1.0.31.7: transform %FIND-POSITION for strings
[sbcl/pkhuong.git] / src / compiler / array-tran.lisp
blob5aaf16ae5fd6f55067dcd436cb589507bab0e24e
1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!C")
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
18 ;;; determined.
19 (defun upgraded-element-type-specifier-or-give-up (lvar)
20 (let ((element-type-specifier (upgraded-element-type-specifier lvar)))
21 (if (eq element-type-specifier '*)
22 (give-up-ir1-transform
23 "upgraded array element type not known at compile time")
24 element-type-specifier)))
26 (defun upgraded-element-type-specifier (lvar)
27 (type-specifier (extract-upgraded-element-type lvar)))
29 ;;; Array access functions return an object from the array, hence its type is
30 ;;; going to be the array upgraded element type. Secondary return value is the
31 ;;; known supertype of the upgraded-array-element-type, if if the exact
32 ;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good
33 ;;; as it gets.)
34 (defun extract-upgraded-element-type (array)
35 (let ((type (lvar-type array)))
36 (cond
37 ;; Note that this IF mightn't be satisfied even if the runtime
38 ;; value is known to be a subtype of some specialized ARRAY, because
39 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
40 ;; which are represented in the compiler as INTERSECTION-TYPE, not
41 ;; array type.
42 ((array-type-p type)
43 (values (array-type-specialized-element-type type) nil))
44 ;; fix for bug #396. This type logic corresponds to the special case for
45 ;; strings in HAIRY-DATA-VECTOR-REF (generic/vm-tran.lisp)
46 ((csubtypep type (specifier-type 'string))
47 (cond
48 ((csubtypep type (specifier-type '(array character (*))))
49 (values (specifier-type 'character) nil))
50 #!+sb-unicode
51 ((csubtypep type (specifier-type '(array base-char (*))))
52 (values (specifier-type 'base-char) nil))
53 ((csubtypep type (specifier-type '(array nil (*))))
54 (values *empty-type* nil))
56 ;; See KLUDGE below.
57 (values *wild-type* (specifier-type 'character)))))
59 ;; KLUDGE: there is no good answer here, but at least
60 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
61 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
62 ;; 2002-08-21
63 (values *wild-type* nil)))))
65 (defun extract-declared-element-type (array)
66 (let ((type (lvar-type array)))
67 (if (array-type-p type)
68 (array-type-element-type type)
69 *wild-type*)))
71 ;;; The ``new-value'' for array setters must fit in the array, and the
72 ;;; return type is going to be the same as the new-value for SETF
73 ;;; functions.
74 (defun assert-new-value-type (new-value array)
75 (let ((type (lvar-type array)))
76 (when (array-type-p type)
77 (assert-lvar-type
78 new-value
79 (array-type-specialized-element-type type)
80 (lexenv-policy (node-lexenv (lvar-dest new-value))))))
81 (lvar-type new-value))
83 (defun assert-array-complex (array)
84 (assert-lvar-type
85 array
86 (make-array-type :complexp t
87 :element-type *wild-type*)
88 (lexenv-policy (node-lexenv (lvar-dest array))))
89 nil)
91 ;;; Return true if ARG is NIL, or is a constant-lvar whose
92 ;;; value is NIL, false otherwise.
93 (defun unsupplied-or-nil (arg)
94 (declare (type (or lvar null) arg))
95 (or (not arg)
96 (and (constant-lvar-p arg)
97 (not (lvar-value arg)))))
99 ;;;; DERIVE-TYPE optimizers
101 ;;; Array operations that use a specific number of indices implicitly
102 ;;; assert that the array is of that rank.
103 (defun assert-array-rank (array rank)
104 (assert-lvar-type
105 array
106 (specifier-type `(array * ,(make-list rank :initial-element '*)))
107 (lexenv-policy (node-lexenv (lvar-dest array)))))
109 (defun derive-aref-type (array)
110 (multiple-value-bind (uaet other) (extract-upgraded-element-type array)
111 (or other uaet)))
113 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
114 (assert-array-rank array (length indices))
115 *universal-type*)
117 (deftransform array-in-bounds-p ((array &rest subscripts))
118 (flet ((give-up ()
119 (give-up-ir1-transform
120 "~@<lower array bounds unknown or negative and upper bounds not ~
121 negative~:@>"))
122 (bound-known-p (x)
123 (integerp x))) ; might be NIL or *
124 (block nil
125 (let ((dimensions (array-type-dimensions-or-give-up
126 (lvar-conservative-type array))))
127 ;; shortcut for zero dimensions
128 (when (some (lambda (dim)
129 (and (bound-known-p dim) (zerop dim)))
130 dimensions)
131 (return nil))
132 ;; we first collect the subscripts LVARs' bounds and see whether
133 ;; we can already decide on the result of the optimization without
134 ;; even taking a look at the dimensions.
135 (flet ((subscript-bounds (subscript)
136 (let* ((type (lvar-type subscript))
137 (low (numeric-type-low type))
138 (high (numeric-type-high type)))
139 (cond
140 ((and (or (not (bound-known-p low)) (minusp low))
141 (or (not (bound-known-p high)) (not (minusp high))))
142 ;; can't be sure about the lower bound and the upper bound
143 ;; does not give us a definite clue either.
144 (give-up))
145 ((and (bound-known-p high) (minusp high))
146 (return nil)) ; definitely below lower bound (zero).
148 (cons low high))))))
149 (let* ((subscripts-bounds (mapcar #'subscript-bounds subscripts))
150 (subscripts-lower-bound (mapcar #'car subscripts-bounds))
151 (subscripts-upper-bound (mapcar #'cdr subscripts-bounds))
152 (in-bounds 0))
153 (mapcar (lambda (low high dim)
154 (cond
155 ;; first deal with infinite bounds
156 ((some (complement #'bound-known-p) (list low high dim))
157 (when (and (bound-known-p dim) (bound-known-p low) (<= dim low))
158 (return nil)))
159 ;; now we know all bounds
160 ((>= low dim)
161 (return nil))
162 ((< high dim)
163 (aver (not (minusp low)))
164 (incf in-bounds))
166 (give-up))))
167 subscripts-lower-bound
168 subscripts-upper-bound
169 dimensions)
170 (if (eql in-bounds (length dimensions))
172 (give-up))))))))
174 (defoptimizer (aref derive-type) ((array &rest indices) node)
175 (assert-array-rank array (length indices))
176 (derive-aref-type array))
178 (defoptimizer (%aset derive-type) ((array &rest stuff))
179 (assert-array-rank array (1- (length stuff)))
180 (assert-new-value-type (car (last stuff)) array))
182 (macrolet ((define (name)
183 `(defoptimizer (,name derive-type) ((array index))
184 (derive-aref-type array))))
185 (define hairy-data-vector-ref)
186 (define hairy-data-vector-ref/check-bounds)
187 (define data-vector-ref))
189 #!+(or x86 x86-64)
190 (defoptimizer (data-vector-ref-with-offset derive-type) ((array index offset))
191 (derive-aref-type array))
193 (macrolet ((define (name)
194 `(defoptimizer (,name derive-type) ((array index new-value))
195 (assert-new-value-type new-value array))))
196 (define hairy-data-vector-set)
197 (define hairy-data-vector-set/check-bounds)
198 (define data-vector-set))
200 #!+(or x86 x86-64)
201 (defoptimizer (data-vector-set-with-offset derive-type) ((array index offset new-value))
202 (assert-new-value-type new-value array))
204 ;;; Figure out the type of the data vector if we know the argument
205 ;;; element type.
206 (defun derive-%with-array-data/mumble-type (array)
207 (let ((atype (lvar-type array)))
208 (when (array-type-p atype)
209 (specifier-type
210 `(simple-array ,(type-specifier
211 (array-type-specialized-element-type atype))
212 (*))))))
213 (defoptimizer (%with-array-data derive-type) ((array start end))
214 (derive-%with-array-data/mumble-type array))
215 (defoptimizer (%with-array-data/fp derive-type) ((array start end))
216 (derive-%with-array-data/mumble-type array))
218 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
219 (assert-array-rank array (length indices))
220 *universal-type*)
222 (defoptimizer (row-major-aref derive-type) ((array index))
223 (derive-aref-type array))
225 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
226 (assert-new-value-type new-value array))
228 (defoptimizer (make-array derive-type)
229 ((dims &key initial-element element-type initial-contents
230 adjustable fill-pointer displaced-index-offset displaced-to))
231 (let ((simple (and (unsupplied-or-nil adjustable)
232 (unsupplied-or-nil displaced-to)
233 (unsupplied-or-nil fill-pointer))))
234 (or (careful-specifier-type
235 `(,(if simple 'simple-array 'array)
236 ,(cond ((not element-type) t)
237 ((constant-lvar-p element-type)
238 (let ((ctype (careful-specifier-type
239 (lvar-value element-type))))
240 (cond
241 ((or (null ctype) (unknown-type-p ctype)) '*)
242 (t (sb!xc:upgraded-array-element-type
243 (lvar-value element-type))))))
245 '*))
246 ,(cond ((constant-lvar-p dims)
247 (let* ((val (lvar-value dims))
248 (cdims (if (listp val) val (list val))))
249 (if simple
250 cdims
251 (length cdims))))
252 ((csubtypep (lvar-type dims)
253 (specifier-type 'integer))
254 '(*))
256 '*))))
257 (specifier-type 'array))))
259 ;;; Complex array operations should assert that their array argument
260 ;;; is complex. In SBCL, vectors with fill-pointers are complex.
261 (defoptimizer (fill-pointer derive-type) ((vector))
262 (assert-array-complex vector))
263 (defoptimizer (%set-fill-pointer derive-type) ((vector index))
264 (declare (ignorable index))
265 (assert-array-complex vector))
267 (defoptimizer (vector-push derive-type) ((object vector))
268 (declare (ignorable object))
269 (assert-array-complex vector))
270 (defoptimizer (vector-push-extend derive-type)
271 ((object vector &optional index))
272 (declare (ignorable object index))
273 (assert-array-complex vector))
274 (defoptimizer (vector-pop derive-type) ((vector))
275 (assert-array-complex vector))
277 ;;;; constructors
279 ;;; Convert VECTOR into a MAKE-ARRAY.
280 (define-source-transform vector (&rest elements)
281 `(make-array ,(length elements) :initial-contents (list ,@elements)))
283 ;;; Just convert it into a MAKE-ARRAY.
284 (deftransform make-string ((length &key
285 (element-type 'character)
286 (initial-element
287 #.*default-init-char-form*)))
288 `(the simple-string (make-array (the index length)
289 :element-type element-type
290 ,@(when initial-element
291 '(:initial-element initial-element)))))
293 ;;; Prevent open coding DIMENSION and :INITIAL-CONTENTS arguments,
294 ;;; so that we can pick them apart.
295 (define-source-transform make-array (&whole form dimensions &rest keyargs
296 &environment env)
297 (if (and (fun-lexically-notinline-p 'list)
298 (fun-lexically-notinline-p 'vector))
299 (values nil t)
300 `(locally (declare (notinline list vector))
301 ;; Transform '(3) style dimensions to integer args directly.
302 ,(if (sb!xc:constantp dimensions env)
303 (let ((dims (constant-form-value dimensions env)))
304 (if (and (listp dims) (= 1 (length dims)))
305 `(make-array ',(car dims) ,@keyargs)
306 form))
307 form))))
309 ;;; This baby is a bit of a monster, but it takes care of any MAKE-ARRAY
310 ;;; call which creates a vector with a known element type -- and tries
311 ;;; to do a good job with all the different ways it can happen.
312 (defun transform-make-array-vector (length element-type initial-element
313 initial-contents call)
314 (aver (or (not element-type) (constant-lvar-p element-type)))
315 (let* ((c-length (when (constant-lvar-p length)
316 (lvar-value length)))
317 (elt-spec (if element-type
318 (lvar-value element-type)
320 (elt-ctype (ir1-transform-specifier-type elt-spec))
321 (saetp (if (unknown-type-p elt-ctype)
322 (give-up-ir1-transform "~S is an unknown type: ~S"
323 :element-type elt-spec)
324 (find-saetp-by-ctype elt-ctype)))
325 (default-initial-element (sb!vm:saetp-initial-element-default saetp))
326 (n-bits (sb!vm:saetp-n-bits saetp))
327 (typecode (sb!vm:saetp-typecode saetp))
328 (n-pad-elements (sb!vm:saetp-n-pad-elements saetp))
329 (n-words-form
330 (if c-length
331 (ceiling (* (+ c-length n-pad-elements) n-bits)
332 sb!vm:n-word-bits)
333 (let ((padded-length-form (if (zerop n-pad-elements)
334 'length
335 `(+ length ,n-pad-elements))))
336 (cond
337 ((= n-bits 0) 0)
338 ((>= n-bits sb!vm:n-word-bits)
339 `(* ,padded-length-form
340 ;; i.e., not RATIO
341 ,(the fixnum (/ n-bits sb!vm:n-word-bits))))
343 (let ((n-elements-per-word (/ sb!vm:n-word-bits n-bits)))
344 (declare (type index n-elements-per-word)) ; i.e., not RATIO
345 `(ceiling ,padded-length-form ,n-elements-per-word)))))))
346 (result-spec
347 `(simple-array ,(sb!vm:saetp-specifier saetp) (,(or c-length '*))))
348 (alloc-form
349 `(truly-the ,result-spec
350 (allocate-vector ,typecode (the index length) ,n-words-form))))
351 (cond ((and initial-element initial-contents)
352 (abort-ir1-transform "Both ~S and ~S specified."
353 :initial-contents :initial-element))
354 ;; :INITIAL-CONTENTS (LIST ...), (VECTOR ...) and `(1 1 ,x) with a
355 ;; constant LENGTH.
356 ((and initial-contents c-length
357 (lvar-matches initial-contents
358 :fun-names '(list vector sb!impl::backq-list)
359 :arg-count c-length))
360 (let ((parameters (eliminate-keyword-args
361 call 1 '((:element-type element-type)
362 (:initial-contents initial-contents))))
363 (elt-vars (make-gensym-list c-length))
364 (lambda-list '(length)))
365 (splice-fun-args initial-contents :any c-length)
366 (dolist (p parameters)
367 (setf lambda-list
368 (append lambda-list
369 (if (eq p 'initial-contents)
370 elt-vars
371 (list p)))))
372 `(lambda ,lambda-list
373 (declare (type ,elt-spec ,@elt-vars)
374 (ignorable ,@lambda-list))
375 (truly-the ,result-spec
376 (initialize-vector ,alloc-form ,@elt-vars)))))
377 ;; constant :INITIAL-CONTENTS and LENGTH
378 ((and initial-contents c-length (constant-lvar-p initial-contents))
379 (let ((contents (lvar-value initial-contents)))
380 (unless (= c-length (length contents))
381 (abort-ir1-transform "~S has ~S elements, vector length is ~S."
382 :initial-contents (length contents) c-length))
383 (let ((parameters (eliminate-keyword-args
384 call 1 '((:element-type element-type)
385 (:initial-contents initial-contents)))))
386 `(lambda (length ,@parameters)
387 (declare (ignorable ,@parameters))
388 (truly-the ,result-spec
389 (initialize-vector ,alloc-form
390 ,@(map 'list (lambda (elt)
391 `(the ,elt-spec ',elt))
392 contents)))))))
393 ;; any other :INITIAL-CONTENTS
394 (initial-contents
395 (let ((parameters (eliminate-keyword-args
396 call 1 '((:element-type element-type)
397 (:initial-contents initial-contents)))))
398 `(lambda (length ,@parameters)
399 (declare (ignorable ,@parameters))
400 (unless (= length (length initial-contents))
401 (error "~S has ~S elements, vector length is ~S."
402 :initial-contents (length initial-contents) length))
403 (truly-the ,result-spec
404 (replace ,alloc-form initial-contents)))))
405 ;; :INITIAL-ELEMENT, not EQL to the default
406 ((and initial-element
407 (or (not (constant-lvar-p initial-element))
408 (not (eql default-initial-element (lvar-value initial-element)))))
409 (let ((parameters (eliminate-keyword-args
410 call 1 '((:element-type element-type)
411 (:initial-element initial-element))))
412 (init (if (constant-lvar-p initial-element)
413 (list 'quote (lvar-value initial-element))
414 'initial-element)))
415 `(lambda (length ,@parameters)
416 (declare (ignorable ,@parameters))
417 (truly-the ,result-spec
418 (fill ,alloc-form (the ,elt-spec ,init))))))
419 ;; just :ELEMENT-TYPE, or maybe with :INITIAL-ELEMENT EQL to the
420 ;; default
422 #-sb-xc-host
423 (unless (ctypep default-initial-element elt-ctype)
424 ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE
425 ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If
426 ;; INITIAL-ELEMENT is not supplied, the consequences of later
427 ;; reading an uninitialized element of new-array are undefined,"
428 ;; so this could be legal code as long as the user plans to
429 ;; write before he reads, and if he doesn't we're free to do
430 ;; anything we like. But in case the user doesn't know to write
431 ;; elements before he reads elements (or to read manuals before
432 ;; he writes code:-), we'll signal a STYLE-WARNING in case he
433 ;; didn't realize this.
434 (if initial-element
435 (compiler-warn "~S ~S is not a ~S"
436 :initial-element default-initial-element
437 elt-spec)
438 (compiler-style-warn "The default initial element ~S is not a ~S."
439 default-initial-element
440 elt-spec)))
441 (let ((parameters (eliminate-keyword-args
442 call 1 '((:element-type element-type)
443 (:initial-element initial-element)))))
444 `(lambda (length ,@parameters)
445 (declare (ignorable ,@parameters))
446 ,alloc-form))))))
448 ;;; IMPORTANT: The order of these three MAKE-ARRAY forms matters: the least
449 ;;; specific must come first, otherwise suboptimal transforms will result for
450 ;;; some forms.
452 (deftransform make-array ((dims &key initial-element element-type
453 adjustable fill-pointer)
454 (t &rest *))
455 (when (null initial-element)
456 (give-up-ir1-transform))
457 (let* ((eltype (cond ((not element-type) t)
458 ((not (constant-lvar-p element-type))
459 (give-up-ir1-transform
460 "ELEMENT-TYPE is not constant."))
462 (lvar-value element-type))))
463 (eltype-type (ir1-transform-specifier-type eltype))
464 (saetp (find-if (lambda (saetp)
465 (csubtypep eltype-type (sb!vm:saetp-ctype saetp)))
466 sb!vm:*specialized-array-element-type-properties*))
467 (creation-form `(make-array dims
468 :element-type ',(type-specifier (sb!vm:saetp-ctype saetp))
469 ,@(when fill-pointer
470 '(:fill-pointer fill-pointer))
471 ,@(when adjustable
472 '(:adjustable adjustable)))))
474 (unless saetp
475 (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype))
477 (cond ((and (constant-lvar-p initial-element)
478 (eql (lvar-value initial-element)
479 (sb!vm:saetp-initial-element-default saetp)))
480 creation-form)
482 ;; error checking for target, disabled on the host because
483 ;; (CTYPE-OF #\Null) is not possible.
484 #-sb-xc-host
485 (when (constant-lvar-p initial-element)
486 (let ((value (lvar-value initial-element)))
487 (cond
488 ((not (ctypep value (sb!vm:saetp-ctype saetp)))
489 ;; this case will cause an error at runtime, so we'd
490 ;; better WARN about it now.
491 (warn 'array-initial-element-mismatch
492 :format-control "~@<~S is not a ~S (which is the ~
493 ~S of ~S).~@:>"
494 :format-arguments
495 (list
496 value
497 (type-specifier (sb!vm:saetp-ctype saetp))
498 'upgraded-array-element-type
499 eltype)))
500 ((not (ctypep value eltype-type))
501 ;; this case will not cause an error at runtime, but
502 ;; it's still worth STYLE-WARNing about.
503 (compiler-style-warn "~S is not a ~S."
504 value eltype)))))
505 `(let ((array ,creation-form))
506 (multiple-value-bind (vector)
507 (%data-vector-and-index array 0)
508 (fill vector (the ,(sb!vm:saetp-specifier saetp) initial-element)))
509 array)))))
511 ;;; The list type restriction does not ensure that the result will be a
512 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
513 ;;; and displaced-to keywords ensures that it will be simple.
515 ;;; FIXME: should we generalize this transform to non-simple (though
516 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
517 ;;; deal with those? Maybe when the DEFTRANSFORM
518 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
519 ;;; CSR, 2002-07-01
520 (deftransform make-array ((dims &key
521 element-type initial-element initial-contents)
522 (list &key
523 (:element-type (constant-arg *))
524 (:initial-element *)
525 (:initial-contents *))
527 :node call)
528 (block make-array
529 (when (lvar-matches dims :fun-names '(list) :arg-count 1)
530 (let ((length (car (splice-fun-args dims :any 1))))
531 (return-from make-array
532 (transform-make-array-vector length
533 element-type
534 initial-element
535 initial-contents
536 call))))
537 (unless (constant-lvar-p dims)
538 (give-up-ir1-transform
539 "The dimension list is not constant; cannot open code array creation."))
540 (let ((dims (lvar-value dims)))
541 (unless (every #'integerp dims)
542 (give-up-ir1-transform
543 "The dimension list contains something other than an integer: ~S"
544 dims))
545 (if (= (length dims) 1)
546 `(make-array ',(car dims)
547 ,@(when element-type
548 '(:element-type element-type))
549 ,@(when initial-element
550 '(:initial-element initial-element))
551 ,@(when initial-contents
552 '(:initial-contents initial-contents)))
553 (let* ((total-size (reduce #'* dims))
554 (rank (length dims))
555 (spec `(simple-array
556 ,(cond ((null element-type) t)
557 ((and (constant-lvar-p element-type)
558 (ir1-transform-specifier-type
559 (lvar-value element-type)))
560 (sb!xc:upgraded-array-element-type
561 (lvar-value element-type)))
562 (t '*))
563 ,(make-list rank :initial-element '*))))
564 `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank))
565 (data (make-array ,total-size
566 ,@(when element-type
567 '(:element-type element-type))
568 ,@(when initial-element
569 '(:initial-element initial-element)))))
570 ,@(when initial-contents
571 ;; FIXME: This is could be open coded at least a bit too
572 `((sb!impl::fill-data-vector data ',dims initial-contents)))
573 (setf (%array-fill-pointer header) ,total-size)
574 (setf (%array-fill-pointer-p header) nil)
575 (setf (%array-available-elements header) ,total-size)
576 (setf (%array-data-vector header) data)
577 (setf (%array-displaced-p header) nil)
578 (setf (%array-displaced-from header) nil)
579 ,@(let ((axis -1))
580 (mapcar (lambda (dim)
581 `(setf (%array-dimension header ,(incf axis))
582 ,dim))
583 dims))
584 (truly-the ,spec header)))))))
586 (deftransform make-array ((dims &key element-type initial-element initial-contents)
587 (integer &key
588 (:element-type (constant-arg *))
589 (:initial-element *)
590 (:initial-contents *))
592 :node call)
593 (transform-make-array-vector dims
594 element-type
595 initial-element
596 initial-contents
597 call))
599 ;;;; miscellaneous properties of arrays
601 ;;; Transforms for various array properties. If the property is know
602 ;;; at compile time because of a type spec, use that constant value.
604 ;;; Most of this logic may end up belonging in code/late-type.lisp;
605 ;;; however, here we also need the -OR-GIVE-UP for the transforms, and
606 ;;; maybe this is just too sloppy for actual type logic. -- CSR,
607 ;;; 2004-02-18
608 (defun array-type-dimensions-or-give-up (type)
609 (typecase type
610 (array-type (array-type-dimensions type))
611 (union-type
612 (let ((types (union-type-types type)))
613 ;; there are at least two types, right?
614 (aver (> (length types) 1))
615 (let ((result (array-type-dimensions-or-give-up (car types))))
616 (dolist (type (cdr types) result)
617 (unless (equal (array-type-dimensions-or-give-up type) result)
618 (give-up-ir1-transform
619 "~@<dimensions of arrays in union type ~S do not match~:@>"
620 (type-specifier type)))))))
621 ;; FIXME: intersection type [e.g. (and (array * (*)) (satisfies foo)) ]
623 (give-up-ir1-transform
624 "~@<don't know how to extract array dimensions from type ~S~:@>"
625 (type-specifier type)))))
627 (defun conservative-array-type-complexp (type)
628 (typecase type
629 (array-type (array-type-complexp type))
630 (union-type
631 (let ((types (union-type-types type)))
632 (aver (> (length types) 1))
633 (let ((result (conservative-array-type-complexp (car types))))
634 (dolist (type (cdr types) result)
635 (unless (eq (conservative-array-type-complexp type) result)
636 (return-from conservative-array-type-complexp :maybe))))))
637 ;; FIXME: intersection type
638 (t :maybe)))
640 ;;; If we can tell the rank from the type info, use it instead.
641 (deftransform array-rank ((array))
642 (let ((array-type (lvar-type array)))
643 (let ((dims (array-type-dimensions-or-give-up array-type)))
644 (cond ((listp dims)
645 (length dims))
646 ((eq t (array-type-complexp array-type))
647 '(%array-rank array))
649 `(if (array-header-p array)
650 (%array-rank array)
651 1))))))
653 ;;; If we know the dimensions at compile time, just use it. Otherwise,
654 ;;; if we can tell that the axis is in bounds, convert to
655 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
656 ;;; (if it's simple and a vector).
657 (deftransform array-dimension ((array axis)
658 (array index))
659 (unless (constant-lvar-p axis)
660 (give-up-ir1-transform "The axis is not constant."))
661 ;; Dimensions may change thanks to ADJUST-ARRAY, so we need the
662 ;; conservative type.
663 (let ((array-type (lvar-conservative-type array))
664 (axis (lvar-value axis)))
665 (let ((dims (array-type-dimensions-or-give-up array-type)))
666 (unless (listp dims)
667 (give-up-ir1-transform
668 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
669 (unless (> (length dims) axis)
670 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
671 dims
672 axis))
673 (let ((dim (nth axis dims)))
674 (cond ((integerp dim)
675 dim)
676 ((= (length dims) 1)
677 (ecase (conservative-array-type-complexp array-type)
678 ((t)
679 '(%array-dimension array 0))
680 ((nil)
681 '(vector-length array))
682 ((:maybe)
683 `(if (array-header-p array)
684 (%array-dimension array axis)
685 (vector-length array)))))
687 '(%array-dimension array axis)))))))
689 ;;; If the length has been declared and it's simple, just return it.
690 (deftransform length ((vector)
691 ((simple-array * (*))))
692 (let ((type (lvar-type vector)))
693 (let ((dims (array-type-dimensions-or-give-up type)))
694 (unless (and (listp dims) (integerp (car dims)))
695 (give-up-ir1-transform
696 "Vector length is unknown, must call LENGTH at runtime."))
697 (car dims))))
699 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
700 ;;; simple, it will extract the length slot from the vector. It it's
701 ;;; complex, it will extract the fill pointer slot from the array
702 ;;; header.
703 (deftransform length ((vector) (vector))
704 '(vector-length vector))
706 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
707 ;;; compile-time constant.
708 (deftransform vector-length ((vector))
709 (let ((vtype (lvar-type vector)))
710 (let ((dim (first (array-type-dimensions-or-give-up vtype))))
711 (when (eq dim '*)
712 (give-up-ir1-transform))
713 (when (conservative-array-type-complexp vtype)
714 (give-up-ir1-transform))
715 dim)))
717 ;;; Again, if we can tell the results from the type, just use it.
718 ;;; Otherwise, if we know the rank, convert into a computation based
719 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
720 ;;; multiplications because we know that the total size must be an
721 ;;; INDEX.
722 (deftransform array-total-size ((array)
723 (array))
724 (let ((array-type (lvar-type array)))
725 (let ((dims (array-type-dimensions-or-give-up array-type)))
726 (unless (listp dims)
727 (give-up-ir1-transform "can't tell the rank at compile time"))
728 (if (member '* dims)
729 (do ((form 1 `(truly-the index
730 (* (array-dimension array ,i) ,form)))
731 (i 0 (1+ i)))
732 ((= i (length dims)) form))
733 (reduce #'* dims)))))
735 ;;; Only complex vectors have fill pointers.
736 (deftransform array-has-fill-pointer-p ((array))
737 (let ((array-type (lvar-type array)))
738 (let ((dims (array-type-dimensions-or-give-up array-type)))
739 (if (and (listp dims) (not (= (length dims) 1)))
741 (ecase (conservative-array-type-complexp array-type)
742 ((t)
744 ((nil)
745 nil)
746 ((:maybe)
747 (give-up-ir1-transform
748 "The array type is ambiguous; must call ~
749 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
751 ;;; Primitive used to verify indices into arrays. If we can tell at
752 ;;; compile-time or we are generating unsafe code, don't bother with
753 ;;; the VOP.
754 (deftransform %check-bound ((array dimension index) * * :node node)
755 (cond ((policy node (= insert-array-bounds-checks 0))
756 'index)
757 ((not (constant-lvar-p dimension))
758 (give-up-ir1-transform))
760 (let ((dim (lvar-value dimension)))
761 ;; FIXME: Can SPEED > SAFETY weaken this check to INTEGER?
762 `(the (integer 0 (,dim)) index)))))
764 ;;;; WITH-ARRAY-DATA
766 ;;; This checks to see whether the array is simple and the start and
767 ;;; end are in bounds. If so, it proceeds with those values.
768 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
769 ;;; may be further optimized.
771 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
772 ;;; START-VAR and END-VAR to the start and end of the designated
773 ;;; portion of the data vector. SVALUE and EVALUE are any start and
774 ;;; end specified to the original operation, and are factored into the
775 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
776 ;;; offset of all displacements encountered, and does not include
777 ;;; SVALUE.
779 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
780 ;;; forced to be inline, overriding the ordinary judgment of the
781 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
782 ;;; fairly picky about their arguments, figuring that if you haven't
783 ;;; bothered to get all your ducks in a row, you probably don't care
784 ;;; that much about speed anyway! But in some cases it makes sense to
785 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
786 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
787 ;;; sense to use FORCE-INLINE option in that case.
788 (def!macro with-array-data (((data-var array &key offset-var)
789 (start-var &optional (svalue 0))
790 (end-var &optional (evalue nil))
791 &key force-inline check-fill-pointer)
792 &body forms
793 &environment env)
794 (once-only ((n-array array)
795 (n-svalue `(the index ,svalue))
796 (n-evalue `(the (or index null) ,evalue)))
797 (let ((check-bounds (policy env (plusp insert-array-bounds-checks))))
798 `(multiple-value-bind (,data-var
799 ,start-var
800 ,end-var
801 ,@(when offset-var `(,offset-var)))
802 (if (not (array-header-p ,n-array))
803 (let ((,n-array ,n-array))
804 (declare (type (simple-array * (*)) ,n-array))
805 ,(once-only ((n-len (if check-fill-pointer
806 `(length ,n-array)
807 `(array-total-size ,n-array)))
808 (n-end `(or ,n-evalue ,n-len)))
809 (if check-bounds
810 `(if (<= 0 ,n-svalue ,n-end ,n-len)
811 (values ,n-array ,n-svalue ,n-end 0)
812 ,(if check-fill-pointer
813 `(sequence-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)
814 `(array-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)))
815 `(values ,n-array ,n-svalue ,n-end 0))))
816 ,(if force-inline
817 `(%with-array-data-macro ,n-array ,n-svalue ,n-evalue
818 :check-bounds ,check-bounds
819 :check-fill-pointer ,check-fill-pointer)
820 (if check-fill-pointer
821 `(%with-array-data/fp ,n-array ,n-svalue ,n-evalue)
822 `(%with-array-data ,n-array ,n-svalue ,n-evalue))))
823 ,@forms))))
825 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
826 ;;; DEFTRANSFORMs and DEFUNs.
827 (def!macro %with-array-data-macro (array
828 start
830 &key
831 (element-type '*)
832 check-bounds
833 check-fill-pointer)
834 (with-unique-names (size defaulted-end data cumulative-offset)
835 `(let* ((,size ,(if check-fill-pointer
836 `(length ,array)
837 `(array-total-size ,array)))
838 (,defaulted-end (or ,end ,size)))
839 ,@(when check-bounds
840 `((unless (<= ,start ,defaulted-end ,size)
841 ,(if check-fill-pointer
842 `(sequence-bounding-indices-bad-error ,array ,start ,end)
843 `(array-bounding-indices-bad-error ,array ,start ,end)))))
844 (do ((,data ,array (%array-data-vector ,data))
845 (,cumulative-offset 0
846 (+ ,cumulative-offset
847 (%array-displacement ,data))))
848 ((not (array-header-p ,data))
849 (values (the (simple-array ,element-type 1) ,data)
850 (the index (+ ,cumulative-offset ,start))
851 (the index (+ ,cumulative-offset ,defaulted-end))
852 (the index ,cumulative-offset)))
853 (declare (type index ,cumulative-offset))))))
855 (defun transform-%with-array-data/muble (array node check-fill-pointer)
856 (let ((element-type (upgraded-element-type-specifier-or-give-up array))
857 (type (lvar-type array))
858 (check-bounds (policy node (plusp insert-array-bounds-checks))))
859 (if (and (array-type-p type)
860 (not (array-type-complexp type))
861 (listp (array-type-dimensions type))
862 (not (null (cdr (array-type-dimensions type)))))
863 ;; If it's a simple multidimensional array, then just return
864 ;; its data vector directly rather than going through
865 ;; %WITH-ARRAY-DATA-MACRO. SBCL doesn't generally generate
866 ;; code that would use this currently, but we have encouraged
867 ;; users to use WITH-ARRAY-DATA and we may use it ourselves at
868 ;; some point in the future for optimized libraries or
869 ;; similar.
870 (if check-bounds
871 `(let* ((data (truly-the (simple-array ,element-type (*))
872 (%array-data-vector array)))
873 (len (length data))
874 (real-end (or end len)))
875 (unless (<= 0 start data-end lend)
876 (sequence-bounding-indices-bad-error array start end))
877 (values data 0 real-end 0))
878 `(let ((data (truly-the (simple-array ,element-type (*))
879 (%array-data-vector array))))
880 (values data 0 (or end (length data)) 0)))
881 `(%with-array-data-macro array start end
882 :check-fill-pointer ,check-fill-pointer
883 :check-bounds ,check-bounds
884 :element-type ,element-type))))
886 ;; It might very well be reasonable to allow general ARRAY here, I
887 ;; just haven't tried to understand the performance issues involved.
888 ;; -- WHN, and also CSR 2002-05-26
889 (deftransform %with-array-data ((array start end)
890 ((or vector simple-array) index (or index null) t)
892 :node node
893 :policy (> speed space))
894 "inline non-SIMPLE-vector-handling logic"
895 (transform-%with-array-data/muble array node nil))
896 (deftransform %with-array-data/fp ((array start end)
897 ((or vector simple-array) index (or index null) t)
899 :node node
900 :policy (> speed space))
901 "inline non-SIMPLE-vector-handling logic"
902 (transform-%with-array-data/muble array node t))
904 ;;;; array accessors
906 ;;; We convert all typed array accessors into AREF and %ASET with type
907 ;;; assertions on the array.
908 (macrolet ((define-bit-frob (reffer setter simplep)
909 `(progn
910 (define-source-transform ,reffer (a &rest i)
911 `(aref (the (,',(if simplep 'simple-array 'array)
913 ,(mapcar (constantly '*) i))
914 ,a) ,@i))
915 (define-source-transform ,setter (a &rest i)
916 `(%aset (the (,',(if simplep 'simple-array 'array)
918 ,(cdr (mapcar (constantly '*) i)))
919 ,a) ,@i)))))
920 (define-bit-frob sbit %sbitset t)
921 (define-bit-frob bit %bitset nil))
922 (macrolet ((define-frob (reffer setter type)
923 `(progn
924 (define-source-transform ,reffer (a i)
925 `(aref (the ,',type ,a) ,i))
926 (define-source-transform ,setter (a i v)
927 `(%aset (the ,',type ,a) ,i ,v)))))
928 (define-frob svref %svset simple-vector)
929 (define-frob schar %scharset simple-string)
930 (define-frob char %charset string))
932 (macrolet (;; This is a handy macro for computing the row-major index
933 ;; given a set of indices. We wrap each index with a call
934 ;; to %CHECK-BOUND to ensure that everything works out
935 ;; correctly. We can wrap all the interior arithmetic with
936 ;; TRULY-THE INDEX because we know the resultant
937 ;; row-major index must be an index.
938 (with-row-major-index ((array indices index &optional new-value)
939 &rest body)
940 `(let (n-indices dims)
941 (dotimes (i (length ,indices))
942 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
943 (push (make-symbol (format nil "DIM-~D" i)) dims))
944 (setf n-indices (nreverse n-indices))
945 (setf dims (nreverse dims))
946 `(lambda (,',array ,@n-indices
947 ,@',(when new-value (list new-value)))
948 (let* (,@(let ((,index -1))
949 (mapcar (lambda (name)
950 `(,name (array-dimension
951 ,',array
952 ,(incf ,index))))
953 dims))
954 (,',index
955 ,(if (null dims)
957 (do* ((dims dims (cdr dims))
958 (indices n-indices (cdr indices))
959 (last-dim nil (car dims))
960 (form `(%check-bound ,',array
961 ,(car dims)
962 ,(car indices))
963 `(truly-the
964 index
965 (+ (truly-the index
966 (* ,form
967 ,last-dim))
968 (%check-bound
969 ,',array
970 ,(car dims)
971 ,(car indices))))))
972 ((null (cdr dims)) form)))))
973 ,',@body)))))
975 ;; Just return the index after computing it.
976 (deftransform array-row-major-index ((array &rest indices))
977 (with-row-major-index (array indices index)
978 index))
980 ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or
981 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
982 ;; expression for the row major index.
983 (deftransform aref ((array &rest indices))
984 (with-row-major-index (array indices index)
985 (hairy-data-vector-ref array index)))
987 (deftransform %aset ((array &rest stuff))
988 (let ((indices (butlast stuff)))
989 (with-row-major-index (array indices index new-value)
990 (hairy-data-vector-set array index new-value)))))
992 ;; For AREF of vectors we do the bounds checking in the callee. This
993 ;; lets us do a significantly more efficient check for simple-arrays
994 ;; without bloating the code. If we already know the type of the array
995 ;; with sufficient precision, skip directly to DATA-VECTOR-REF.
996 (deftransform aref ((array index) (t t) * :node node)
997 (let* ((type (lvar-type array))
998 (element-ctype (extract-upgraded-element-type array)))
999 (cond
1000 ((and (array-type-p type)
1001 (null (array-type-complexp type))
1002 (not (eql element-ctype *wild-type*))
1003 (eql (length (array-type-dimensions type)) 1))
1004 (let* ((declared-element-ctype (extract-declared-element-type array))
1005 (bare-form
1006 `(data-vector-ref array
1007 (%check-bound array (array-dimension array 0) index))))
1008 (if (type= declared-element-ctype element-ctype)
1009 bare-form
1010 `(the ,(type-specifier declared-element-ctype) ,bare-form))))
1011 ((policy node (zerop insert-array-bounds-checks))
1012 `(hairy-data-vector-ref array index))
1013 (t `(hairy-data-vector-ref/check-bounds array index)))))
1015 (deftransform %aset ((array index new-value) (t t t) * :node node)
1016 (if (policy node (zerop insert-array-bounds-checks))
1017 `(hairy-data-vector-set array index new-value)
1018 `(hairy-data-vector-set/check-bounds array index new-value)))
1020 ;;; But if we find out later that there's some useful type information
1021 ;;; available, switch back to the normal one to give other transforms
1022 ;;; a stab at it.
1023 (macrolet ((define (name transform-to extra extra-type)
1024 (declare (ignore extra-type))
1025 `(deftransform ,name ((array index ,@extra))
1026 (let ((type (lvar-type array))
1027 (element-type (extract-upgraded-element-type array))
1028 (declared-type (extract-declared-element-type array)))
1029 ;; If an element type has been declared, we want to
1030 ;; use that information it for type checking (even
1031 ;; if the access can't be optimized due to the array
1032 ;; not being simple).
1033 (when (and (eql element-type *wild-type*)
1034 ;; This type logic corresponds to the special
1035 ;; case for strings in HAIRY-DATA-VECTOR-REF
1036 ;; (generic/vm-tran.lisp)
1037 (not (csubtypep type (specifier-type 'simple-string))))
1038 (when (or (not (array-type-p type))
1039 ;; If it's a simple array, we might be able
1040 ;; to inline the access completely.
1041 (not (null (array-type-complexp type))))
1042 (give-up-ir1-transform
1043 "Upgraded element type of array is not known at compile time.")))
1044 ,(if extra
1045 ``(truly-the ,declared-type
1046 (,',transform-to array
1047 (%check-bound array
1048 (array-dimension array 0)
1049 index)
1050 (the ,declared-type ,@',extra)))
1051 ``(the ,declared-type
1052 (,',transform-to array
1053 (%check-bound array
1054 (array-dimension array 0)
1055 index))))))))
1056 (define hairy-data-vector-ref/check-bounds
1057 hairy-data-vector-ref nil nil)
1058 (define hairy-data-vector-set/check-bounds
1059 hairy-data-vector-set (new-value) (*)))
1061 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
1062 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
1063 ;;; array total size.
1064 (deftransform row-major-aref ((array index))
1065 `(hairy-data-vector-ref array
1066 (%check-bound array (array-total-size array) index)))
1067 (deftransform %set-row-major-aref ((array index new-value))
1068 `(hairy-data-vector-set array
1069 (%check-bound array (array-total-size array) index)
1070 new-value))
1072 ;;;; bit-vector array operation canonicalization
1073 ;;;;
1074 ;;;; We convert all bit-vector operations to have the result array
1075 ;;;; specified. This allows any result allocation to be open-coded,
1076 ;;;; and eliminates the need for any VM-dependent transforms to handle
1077 ;;;; these cases.
1079 (macrolet ((def (fun)
1080 `(progn
1081 (deftransform ,fun ((bit-array-1 bit-array-2
1082 &optional result-bit-array)
1083 (bit-vector bit-vector &optional null) *
1084 :policy (>= speed space))
1085 `(,',fun bit-array-1 bit-array-2
1086 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
1087 ;; If result is T, make it the first arg.
1088 (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array)
1089 (bit-vector bit-vector (eql t)) *)
1090 `(,',fun bit-array-1 bit-array-2 bit-array-1)))))
1091 (def bit-and)
1092 (def bit-ior)
1093 (def bit-xor)
1094 (def bit-eqv)
1095 (def bit-nand)
1096 (def bit-nor)
1097 (def bit-andc1)
1098 (def bit-andc2)
1099 (def bit-orc1)
1100 (def bit-orc2))
1102 ;;; Similar for BIT-NOT, but there is only one arg...
1103 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
1104 (bit-vector &optional null) *
1105 :policy (>= speed space))
1106 '(bit-not bit-array-1
1107 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
1108 (deftransform bit-not ((bit-array-1 result-bit-array)
1109 (bit-vector (eql t)))
1110 '(bit-not bit-array-1 bit-array-1))
1112 ;;; Pick off some constant cases.
1113 (defoptimizer (array-header-p derive-type) ((array))
1114 (let ((type (lvar-type array)))
1115 (cond ((not (array-type-p type))
1116 ;; FIXME: use analogue of ARRAY-TYPE-DIMENSIONS-OR-GIVE-UP
1117 nil)
1119 (let ((dims (array-type-dimensions type)))
1120 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
1121 ;; no array header
1122 (specifier-type 'null))
1123 ((and (listp dims) (/= (length dims) 1))
1124 ;; multi-dimensional array, will have a header
1125 (specifier-type '(eql t)))
1126 ((eql (array-type-complexp type) t)
1127 (specifier-type '(eql t)))
1129 nil)))))))