1.0.37.57: better DEFMETHOD pretty-printing
[sbcl/pkhuong.git] / src / runtime / x86-darwin-os.c
blobad41b0fe4ff102fafdb76af320f2947743d27034
1 #ifdef LISP_FEATURE_SB_THREAD
2 #include <architecture/i386/table.h>
3 #include <i386/user_ldt.h>
4 #include <mach/mach_init.h>
5 #endif
7 #include "thread.h"
8 #include "validate.h"
9 #include "runtime.h"
10 #include "interrupt.h"
11 #include "x86-darwin-os.h"
12 #include "genesis/fdefn.h"
14 #include <mach/mach.h>
15 #include <mach/mach_error.h>
16 #include <mach/mach_types.h>
17 #include <mach/sync_policy.h>
18 #include <mach/vm_region.h>
19 #include <mach/machine/thread_state.h>
20 #include <mach/machine/thread_status.h>
21 #include <sys/_types.h>
22 #include <sys/ucontext.h>
23 #include <pthread.h>
24 #include <assert.h>
25 #include <stdlib.h>
26 #include <stdio.h>
28 #ifdef LISP_FEATURE_SB_THREAD
30 pthread_mutex_t modify_ldt_lock = PTHREAD_MUTEX_INITIALIZER;
32 void set_data_desc_size(data_desc_t* desc, unsigned long size)
34 desc->limit00 = (size - 1) & 0xffff;
35 desc->limit16 = ((size - 1) >> 16) &0xf;
38 void set_data_desc_addr(data_desc_t* desc, void* addr)
40 desc->base00 = (unsigned int)addr & 0xffff;
41 desc->base16 = ((unsigned int)addr & 0xff0000) >> 16;
42 desc->base24 = ((unsigned int)addr & 0xff000000) >> 24;
45 #endif
47 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
48 kern_return_t mach_thread_init(mach_port_t thread_exception_port);
49 #endif
51 int arch_os_thread_init(struct thread *thread) {
52 #ifdef LISP_FEATURE_SB_THREAD
53 int n;
54 sel_t sel;
56 data_desc_t ldt_entry = { 0, 0, 0, DESC_DATA_WRITE,
57 3, 1, 0, DESC_DATA_32B, DESC_GRAN_BYTE, 0 };
59 set_data_desc_addr(&ldt_entry, thread);
60 set_data_desc_size(&ldt_entry, dynamic_values_bytes);
62 thread_mutex_lock(&modify_ldt_lock);
63 n = i386_set_ldt(LDT_AUTO_ALLOC, (union ldt_entry*) &ldt_entry, 1);
65 if (n < 0) {
66 perror("i386_set_ldt");
67 lose("unexpected i386_set_ldt(..) failure\n");
69 thread_mutex_unlock(&modify_ldt_lock);
71 FSHOW_SIGNAL((stderr, "/ TLS: Allocated LDT %x\n", n));
72 sel.index = n;
73 sel.rpl = USER_PRIV;
74 sel.ti = SEL_LDT;
76 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(sel));
78 thread->tls_cookie=n;
79 pthread_setspecific(specials,thread);
80 #endif
81 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
82 mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(thread));
83 #endif
85 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
86 stack_t sigstack;
88 /* Signal handlers are run on the control stack, so if it is exhausted
89 * we had better use an alternate stack for whatever signal tells us
90 * we've exhausted it */
91 sigstack.ss_sp=((void *) thread)+dynamic_values_bytes;
92 sigstack.ss_flags=0;
93 sigstack.ss_size = 32*SIGSTKSZ;
94 sigaltstack(&sigstack,0);
95 #endif
96 return 1; /* success */
99 int arch_os_thread_cleanup(struct thread *thread) {
100 #if defined(LISP_FEATURE_SB_THREAD)
101 int n = thread->tls_cookie;
103 /* Set the %%fs register back to 0 and free the ldt by setting it
104 * to NULL.
106 FSHOW_SIGNAL((stderr, "/ TLS: Freeing LDT %x\n", n));
108 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(0));
109 thread_mutex_lock(&modify_ldt_lock);
110 i386_set_ldt(n, NULL, 1);
111 thread_mutex_unlock(&modify_ldt_lock);
112 #endif
113 return 1; /* success */
116 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
118 void sigill_handler(int signal, siginfo_t *siginfo, os_context_t *context);
119 void sigtrap_handler(int signal, siginfo_t *siginfo, os_context_t *context);
120 void memory_fault_handler(int signal, siginfo_t *siginfo,
121 os_context_t *context);
123 /* exc_server handles mach exception messages from the kernel and
124 * calls catch exception raise. We use the system-provided
125 * mach_msg_server, which, I assume, calls exc_server in a loop.
128 extern boolean_t exc_server();
130 /* This executes in the faulting thread as part of the signal
131 * emulation. It is passed a context with the uc_mcontext field
132 * pointing to a valid block of memory. */
133 void build_fake_signal_context(os_context_t *context,
134 x86_thread_state32_t *thread_state,
135 x86_float_state32_t *float_state) {
136 pthread_sigmask(0, NULL, &context->uc_sigmask);
137 context->uc_mcontext->SS = *thread_state;
138 context->uc_mcontext->FS = *float_state;
141 /* This executes in the faulting thread as part of the signal
142 * emulation. It is effectively the inverse operation from above. */
143 void update_thread_state_from_context(x86_thread_state32_t *thread_state,
144 x86_float_state32_t *float_state,
145 os_context_t *context) {
146 *thread_state = context->uc_mcontext->SS;
147 *float_state = context->uc_mcontext->FS;
148 pthread_sigmask(SIG_SETMASK, &context->uc_sigmask, NULL);
151 /* Modify a context to push new data on its stack. */
152 void push_context(u32 data, x86_thread_state32_t *thread_state)
154 u32 *stack_pointer;
156 stack_pointer = (u32*) thread_state->ESP;
157 *(--stack_pointer) = data;
158 thread_state->ESP = (unsigned int) stack_pointer;
161 void align_context_stack(x86_thread_state32_t *thread_state)
163 /* 16byte align the stack (provided that the stack is, as it
164 * should be, 4byte aligned. */
165 while (thread_state->ESP & 15) push_context(0, thread_state);
168 /* Stack allocation starts with a context that has a mod-4 ESP value
169 * and needs to leave a context with a mod-16 ESP that will restore
170 * the old ESP value and other register state when activated. The
171 * first part of this is the recovery trampoline, which loads ESP from
172 * EBP, pops EBP, and returns. */
173 asm("_stack_allocation_recover: movl %ebp, %esp; popl %ebp; ret;");
175 void open_stack_allocation(x86_thread_state32_t *thread_state)
177 void stack_allocation_recover(void);
179 push_context(thread_state->EIP, thread_state);
180 push_context(thread_state->EBP, thread_state);
181 thread_state->EBP = thread_state->ESP;
182 thread_state->EIP = (unsigned int) stack_allocation_recover;
184 align_context_stack(thread_state);
187 /* Stack allocation of data starts with a context with a mod-16 ESP
188 * value and reserves some space on it by manipulating the ESP
189 * register. */
190 void *stack_allocate(x86_thread_state32_t *thread_state, size_t size)
192 /* round up size to 16byte multiple */
193 size = (size + 15) & -16;
195 thread_state->ESP = ((u32)thread_state->ESP) - size;
197 return (void *)thread_state->ESP;
200 /* Arranging to invoke a C function is tricky, as we have to assume
201 * cdecl calling conventions (caller removes args) and x86/darwin
202 * alignment requirements. The simplest way to arrange this,
203 * actually, is to open a new stack allocation.
204 * WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
205 void call_c_function_in_context(x86_thread_state32_t *thread_state,
206 void *function,
207 int nargs,
208 ...)
210 va_list ap;
211 int i;
212 u32 *stack_pointer;
214 /* Set up to restore stack on exit. */
215 open_stack_allocation(thread_state);
217 /* Have to keep stack 16byte aligned on x86/darwin. */
218 for (i = (3 & -nargs); i; i--) {
219 push_context(0, thread_state);
222 thread_state->ESP = ((u32)thread_state->ESP) - nargs * 4;
223 stack_pointer = (u32 *)thread_state->ESP;
225 va_start(ap, nargs);
226 for (i = 0; i < nargs; i++) {
227 //push_context(va_arg(ap, u32), thread_state);
228 stack_pointer[i] = va_arg(ap, u32);
230 va_end(ap);
232 push_context(thread_state->EIP, thread_state);
233 thread_state->EIP = (unsigned int) function;
236 void signal_emulation_wrapper(x86_thread_state32_t *thread_state,
237 x86_float_state32_t *float_state,
238 int signal,
239 siginfo_t *siginfo,
240 void (*handler)(int, siginfo_t *, void *))
243 /* CLH: FIXME **NOTE: HACK ALERT!** Ideally, we would allocate
244 * context and regs on the stack as local variables, but this
245 * causes problems for the lisp debugger. When it walks the stack
246 * for a back trace, it sees the 1) address of the local variable
247 * on the stack and thinks that is a frame pointer to a lisp
248 * frame, and, 2) the address of the sap that we alloc'ed in
249 * dynamic space and thinks that is a return address, so it,
250 * heuristicly (and wrongly), chooses that this should be
251 * interpreted as a lisp frame instead of as a C frame.
252 * We can work around this in this case by os_validating the
253 * context (and regs just for symmetry).
256 os_context_t *context;
257 mcontext_t *regs;
259 context = (os_context_t*) os_validate(0, sizeof(os_context_t));
260 regs = (mcontext_t*) os_validate(0, sizeof(mcontext_t));
261 context->uc_mcontext = regs;
263 /* when BSD signals are fired, they mask they signals in sa_mask
264 which always seem to be the blockable_sigset, for us, so we
265 need to:
266 1) save the current sigmask
267 2) block blockable signals
268 3) call the signal handler
269 4) restore the sigmask */
271 build_fake_signal_context(context, thread_state, float_state);
273 block_blockable_signals(0, 0);
275 handler(signal, siginfo, context);
277 update_thread_state_from_context(thread_state, float_state, context);
279 os_invalidate((os_vm_address_t)context, sizeof(os_context_t));
280 os_invalidate((os_vm_address_t)regs, sizeof(mcontext_t));
282 /* Trap to restore the signal context. */
283 asm volatile ("movl %0, %%eax; movl %1, %%ebx; .long 0xffff0b0f"
284 : : "r" (thread_state), "r" (float_state));
287 /* Convenience wrapper for the above */
288 void call_handler_on_thread(mach_port_t thread,
289 x86_thread_state32_t *thread_state,
290 int signal,
291 siginfo_t *siginfo,
292 void (*handler)(int, siginfo_t *, void *))
294 x86_thread_state32_t new_state;
295 x86_thread_state32_t *save_thread_state;
296 x86_float_state32_t *save_float_state;
297 mach_msg_type_number_t state_count;
298 siginfo_t *save_siginfo;
299 kern_return_t ret;
300 /* Initialize the new state */
301 new_state = *thread_state;
302 open_stack_allocation(&new_state);
303 stack_allocate(&new_state, 256);
304 /* Save old state */
305 save_thread_state = (x86_thread_state32_t *)stack_allocate(&new_state, sizeof(*save_thread_state));
306 *save_thread_state = *thread_state;
307 /* Save float state */
308 save_float_state = (x86_float_state32_t *)stack_allocate(&new_state, sizeof(*save_float_state));
309 state_count = x86_FLOAT_STATE32_COUNT;
310 if ((ret = thread_get_state(thread,
311 x86_FLOAT_STATE32,
312 (thread_state_t)save_float_state,
313 &state_count)) != KERN_SUCCESS)
314 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
315 /* Set up siginfo */
316 save_siginfo = stack_allocate(&new_state, sizeof(*siginfo));
317 if (siginfo == NULL)
318 save_siginfo = siginfo;
319 else
320 *save_siginfo = *siginfo;
321 /* Prepare to call */
322 call_c_function_in_context(&new_state,
323 signal_emulation_wrapper,
325 save_thread_state,
326 save_float_state,
327 signal,
328 save_siginfo,
329 handler);
330 /* Update the thread state */
331 state_count = x86_THREAD_STATE32_COUNT;
332 if ((ret = thread_set_state(thread,
333 x86_THREAD_STATE32,
334 (thread_state_t)&new_state,
335 state_count)) != KERN_SUCCESS)
336 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
340 #if defined DUMP_CONTEXT
341 void dump_context(x86_thread_state32_t *thread_state)
343 int i;
344 u32 *stack_pointer;
346 printf("eax: %08lx ecx: %08lx edx: %08lx ebx: %08lx\n",
347 thread_state->EAX, thread_state->ECX, thread_state->EDX, thread_state->EAX);
348 printf("esp: %08lx ebp: %08lx esi: %08lx edi: %08lx\n",
349 thread_state->ESP, thread_state->EBP, thread_state->ESI, thread_state->EDI);
350 printf("eip: %08lx eflags: %08lx\n",
351 thread_state->EIP, thread_state->EFLAGS);
352 printf("cs: %04hx ds: %04hx es: %04hx "
353 "ss: %04hx fs: %04hx gs: %04hx\n",
354 thread_state->CS,
355 thread_state->DS,
356 thread_state->ES,
357 thread_state->SS,
358 thread_state->FS,
359 thread_state->GS);
361 stack_pointer = (u32 *)thread_state->ESP;
362 for (i = 0; i < 48; i+=4) {
363 printf("%08x: %08x %08x %08x %08x\n",
364 thread_state->ESP + (i * 4),
365 stack_pointer[i],
366 stack_pointer[i+1],
367 stack_pointer[i+2],
368 stack_pointer[i+3]);
371 #endif
373 void
374 control_stack_exhausted_handler(int signal, siginfo_t *siginfo,
375 os_context_t *context) {
377 unblock_signals_in_context_and_maybe_warn(context);
378 arrange_return_to_lisp_function
379 (context, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
382 void
383 undefined_alien_handler(int signal, siginfo_t *siginfo, os_context_t *context) {
384 arrange_return_to_lisp_function
385 (context, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
388 kern_return_t
389 catch_exception_raise(mach_port_t exception_port,
390 mach_port_t thread,
391 mach_port_t task,
392 exception_type_t exception,
393 exception_data_t code_vector,
394 mach_msg_type_number_t code_count)
396 struct thread *th = (struct thread*) exception_port;
397 x86_thread_state32_t thread_state;
398 mach_msg_type_number_t state_count;
399 vm_address_t region_addr;
400 vm_size_t region_size;
401 vm_region_basic_info_data_t region_info;
402 mach_msg_type_number_t info_count;
403 mach_port_t region_name;
404 void *addr = NULL;
405 int signal = 0;
406 void (*handler)(int, siginfo_t *, void *) = NULL;
407 siginfo_t siginfo;
408 kern_return_t ret;
410 /* Get state and info */
411 state_count = x86_THREAD_STATE32_COUNT;
412 if ((ret = thread_get_state(thread,
413 x86_THREAD_STATE32,
414 (thread_state_t)&thread_state,
415 &state_count)) != KERN_SUCCESS)
416 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
417 switch (exception) {
418 case EXC_BAD_ACCESS:
419 signal = SIGBUS;
420 /* Check if write protection fault */
421 if ((code_vector[0] & OS_VM_PROT_ALL) == 0) {
422 ret = KERN_INVALID_RIGHT;
423 break;
425 addr = (void*)code_vector[1];
426 /* Undefined alien */
427 if (os_trunc_to_page(addr) == undefined_alien_address) {
428 handler = undefined_alien_handler;
429 break;
431 /* At stack guard */
432 if (os_trunc_to_page(addr) == CONTROL_STACK_GUARD_PAGE(th)) {
433 lower_thread_control_stack_guard_page(th);
434 handler = control_stack_exhausted_handler;
435 break;
437 /* Return from stack guard */
438 if (os_trunc_to_page(addr) == CONTROL_STACK_RETURN_GUARD_PAGE(th)) {
439 reset_thread_control_stack_guard_page(th);
440 break;
442 /* Regular memory fault */
443 handler = memory_fault_handler;
444 break;
445 case EXC_BAD_INSTRUCTION:
446 signal = SIGTRAP;
447 /* Check if illegal instruction trap */
448 if (code_vector[0] != EXC_I386_INVOP) {
449 ret = KERN_INVALID_RIGHT;
450 break;
452 /* Check if UD2 instruction */
453 if (*(unsigned short *)thread_state.EIP != 0x0b0f) {
454 /* KLUDGE: There are two ways we could get here:
455 * 1) We're executing data and we've hit some truly
456 * illegal opcode, of which there are a few, see
457 * Intel 64 and IA-32 Architectures
458 * Sofware Developer's Manual
459 * Volume 3A page 5-34)
460 * 2) The kernel started an unrelated signal handler
461 * before we got a chance to run. The context that
462 * caused the exception is saved in a stack frame
463 * somewhere down below.
464 * In either case we rely on the exception to retrigger,
465 * eventually bailing out if we're spinning on case 2).
467 static mach_port_t last_thread;
468 static unsigned int last_eip;
469 if (last_thread == thread && last_eip == thread_state.EIP)
470 ret = KERN_INVALID_RIGHT;
471 else
472 ret = KERN_SUCCESS;
473 last_thread = thread;
474 last_eip = thread_state.EIP;
475 break;
477 /* Skip the trap code */
478 thread_state.EIP += 2;
479 /* Return from handler? */
480 if (*(unsigned short *)thread_state.EIP == 0xffff) {
481 if ((ret = thread_set_state(thread,
482 x86_THREAD_STATE32,
483 (thread_state_t)thread_state.EAX,
484 x86_THREAD_STATE32_COUNT)) != KERN_SUCCESS)
485 lose("thread_set_state (x86_THREAD_STATE32) failed %d\n", ret);
486 if ((ret = thread_set_state(thread,
487 x86_FLOAT_STATE32,
488 (thread_state_t)thread_state.EBX,
489 x86_FLOAT_STATE32_COUNT)) != KERN_SUCCESS)
490 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
491 break;
493 /* Trap call */
494 handler = sigtrap_handler;
495 break;
496 default:
497 ret = KERN_INVALID_RIGHT;
499 /* Call handler */
500 if (handler != 0) {
501 siginfo.si_signo = signal;
502 siginfo.si_addr = addr;
503 call_handler_on_thread(thread, &thread_state, signal, &siginfo, handler);
505 return ret;
508 void *
509 mach_exception_handler(void *port)
511 mach_msg_server(exc_server, 2048, (mach_port_t) port, 0);
512 /* mach_msg_server should never return, but it should dispatch mach
513 * exceptions to our catch_exception_raise function
515 lose("mach_msg_server returned");
518 #endif
520 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
522 /* Sets up the thread that will listen for mach exceptions. note that
523 the exception handlers will be run on this thread. This is
524 different from the BSD-style signal handling situation in which the
525 signal handlers run in the relevant thread directly. */
527 mach_port_t mach_exception_handler_port_set = MACH_PORT_NULL;
529 pthread_t
530 setup_mach_exception_handling_thread()
532 kern_return_t ret;
533 pthread_t mach_exception_handling_thread = NULL;
534 pthread_attr_t attr;
536 /* allocate a mach_port for this process */
537 ret = mach_port_allocate(mach_task_self(),
538 MACH_PORT_RIGHT_PORT_SET,
539 &mach_exception_handler_port_set);
541 /* create the thread that will receive the mach exceptions */
543 FSHOW((stderr, "Creating mach_exception_handler thread!\n"));
545 pthread_attr_init(&attr);
546 pthread_create(&mach_exception_handling_thread,
547 &attr,
548 mach_exception_handler,
549 (void*) mach_exception_handler_port_set);
550 pthread_attr_destroy(&attr);
552 return mach_exception_handling_thread;
555 /* tell the kernel that we want EXC_BAD_ACCESS exceptions sent to the
556 exception port (which is being listened to do by the mach
557 exception handling thread). */
558 kern_return_t
559 mach_thread_init(mach_port_t thread_exception_port)
561 kern_return_t ret;
562 /* allocate a named port for the thread */
564 FSHOW((stderr, "Allocating mach port %x\n", thread_exception_port));
566 ret = mach_port_allocate_name(mach_task_self(),
567 MACH_PORT_RIGHT_RECEIVE,
568 thread_exception_port);
569 if (ret) {
570 lose("mach_port_allocate_name failed with return_code %d\n", ret);
573 /* establish the right for the thread_exception_port to send messages */
574 ret = mach_port_insert_right(mach_task_self(),
575 thread_exception_port,
576 thread_exception_port,
577 MACH_MSG_TYPE_MAKE_SEND);
578 if (ret) {
579 lose("mach_port_insert_right failed with return_code %d\n", ret);
582 ret = thread_set_exception_ports(mach_thread_self(),
583 EXC_MASK_BAD_ACCESS | EXC_MASK_BAD_INSTRUCTION,
584 thread_exception_port,
585 EXCEPTION_DEFAULT,
586 THREAD_STATE_NONE);
587 if (ret) {
588 lose("thread_set_exception_port failed with return_code %d\n", ret);
591 ret = mach_port_move_member(mach_task_self(),
592 thread_exception_port,
593 mach_exception_handler_port_set);
594 if (ret) {
595 lose("mach_port_ failed with return_code %d\n", ret);
598 return ret;
601 void
602 setup_mach_exceptions() {
603 setup_mach_exception_handling_thread();
604 mach_thread_init(THREAD_STRUCT_TO_EXCEPTION_PORT(all_threads));
607 pid_t
608 mach_fork() {
609 pid_t pid = fork();
610 if (pid == 0) {
611 setup_mach_exceptions();
612 return pid;
613 } else {
614 return pid;
618 #endif