lisp-obj
3417 (context-register context callee-register-offset)))
3418 (step-info (single-step-info-from-context context)))
3419 ;; If there was not enough debug information available, there's no
3420 ;; sense in signaling the condition.
3421 (unless step-info
3422 (return-from handle-single-step-around-trap))
3423 (let* ((fun (lambda (&rest args)
3424 (flet ((call ()
3425 (apply (typecase callee
3426 (fdefn (fdefn-fun callee))
3427 (function callee))
3428 args)))
3429 ;; Signal a step condition
3430 (let* ((step-in
3431 (let ((*step-frame* (frame-down (top-frame))))
3432 (sb!impl::step-form step-info args))))
3433 ;; And proceed based on its return value.
3434 (if step-in
3435 ;; STEP-INTO was selected. Use *STEP-OUT* to
3436 ;; let the stepper know that selecting the
3437 ;; STEP-OUT restart is valid inside this
3438 (let ((sb!impl::*step-out* :maybe))
3439 ;; Pass the return values of the call to
3440 ;; STEP-VALUES, which will signal a
3441 ;; condition with them in the VALUES slot.
3442 (unwind-protect
3443 (multiple-value-call #'sb!impl::step-values
3444 step-info
3445 (call))
3446 ;; If the user selected the STEP-OUT
3447 ;; restart during the call, resume
3448 ;; stepping
3449 (when (eq sb!impl::*step-out* t)
3450 (sb!impl::enable-stepping))))
3451 ;; STEP-NEXT / CONTINUE / OUT selected:
3452 ;; Disable the stepper for the duration of
3453 ;; the call.
3454 (sb!impl::with-stepping-disabled
3455 (call)))))))
3456 (new-callee (etypecase callee
3457 (fdefn
3458 (let ((fdefn (make-fdefn (gensym))))
3459 (setf (fdefn-fun fdefn) fun)
3460 fdefn))
3461 (function fun))))
3462 ;; And then store the wrapper in the same place.
3463 (setf (context-register context callee-register-offset)
3464 (get-lisp-obj-address new-callee)))))
3466 ;;; Given a signal context, fetch the step-info that's been stored in
3467 ;;; the debug info at the trap point.
3468 (defun single-step-info-from-context (context)
3469 (multiple-value-bind (pc-offset code)
3470 (compute-lra-data-from-pc (context-pc context))
3471 (let* ((debug-fun (debug-fun-from-pc code pc-offset))
3472 (location (code-location-from-pc debug-fun
3473 pc-offset
3474 nil)))
3475 (handler-case
3476 (progn
3477 (fill-in-code-location location)
3478 (code-location-debug-source location)
3479 (compiled-code-location-step-info location))
3480 (debug-condition ()
3481 nil)))))
3483 ;;; Return the frame that triggered a single-step condition. Used to
3484 ;;; provide a *STACK-TOP-HINT*.
3485 (defun find-stepped-frame ()
3486 (or *step-frame*
3487 (top-frame)))