1.0.4.85: small PCL cleanups and thread-safety notes
[sbcl/pkhuong.git] / src / pcl / cache.lisp
blobc9960acc1e2a327c90fc177d6296f5d7e7995da4
1 ;;;; the basics of the PCL wrapper cache mechanism
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
6 ;;;; This software is derived from software originally released by Xerox
7 ;;;; Corporation. Copyright and release statements follow. Later modifications
8 ;;;; to the software are in the public domain and are provided with
9 ;;;; absolutely no warranty. See the COPYING and CREDITS files for more
10 ;;;; information.
12 ;;;; copyright information from original PCL sources:
13 ;;;;
14 ;;;; Copyright (c) 1985, 1986, 1987, 1988, 1989, 1990 Xerox Corporation.
15 ;;;; All rights reserved.
16 ;;;;
17 ;;;; Use and copying of this software and preparation of derivative works based
18 ;;;; upon this software are permitted. Any distribution of this software or
19 ;;;; derivative works must comply with all applicable United States export
20 ;;;; control laws.
21 ;;;;
22 ;;;; This software is made available AS IS, and Xerox Corporation makes no
23 ;;;; warranty about the software, its performance or its conformity to any
24 ;;;; specification.
26 (in-package "SB-PCL")
28 ;;; Ye olde CMUCL comment follows, but it seems likely that the paper
29 ;;; that would be inserted would resemble Kiczales and Rodruigez,
30 ;;; Efficient Method Dispatch in PCL, ACM 1990. Some of the details
31 ;;; changed between that paper and "May Day PCL" of 1992; some other
32 ;;; details have changed since, but reading that paper gives the broad
33 ;;; idea.
34 ;;;
35 ;;; The caching algorithm implemented:
36 ;;;
37 ;;; << put a paper here >>
38 ;;;
39 ;;; For now, understand that as far as most of this code goes, a cache
40 ;;; has two important properties. The first is the number of wrappers
41 ;;; used as keys in each cache line. Throughout this code, this value
42 ;;; is always called NKEYS. The second is whether or not the cache
43 ;;; lines of a cache store a value. Throughout this code, this always
44 ;;; called VALUEP.
45 ;;;
46 ;;; Depending on these values, there are three kinds of caches.
47 ;;;
48 ;;; NKEYS = 1, VALUEP = NIL
49 ;;;
50 ;;; In this kind of cache, each line is 1 word long. No cache locking
51 ;;; is needed since all read's in the cache are a single value.
52 ;;; Nevertheless line 0 (location 0) is reserved, to ensure that
53 ;;; invalid wrappers will not get a first probe hit.
54 ;;;
55 ;;; To keep the code simpler, a cache lock count does appear in
56 ;;; location 0 of these caches, that count is incremented whenever
57 ;;; data is written to the cache. But, the actual lookup code (see
58 ;;; make-dlap) doesn't need to do locking when reading the cache.
59 ;;;
60 ;;; NKEYS = 1, VALUEP = T
61 ;;;
62 ;;; In this kind of cache, each line is 2 words long. Cache locking
63 ;;; must be done to ensure the synchronization of cache reads. Line 0
64 ;;; of the cache (location 0) is reserved for the cache lock count.
65 ;;; Location 1 of the cache is unused (in effect wasted).
66 ;;;
67 ;;; NKEYS > 1
68 ;;;
69 ;;; In this kind of cache, the 0 word of the cache holds the lock
70 ;;; count. The 1 word of the cache is line 0. Line 0 of these caches
71 ;;; is not reserved.
72 ;;;
73 ;;; This is done because in this sort of cache, the overhead of doing
74 ;;; the cache probe is high enough that the 1+ required to offset the
75 ;;; location is not a significant cost. In addition, because of the
76 ;;; larger line sizes, the space that would be wasted by reserving
77 ;;; line 0 to hold the lock count is more significant.
79 ;;; caches
80 ;;;
81 ;;; A cache is essentially just a vector. The use of the individual
82 ;;; `words' in the vector depends on particular properties of the
83 ;;; cache as described above.
84 ;;;
85 ;;; This defines an abstraction for caches in terms of their most
86 ;;; obvious implementation as simple vectors. But, please notice that
87 ;;; part of the implementation of this abstraction, is the function
88 ;;; lap-out-cache-ref. This means that most port-specific
89 ;;; modifications to the implementation of caches will require
90 ;;; corresponding port-specific modifications to the lap code
91 ;;; assembler.
92 (defmacro cache-vector-ref (cache-vector location)
93 `(svref (the simple-vector ,cache-vector)
94 (sb-ext:truly-the fixnum ,location)))
96 (defmacro cache-vector-size (cache-vector)
97 `(array-dimension (the simple-vector ,cache-vector) 0))
99 (defmacro cache-vector-lock-count (cache-vector)
100 `(cache-vector-ref ,cache-vector 0))
102 (defun flush-cache-vector-internal (cache-vector)
103 ;; FIXME: To my eye this PCL-LOCK implies we should be holding the
104 ;; lock whenever we play with any cache vector, which doesn't seem
105 ;; to be true. On the other hand that would be too expensive as
106 ;; well, since it would mean serialization across all GFs.
107 (with-pcl-lock
108 (fill (the simple-vector cache-vector) nil)
109 (setf (cache-vector-lock-count cache-vector) 0))
110 cache-vector)
112 ;;; Return an empty cache vector
113 (defun get-cache-vector (size)
114 (declare (type (and unsigned-byte fixnum) size))
115 (let ((cv (make-array size :initial-element nil)))
116 (setf (cache-vector-lock-count cv) 0)
117 cv))
119 (defmacro modify-cache (cache-vector &body body)
120 `(with-pcl-lock
121 ;; This locking scheme is less the sufficient, and not what the
122 ;; PCL implementors had planned: apparently we should increment
123 ;; the lock count atomically, and all cache users should check
124 ;; the count before and after they touch cache: if the counts
125 ;; match the cache was not altered, if they don't match the
126 ;; work needs to be redone.
128 ;; We probably want to re-engineer things so that the whole
129 ;; cache vector gets replaced atomically when we do things
130 ;; to it that could affect others.
131 (multiple-value-prog1
132 (progn ,@body)
133 (let ((old-count (cache-vector-lock-count ,cache-vector)))
134 (declare (fixnum old-count))
135 (setf (cache-vector-lock-count ,cache-vector)
136 (if (= old-count most-positive-fixnum)
138 (1+ old-count)))))))
140 (deftype field-type ()
141 '(mod #.layout-clos-hash-length))
143 (eval-when (:compile-toplevel :load-toplevel :execute)
144 (declaim (ftype (function (fixnum) (values (and unsigned-byte fixnum) &optional))
145 power-of-two-ceiling))
146 (defun power-of-two-ceiling (x)
147 ;; (expt 2 (ceiling (log x 2)))
148 (ash 1 (integer-length (1- x)))))
150 ;;; FIXME: We should probably keep just one of these -- or at least use just
151 ;;; one.
152 (declaim (inline compute-line-size))
153 (defun compute-line-size (x)
154 (power-of-two-ceiling x))
156 (defconstant +nkeys-limit+ 256)
158 (defstruct (cache (:constructor make-cache ())
159 (:copier copy-cache-internal))
160 (owner nil)
161 (nkeys 1 :type (integer 1 #.+nkeys-limit+))
162 (valuep nil :type (member nil t))
163 (nlines 0 :type fixnum)
164 (field 0 :type field-type)
165 (limit-fn #'default-limit-fn :type function)
166 (mask 0 :type fixnum)
167 (size 0 :type fixnum)
168 (line-size 1 :type (integer 1 #.(power-of-two-ceiling (1+ +nkeys-limit+))))
169 (max-location 0 :type fixnum)
170 (vector #() :type simple-vector)
171 (overflow nil :type list))
173 #-sb-fluid (declaim (sb-ext:freeze-type cache))
175 ;;;; wrapper cache numbers
177 ;;; The constant WRAPPER-CACHE-NUMBER-ADDS-OK controls the number of
178 ;;; non-zero bits wrapper cache numbers will have.
180 ;;; The value of this constant is the number of wrapper cache numbers
181 ;;; which can be added and still be certain the result will be a
182 ;;; fixnum. This is used by all the code that computes primary cache
183 ;;; locations from multiple wrappers.
185 ;;; The value of this constant is used to derive the next two which
186 ;;; are the forms of this constant which it is more convenient for the
187 ;;; runtime code to use.
188 (defconstant wrapper-cache-number-length
189 (integer-length layout-clos-hash-max))
190 (defconstant wrapper-cache-number-mask layout-clos-hash-max)
191 (defconstant wrapper-cache-number-adds-ok
192 (truncate most-positive-fixnum layout-clos-hash-max))
194 ;;;; wrappers themselves
196 ;;; This caching algorithm requires that wrappers have more than one
197 ;;; wrapper cache number. You should think of these multiple numbers
198 ;;; as being in columns. That is, for a given cache, the same column
199 ;;; of wrapper cache numbers will be used.
201 ;;; If at some point the cache distribution of a cache gets bad, the
202 ;;; cache can be rehashed by switching to a different column.
204 ;;; The columns are referred to by field number which is that number
205 ;;; which, when used as a second argument to wrapper-ref, will return
206 ;;; that column of wrapper cache number.
208 ;;; This code is written to allow flexibility as to how many wrapper
209 ;;; cache numbers will be in each wrapper, and where they will be
210 ;;; located. It is also set up to allow port specific modifications to
211 ;;; `pack' the wrapper cache numbers on machines where the addressing
212 ;;; modes make that a good idea.
214 ;;; In SBCL, as in CMU CL, we want to do type checking as early as
215 ;;; possible; structures help this. The structures are hard-wired to
216 ;;; have a fixed number of cache hash values, and that number must
217 ;;; correspond to the number of cache lines we use.
218 (defconstant wrapper-cache-number-vector-length
219 layout-clos-hash-length)
221 (unless (boundp '*the-class-t*)
222 (setq *the-class-t* nil))
224 (defmacro wrapper-class (wrapper)
225 `(classoid-pcl-class (layout-classoid ,wrapper)))
226 (defmacro wrapper-no-of-instance-slots (wrapper)
227 `(layout-length ,wrapper))
229 ;;; This is called in BRAID when we are making wrappers for classes
230 ;;; whose slots are not initialized yet, and which may be built-in
231 ;;; classes. We pass in the class name in addition to the class.
232 (defun boot-make-wrapper (length name &optional class)
233 (let ((found (find-classoid name nil)))
234 (cond
235 (found
236 (unless (classoid-pcl-class found)
237 (setf (classoid-pcl-class found) class))
238 (aver (eq (classoid-pcl-class found) class))
239 (let ((layout (classoid-layout found)))
240 (aver layout)
241 layout))
243 (make-wrapper-internal
244 :length length
245 :classoid (make-standard-classoid
246 :name name :pcl-class class))))))
248 ;;; The following variable may be set to a STANDARD-CLASS that has
249 ;;; already been created by the lisp code and which is to be redefined
250 ;;; by PCL. This allows STANDARD-CLASSes to be defined and used for
251 ;;; type testing and dispatch before PCL is loaded.
252 (defvar *pcl-class-boot* nil)
254 ;;; In SBCL, as in CMU CL, the layouts (a.k.a wrappers) for built-in
255 ;;; and structure classes already exist when PCL is initialized, so we
256 ;;; don't necessarily always make a wrapper. Also, we help maintain
257 ;;; the mapping between CL:CLASS and SB-KERNEL:CLASSOID objects.
258 (defun make-wrapper (length class)
259 (cond
260 ((or (typep class 'std-class)
261 (typep class 'forward-referenced-class))
262 (make-wrapper-internal
263 :length length
264 :classoid
265 (let ((owrap (class-wrapper class)))
266 (cond (owrap
267 (layout-classoid owrap))
268 ((or (*subtypep (class-of class) *the-class-standard-class*)
269 (*subtypep (class-of class) *the-class-funcallable-standard-class*)
270 (typep class 'forward-referenced-class))
271 (cond ((and *pcl-class-boot*
272 (eq (slot-value class 'name) *pcl-class-boot*))
273 (let ((found (find-classoid
274 (slot-value class 'name))))
275 (unless (classoid-pcl-class found)
276 (setf (classoid-pcl-class found) class))
277 (aver (eq (classoid-pcl-class found) class))
278 found))
280 (let ((name (slot-value class 'name)))
281 (make-standard-classoid :pcl-class class
282 :name (and (symbolp name) name))))))
284 (bug "Got to T branch in ~S" 'make-wrapper))))))
286 (let* ((found (find-classoid (slot-value class 'name)))
287 (layout (classoid-layout found)))
288 (unless (classoid-pcl-class found)
289 (setf (classoid-pcl-class found) class))
290 (aver (eq (classoid-pcl-class found) class))
291 (aver layout)
292 layout))))
294 (defconstant +first-wrapper-cache-number-index+ 0)
296 (declaim (inline next-wrapper-cache-number-index))
297 (defun next-wrapper-cache-number-index (field-number)
298 (and (< field-number #.(1- wrapper-cache-number-vector-length))
299 (1+ field-number)))
301 (declaim (inline wrapper-class*))
302 (defun wrapper-class* (wrapper)
303 (or (wrapper-class wrapper)
304 (ensure-non-standard-class
305 (classoid-name (layout-classoid wrapper)))))
307 ;;; The wrapper cache machinery provides general mechanism for
308 ;;; trapping on the next access to any instance of a given class. This
309 ;;; mechanism is used to implement the updating of instances when the
310 ;;; class is redefined (MAKE-INSTANCES-OBSOLETE). The same mechanism
311 ;;; is also used to update generic function caches when there is a
312 ;;; change to the superclasses of a class.
314 ;;; Basically, a given wrapper can be valid or invalid. If it is
315 ;;; invalid, it means that any attempt to do a wrapper cache lookup
316 ;;; using the wrapper should trap. Also, methods on
317 ;;; SLOT-VALUE-USING-CLASS check the wrapper validity as well. This is
318 ;;; done by calling CHECK-WRAPPER-VALIDITY.
320 (declaim (inline invalid-wrapper-p))
321 (defun invalid-wrapper-p (wrapper)
322 (not (null (layout-invalid wrapper))))
324 ;;; We only use this inside INVALIDATE-WRAPPER.
325 (defvar *previous-nwrappers* (make-hash-table))
327 ;;; We always call this inside WITH-PCL-LOCK.
328 (defun invalidate-wrapper (owrapper state nwrapper)
329 (aver (member state '(:flush :obsolete) :test #'eq))
330 (let ((new-previous ()))
331 ;; First off, a previous call to INVALIDATE-WRAPPER may have
332 ;; recorded OWRAPPER as an NWRAPPER to update to. Since OWRAPPER
333 ;; is about to be invalid, it no longer makes sense to update to
334 ;; it.
336 ;; We go back and change the previously invalidated wrappers so
337 ;; that they will now update directly to NWRAPPER. This
338 ;; corresponds to a kind of transitivity of wrapper updates.
339 (dolist (previous (gethash owrapper *previous-nwrappers*))
340 (when (eq state :obsolete)
341 (setf (car previous) :obsolete))
342 (setf (cadr previous) nwrapper)
343 (push previous new-previous))
345 ;; FIXME: We are here inside PCL lock, but might someone be
346 ;; accessing the wrapper at the same time from outside the lock?
347 ;; Can it matter that they get 0 from one slot and a valid value
348 ;; from another?
349 (dotimes (i layout-clos-hash-length)
350 (setf (layout-clos-hash owrapper i) 0))
352 ;; FIXME: We could save a whopping cons by using (STATE . WRAPPER)
353 ;; instead
354 (push (setf (layout-invalid owrapper) (list state nwrapper))
355 new-previous)
357 (remhash owrapper *previous-nwrappers*)
358 (setf (gethash nwrapper *previous-nwrappers*) new-previous)))
360 (defun check-wrapper-validity (instance)
361 (let* ((owrapper (wrapper-of instance))
362 (state (layout-invalid owrapper)))
363 (aver (not (eq state :uninitialized)))
364 (etypecase state
365 (null owrapper)
366 ;; FIXME: I can't help thinking that, while this does cure the
367 ;; symptoms observed from some class redefinitions, this isn't
368 ;; the place to be doing this flushing. Nevertheless... --
369 ;; CSR, 2003-05-31
371 ;; CMUCL comment:
372 ;; We assume in this case, that the :INVALID is from a
373 ;; previous call to REGISTER-LAYOUT for a superclass of
374 ;; INSTANCE's class. See also the comment above
375 ;; FORCE-CACHE-FLUSHES. Paul Dietz has test cases for this.
376 ((member t)
377 (force-cache-flushes (class-of instance))
378 (check-wrapper-validity instance))
379 (cons
380 (ecase (car state)
381 (:flush
382 (flush-cache-trap owrapper (cadr state) instance))
383 (:obsolete
384 (obsolete-instance-trap owrapper (cadr state) instance)))))))
386 (declaim (inline check-obsolete-instance))
387 (defun check-obsolete-instance (instance)
388 (when (invalid-wrapper-p (layout-of instance))
389 (check-wrapper-validity instance)))
392 (defun get-cache (nkeys valuep limit-fn nlines)
393 (let ((cache (make-cache)))
394 (declare (type cache cache))
395 (multiple-value-bind (cache-mask actual-size line-size nlines)
396 (compute-cache-parameters nkeys valuep nlines)
397 (setf (cache-nkeys cache) nkeys
398 (cache-valuep cache) valuep
399 (cache-nlines cache) nlines
400 (cache-field cache) +first-wrapper-cache-number-index+
401 (cache-limit-fn cache) limit-fn
402 (cache-mask cache) cache-mask
403 (cache-size cache) actual-size
404 (cache-line-size cache) line-size
405 (cache-max-location cache) (let ((line (1- nlines)))
406 (if (= nkeys 1)
407 (* line line-size)
408 (1+ (* line line-size))))
409 (cache-vector cache) (get-cache-vector actual-size)
410 (cache-overflow cache) nil)
411 cache)))
413 (defun get-cache-from-cache (old-cache new-nlines
414 &optional (new-field +first-wrapper-cache-number-index+))
415 (let ((nkeys (cache-nkeys old-cache))
416 (valuep (cache-valuep old-cache))
417 (cache (make-cache)))
418 (declare (type cache cache))
419 (multiple-value-bind (cache-mask actual-size line-size nlines)
420 (if (= new-nlines (cache-nlines old-cache))
421 (values (cache-mask old-cache) (cache-size old-cache)
422 (cache-line-size old-cache) (cache-nlines old-cache))
423 (compute-cache-parameters nkeys valuep new-nlines))
424 (setf (cache-owner cache) (cache-owner old-cache)
425 (cache-nkeys cache) nkeys
426 (cache-valuep cache) valuep
427 (cache-nlines cache) nlines
428 (cache-field cache) new-field
429 (cache-limit-fn cache) (cache-limit-fn old-cache)
430 (cache-mask cache) cache-mask
431 (cache-size cache) actual-size
432 (cache-line-size cache) line-size
433 (cache-max-location cache) (let ((line (1- nlines)))
434 (if (= nkeys 1)
435 (* line line-size)
436 (1+ (* line line-size))))
437 (cache-vector cache) (get-cache-vector actual-size)
438 (cache-overflow cache) nil)
439 cache)))
441 (defun copy-cache (old-cache)
442 (let* ((new-cache (copy-cache-internal old-cache))
443 (size (cache-size old-cache))
444 (old-vector (cache-vector old-cache))
445 (new-vector (get-cache-vector size)))
446 (declare (simple-vector old-vector new-vector))
447 (dotimes-fixnum (i size)
448 (setf (svref new-vector i) (svref old-vector i)))
449 (setf (cache-vector new-cache) new-vector)
450 new-cache))
452 (defun compute-cache-parameters (nkeys valuep nlines-or-cache-vector)
453 ;;(declare (values cache-mask actual-size line-size nlines))
454 (declare (fixnum nkeys))
455 (if (= nkeys 1)
456 (let* ((line-size (if valuep 2 1))
457 (cache-size (etypecase nlines-or-cache-vector
458 (fixnum
459 (* line-size
460 (power-of-two-ceiling nlines-or-cache-vector)))
461 (vector
462 (cache-vector-size nlines-or-cache-vector)))))
463 (declare (type (and unsigned-byte fixnum) line-size cache-size))
464 (values (logxor (1- cache-size) (1- line-size))
465 cache-size
466 line-size
467 (floor cache-size line-size)))
468 (let* ((line-size (power-of-two-ceiling (if valuep (1+ nkeys) nkeys)))
469 (cache-size (etypecase nlines-or-cache-vector
470 (fixnum
471 (* line-size
472 (power-of-two-ceiling nlines-or-cache-vector)))
473 (vector
474 (1- (cache-vector-size nlines-or-cache-vector))))))
475 (declare (fixnum line-size cache-size))
476 (values (logxor (1- cache-size) (1- line-size))
477 (1+ cache-size)
478 line-size
479 (floor cache-size line-size)))))
481 ;;; the various implementations of computing a primary cache location from
482 ;;; wrappers. Because some implementations of this must run fast there are
483 ;;; several implementations of the same algorithm.
485 ;;; The algorithm is:
487 ;;; SUM over the wrapper cache numbers,
488 ;;; ENSURING that the result is a fixnum
489 ;;; MASK the result against the mask argument.
491 ;;; The basic functional version. This is used by the cache miss code to
492 ;;; compute the primary location of an entry.
493 (defun compute-primary-cache-location (field mask wrappers)
494 (declare (type field-type field) (fixnum mask))
495 (if (not (listp wrappers))
496 (logand mask (layout-clos-hash wrappers field))
497 (let ((location 0)
498 (i 0))
499 (declare (fixnum location i))
500 (dolist (wrapper wrappers)
501 ;; First add the cache number of this wrapper to location.
502 (let ((wrapper-cache-number (layout-clos-hash wrapper field)))
503 (declare (fixnum wrapper-cache-number))
504 (if (zerop wrapper-cache-number)
505 (return-from compute-primary-cache-location 0)
506 (incf location wrapper-cache-number)))
507 ;; Then, if we are working with lots of wrappers, deal with
508 ;; the wrapper-cache-number-mask stuff.
509 (when (and (not (zerop i))
510 (zerop (mod i wrapper-cache-number-adds-ok)))
511 (setq location
512 (logand location wrapper-cache-number-mask)))
513 (incf i))
514 (1+ (logand mask location)))))
516 ;;; This version is called on a cache line. It fetches the wrappers
517 ;;; from the cache line and determines the primary location. Various
518 ;;; parts of the cache filling code call this to determine whether it
519 ;;; is appropriate to displace a given cache entry.
521 ;;; If this comes across a wrapper whose CACHE-NO is 0, it returns the
522 ;;; symbol invalid to suggest to its caller that it would be provident
523 ;;; to blow away the cache line in question.
524 (defun compute-primary-cache-location-from-location (to-cache
525 from-location
526 &optional
527 (from-cache to-cache))
528 (declare (type cache to-cache from-cache) (fixnum from-location))
529 (let ((result 0)
530 (cache-vector (cache-vector from-cache))
531 (field (cache-field to-cache))
532 (mask (cache-mask to-cache))
533 (nkeys (cache-nkeys to-cache)))
534 (declare (type field-type field) (fixnum result mask nkeys)
535 (simple-vector cache-vector))
536 (dotimes-fixnum (i nkeys)
537 ;; FIXME: Sometimes we get NIL here as wrapper, apparently because
538 ;; another thread has stomped on the cache-vector.
539 (let* ((wrapper (cache-vector-ref cache-vector (+ i from-location)))
540 (wcn (layout-clos-hash wrapper field)))
541 (declare (fixnum wcn))
542 (incf result wcn))
543 (when (and (not (zerop i))
544 (zerop (mod i wrapper-cache-number-adds-ok)))
545 (setq result (logand result wrapper-cache-number-mask))))
546 (if (= nkeys 1)
547 (logand mask result)
548 (1+ (logand mask result)))))
550 ;;; NIL: means nothing so far, no actual arg info has NILs in the
551 ;;; metatype
553 ;;; CLASS: seen all sorts of metaclasses (specifically, more than one
554 ;;; of the next 5 values) or else have seen something which doesn't
555 ;;; fall into a single category (SLOT-INSTANCE, FORWARD).
557 ;;; T: means everything so far is the class T
558 ;;; STANDARD-INSTANCE: seen only standard classes
559 ;;; BUILT-IN-INSTANCE: seen only built in classes
560 ;;; STRUCTURE-INSTANCE: seen only structure classes
561 ;;; CONDITION-INSTANCE: seen only condition classes
562 (defun raise-metatype (metatype new-specializer)
563 (let ((slot (find-class 'slot-class))
564 (standard (find-class 'standard-class))
565 (fsc (find-class 'funcallable-standard-class))
566 (condition (find-class 'condition-class))
567 (structure (find-class 'structure-class))
568 (built-in (find-class 'built-in-class))
569 (frc (find-class 'forward-referenced-class)))
570 (flet ((specializer->metatype (x)
571 (let ((meta-specializer
572 (if (eq *boot-state* 'complete)
573 (class-of (specializer-class x))
574 (class-of x))))
575 (cond
576 ((eq x *the-class-t*) t)
577 ((*subtypep meta-specializer standard) 'standard-instance)
578 ((*subtypep meta-specializer fsc) 'standard-instance)
579 ((*subtypep meta-specializer condition) 'condition-instance)
580 ((*subtypep meta-specializer structure) 'structure-instance)
581 ((*subtypep meta-specializer built-in) 'built-in-instance)
582 ((*subtypep meta-specializer slot) 'slot-instance)
583 ((*subtypep meta-specializer frc) 'forward)
584 (t (error "~@<PCL cannot handle the specializer ~S ~
585 (meta-specializer ~S).~@:>"
586 new-specializer meta-specializer))))))
587 ;; We implement the following table. The notation is
588 ;; that X and Y are distinct meta specializer names.
590 ;; NIL <anything> ===> <anything>
591 ;; X X ===> X
592 ;; X Y ===> CLASS
593 (let ((new-metatype (specializer->metatype new-specializer)))
594 (cond ((eq new-metatype 'slot-instance) 'class)
595 ((eq new-metatype 'forward) 'class)
596 ((null metatype) new-metatype)
597 ((eq metatype new-metatype) new-metatype)
598 (t 'class))))))
600 (defmacro with-dfun-wrappers ((args metatypes)
601 (dfun-wrappers invalid-wrapper-p
602 &optional wrappers classes types)
603 invalid-arguments-form
604 &body body)
605 `(let* ((args-tail ,args) (,invalid-wrapper-p nil) (invalid-arguments-p nil)
606 (,dfun-wrappers nil) (dfun-wrappers-tail nil)
607 ,@(when wrappers
608 `((wrappers-rev nil) (types-rev nil) (classes-rev nil))))
609 (dolist (mt ,metatypes)
610 (unless args-tail
611 (setq invalid-arguments-p t)
612 (return nil))
613 (let* ((arg (pop args-tail))
614 (wrapper nil)
615 ,@(when wrappers
616 `((class *the-class-t*)
617 (type t))))
618 (unless (eq mt t)
619 (setq wrapper (wrapper-of arg))
620 (when (invalid-wrapper-p wrapper)
621 (setq ,invalid-wrapper-p t)
622 (setq wrapper (check-wrapper-validity arg)))
623 (cond ((null ,dfun-wrappers)
624 (setq ,dfun-wrappers wrapper))
625 ((not (consp ,dfun-wrappers))
626 (setq dfun-wrappers-tail (list wrapper))
627 (setq ,dfun-wrappers (cons ,dfun-wrappers dfun-wrappers-tail)))
629 (let ((new-dfun-wrappers-tail (list wrapper)))
630 (setf (cdr dfun-wrappers-tail) new-dfun-wrappers-tail)
631 (setf dfun-wrappers-tail new-dfun-wrappers-tail))))
632 ,@(when wrappers
633 `((setq class (wrapper-class* wrapper))
634 (setq type `(class-eq ,class)))))
635 ,@(when wrappers
636 `((push wrapper wrappers-rev)
637 (push class classes-rev)
638 (push type types-rev)))))
639 (if invalid-arguments-p
640 ,invalid-arguments-form
641 (let* (,@(when wrappers
642 `((,wrappers (nreverse wrappers-rev))
643 (,classes (nreverse classes-rev))
644 (,types (mapcar (lambda (class)
645 `(class-eq ,class))
646 ,classes)))))
647 ,@body))))
649 ;;;; some support stuff for getting a hold of symbols that we need when
650 ;;;; building the discriminator codes. It's OK for these to be interned
651 ;;;; symbols because we don't capture any user code in the scope in which
652 ;;;; these symbols are bound.
654 (declaim (list *dfun-arg-symbols*))
655 (defvar *dfun-arg-symbols* '(.ARG0. .ARG1. .ARG2. .ARG3.))
657 (defun dfun-arg-symbol (arg-number)
658 (or (nth arg-number *dfun-arg-symbols*)
659 (format-symbol *pcl-package* ".ARG~A." arg-number)))
661 (declaim (list *slot-vector-symbols*))
662 (defvar *slot-vector-symbols* '(.SLOTS0. .SLOTS1. .SLOTS2. .SLOTS3.))
664 (defun slot-vector-symbol (arg-number)
665 (or (nth arg-number *slot-vector-symbols*)
666 (format-symbol *pcl-package* ".SLOTS~A." arg-number)))
668 (declaim (inline make-dfun-required-args))
669 (defun make-dfun-required-args (metatypes)
670 ;; Micro-optimizations 'R Us
671 (labels ((rec (types i)
672 (declare (fixnum i))
673 (when types
674 (cons (dfun-arg-symbol i)
675 (rec (cdr types) (1+ i))))))
676 (rec metatypes 0)))
678 (defun make-dfun-lambda-list (metatypes applyp)
679 (let ((required (make-dfun-required-args metatypes)))
680 (if applyp
681 (nconc required
682 ;; Use &MORE arguments to avoid consing up an &REST list
683 ;; that we might not need at all. See MAKE-EMF-CALL and
684 ;; INVOKE-EFFECTIVE-METHOD-FUNCTION for the other
685 ;; pieces.
686 '(&more .dfun-more-context. .dfun-more-count.))
687 required)))
689 (defun make-dlap-lambda-list (metatypes applyp)
690 (let* ((required (make-dfun-required-args metatypes))
691 (lambda-list (if applyp
692 (append required '(&more .more-context. .more-count.))
693 required)))
694 ;; Return the full lambda list, the required arguments, a form
695 ;; that will generate a rest-list, and a list of the &MORE
696 ;; parameters used.
697 (values lambda-list
698 required
699 (when applyp
700 '((sb-c::%listify-rest-args
701 .more-context.
702 (the (and unsigned-byte fixnum)
703 .more-count.))))
704 (when applyp
705 '(.more-context. .more-count.)))))
707 (defun make-emf-call (metatypes applyp fn-variable &optional emf-type)
708 (let ((required (make-dfun-required-args metatypes)))
709 `(,(if (eq emf-type 'fast-method-call)
710 'invoke-effective-method-function-fast
711 'invoke-effective-method-function)
712 ,fn-variable
713 ,applyp
714 :required-args ,required
715 ;; INVOKE-EFFECTIVE-METHOD-FUNCTION will decide whether to use
716 ;; the :REST-ARG version or the :MORE-ARG version depending on
717 ;; the type of the EMF.
718 :rest-arg ,(if applyp
719 ;; Creates a list from the &MORE arguments.
720 '((sb-c::%listify-rest-args
721 .dfun-more-context.
722 (the (and unsigned-byte fixnum)
723 .dfun-more-count.)))
724 nil)
725 :more-arg ,(when applyp
726 '(.dfun-more-context. .dfun-more-count.)))))
728 (defun make-fast-method-call-lambda-list (metatypes applyp)
729 (list* '.pv-cell. '.next-method-call.
730 (make-dfun-lambda-list metatypes applyp)))
733 (defmacro with-local-cache-functions ((cache) &body body)
734 `(let ((.cache. ,cache))
735 (declare (type cache .cache.))
736 (labels ((cache () .cache.)
737 (nkeys () (cache-nkeys .cache.))
738 (line-size () (cache-line-size .cache.))
739 (c-vector () (cache-vector .cache.))
740 (valuep () (cache-valuep .cache.))
741 (nlines () (cache-nlines .cache.))
742 (max-location () (cache-max-location .cache.))
743 (limit-fn () (cache-limit-fn .cache.))
744 (size () (cache-size .cache.))
745 (mask () (cache-mask .cache.))
746 (field () (cache-field .cache.))
747 (overflow () (cache-overflow .cache.))
749 ;; Return T IFF this cache location is reserved. The
750 ;; only time this is true is for line number 0 of an
751 ;; nkeys=1 cache.
753 (line-reserved-p (line)
754 (declare (fixnum line))
755 (and (= (nkeys) 1)
756 (= line 0)))
758 (location-reserved-p (location)
759 (declare (fixnum location))
760 (and (= (nkeys) 1)
761 (= location 0)))
763 ;; Given a line number, return the cache location.
764 ;; This is the value that is the second argument to
765 ;; cache-vector-ref. Basically, this deals with the
766 ;; offset of nkeys>1 caches and multiplies by line
767 ;; size.
769 (line-location (line)
770 (declare (fixnum line))
771 (when (line-reserved-p line)
772 (error "line is reserved"))
773 (if (= (nkeys) 1)
774 (the fixnum (* line (line-size)))
775 (the fixnum (1+ (the fixnum (* line (line-size)))))))
777 ;; Given a cache location, return the line. This is
778 ;; the inverse of LINE-LOCATION.
780 (location-line (location)
781 (declare (fixnum location))
782 (if (= (nkeys) 1)
783 (floor location (line-size))
784 (floor (the fixnum (1- location)) (line-size))))
786 ;; Given a line number, return the wrappers stored at
787 ;; that line. As usual, if nkeys=1, this returns a
788 ;; single value. Only when nkeys>1 does it return a
789 ;; list. An error is signalled if the line is
790 ;; reserved.
792 (line-wrappers (line)
793 (declare (fixnum line))
794 (when (line-reserved-p line) (error "Line is reserved."))
795 (location-wrappers (line-location line)))
797 (location-wrappers (location) ; avoid multiplies caused by line-location
798 (declare (fixnum location))
799 (if (= (nkeys) 1)
800 (cache-vector-ref (c-vector) location)
801 (let ((list (make-list (nkeys)))
802 (vector (c-vector)))
803 (declare (simple-vector vector))
804 (dotimes (i (nkeys) list)
805 (declare (fixnum i))
806 (setf (nth i list)
807 (cache-vector-ref vector (+ location i)))))))
809 ;; Given a line number, return true IFF the line's
810 ;; wrappers are the same as wrappers.
812 (line-matches-wrappers-p (line wrappers)
813 (declare (fixnum line))
814 (and (not (line-reserved-p line))
815 (location-matches-wrappers-p (line-location line)
816 wrappers)))
818 (location-matches-wrappers-p (loc wrappers) ; must not be reserved
819 (declare (fixnum loc))
820 (let ((cache-vector (c-vector)))
821 (declare (simple-vector cache-vector))
822 (if (= (nkeys) 1)
823 (eq wrappers (cache-vector-ref cache-vector loc))
824 (dotimes (i (nkeys) t)
825 (declare (fixnum i))
826 (unless (eq (pop wrappers)
827 (cache-vector-ref cache-vector (+ loc i)))
828 (return nil))))))
830 ;; Given a line number, return the value stored at that line.
831 ;; If valuep is NIL, this returns NIL. As with line-wrappers,
832 ;; an error is signalled if the line is reserved.
834 (line-value (line)
835 (declare (fixnum line))
836 (when (line-reserved-p line) (error "Line is reserved."))
837 (location-value (line-location line)))
839 (location-value (loc)
840 (declare (fixnum loc))
841 (and (valuep)
842 (cache-vector-ref (c-vector) (+ loc (nkeys)))))
844 ;; Given a line number, return true IFF that line has data in
845 ;; it. The state of the wrappers stored in the line is not
846 ;; checked. An error is signalled if line is reserved.
847 (line-full-p (line)
848 (when (line-reserved-p line) (error "Line is reserved."))
849 (not (null (cache-vector-ref (c-vector) (line-location line)))))
851 ;; Given a line number, return true IFF the line is full and
852 ;; there are no invalid wrappers in the line, and the line's
853 ;; wrappers are different from wrappers.
854 ;; An error is signalled if the line is reserved.
856 (line-valid-p (line wrappers)
857 (declare (fixnum line))
858 (when (line-reserved-p line) (error "Line is reserved."))
859 (location-valid-p (line-location line) wrappers))
861 (location-valid-p (loc wrappers)
862 (declare (fixnum loc))
863 (let ((cache-vector (c-vector))
864 (wrappers-mismatch-p (null wrappers)))
865 (declare (simple-vector cache-vector))
866 (dotimes (i (nkeys) wrappers-mismatch-p)
867 (declare (fixnum i))
868 (let ((wrapper (cache-vector-ref cache-vector (+ loc i))))
869 (when (or (null wrapper)
870 (invalid-wrapper-p wrapper))
871 (return nil))
872 (unless (and wrappers
873 (eq wrapper
874 (if (consp wrappers)
875 (pop wrappers)
876 wrappers)))
877 (setq wrappers-mismatch-p t))))))
879 ;; How many unreserved lines separate line-1 and line-2.
881 (line-separation (line-1 line-2)
882 (declare (fixnum line-1 line-2))
883 (let ((diff (the fixnum (- line-2 line-1))))
884 (declare (fixnum diff))
885 (when (minusp diff)
886 (setq diff (+ diff (nlines)))
887 (when (line-reserved-p 0)
888 (setq diff (1- diff))))
889 diff))
891 ;; Given a cache line, get the next cache line. This will not
892 ;; return a reserved line.
894 (next-line (line)
895 (declare (fixnum line))
896 (if (= line (the fixnum (1- (nlines))))
897 (if (line-reserved-p 0) 1 0)
898 (the fixnum (1+ line))))
900 (next-location (loc)
901 (declare (fixnum loc))
902 (if (= loc (max-location))
903 (if (= (nkeys) 1)
904 (line-size)
906 (the fixnum (+ loc (line-size)))))
908 ;; Given a line which has a valid entry in it, this
909 ;; will return the primary cache line of the wrappers
910 ;; in that line. We just call
911 ;; COMPUTE-PRIMARY-CACHE-LOCATION-FROM-LOCATION, this
912 ;; is an easier packaging up of the call to it.
914 (line-primary (line)
915 (declare (fixnum line))
916 (location-line (line-primary-location line)))
918 (line-primary-location (line)
919 (declare (fixnum line))
920 (compute-primary-cache-location-from-location
921 (cache) (line-location line))))
922 (declare (ignorable #'cache #'nkeys #'line-size #'c-vector #'valuep
923 #'nlines #'max-location #'limit-fn #'size
924 #'mask #'field #'overflow #'line-reserved-p
925 #'location-reserved-p #'line-location
926 #'location-line #'line-wrappers #'location-wrappers
927 #'line-matches-wrappers-p
928 #'location-matches-wrappers-p
929 #'line-value #'location-value #'line-full-p
930 #'line-valid-p #'location-valid-p
931 #'line-separation #'next-line #'next-location
932 #'line-primary #'line-primary-location))
933 ,@body)))
935 ;;; Here is where we actually fill, recache and expand caches.
937 ;;; The functions FILL-CACHE and PROBE-CACHE are the ONLY external
938 ;;; entrypoints into this code.
940 ;;; FILL-CACHE returns 1 value: a new cache
942 ;;; a wrapper field number
943 ;;; a cache
944 ;;; a mask
945 ;;; an absolute cache size (the size of the actual vector)
946 ;;; It tries to re-adjust the cache every time it makes a new fill.
947 ;;; The intuition here is that we want uniformity in the number of
948 ;;; probes needed to find an entry. Furthermore, adjusting has the
949 ;;; nice property of throwing out any entries that are invalid.
950 (defvar *cache-expand-threshold* 1.25)
952 (defun fill-cache (cache wrappers value)
953 ;; FILL-CACHE won't return if WRAPPERS is nil, might as well check..
954 (aver wrappers)
955 (or (fill-cache-p nil cache wrappers value)
956 (and (< (ceiling (* (cache-count cache) *cache-expand-threshold*))
957 (if (= (cache-nkeys cache) 1)
958 (1- (cache-nlines cache))
959 (cache-nlines cache)))
960 (adjust-cache cache wrappers value))
961 (expand-cache cache wrappers value)))
963 (defvar *check-cache-p* nil)
965 (defmacro maybe-check-cache (cache)
966 `(progn
967 (when *check-cache-p*
968 (check-cache ,cache))
969 ,cache))
971 (defun check-cache (cache)
972 (with-local-cache-functions (cache)
973 (let ((location (if (= (nkeys) 1) 0 1))
974 (limit (funcall (limit-fn) (nlines))))
975 (dotimes-fixnum (i (nlines) cache)
976 (when (and (not (location-reserved-p location))
977 (line-full-p i))
978 (let* ((home-loc (compute-primary-cache-location-from-location
979 cache location))
980 (home (location-line (if (location-reserved-p home-loc)
981 (next-location home-loc)
982 home-loc)))
983 (sep (when home (line-separation home i))))
984 (when (and sep (> sep limit))
985 (error "bad cache ~S ~@
986 value at location ~W: ~W lines from its home. The limit is ~W."
987 cache location sep limit))))
988 (setq location (next-location location))))))
990 (defun probe-cache (cache wrappers &optional default limit-fn)
991 (aver wrappers)
992 (with-local-cache-functions (cache)
993 (let* ((location (compute-primary-cache-location (field) (mask) wrappers))
994 (limit (funcall (or limit-fn (limit-fn)) (nlines))))
995 (declare (fixnum location limit))
996 (when (location-reserved-p location)
997 (setq location (next-location location)))
998 (dotimes-fixnum (i (1+ limit))
999 (when (location-matches-wrappers-p location wrappers)
1000 (return-from probe-cache (or (not (valuep))
1001 (location-value location))))
1002 (setq location (next-location location)))
1003 (dolist (entry (overflow))
1004 (when (equal (car entry) wrappers)
1005 (return-from probe-cache (or (not (valuep))
1006 (cdr entry)))))
1007 default)))
1009 (defun map-cache (function cache &optional set-p)
1010 (with-local-cache-functions (cache)
1011 (let ((set-p (and set-p (valuep))))
1012 (dotimes-fixnum (i (nlines) cache)
1013 (unless (or (line-reserved-p i) (not (line-valid-p i nil)))
1014 (let ((value (funcall function (line-wrappers i) (line-value i))))
1015 (when set-p
1016 ;; FIXME: Cache modification: should we not be holding a lock?
1017 (setf (cache-vector-ref (c-vector) (+ (line-location i) (nkeys)))
1018 value)))))
1019 (dolist (entry (overflow))
1020 (let ((value (funcall function (car entry) (cdr entry))))
1021 (when set-p
1022 (setf (cdr entry) value))))))
1023 cache)
1025 (defun cache-count (cache)
1026 (with-local-cache-functions (cache)
1027 (let ((count 0))
1028 (declare (fixnum count))
1029 (dotimes-fixnum (i (nlines) count)
1030 (unless (line-reserved-p i)
1031 (when (line-full-p i)
1032 (incf count)))))))
1034 (defun entry-in-cache-p (cache wrappers value)
1035 (declare (ignore value))
1036 (with-local-cache-functions (cache)
1037 (dotimes-fixnum (i (nlines))
1038 (unless (line-reserved-p i)
1039 (when (equal (line-wrappers i) wrappers)
1040 (return t))))))
1042 ;;; returns T or NIL
1044 ;;; FIXME: Deceptive name as this has side-effects.
1045 (defun fill-cache-p (forcep cache wrappers value)
1046 (with-local-cache-functions (cache)
1047 (let* ((location (compute-primary-cache-location (field) (mask) wrappers))
1048 (primary (location-line location)))
1049 (declare (fixnum location primary))
1050 ;; FIXME: I tried (aver (> location 0)) and (aver (not
1051 ;; (location-reserved-p location))) here, on the basis that
1052 ;; particularly passing a LOCATION of 0 for a cache with more
1053 ;; than one key would cause PRIMARY to be -1. However, the
1054 ;; AVERs triggered during the bootstrap, and removing them
1055 ;; didn't cause anything to break, so I've left them removed.
1056 ;; I'm still confused as to what is right. -- CSR, 2006-04-20
1057 (multiple-value-bind (free emptyp)
1058 (find-free-cache-line primary cache wrappers)
1059 (when (or forcep emptyp)
1060 (when (not emptyp)
1061 (push (cons (line-wrappers free) (line-value free))
1062 (cache-overflow cache)))
1063 ;; (fill-line free wrappers value)
1064 (let ((line free))
1065 (declare (fixnum line))
1066 (when (line-reserved-p line)
1067 (error "attempt to fill a reserved line"))
1068 (let ((loc (line-location line))
1069 (cache-vector (c-vector)))
1070 (declare (fixnum loc) (simple-vector cache-vector))
1071 ;; FIXME: Cache modifications: should we not be holding
1072 ;; a lock?
1073 (cond ((= (nkeys) 1)
1074 (setf (cache-vector-ref cache-vector loc) wrappers)
1075 (when (valuep)
1076 (setf (cache-vector-ref cache-vector (1+ loc)) value)))
1078 (let ((i 0))
1079 (declare (fixnum i))
1080 (dolist (w wrappers)
1081 (setf (cache-vector-ref cache-vector (+ loc i)) w)
1082 (setq i (the fixnum (1+ i)))))
1083 (when (valuep)
1084 (setf (cache-vector-ref cache-vector (+ loc (nkeys)))
1085 value))))
1086 (maybe-check-cache cache))))))))
1088 ;;; FIXME: Deceptive name as this has side-effects
1089 (defun fill-cache-from-cache-p (forcep cache from-cache from-line)
1090 (declare (fixnum from-line))
1091 (with-local-cache-functions (cache)
1092 (let ((primary (location-line
1093 (compute-primary-cache-location-from-location
1094 cache (line-location from-line) from-cache))))
1095 (declare (fixnum primary))
1096 (multiple-value-bind (free emptyp)
1097 (find-free-cache-line primary cache)
1098 (when (or forcep emptyp)
1099 (when (not emptyp)
1100 (push (cons (line-wrappers free) (line-value free))
1101 (cache-overflow cache)))
1102 ;;(transfer-line from-cache-vector from-line cache-vector free)
1103 (let ((from-cache-vector (cache-vector from-cache))
1104 (to-cache-vector (c-vector))
1105 (to-line free))
1106 (declare (fixnum to-line))
1107 (if (line-reserved-p to-line)
1108 (error "transferring something into a reserved cache line")
1109 (let ((from-loc (line-location from-line))
1110 (to-loc (line-location to-line)))
1111 (declare (fixnum from-loc to-loc))
1112 (modify-cache to-cache-vector
1113 (dotimes-fixnum (i (line-size))
1114 (setf (cache-vector-ref to-cache-vector
1115 (+ to-loc i))
1116 (cache-vector-ref from-cache-vector
1117 (+ from-loc i)))))))
1118 (maybe-check-cache cache)))))))
1120 ;;; Returns NIL or (values <field> <cache-vector>)
1122 ;;; This is only called when it isn't possible to put the entry in the
1123 ;;; cache the easy way. That is, this function assumes that
1124 ;;; FILL-CACHE-P has been called as returned NIL.
1126 ;;; If this returns NIL, it means that it wasn't possible to find a
1127 ;;; wrapper field for which all of the entries could be put in the
1128 ;;; cache (within the limit).
1129 (defun adjust-cache (cache wrappers value)
1130 (with-local-cache-functions (cache)
1131 (let ((ncache (get-cache-from-cache cache (nlines) (field))))
1132 (do ((nfield (cache-field ncache)
1133 (next-wrapper-cache-number-index nfield)))
1134 ((null nfield) nil)
1135 (setf (cache-field ncache) nfield)
1136 (labels ((try-one-fill-from-line (line)
1137 (fill-cache-from-cache-p nil ncache cache line))
1138 (try-one-fill (wrappers value)
1139 (fill-cache-p nil ncache wrappers value)))
1140 (if (and (dotimes-fixnum (i (nlines) t)
1141 (when (and (null (line-reserved-p i))
1142 (line-valid-p i wrappers))
1143 (unless (try-one-fill-from-line i) (return nil))))
1144 (dolist (wrappers+value (cache-overflow cache) t)
1145 (unless (try-one-fill (car wrappers+value) (cdr wrappers+value))
1146 (return nil)))
1147 (try-one-fill wrappers value))
1148 (return (maybe-check-cache ncache))
1149 (flush-cache-vector-internal (cache-vector ncache))))))))
1151 ;;; returns: (values <cache>)
1152 (defun expand-cache (cache wrappers value)
1153 ;;(declare (values cache))
1154 (with-local-cache-functions (cache)
1155 (let ((ncache (get-cache-from-cache cache (* (nlines) 2))))
1156 (labels ((do-one-fill-from-line (line)
1157 (unless (fill-cache-from-cache-p nil ncache cache line)
1158 (do-one-fill (line-wrappers line) (line-value line))))
1159 (do-one-fill (wrappers value)
1160 (setq ncache (or (adjust-cache ncache wrappers value)
1161 (fill-cache-p t ncache wrappers value))))
1162 (try-one-fill (wrappers value)
1163 (fill-cache-p nil ncache wrappers value)))
1164 (dotimes-fixnum (i (nlines))
1165 (when (and (null (line-reserved-p i))
1166 (line-valid-p i wrappers))
1167 (do-one-fill-from-line i)))
1168 (dolist (wrappers+value (cache-overflow cache))
1169 (unless (try-one-fill (car wrappers+value) (cdr wrappers+value))
1170 (do-one-fill (car wrappers+value) (cdr wrappers+value))))
1171 (unless (try-one-fill wrappers value)
1172 (do-one-fill wrappers value))
1173 (maybe-check-cache ncache)))))
1175 (defvar *pcl-misc-random-state* (make-random-state))
1177 ;;; This is the heart of the cache filling mechanism. It implements
1178 ;;; the decisions about where entries are placed.
1180 ;;; Find a line in the cache at which a new entry can be inserted.
1182 ;;; <line>
1183 ;;; <empty?> is <line> in fact empty?
1184 (defun find-free-cache-line (primary cache &optional wrappers)
1185 ;;(declare (values line empty?))
1186 (declare (fixnum primary))
1187 (with-local-cache-functions (cache)
1188 (when (line-reserved-p primary) (setq primary (next-line primary)))
1189 (let ((limit (funcall (limit-fn) (nlines)))
1190 (wrappedp nil)
1191 (lines nil)
1192 (p primary) (s primary))
1193 (declare (fixnum p s limit))
1194 (block find-free
1195 (loop
1196 ;; Try to find a free line starting at <s>. <p> is the
1197 ;; primary line of the entry we are finding a free
1198 ;; line for, it is used to compute the separations.
1199 (do* ((line s (next-line line))
1200 (nsep (line-separation p s) (1+ nsep)))
1201 (())
1202 (declare (fixnum line nsep))
1203 (when (null (line-valid-p line wrappers)) ;If this line is empty or
1204 (push line lines) ;invalid, just use it.
1205 (return-from find-free))
1206 (when (and wrappedp (>= line primary))
1207 ;; have gone all the way around the cache, time to quit
1208 (return-from find-free-cache-line (values primary nil)))
1209 (let ((osep (line-separation (line-primary line) line)))
1210 (when (>= osep limit)
1211 (return-from find-free-cache-line (values primary nil)))
1212 (when (cond ((= nsep limit) t)
1213 ((= nsep osep)
1214 (zerop (random 2 *pcl-misc-random-state*)))
1215 ((> nsep osep) t)
1216 (t nil))
1217 ;; See whether we can displace what is in this line so that we
1218 ;; can use the line.
1219 (when (= line (the fixnum (1- (nlines)))) (setq wrappedp t))
1220 (setq p (line-primary line))
1221 (setq s (next-line line))
1222 (push line lines)
1223 (return nil)))
1224 (when (= line (the fixnum (1- (nlines)))) (setq wrappedp t)))))
1225 ;; Do all the displacing.
1226 (loop
1227 (when (null (cdr lines)) (return nil))
1228 (let ((dline (pop lines))
1229 (line (car lines)))
1230 (declare (fixnum dline line))
1231 ;;Copy from line to dline (dline is known to be free).
1232 (let ((from-loc (line-location line))
1233 (to-loc (line-location dline))
1234 (cache-vector (c-vector)))
1235 (declare (fixnum from-loc to-loc) (simple-vector cache-vector))
1236 (modify-cache cache-vector
1237 (dotimes-fixnum (i (line-size))
1238 (setf (cache-vector-ref cache-vector
1239 (+ to-loc i))
1240 (cache-vector-ref cache-vector
1241 (+ from-loc i)))
1242 (setf (cache-vector-ref cache-vector
1243 (+ from-loc i))
1244 nil))))))
1245 (values (car lines) t))))
1247 (defun default-limit-fn (nlines)
1248 (case nlines
1249 ((1 2 4) 1)
1250 ((8 16) 4)
1251 (otherwise 6)))