1.0.12.10: sequence optimizations: SUBSEQ, part 1
[sbcl/pkhuong.git] / src / compiler / seqtran.lisp
blob3efefa24a62364a9828743a7ef02a5ec2d9532d7
1 ;;;; optimizers for list and sequence functions
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!C")
14 ;;;; mapping onto lists: the MAPFOO functions
16 (defun mapfoo-transform (fn arglists accumulate take-car)
17 (collect ((do-clauses)
18 (args-to-fn)
19 (tests))
20 (let ((n-first (gensym)))
21 (dolist (a (if accumulate
22 arglists
23 `(,n-first ,@(rest arglists))))
24 (let ((v (gensym)))
25 (do-clauses `(,v ,a (cdr ,v)))
26 (tests `(endp ,v))
27 (args-to-fn (if take-car `(car ,v) v))))
29 (let* ((fn-sym (gensym)) ; for ONCE-ONLY-ish purposes
30 (call `(%funcall ,fn-sym . ,(args-to-fn)))
31 (endtest `(or ,@(tests))))
33 `(let ((,fn-sym (%coerce-callable-to-fun ,fn)))
34 ,(ecase accumulate
35 (:nconc
36 (let ((temp (gensym))
37 (map-result (gensym)))
38 `(let ((,map-result (list nil)))
39 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
40 (,endtest (cdr ,map-result))
41 (setq ,temp (last (nconc ,temp ,call)))))))
42 (:list
43 (let ((temp (gensym))
44 (map-result (gensym)))
45 `(let ((,map-result (list nil)))
46 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
47 (,endtest (truly-the list (cdr ,map-result)))
48 (rplacd ,temp (setq ,temp (list ,call)))))))
49 ((nil)
50 `(let ((,n-first ,(first arglists)))
51 (do-anonymous ,(do-clauses)
52 (,endtest (truly-the list ,n-first))
53 ,call)))))))))
55 (define-source-transform mapc (function list &rest more-lists)
56 (mapfoo-transform function (cons list more-lists) nil t))
58 (define-source-transform mapcar (function list &rest more-lists)
59 (mapfoo-transform function (cons list more-lists) :list t))
61 (define-source-transform mapcan (function list &rest more-lists)
62 (mapfoo-transform function (cons list more-lists) :nconc t))
64 (define-source-transform mapl (function list &rest more-lists)
65 (mapfoo-transform function (cons list more-lists) nil nil))
67 (define-source-transform maplist (function list &rest more-lists)
68 (mapfoo-transform function (cons list more-lists) :list nil))
70 (define-source-transform mapcon (function list &rest more-lists)
71 (mapfoo-transform function (cons list more-lists) :nconc nil))
73 ;;;; mapping onto sequences: the MAP function
75 ;;; MAP is %MAP plus a check to make sure that any length specified in
76 ;;; the result type matches the actual result. We also wrap it in a
77 ;;; TRULY-THE for the most specific type we can determine.
78 (deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
79 (let* ((seq-names (make-gensym-list (1+ (length seqs))))
80 (bare `(%map result-type-arg fun ,@seq-names))
81 (constant-result-type-arg-p (constant-lvar-p result-type-arg))
82 ;; what we know about the type of the result. (Note that the
83 ;; "result type" argument is not necessarily the type of the
84 ;; result, since NIL means the result has NULL type.)
85 (result-type (if (not constant-result-type-arg-p)
86 'consed-sequence
87 (let ((result-type-arg-value
88 (lvar-value result-type-arg)))
89 (if (null result-type-arg-value)
90 'null
91 result-type-arg-value)))))
92 `(lambda (result-type-arg fun ,@seq-names)
93 (truly-the ,result-type
94 ,(cond ((policy node (< safety 3))
95 ;; ANSI requires the length-related type check only
96 ;; when the SAFETY quality is 3... in other cases, we
97 ;; skip it, because it could be expensive.
98 bare)
99 ((not constant-result-type-arg-p)
100 `(sequence-of-checked-length-given-type ,bare
101 result-type-arg))
103 (let ((result-ctype (ir1-transform-specifier-type
104 result-type)))
105 (if (array-type-p result-ctype)
106 (let ((dims (array-type-dimensions result-ctype)))
107 (unless (and (listp dims) (= (length dims) 1))
108 (give-up-ir1-transform "invalid sequence type"))
109 (let ((dim (first dims)))
110 (if (eq dim '*)
111 bare
112 `(vector-of-checked-length-given-length ,bare
113 ,dim))))
114 ;; FIXME: this is wrong, as not all subtypes of
115 ;; VECTOR are ARRAY-TYPEs [consider, for
116 ;; example, (OR (VECTOR T 3) (VECTOR T
117 ;; 4))]. However, it's difficult to see what we
118 ;; should put here... maybe we should
119 ;; GIVE-UP-IR1-TRANSFORM if the type is a
120 ;; subtype of VECTOR but not an ARRAY-TYPE?
121 bare))))))))
123 ;;; Return a DO loop, mapping a function FUN to elements of
124 ;;; sequences. SEQS is a list of lvars, SEQ-NAMES - list of variables,
125 ;;; bound to sequences, INTO - a variable, which is used in
126 ;;; MAP-INTO. RESULT and BODY are forms, which can use variables
127 ;;; FUNCALL-RESULT, containing the result of application of FUN, and
128 ;;; INDEX, containing the current position in sequences.
129 (defun build-sequence-iterator (seqs seq-names &key result into body)
130 (declare (type list seqs seq-names)
131 (type symbol into))
132 (collect ((bindings)
133 (declarations)
134 (vector-lengths)
135 (tests)
136 (places))
137 (let ((found-vector-p nil))
138 (flet ((process-vector (length)
139 (unless found-vector-p
140 (setq found-vector-p t)
141 (bindings `(index 0 (1+ index)))
142 (declarations `(type index index)))
143 (vector-lengths length)))
144 (loop for seq of-type lvar in seqs
145 for seq-name in seq-names
146 for type = (lvar-type seq)
147 do (cond ((csubtypep type (specifier-type 'list))
148 (with-unique-names (index)
149 (bindings `(,index ,seq-name (cdr ,index)))
150 (declarations `(type list ,index))
151 (places `(car ,index))
152 (tests `(endp ,index))))
153 ((csubtypep type (specifier-type 'vector))
154 (process-vector `(length ,seq-name))
155 (places `(locally (declare (optimize (insert-array-bounds-checks 0)))
156 (aref ,seq-name index))))
158 (give-up-ir1-transform
159 "can't determine sequence argument type"))))
160 (when into
161 (process-vector `(array-dimension ,into 0))))
162 (when found-vector-p
163 (bindings `(length (min ,@(vector-lengths))))
164 (tests `(>= index length)))
165 `(do (,@(bindings))
166 ((or ,@(tests)) ,result)
167 (declare ,@(declarations))
168 (let ((funcall-result (funcall fun ,@(places))))
169 (declare (ignorable funcall-result))
170 ,body)))))
172 ;;; Try to compile %MAP efficiently when we can determine sequence
173 ;;; argument types at compile time.
175 ;;; Note: This transform was written to allow open coding of
176 ;;; quantifiers by expressing them in terms of (MAP NIL ..). For
177 ;;; non-NIL values of RESULT-TYPE, it's still useful, but not
178 ;;; necessarily as efficient as possible. In particular, it will be
179 ;;; inefficient when RESULT-TYPE is a SIMPLE-ARRAY with specialized
180 ;;; numeric element types. It should be straightforward to make it
181 ;;; handle that case more efficiently, but it's left as an exercise to
182 ;;; the reader, because the code is complicated enough already and I
183 ;;; don't happen to need that functionality right now. -- WHN 20000410
184 (deftransform %map ((result-type fun seq &rest seqs) * *
185 :policy (>= speed space))
186 "open code"
187 (unless (constant-lvar-p result-type)
188 (give-up-ir1-transform "RESULT-TYPE argument not constant"))
189 (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
190 (fn-1subtypep (fn x y)
191 (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
192 (if valid-p
193 subtype-p
194 (give-up-ir1-transform
195 "can't analyze sequence type relationship"))))
196 (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
197 (let* ((result-type-value (lvar-value result-type))
198 (result-supertype (cond ((null result-type-value) 'null)
199 ((1subtypep result-type-value 'vector)
200 'vector)
201 ((1subtypep result-type-value 'list)
202 'list)
204 (give-up-ir1-transform
205 "result type unsuitable")))))
206 (cond ((and result-type-value (null seqs))
207 ;; The consing arity-1 cases can be implemented
208 ;; reasonably efficiently as function calls, and the cost
209 ;; of consing should be significantly larger than
210 ;; function call overhead, so we always compile these
211 ;; cases as full calls regardless of speed-versus-space
212 ;; optimization policy.
213 (cond ((subtypep result-type-value 'list)
214 '(%map-to-list-arity-1 fun seq))
215 ( ;; (This one can be inefficient due to COERCE, but
216 ;; the current open-coded implementation has the
217 ;; same problem.)
218 (subtypep result-type-value 'vector)
219 `(coerce (%map-to-simple-vector-arity-1 fun seq)
220 ',result-type-value))
221 (t (bug "impossible (?) sequence type"))))
223 (let* ((seqs (cons seq seqs))
224 (seq-args (make-gensym-list (length seqs))))
225 (multiple-value-bind (push-dacc result)
226 (ecase result-supertype
227 (null (values nil nil))
228 (list (values `(push funcall-result acc)
229 `(nreverse acc)))
230 (vector (values `(push funcall-result acc)
231 `(coerce (nreverse acc)
232 ',result-type-value))))
233 ;; (We use the same idiom, of returning a LAMBDA from
234 ;; DEFTRANSFORM, as is used in the DEFTRANSFORMs for
235 ;; FUNCALL and ALIEN-FUNCALL, and for the same
236 ;; reason: we need to get the runtime values of each
237 ;; of the &REST vars.)
238 `(lambda (result-type fun ,@seq-args)
239 (declare (ignore result-type))
240 (let ((fun (%coerce-callable-to-fun fun))
241 (acc nil))
242 (declare (type list acc))
243 (declare (ignorable acc))
244 ,(build-sequence-iterator
245 seqs seq-args
246 :result result
247 :body push-dacc))))))))))
249 ;;; MAP-INTO
250 (deftransform map-into ((result fun &rest seqs)
251 (vector * &rest *)
253 "open code"
254 (let ((seqs-names (mapcar (lambda (x)
255 (declare (ignore x))
256 (gensym))
257 seqs)))
258 `(lambda (result fun ,@seqs-names)
259 ,(build-sequence-iterator
260 seqs seqs-names
261 :result '(when (array-has-fill-pointer-p result)
262 (setf (fill-pointer result) index))
263 :into 'result
264 :body '(locally (declare (optimize (insert-array-bounds-checks 0)))
265 (setf (aref result index) funcall-result)))
266 result)))
269 ;;; FIXME: once the confusion over doing transforms with known-complex
270 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
271 ;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
272 (deftransform elt ((s i) ((simple-array * (*)) *) *)
273 '(aref s i))
275 (deftransform elt ((s i) (list *) * :policy (< safety 3))
276 '(nth i s))
278 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
279 '(%aset s i v))
281 (deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
282 '(setf (car (nthcdr i s)) v))
284 (deftransform %check-vector-sequence-bounds ((vector start end)
285 (vector * *) *
286 :node node)
287 (if (policy node (= 0 insert-array-bounds-checks))
288 '(or end (length vector))
289 '(let ((length (length vector)))
290 (if (<= 0 start (or end length) length)
291 (or end length)
292 (sequence-bounding-indices-bad-error vector start end)))))
294 (defun specialized-list-seek-function-name (function-name key-functions)
295 (or (find-symbol (with-output-to-string (s)
296 ;; Write "%NAME-FUN1-FUN2-FUN3", etc. Not only is
297 ;; this ever so slightly faster then FORMAT, this
298 ;; way we are also proof against *PRINT-CASE*
299 ;; frobbing and such.
300 (write-char #\% s)
301 (write-string (symbol-name function-name) s)
302 (dolist (f key-functions)
303 (write-char #\- s)
304 (write-string (symbol-name f) s)))
305 (load-time-value (find-package "SB!KERNEL")))
306 (bug "Unknown list item seek transform: name=~S, key-functions=~S"
307 function-name key-functions)))
309 (defun transform-list-item-seek (name list key test test-not node)
310 ;; Key can legally be NIL, but if it's NIL for sure we pretend it's
311 ;; not there at all. If it might be NIL, make up a form to that
312 ;; ensure it is a function.
313 (multiple-value-bind (key key-form)
314 (if key
315 (let ((key-type (lvar-type key))
316 (null-type (specifier-type 'null)))
317 (cond ((csubtypep key-type null-type)
318 (values nil nil))
319 ((csubtypep null-type key-type)
320 (values key '(if key
321 (%coerce-callable-to-fun key)
322 #'identity)))
324 (values key '(%coerce-callable-to-fun key))))))
325 (let* ((funs (remove nil (list (and key 'key) (cond (test 'test)
326 (test-not 'test-not)))))
327 (target-expr (if key '(%funcall key target) 'target))
328 (test-expr (cond (test `(%funcall test item ,target-expr))
329 (test-not `(not (%funcall test-not item ,target-expr)))
330 (t `(eql item ,target-expr)))))
331 (labels ((open-code (tail)
332 (when tail
333 `(if (let ((this ',(car tail)))
334 ,(ecase name
335 (assoc
336 `(and this (let ((target (car this)))
337 ,test-expr)))
338 (member
339 `(let ((target this))
340 ,test-expr))))
341 ',(ecase name
342 (assoc (car tail))
343 (member tail))
344 ,(open-code (cdr tail)))))
345 (ensure-fun (fun)
346 (if (eq 'key fun)
347 key-form
348 `(%coerce-callable-to-fun ,fun))))
349 (let* ((cp (constant-lvar-p list))
350 (c-list (when cp (lvar-value list))))
351 (cond ((and cp c-list (policy node (>= speed space)))
352 `(let ,(mapcar (lambda (fun) `(,fun ,(ensure-fun fun))) funs)
353 ,(open-code c-list)))
354 ((and cp (not c-list))
355 ;; constant nil list -- nothing to find!
356 nil)
358 ;; specialized out-of-line version
359 `(,(specialized-list-seek-function-name name funs)
360 item list ,@(mapcar #'ensure-fun funs)))))))))
362 (deftransform member ((item list &key key test test-not) * * :node node)
363 (transform-list-item-seek 'member list key test test-not node))
365 (deftransform assoc ((item list &key key test test-not) * * :node node)
366 (transform-list-item-seek 'assoc list key test test-not node))
368 (deftransform memq ((item list) (t (constant-arg list)))
369 (labels ((rec (tail)
370 (if tail
371 `(if (eq item ',(car tail))
372 ',tail
373 ,(rec (cdr tail)))
374 nil)))
375 (rec (lvar-value list))))
377 ;;; A similar transform used to apply to MEMBER and ASSOC, but since
378 ;;; TRANSFORM-LIST-ITEM-SEEK now takes care of them those transform
379 ;;; would never fire, and (%MEMBER-TEST ITEM LIST #'EQ) should be
380 ;;; almost as fast as MEMQ.
381 (deftransform delete ((item list &key test) (t list &rest t) *)
382 "convert to EQ test"
383 ;; FIXME: The scope of this transformation could be
384 ;; widened somewhat, letting it work whenever the test is
385 ;; 'EQL and we know from the type of ITEM that it #'EQ
386 ;; works like #'EQL on it. (E.g. types FIXNUM, CHARACTER,
387 ;; and SYMBOL.)
388 ;; If TEST is EQ, apply transform, else
389 ;; if test is not EQL, then give up on transform, else
390 ;; if ITEM is not a NUMBER or is a FIXNUM, apply
391 ;; transform, else give up on transform.
392 (cond (test
393 (unless (lvar-fun-is test '(eq))
394 (give-up-ir1-transform)))
395 ((types-equal-or-intersect (lvar-type item)
396 (specifier-type 'number))
397 (give-up-ir1-transform "Item might be a number.")))
398 `(delq item list))
400 (deftransform delete-if ((pred list) (t list))
401 "open code"
402 '(do ((x list (cdr x))
403 (splice '()))
404 ((endp x) list)
405 (cond ((funcall pred (car x))
406 (if (null splice)
407 (setq list (cdr x))
408 (rplacd splice (cdr x))))
409 (t (setq splice x)))))
411 (deftransform fill ((seq item &key (start 0) (end (length seq)))
412 (vector t &key (:start t) (:end index))
414 :policy (> speed space))
415 "open code"
416 (let ((element-type (upgraded-element-type-specifier-or-give-up seq)))
417 (values
418 `(with-array-data ((data seq)
419 (start start)
420 (end end)
421 :check-fill-pointer t)
422 (declare (type (simple-array ,element-type 1) data))
423 (declare (type fixnum start end))
424 (do ((i start (1+ i)))
425 ((= i end) seq)
426 (declare (type index i))
427 ;; WITH-ARRAY-DATA did our range checks once and for all, so
428 ;; it'd be wasteful to check again on every AREF...
429 (declare (optimize (safety 0)))
430 (setf (aref data i) item)))
431 ;; ... though we still need to check that the new element can fit
432 ;; into the vector in safe code. -- CSR, 2002-07-05
433 `((declare (type ,element-type item))))))
435 ;;;; utilities
437 ;;; Return true if LVAR's only use is a non-NOTINLINE reference to a
438 ;;; global function with one of the specified NAMES.
439 (defun lvar-fun-is (lvar names)
440 (declare (type lvar lvar) (list names))
441 (let ((use (lvar-uses lvar)))
442 (and (ref-p use)
443 (let ((leaf (ref-leaf use)))
444 (and (global-var-p leaf)
445 (eq (global-var-kind leaf) :global-function)
446 (not (null (member (leaf-source-name leaf) names
447 :test #'equal))))))))
449 ;;; If LVAR is a constant lvar, the return the constant value. If it
450 ;;; is null, then return default, otherwise quietly give up the IR1
451 ;;; transform.
453 ;;; ### Probably should take an ARG and flame using the NAME.
454 (defun constant-value-or-lose (lvar &optional default)
455 (declare (type (or lvar null) lvar))
456 (cond ((not lvar) default)
457 ((constant-lvar-p lvar)
458 (lvar-value lvar))
460 (give-up-ir1-transform))))
463 ;;;; hairy sequence transforms
465 ;;; FIXME: no hairy sequence transforms in SBCL?
467 ;;; There used to be a bunch of commented out code about here,
468 ;;; containing the (apparent) beginning of hairy sequence transform
469 ;;; infrastructure. People interested in implementing better sequence
470 ;;; transforms might want to look at it for inspiration, even though
471 ;;; the actual code is ancient CMUCL -- and hence bitrotted. The code
472 ;;; was deleted in 1.0.7.23.
474 ;;;; string operations
476 ;;; We transform the case-sensitive string predicates into a non-keyword
477 ;;; version. This is an IR1 transform so that we don't have to worry about
478 ;;; changing the order of evaluation.
479 (macrolet ((def (fun pred*)
480 `(deftransform ,fun ((string1 string2 &key (start1 0) end1
481 (start2 0) end2)
482 * *)
483 `(,',pred* string1 string2 start1 end1 start2 end2))))
484 (def string< string<*)
485 (def string> string>*)
486 (def string<= string<=*)
487 (def string>= string>=*)
488 (def string= string=*)
489 (def string/= string/=*))
491 ;;; Return a form that tests the free variables STRING1 and STRING2
492 ;;; for the ordering relationship specified by LESSP and EQUALP. The
493 ;;; start and end are also gotten from the environment. Both strings
494 ;;; must be SIMPLE-BASE-STRINGs.
495 (macrolet ((def (name lessp equalp)
496 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
497 (simple-base-string simple-base-string t t t t) *)
498 `(let* ((end1 (if (not end1) (length string1) end1))
499 (end2 (if (not end2) (length string2) end2))
500 (index (sb!impl::%sp-string-compare
501 string1 start1 end1 string2 start2 end2)))
502 (if index
503 (cond ((= index end1)
504 ,(if ',lessp 'index nil))
505 ((= (+ index (- start2 start1)) end2)
506 ,(if ',lessp nil 'index))
507 ((,(if ',lessp 'char< 'char>)
508 (schar string1 index)
509 (schar string2
510 (truly-the index
511 (+ index
512 (truly-the fixnum
513 (- start2
514 start1))))))
515 index)
516 (t nil))
517 ,(if ',equalp 'end1 nil))))))
518 (def string<* t nil)
519 (def string<=* t t)
520 (def string>* nil nil)
521 (def string>=* nil t))
523 (macrolet ((def (name result-fun)
524 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
525 (simple-base-string simple-base-string t t t t) *)
526 `(,',result-fun
527 (sb!impl::%sp-string-compare
528 string1 start1 (or end1 (length string1))
529 string2 start2 (or end2 (length string2)))))))
530 (def string=* not)
531 (def string/=* identity))
534 ;;;; transforms for sequence functions
536 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp. Only applies
537 ;;; to vectors based on simple arrays.
538 (def!constant vector-data-bit-offset
539 (* sb!vm:vector-data-offset sb!vm:n-word-bits))
541 (eval-when (:compile-toplevel)
542 (defun valid-bit-bash-saetp-p (saetp)
543 ;; BIT-BASHing isn't allowed on simple vectors that contain pointers
544 (and (not (eq t (sb!vm:saetp-specifier saetp)))
545 ;; Disallowing (VECTOR NIL) also means that we won't transform
546 ;; sequence functions into bit-bashing code and we let the
547 ;; generic sequence functions signal errors if necessary.
548 (not (zerop (sb!vm:saetp-n-bits saetp)))
549 ;; Due to limitations with the current BIT-BASHing code, we can't
550 ;; BIT-BASH reliably on arrays whose element types are larger
551 ;; than the word size.
552 (<= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)))
553 ) ; EVAL-WHEN
555 ;;; FIXME: In the copy loops below, we code the loops in a strange
556 ;;; fashion:
558 ;;; (do ((i (+ src-offset length) (1- i)))
559 ;;; ((<= i 0) ...)
560 ;;; (... (aref foo (1- i)) ...))
562 ;;; rather than the more natural (and seemingly more efficient):
564 ;;; (do ((i (1- (+ src-offset length)) (1- i)))
565 ;;; ((< i 0) ...)
566 ;;; (... (aref foo i) ...))
568 ;;; (more efficient because we don't have to do the index adjusting on
569 ;;; every iteration of the loop)
571 ;;; We do this to avoid a suboptimality in SBCL's backend. In the
572 ;;; latter case, the backend thinks I is a FIXNUM (which it is), but
573 ;;; when used as an array index, the backend thinks I is a
574 ;;; POSITIVE-FIXNUM (which it is). However, since the backend thinks of
575 ;;; these as distinct storage classes, it cannot coerce a move from a
576 ;;; FIXNUM TN to a POSITIVE-FIXNUM TN. The practical effect of this
577 ;;; deficiency is that we have two extra moves and increased register
578 ;;; pressure, which can lead to some spectacularly bad register
579 ;;; allocation. (sub-FIXME: the register allocation even with the
580 ;;; strangely written loops is not always excellent, either...). Doing
581 ;;; it the first way, above, means that I is always thought of as a
582 ;;; POSITIVE-FIXNUM and there are no issues.
584 ;;; Besides, the *-WITH-OFFSET machinery will fold those index
585 ;;; adjustments in the first version into the array addressing at no
586 ;;; performance penalty!
588 ;;; This transform is critical to the performance of string streams. If
589 ;;; you tweak it, make sure that you compare the disassembly, if not the
590 ;;; performance of, the functions implementing string streams
591 ;;; (e.g. SB!IMPL::STRING-OUCH).
592 (eval-when (:compile-toplevel :load-toplevel :execute)
593 (defun make-replace-transform (saetp sequence-type1 sequence-type2)
594 `(deftransform replace ((seq1 seq2 &key (start1 0) (start2 0) end1 end2)
595 (,sequence-type1 ,sequence-type2 &rest t)
596 ,sequence-type1
597 :node node)
598 ,(cond
599 ((and saetp (valid-bit-bash-saetp-p saetp)) nil)
600 ;; If the sequence types are different, SEQ1 and SEQ2 must
601 ;; be distinct arrays, and we can open code the copy loop.
602 ((not (eql sequence-type1 sequence-type2)) nil)
603 ;; If we're not bit-bashing, only allow cases where we
604 ;; can determine the order of copying up front. (There
605 ;; are actually more cases we can handle if we know the
606 ;; amount that we're copying, but this handles the
607 ;; common cases.)
608 (t '(unless (= (constant-value-or-lose start1 0)
609 (constant-value-or-lose start2 0))
610 (give-up-ir1-transform))))
611 `(let* ((len1 (length seq1))
612 (len2 (length seq2))
613 (end1 (or end1 len1))
614 (end2 (or end2 len2))
615 (replace-len1 (- end1 start1))
616 (replace-len2 (- end2 start2)))
617 ,(unless (policy node (= safety 0))
618 `(progn
619 (unless (<= 0 start1 end1 len1)
620 (sequence-bounding-indices-bad-error seq1 start1 end1))
621 (unless (<= 0 start2 end2 len2)
622 (sequence-bounding-indices-bad-error seq2 start2 end2))))
623 ,',(cond
624 ((and saetp (valid-bit-bash-saetp-p saetp))
625 (let* ((n-element-bits (sb!vm:saetp-n-bits saetp))
626 (bash-function (intern (format nil "UB~D-BASH-COPY"
627 n-element-bits)
628 (find-package "SB!KERNEL"))))
629 `(funcall (function ,bash-function) seq2 start2
630 seq1 start1 (min replace-len1 replace-len2))))
632 ;; We can expand the loop inline here because we
633 ;; would have given up the transform (see above)
634 ;; if we didn't have constant matching start
635 ;; indices.
636 '(do ((i start1 (1+ i))
637 (j start2 (1+ j))
638 (end (+ start1
639 (min replace-len1 replace-len2))))
640 ((>= i end))
641 (declare (optimize (insert-array-bounds-checks 0)))
642 (setf (aref seq1 i) (aref seq2 j)))))
643 seq1))))
645 (macrolet
646 ((define-replace-transforms ()
647 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
648 for sequence-type = `(simple-array ,(sb!vm:saetp-specifier saetp) (*))
649 unless (= (sb!vm:saetp-typecode saetp) sb!vm::simple-array-nil-widetag)
650 collect (make-replace-transform saetp sequence-type sequence-type)
651 into forms
652 finally (return `(progn ,@forms))))
653 (define-one-transform (sequence-type1 sequence-type2)
654 (make-replace-transform nil sequence-type1 sequence-type2)))
655 (define-replace-transforms)
656 (define-one-transform simple-base-string (simple-array character (*)))
657 (define-one-transform (simple-array character (*)) simple-base-string))
659 ;;; Expand simple cases of UB<SIZE>-BASH-COPY inline. "simple" is
660 ;;; defined as those cases where we are doing word-aligned copies from
661 ;;; both the source and the destination and we are copying from the same
662 ;;; offset from both the source and the destination. (The last
663 ;;; condition is there so we can determine the direction to copy at
664 ;;; compile time rather than runtime. Remember that UB<SIZE>-BASH-COPY
665 ;;; acts like memmove, not memcpy.) These conditions may seem rather
666 ;;; restrictive, but they do catch common cases, like allocating a (* 2
667 ;;; N)-size buffer and blitting in the old N-size buffer in.
669 (defun frob-bash-transform (src src-offset
670 dst dst-offset
671 length n-elems-per-word)
672 (declare (ignore src dst length))
673 (let ((n-bits-per-elem (truncate sb!vm:n-word-bits n-elems-per-word)))
674 (multiple-value-bind (src-word src-elt)
675 (truncate (lvar-value src-offset) n-elems-per-word)
676 (multiple-value-bind (dst-word dst-elt)
677 (truncate (lvar-value dst-offset) n-elems-per-word)
678 ;; Avoid non-word aligned copies.
679 (unless (and (zerop src-elt) (zerop dst-elt))
680 (give-up-ir1-transform))
681 ;; Avoid copies where we would have to insert code for
682 ;; determining the direction of copying.
683 (unless (= src-word dst-word)
684 (give-up-ir1-transform))
685 ;; FIXME: The cross-compiler doesn't optimize TRUNCATE properly,
686 ;; so we have to do its work here.
687 `(let ((end (+ ,src-word ,(if (= n-elems-per-word 1)
688 'length
689 `(truncate (the index length) ,n-elems-per-word)))))
690 (declare (type index end))
691 ;; Handle any bits at the end.
692 (when (logtest length (1- ,n-elems-per-word))
693 (let* ((extra (mod length ,n-elems-per-word))
694 ;; FIXME: The shift amount on this ASH is
695 ;; *always* negative, but the backend doesn't
696 ;; have a NEGATIVE-FIXNUM primitive type, so we
697 ;; wind up with a pile of code that tests the
698 ;; sign of the shift count prior to shifting when
699 ;; all we need is a simple negate and shift
700 ;; right. Yuck.
701 (mask (ash #.(1- (ash 1 sb!vm:n-word-bits))
702 (* (- extra ,n-elems-per-word)
703 ,n-bits-per-elem))))
704 (setf (sb!kernel:%vector-raw-bits dst end)
705 (logior
706 (logandc2 (sb!kernel:%vector-raw-bits dst end)
707 (ash mask
708 ,(ecase sb!c:*backend-byte-order*
709 (:little-endian 0)
710 (:big-endian `(* (- ,n-elems-per-word extra)
711 ,n-bits-per-elem)))))
712 (logand (sb!kernel:%vector-raw-bits src end)
713 (ash mask
714 ,(ecase sb!c:*backend-byte-order*
715 (:little-endian 0)
716 (:big-endian `(* (- ,n-elems-per-word extra)
717 ,n-bits-per-elem)))))))))
718 ;; Copy from the end to save a register.
719 (do ((i end (1- i)))
720 ((<= i ,src-word))
721 (setf (sb!kernel:%vector-raw-bits dst (1- i))
722 (sb!kernel:%vector-raw-bits src (1- i)))))))))
724 #.(loop for i = 1 then (* i 2)
725 collect `(deftransform ,(intern (format nil "UB~D-BASH-COPY" i)
726 "SB!KERNEL")
727 ((src src-offset
728 dst dst-offset
729 length)
730 ((simple-unboxed-array (*))
731 (constant-arg index)
732 (simple-unboxed-array (*))
733 (constant-arg index)
734 index)
736 (frob-bash-transform src src-offset
737 dst dst-offset length
738 ,(truncate sb!vm:n-word-bits i))) into forms
739 until (= i sb!vm:n-word-bits)
740 finally (return `(progn ,@forms)))
742 ;;; We expand copy loops inline in SUBSEQ and COPY-SEQ if we're copying
743 ;;; arrays with elements of size >= the word size. We do this because
744 ;;; we know the arrays cannot alias (one was just consed), therefore we
745 ;;; can determine at compile time the direction to copy, and for
746 ;;; word-sized elements, UB<WORD-SIZE>-BASH-COPY will do a bit of
747 ;;; needless checking to figure out what's going on. The same
748 ;;; considerations apply if we are copying elements larger than the word
749 ;;; size, with the additional twist that doing it inline is likely to
750 ;;; cons far less than calling REPLACE and letting generic code do the
751 ;;; work.
753 ;;; However, we do not do this for elements whose size is < than the
754 ;;; word size because we don't want to deal with any alignment issues
755 ;;; inline. The UB*-BASH-COPY transforms might fix things up later
756 ;;; anyway.
758 (defun maybe-expand-copy-loop-inline (src src-offset dst dst-offset length
759 element-type)
760 (let ((saetp (find-saetp element-type)))
761 (aver saetp)
762 (if (>= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)
763 (expand-aref-copy-loop src src-offset dst dst-offset length)
764 `(locally (declare (optimize (safety 0)))
765 (replace ,dst ,src :start1 ,dst-offset :start2 ,src-offset :end1 ,length)))))
767 (defun expand-aref-copy-loop (src src-offset dst dst-offset length)
768 (if (eql src-offset dst-offset)
769 `(do ((i (+ ,src-offset ,length) (1- i)))
770 ((<= i ,src-offset))
771 (declare (optimize (insert-array-bounds-checks 0)))
772 (setf (aref ,dst (1- i)) (aref ,src (1- i))))
773 ;; KLUDGE: The compiler is not able to derive that (+ offset
774 ;; length) must be a fixnum, but arrives at (unsigned-byte 29).
775 ;; We, however, know it must be so, as by this point the bounds
776 ;; have already been checked.
777 `(do ((i (truly-the fixnum (+ ,src-offset ,length)) (1- i))
778 (j (+ ,dst-offset ,length) (1- j)))
779 ((<= i ,src-offset))
780 (declare (optimize (insert-array-bounds-checks 0))
781 (type (integer 0 #.sb!xc:array-dimension-limit) j i))
782 (setf (aref ,dst (1- j)) (aref ,src (1- i))))))
784 ;;; SUBSEQ, COPY-SEQ
786 (deftransform subseq ((seq start &optional end)
787 (vector t &optional t)
789 :node node)
790 (let ((type (lvar-type seq)))
791 (cond
792 ((and (array-type-p type)
793 (csubtypep type (specifier-type '(or (simple-unboxed-array (*)) simple-vector))))
794 (let ((element-type (type-specifier (array-type-specialized-element-type type))))
795 `(let* ((length (length seq))
796 (end (or end length)))
797 ,(unless (policy node (zerop insert-array-bounds-checks))
798 '(progn
799 (unless (<= 0 start end length)
800 (sequence-bounding-indices-bad-error seq start end))))
801 (let* ((size (- end start))
802 (result (make-array size :element-type ',element-type)))
803 ,(maybe-expand-copy-loop-inline 'seq (if (constant-lvar-p start)
804 (lvar-value start)
805 'start)
806 'result 0 'size element-type)
807 result))))
809 '(vector-subseq* seq start end)))))
811 (deftransform subseq ((seq start &optional end)
812 (list t &optional t))
813 `(list-subseq* seq start end))
815 (deftransform subseq ((seq start &optional end)
816 ((and sequence (not vector) (not list)) t &optional t))
817 '(sb!sequence:subseq seq start end))
819 (deftransform copy-seq ((seq) ((or (simple-unboxed-array (*)) simple-vector)) *)
820 (let ((array-type (lvar-type seq)))
821 (unless (array-type-p array-type)
822 (give-up-ir1-transform))
823 (let ((element-type (type-specifier (array-type-specialized-element-type array-type))))
824 `(let* ((length (length seq))
825 (result (make-array length :element-type ',element-type)))
826 ,(maybe-expand-copy-loop-inline 'seq 0 'result 0 'length element-type)
827 result))))
829 ;;; FIXME: it really should be possible to take advantage of the
830 ;;; macros used in code/seq.lisp here to avoid duplication of code,
831 ;;; and enable even funkier transformations.
832 (deftransform search ((pattern text &key (start1 0) (start2 0) end1 end2
833 (test #'eql)
834 (key #'identity)
835 from-end)
836 (vector vector &rest t)
838 :node node
839 :policy (> speed (max space safety)))
840 "open code"
841 (let ((from-end (when (lvar-p from-end)
842 (unless (constant-lvar-p from-end)
843 (give-up-ir1-transform ":FROM-END is not constant."))
844 (lvar-value from-end)))
845 (keyp (lvar-p key))
846 (testp (lvar-p test))
847 (check-bounds-p (policy node (plusp insert-array-bounds-checks))))
848 `(block search
849 (flet ((oops (vector start end)
850 (sequence-bounding-indices-bad-error vector start end)))
851 (let* ((len1 (length pattern))
852 (len2 (length text))
853 (end1 (or end1 len1))
854 (end2 (or end2 len2))
855 ,@(when keyp
856 '((key (coerce key 'function))))
857 ,@(when testp
858 '((test (coerce test 'function)))))
859 (declare (type index start1 start2 end1 end2))
860 ,@(when check-bounds-p
861 `((unless (<= start1 end1 len1)
862 (oops pattern start1 end1))
863 (unless (<= start2 end2 len2)
864 (oops pattern start2 end2))))
865 (do (,(if from-end
866 '(index2 (- end2 (- end1 start1)) (1- index2))
867 '(index2 start2 (1+ index2))))
868 (,(if from-end
869 '(< index2 start2)
870 '(>= index2 end2))
871 nil)
872 ;; INDEX2 is FIXNUM, not an INDEX, as right before the loop
873 ;; terminates is hits -1 when :FROM-END is true and :START2
874 ;; is 0.
875 (declare (type fixnum index2))
876 (when (do ((index1 start1 (1+ index1))
877 (index2 index2 (1+ index2)))
878 ((>= index1 end1) t)
879 (declare (type index index1 index2)
880 (optimize (insert-array-bounds-checks 0)))
881 ,@(unless from-end
882 '((when (= index2 end2)
883 (return-from search nil))))
884 (unless (,@(if testp
885 '(funcall test)
886 '(eql))
887 ,(if keyp
888 '(funcall key (aref pattern index1))
889 '(aref pattern index1))
890 ,(if keyp
891 '(funcall key (aref text index2))
892 '(aref text index2)))
893 (return nil)))
894 (return index2))))))))
897 ;;; Open-code CONCATENATE for strings. It would be possible to extend
898 ;;; this transform to non-strings, but I chose to just do the case that
899 ;;; should cover 95% of CONCATENATE performance complaints for now.
900 ;;; -- JES, 2007-11-17
901 (deftransform concatenate ((result-type &rest lvars)
902 (symbol &rest sequence)
904 :policy (> speed space))
905 (unless (constant-lvar-p result-type)
906 (give-up-ir1-transform))
907 (let* ((element-type (let ((type (lvar-value result-type)))
908 ;; Only handle the simple result type cases. If
909 ;; somebody does (CONCATENATE '(STRING 6) ...)
910 ;; their code won't be optimized, but nobody does
911 ;; that in practice.
912 (case type
913 ((string simple-string) 'character)
914 ((base-string simple-base-string) 'base-char)
915 (t (give-up-ir1-transform)))))
916 (vars (loop for x in lvars collect (gensym)))
917 (lvar-values (loop for lvar in lvars
918 collect (when (constant-lvar-p lvar)
919 (lvar-value lvar))))
920 (lengths
921 (loop for value in lvar-values
922 for var in vars
923 collect (if value
924 (length value)
925 `(sb!impl::string-dispatch ((simple-array * (*))
926 sequence)
927 ,var
928 (declare (muffle-conditions compiler-note))
929 (length ,var))))))
930 `(apply
931 (lambda ,vars
932 (declare (ignorable ,@vars))
933 (let* ((.length. (+ ,@lengths))
934 (.pos. 0)
935 (.string. (make-string .length. :element-type ',element-type)))
936 (declare (type index .length. .pos.)
937 (muffle-conditions compiler-note))
938 ,@(loop for value in lvar-values
939 for var in vars
940 collect (if (stringp value)
941 ;; Fold the array reads for constant arguments
942 `(progn
943 ,@(loop for c across value
944 collect `(setf (aref .string.
945 .pos.) ,c)
946 collect `(incf .pos.)))
947 `(sb!impl::string-dispatch
948 (#!+sb-unicode
949 (simple-array character (*))
950 (simple-array base-char (*))
952 ,var
953 (replace .string. ,var :start1 .pos.)
954 (incf .pos. (length ,var)))))
955 .string.))
956 lvars)))
958 ;;;; CONS accessor DERIVE-TYPE optimizers
960 (defoptimizer (car derive-type) ((cons))
961 (let ((type (lvar-type cons))
962 (null-type (specifier-type 'null)))
963 (cond ((eq type null-type)
964 null-type)
965 ((cons-type-p type)
966 (cons-type-car-type type)))))
968 (defoptimizer (cdr derive-type) ((cons))
969 (let ((type (lvar-type cons))
970 (null-type (specifier-type 'null)))
971 (cond ((eq type null-type)
972 null-type)
973 ((cons-type-p type)
974 (cons-type-cdr-type type)))))
976 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
978 ;;; We want to make sure that %FIND-POSITION is inline-expanded into
979 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
980 ;;; expansion, so we factor out the condition into this function.
981 (defun check-inlineability-of-find-position-if (sequence from-end)
982 (let ((ctype (lvar-type sequence)))
983 (cond ((csubtypep ctype (specifier-type 'vector))
984 ;; It's not worth trying to inline vector code unless we
985 ;; know a fair amount about it at compile time.
986 (upgraded-element-type-specifier-or-give-up sequence)
987 (unless (constant-lvar-p from-end)
988 (give-up-ir1-transform
989 "FROM-END argument value not known at compile time")))
990 ((csubtypep ctype (specifier-type 'list))
991 ;; Inlining on lists is generally worthwhile.
994 (give-up-ir1-transform
995 "sequence type not known at compile time")))))
997 ;;; %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for LIST data
998 (macrolet ((def (name condition)
999 `(deftransform ,name ((predicate sequence from-end start end key)
1000 (function list t t t function)
1002 :policy (> speed space))
1003 "expand inline"
1004 `(let ((index 0)
1005 (find nil)
1006 (position nil))
1007 (declare (type index index))
1008 (dolist (i sequence
1009 (if (and end (> end index))
1010 (sequence-bounding-indices-bad-error
1011 sequence start end)
1012 (values find position)))
1013 (let ((key-i (funcall key i)))
1014 (when (and end (>= index end))
1015 (return (values find position)))
1016 (when (>= index start)
1017 (,',condition (funcall predicate key-i)
1018 ;; This hack of dealing with non-NIL
1019 ;; FROM-END for list data by iterating
1020 ;; forward through the list and keeping
1021 ;; track of the last time we found a match
1022 ;; might be more screwy than what the user
1023 ;; expects, but it seems to be allowed by
1024 ;; the ANSI standard. (And if the user is
1025 ;; screwy enough to ask for FROM-END
1026 ;; behavior on list data, turnabout is
1027 ;; fair play.)
1029 ;; It's also not enormously efficient,
1030 ;; calling PREDICATE and KEY more often
1031 ;; than necessary; but all the
1032 ;; alternatives seem to have their own
1033 ;; efficiency problems.
1034 (if from-end
1035 (setf find i
1036 position index)
1037 (return (values i index))))))
1038 (incf index))))))
1039 (def %find-position-if when)
1040 (def %find-position-if-not unless))
1042 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
1043 ;;; without loss of efficiency. (I.e., the optimizer should be able
1044 ;;; to straighten everything out.)
1045 (deftransform %find-position ((item sequence from-end start end key test)
1046 (t list t t t t t)
1048 :policy (> speed space))
1049 "expand inline"
1050 '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
1051 ;; The order of arguments for asymmetric tests
1052 ;; (e.g. #'<, as opposed to order-independent
1053 ;; tests like #'=) is specified in the spec
1054 ;; section 17.2.1 -- the O/Zi stuff there.
1055 (lambda (i)
1056 (funcall test-fun item i)))
1057 sequence
1058 from-end
1059 start
1061 (%coerce-callable-to-fun key)))
1063 ;;; The inline expansions for the VECTOR case are saved as macros so
1064 ;;; that we can share them between the DEFTRANSFORMs and the default
1065 ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because
1066 ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.)
1067 (defun %find-position-or-find-position-if-vector-expansion (sequence-arg
1068 from-end
1069 start
1070 end-arg
1071 element
1072 done-p-expr)
1073 (with-unique-names (offset block index n-sequence sequence end)
1074 `(let* ((,n-sequence ,sequence-arg))
1075 (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
1076 (,start ,start)
1077 (,end ,end-arg)
1078 :check-fill-pointer t)
1079 (block ,block
1080 (macrolet ((maybe-return ()
1081 ;; WITH-ARRAY-DATA has already performed bounds
1082 ;; checking, so we can safely elide the checks
1083 ;; in the inner loop.
1084 '(let ((,element (locally (declare (optimize (insert-array-bounds-checks 0)))
1085 (aref ,sequence ,index))))
1086 (when ,done-p-expr
1087 (return-from ,block
1088 (values ,element
1089 (- ,index ,offset)))))))
1090 (if ,from-end
1091 (loop for ,index
1092 ;; (If we aren't fastidious about declaring that
1093 ;; INDEX might be -1, then (FIND 1 #() :FROM-END T)
1094 ;; can send us off into never-never land, since
1095 ;; INDEX is initialized to -1.)
1096 of-type index-or-minus-1
1097 from (1- ,end) downto ,start do
1098 (maybe-return))
1099 (loop for ,index of-type index from ,start below ,end do
1100 (maybe-return))))
1101 (values nil nil))))))
1103 (def!macro %find-position-vector-macro (item sequence
1104 from-end start end key test)
1105 (with-unique-names (element)
1106 (%find-position-or-find-position-if-vector-expansion
1107 sequence
1108 from-end
1109 start
1111 element
1112 ;; (See the LIST transform for a discussion of the correct
1113 ;; argument order, i.e. whether the searched-for ,ITEM goes before
1114 ;; or after the checked sequence element.)
1115 `(funcall ,test ,item (funcall ,key ,element)))))
1117 (def!macro %find-position-if-vector-macro (predicate sequence
1118 from-end start end key)
1119 (with-unique-names (element)
1120 (%find-position-or-find-position-if-vector-expansion
1121 sequence
1122 from-end
1123 start
1125 element
1126 `(funcall ,predicate (funcall ,key ,element)))))
1128 (def!macro %find-position-if-not-vector-macro (predicate sequence
1129 from-end start end key)
1130 (with-unique-names (element)
1131 (%find-position-or-find-position-if-vector-expansion
1132 sequence
1133 from-end
1134 start
1136 element
1137 `(not (funcall ,predicate (funcall ,key ,element))))))
1139 ;;; %FIND-POSITION, %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for
1140 ;;; VECTOR data
1141 (deftransform %find-position-if ((predicate sequence from-end start end key)
1142 (function vector t t t function)
1144 :policy (> speed space))
1145 "expand inline"
1146 (check-inlineability-of-find-position-if sequence from-end)
1147 '(%find-position-if-vector-macro predicate sequence
1148 from-end start end key))
1150 (deftransform %find-position-if-not ((predicate sequence from-end start end key)
1151 (function vector t t t function)
1153 :policy (> speed space))
1154 "expand inline"
1155 (check-inlineability-of-find-position-if sequence from-end)
1156 '(%find-position-if-not-vector-macro predicate sequence
1157 from-end start end key))
1159 (deftransform %find-position ((item sequence from-end start end key test)
1160 (t vector t t t function function)
1162 :policy (> speed space))
1163 "expand inline"
1164 (check-inlineability-of-find-position-if sequence from-end)
1165 '(%find-position-vector-macro item sequence
1166 from-end start end key test))
1168 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1169 ;;; POSITION-IF, etc.
1170 (define-source-transform effective-find-position-test (test test-not)
1171 (once-only ((test test)
1172 (test-not test-not))
1173 `(cond
1174 ((and ,test ,test-not)
1175 (error "can't specify both :TEST and :TEST-NOT"))
1176 (,test (%coerce-callable-to-fun ,test))
1177 (,test-not
1178 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1179 ;; inefficient, but since the TEST-NOT option is deprecated
1180 ;; anyway, we don't care.)
1181 (complement (%coerce-callable-to-fun ,test-not)))
1182 (t #'eql))))
1183 (define-source-transform effective-find-position-key (key)
1184 (once-only ((key key))
1185 `(if ,key
1186 (%coerce-callable-to-fun ,key)
1187 #'identity)))
1189 (macrolet ((define-find-position (fun-name values-index)
1190 `(deftransform ,fun-name ((item sequence &key
1191 from-end (start 0) end
1192 key test test-not)
1193 (t (or list vector) &rest t))
1194 '(nth-value ,values-index
1195 (%find-position item sequence
1196 from-end start
1198 (effective-find-position-key key)
1199 (effective-find-position-test
1200 test test-not))))))
1201 (define-find-position find 0)
1202 (define-find-position position 1))
1204 (macrolet ((define-find-position-if (fun-name values-index)
1205 `(deftransform ,fun-name ((predicate sequence &key
1206 from-end (start 0)
1207 end key)
1208 (t (or list vector) &rest t))
1209 '(nth-value
1210 ,values-index
1211 (%find-position-if (%coerce-callable-to-fun predicate)
1212 sequence from-end
1213 start end
1214 (effective-find-position-key key))))))
1215 (define-find-position-if find-if 0)
1216 (define-find-position-if position-if 1))
1218 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1219 ;;; didn't bother to worry about optimizing them, except note that on
1220 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1221 ;;; sbcl-devel
1223 ;;; My understanding is that while the :test-not argument is
1224 ;;; deprecated in favour of :test (complement #'foo) because of
1225 ;;; semantic difficulties (what happens if both :test and :test-not
1226 ;;; are supplied, etc) the -if-not variants, while officially
1227 ;;; deprecated, would be undeprecated were X3J13 actually to produce
1228 ;;; a revised standard, as there are perfectly legitimate idiomatic
1229 ;;; reasons for allowing the -if-not versions equal status,
1230 ;;; particularly remove-if-not (== filter).
1232 ;;; This is only an informal understanding, I grant you, but
1233 ;;; perhaps it's worth optimizing the -if-not versions in the same
1234 ;;; way as the others?
1236 ;;; FIXME: Maybe remove uses of these deprecated functions within the
1237 ;;; implementation of SBCL.
1238 (macrolet ((define-find-position-if-not (fun-name values-index)
1239 `(deftransform ,fun-name ((predicate sequence &key
1240 from-end (start 0)
1241 end key)
1242 (t (or list vector) &rest t))
1243 '(nth-value
1244 ,values-index
1245 (%find-position-if-not (%coerce-callable-to-fun predicate)
1246 sequence from-end
1247 start end
1248 (effective-find-position-key key))))))
1249 (define-find-position-if-not find-if-not 0)
1250 (define-find-position-if-not position-if-not 1))