1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
19 (defun upgraded-element-type-specifier-or-give-up (lvar)
20 (let ((element-type-specifier (upgraded-element-type-specifier lvar
)))
21 (if (eq element-type-specifier
'*)
22 (give-up-ir1-transform
23 "upgraded array element type not known at compile time")
24 element-type-specifier
)))
26 (defun upgraded-element-type-specifier (lvar)
27 (type-specifier (extract-upgraded-element-type lvar
)))
29 ;;; Array access functions return an object from the array, hence its type is
30 ;;; going to be the array upgraded element type. Secondary return value is the
31 ;;; known supertype of the upgraded-array-element-type, if if the exact
32 ;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good
34 (defun extract-upgraded-element-type (array)
35 (let ((type (lvar-type array
)))
37 ;; Note that this IF mightn't be satisfied even if the runtime
38 ;; value is known to be a subtype of some specialized ARRAY, because
39 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
40 ;; which are represented in the compiler as INTERSECTION-TYPE, not
43 (values (array-type-specialized-element-type type
) nil
))
44 ;; fix for bug #396. This type logic corresponds to the special case for
45 ;; strings in HAIRY-DATA-VECTOR-REF (generic/vm-tran.lisp)
46 ((csubtypep type
(specifier-type 'string
))
48 ((csubtypep type
(specifier-type '(array character
(*))))
49 (values (specifier-type 'character
) nil
))
51 ((csubtypep type
(specifier-type '(array base-char
(*))))
52 (values (specifier-type 'base-char
) nil
))
53 ((csubtypep type
(specifier-type '(array nil
(*))))
54 (values *empty-type
* nil
))
57 (values *wild-type
* (specifier-type 'character
)))))
59 ;; KLUDGE: there is no good answer here, but at least
60 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
61 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
63 (values *wild-type
* nil
)))))
65 (defun extract-declared-element-type (array)
66 (let ((type (lvar-type array
)))
67 (if (array-type-p type
)
68 (array-type-element-type type
)
71 ;;; The ``new-value'' for array setters must fit in the array, and the
72 ;;; return type is going to be the same as the new-value for SETF
74 (defun assert-new-value-type (new-value array
)
75 (let ((type (lvar-type array
)))
76 (when (array-type-p type
)
79 (array-type-specialized-element-type type
)
80 (lexenv-policy (node-lexenv (lvar-dest new-value
))))))
81 (lvar-type new-value
))
83 (defun assert-array-complex (array)
86 (make-array-type :complexp t
87 :element-type
*wild-type
*)
88 (lexenv-policy (node-lexenv (lvar-dest array
))))
91 ;;; Return true if ARG is NIL, or is a constant-lvar whose
92 ;;; value is NIL, false otherwise.
93 (defun unsupplied-or-nil (arg)
94 (declare (type (or lvar null
) arg
))
96 (and (constant-lvar-p arg
)
97 (not (lvar-value arg
)))))
99 ;;;; DERIVE-TYPE optimizers
101 ;;; Array operations that use a specific number of indices implicitly
102 ;;; assert that the array is of that rank.
103 (defun assert-array-rank (array rank
)
106 (specifier-type `(array * ,(make-list rank
:initial-element
'*)))
107 (lexenv-policy (node-lexenv (lvar-dest array
)))))
109 (defun derive-aref-type (array)
110 (multiple-value-bind (uaet other
) (extract-upgraded-element-type array
)
113 (defoptimizer (array-in-bounds-p derive-type
) ((array &rest indices
))
114 (assert-array-rank array
(length indices
))
117 (deftransform array-in-bounds-p
((array &rest subscripts
))
119 (give-up-ir1-transform
120 "~@<lower array bounds unknown or negative and upper bounds not ~
123 (integerp x
))) ; might be NIL or *
125 (let ((dimensions (array-type-dimensions-or-give-up
126 (lvar-conservative-type array
))))
127 ;; shortcut for zero dimensions
128 (when (some (lambda (dim)
129 (and (bound-known-p dim
) (zerop dim
)))
132 ;; we first collect the subscripts LVARs' bounds and see whether
133 ;; we can already decide on the result of the optimization without
134 ;; even taking a look at the dimensions.
135 (flet ((subscript-bounds (subscript)
136 (let* ((type (lvar-type subscript
))
137 (low (numeric-type-low type
))
138 (high (numeric-type-high type
)))
140 ((and (or (not (bound-known-p low
)) (minusp low
))
141 (or (not (bound-known-p high
)) (not (minusp high
))))
142 ;; can't be sure about the lower bound and the upper bound
143 ;; does not give us a definite clue either.
145 ((and (bound-known-p high
) (minusp high
))
146 (return nil
)) ; definitely below lower bound (zero).
149 (let* ((subscripts-bounds (mapcar #'subscript-bounds subscripts
))
150 (subscripts-lower-bound (mapcar #'car subscripts-bounds
))
151 (subscripts-upper-bound (mapcar #'cdr subscripts-bounds
))
153 (mapcar (lambda (low high dim
)
155 ;; first deal with infinite bounds
156 ((some (complement #'bound-known-p
) (list low high dim
))
157 (when (and (bound-known-p dim
) (bound-known-p low
) (<= dim low
))
159 ;; now we know all bounds
163 (aver (not (minusp low
)))
167 subscripts-lower-bound
168 subscripts-upper-bound
170 (if (eql in-bounds
(length dimensions
))
174 (defoptimizer (aref derive-type
) ((array &rest indices
) node
)
175 (assert-array-rank array
(length indices
))
176 (derive-aref-type array
))
178 (defoptimizer (%aset derive-type
) ((array &rest stuff
))
179 (assert-array-rank array
(1- (length stuff
)))
180 (assert-new-value-type (car (last stuff
)) array
))
182 (macrolet ((define (name)
183 `(defoptimizer (,name derive-type
) ((array index
))
184 (derive-aref-type array
))))
185 (define hairy-data-vector-ref
)
186 (define hairy-data-vector-ref
/check-bounds
)
187 (define data-vector-ref
))
190 (defoptimizer (data-vector-ref-with-offset derive-type
) ((array index offset
))
191 (derive-aref-type array
))
193 (macrolet ((define (name)
194 `(defoptimizer (,name derive-type
) ((array index new-value
))
195 (assert-new-value-type new-value array
))))
196 (define hairy-data-vector-set
)
197 (define hairy-data-vector-set
/check-bounds
)
198 (define data-vector-set
))
201 (defoptimizer (data-vector-set-with-offset derive-type
) ((array index offset new-value
))
202 (assert-new-value-type new-value array
))
204 ;;; Figure out the type of the data vector if we know the argument
206 (defun derive-%with-array-data
/mumble-type
(array)
207 (let ((atype (lvar-type array
)))
208 (when (array-type-p atype
)
210 `(simple-array ,(type-specifier
211 (array-type-specialized-element-type atype
))
213 (defoptimizer (%with-array-data derive-type
) ((array start end
))
214 (derive-%with-array-data
/mumble-type array
))
215 (defoptimizer (%with-array-data
/fp derive-type
) ((array start end
))
216 (derive-%with-array-data
/mumble-type array
))
218 (defoptimizer (array-row-major-index derive-type
) ((array &rest indices
))
219 (assert-array-rank array
(length indices
))
222 (defoptimizer (row-major-aref derive-type
) ((array index
))
223 (derive-aref-type array
))
225 (defoptimizer (%set-row-major-aref derive-type
) ((array index new-value
))
226 (assert-new-value-type new-value array
))
228 (defoptimizer (make-array derive-type
)
229 ((dims &key initial-element element-type initial-contents
230 adjustable fill-pointer displaced-index-offset displaced-to
))
231 (let ((simple (and (unsupplied-or-nil adjustable
)
232 (unsupplied-or-nil displaced-to
)
233 (unsupplied-or-nil fill-pointer
))))
234 (or (careful-specifier-type
235 `(,(if simple
'simple-array
'array
)
236 ,(cond ((not element-type
) t
)
237 ((constant-lvar-p element-type
)
238 (let ((ctype (careful-specifier-type
239 (lvar-value element-type
))))
241 ((or (null ctype
) (unknown-type-p ctype
)) '*)
242 (t (sb!xc
:upgraded-array-element-type
243 (lvar-value element-type
))))))
246 ,(cond ((constant-lvar-p dims
)
247 (let* ((val (lvar-value dims
))
248 (cdims (if (listp val
) val
(list val
))))
252 ((csubtypep (lvar-type dims
)
253 (specifier-type 'integer
))
257 (specifier-type 'array
))))
259 ;;; Complex array operations should assert that their array argument
260 ;;; is complex. In SBCL, vectors with fill-pointers are complex.
261 (defoptimizer (fill-pointer derive-type
) ((vector))
262 (assert-array-complex vector
))
263 (defoptimizer (%set-fill-pointer derive-type
) ((vector index
))
264 (declare (ignorable index
))
265 (assert-array-complex vector
))
267 (defoptimizer (vector-push derive-type
) ((object vector
))
268 (declare (ignorable object
))
269 (assert-array-complex vector
))
270 (defoptimizer (vector-push-extend derive-type
)
271 ((object vector
&optional index
))
272 (declare (ignorable object index
))
273 (assert-array-complex vector
))
274 (defoptimizer (vector-pop derive-type
) ((vector))
275 (assert-array-complex vector
))
279 ;;; Convert VECTOR into a MAKE-ARRAY.
280 (define-source-transform vector
(&rest elements
)
281 `(make-array ,(length elements
) :initial-contents
(list ,@elements
)))
283 ;;; Just convert it into a MAKE-ARRAY.
284 (deftransform make-string
((length &key
285 (element-type 'character
)
287 #.
*default-init-char-form
*)))
288 `(the simple-string
(make-array (the index length
)
289 :element-type element-type
290 ,@(when initial-element
291 '(:initial-element initial-element
)))))
293 ;;; Prevent open coding DIMENSION and :INITIAL-CONTENTS arguments,
294 ;;; so that we can pick them apart.
295 (define-source-transform make-array
(&whole form dimensions
&rest keyargs
297 (if (and (fun-lexically-notinline-p 'list
)
298 (fun-lexically-notinline-p 'vector
))
300 `(locally (declare (notinline list vector
))
301 ;; Transform '(3) style dimensions to integer args directly.
302 ,(if (sb!xc
:constantp dimensions env
)
303 (let ((dims (constant-form-value dimensions env
)))
304 (if (and (listp dims
) (= 1 (length dims
)))
305 `(make-array ',(car dims
) ,@keyargs
)
309 ;;; This baby is a bit of a monster, but it takes care of any MAKE-ARRAY
310 ;;; call which creates a vector with a known element type -- and tries
311 ;;; to do a good job with all the different ways it can happen.
312 (defun transform-make-array-vector (length element-type initial-element
313 initial-contents call
)
314 (aver (or (not element-type
) (constant-lvar-p element-type
)))
315 (let* ((c-length (when (constant-lvar-p length
)
316 (lvar-value length
)))
317 (elt-spec (if element-type
318 (lvar-value element-type
)
320 (elt-ctype (ir1-transform-specifier-type elt-spec
))
321 (saetp (if (unknown-type-p elt-ctype
)
322 (give-up-ir1-transform "~S is an unknown type: ~S"
323 :element-type elt-spec
)
324 (find-saetp-by-ctype elt-ctype
)))
325 (default-initial-element (sb!vm
:saetp-initial-element-default saetp
))
326 (n-bits (sb!vm
:saetp-n-bits saetp
))
327 (typecode (sb!vm
:saetp-typecode saetp
))
328 (n-pad-elements (sb!vm
:saetp-n-pad-elements saetp
))
331 (ceiling (* (+ c-length n-pad-elements
) n-bits
)
333 (let ((padded-length-form (if (zerop n-pad-elements
)
335 `(+ length
,n-pad-elements
))))
338 ((>= n-bits sb
!vm
:n-word-bits
)
339 `(* ,padded-length-form
341 ,(the fixnum
(/ n-bits sb
!vm
:n-word-bits
))))
343 (let ((n-elements-per-word (/ sb
!vm
:n-word-bits n-bits
)))
344 (declare (type index n-elements-per-word
)) ; i.e., not RATIO
345 `(ceiling ,padded-length-form
,n-elements-per-word
)))))))
347 `(simple-array ,(sb!vm
:saetp-specifier saetp
) (,(or c-length
'*))))
349 `(truly-the ,result-spec
350 (allocate-vector ,typecode
(the index length
) ,n-words-form
))))
351 (cond ((and initial-element initial-contents
)
352 (abort-ir1-transform "Both ~S and ~S specified."
353 :initial-contents
:initial-element
))
354 ;; :INITIAL-CONTENTS (LIST ...), (VECTOR ...) and `(1 1 ,x) with a
356 ((and initial-contents c-length
357 (lvar-matches initial-contents
358 :fun-names
'(list vector sb
!impl
::backq-list
)
359 :arg-count c-length
))
360 (let ((parameters (eliminate-keyword-args
361 call
1 '((:element-type element-type
)
362 (:initial-contents initial-contents
))))
363 (elt-vars (make-gensym-list c-length
))
364 (lambda-list '(length)))
365 (splice-fun-args initial-contents
:any c-length
)
366 (dolist (p parameters
)
369 (if (eq p
'initial-contents
)
372 `(lambda ,lambda-list
373 (declare (type ,elt-spec
,@elt-vars
)
374 (ignorable ,@lambda-list
))
375 (truly-the ,result-spec
376 (initialize-vector ,alloc-form
,@elt-vars
)))))
377 ;; constant :INITIAL-CONTENTS and LENGTH
378 ((and initial-contents c-length
(constant-lvar-p initial-contents
))
379 (let ((contents (lvar-value initial-contents
)))
380 (unless (= c-length
(length contents
))
381 (abort-ir1-transform "~S has ~S elements, vector length is ~S."
382 :initial-contents
(length contents
) c-length
))
383 (let ((parameters (eliminate-keyword-args
384 call
1 '((:element-type element-type
)
385 (:initial-contents initial-contents
)))))
386 `(lambda (length ,@parameters
)
387 (declare (ignorable ,@parameters
))
388 (truly-the ,result-spec
389 (initialize-vector ,alloc-form
390 ,@(map 'list
(lambda (elt)
391 `(the ,elt-spec
',elt
))
393 ;; any other :INITIAL-CONTENTS
395 (let ((parameters (eliminate-keyword-args
396 call
1 '((:element-type element-type
)
397 (:initial-contents initial-contents
)))))
398 `(lambda (length ,@parameters
)
399 (declare (ignorable ,@parameters
))
400 (unless (= length
(length initial-contents
))
401 (error "~S has ~S elements, vector length is ~S."
402 :initial-contents
(length initial-contents
) length
))
403 (truly-the ,result-spec
404 (replace ,alloc-form initial-contents
)))))
405 ;; :INITIAL-ELEMENT, not EQL to the default
406 ((and initial-element
407 (or (not (constant-lvar-p initial-element
))
408 (not (eql default-initial-element
(lvar-value initial-element
)))))
409 (let ((parameters (eliminate-keyword-args
410 call
1 '((:element-type element-type
)
411 (:initial-element initial-element
))))
412 (init (if (constant-lvar-p initial-element
)
413 (list 'quote
(lvar-value initial-element
))
415 `(lambda (length ,@parameters
)
416 (declare (ignorable ,@parameters
))
417 (truly-the ,result-spec
418 (fill ,alloc-form
(the ,elt-spec
,init
))))))
419 ;; just :ELEMENT-TYPE, or maybe with :INITIAL-ELEMENT EQL to the
423 (unless (ctypep default-initial-element elt-ctype
)
424 ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE
425 ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If
426 ;; INITIAL-ELEMENT is not supplied, the consequences of later
427 ;; reading an uninitialized element of new-array are undefined,"
428 ;; so this could be legal code as long as the user plans to
429 ;; write before he reads, and if he doesn't we're free to do
430 ;; anything we like. But in case the user doesn't know to write
431 ;; elements before he reads elements (or to read manuals before
432 ;; he writes code:-), we'll signal a STYLE-WARNING in case he
433 ;; didn't realize this.
435 (compiler-warn "~S ~S is not a ~S"
436 :initial-element default-initial-element
438 (compiler-style-warn "The default initial element ~S is not a ~S."
439 default-initial-element
441 (let ((parameters (eliminate-keyword-args
442 call
1 '((:element-type element-type
)
443 (:initial-element initial-element
)))))
444 `(lambda (length ,@parameters
)
445 (declare (ignorable ,@parameters
))
448 ;;; IMPORTANT: The order of these three MAKE-ARRAY forms matters: the least
449 ;;; specific must come first, otherwise suboptimal transforms will result for
452 (deftransform make-array
((dims &key initial-element element-type
453 adjustable fill-pointer
)
455 (when (null initial-element
)
456 (give-up-ir1-transform))
457 (let* ((eltype (cond ((not element-type
) t
)
458 ((not (constant-lvar-p element-type
))
459 (give-up-ir1-transform
460 "ELEMENT-TYPE is not constant."))
462 (lvar-value element-type
))))
463 (eltype-type (ir1-transform-specifier-type eltype
))
464 (saetp (find-if (lambda (saetp)
465 (csubtypep eltype-type
(sb!vm
:saetp-ctype saetp
)))
466 sb
!vm
:*specialized-array-element-type-properties
*))
467 (creation-form `(make-array dims
468 :element-type
',(type-specifier (sb!vm
:saetp-ctype saetp
))
470 '(:fill-pointer fill-pointer
))
472 '(:adjustable adjustable
)))))
475 (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype
))
477 (cond ((and (constant-lvar-p initial-element
)
478 (eql (lvar-value initial-element
)
479 (sb!vm
:saetp-initial-element-default saetp
)))
482 ;; error checking for target, disabled on the host because
483 ;; (CTYPE-OF #\Null) is not possible.
485 (when (constant-lvar-p initial-element
)
486 (let ((value (lvar-value initial-element
)))
488 ((not (ctypep value
(sb!vm
:saetp-ctype saetp
)))
489 ;; this case will cause an error at runtime, so we'd
490 ;; better WARN about it now.
491 (warn 'array-initial-element-mismatch
492 :format-control
"~@<~S is not a ~S (which is the ~
497 (type-specifier (sb!vm
:saetp-ctype saetp
))
498 'upgraded-array-element-type
500 ((not (ctypep value eltype-type
))
501 ;; this case will not cause an error at runtime, but
502 ;; it's still worth STYLE-WARNing about.
503 (compiler-style-warn "~S is not a ~S."
505 `(let ((array ,creation-form
))
506 (multiple-value-bind (vector)
507 (%data-vector-and-index array
0)
508 (fill vector
(the ,(sb!vm
:saetp-specifier saetp
) initial-element
)))
511 ;;; The list type restriction does not ensure that the result will be a
512 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
513 ;;; and displaced-to keywords ensures that it will be simple.
515 ;;; FIXME: should we generalize this transform to non-simple (though
516 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
517 ;;; deal with those? Maybe when the DEFTRANSFORM
518 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
520 (deftransform make-array
((dims &key
521 element-type initial-element initial-contents
)
523 (:element-type
(constant-arg *))
525 (:initial-contents
*))
529 (when (lvar-matches dims
:fun-names
'(list) :arg-count
1)
530 (let ((length (car (splice-fun-args dims
:any
1))))
531 (return-from make-array
532 (transform-make-array-vector length
537 (unless (constant-lvar-p dims
)
538 (give-up-ir1-transform
539 "The dimension list is not constant; cannot open code array creation."))
540 (let ((dims (lvar-value dims
)))
541 (unless (every #'integerp dims
)
542 (give-up-ir1-transform
543 "The dimension list contains something other than an integer: ~S"
545 (if (= (length dims
) 1)
546 `(make-array ',(car dims
)
548 '(:element-type element-type
))
549 ,@(when initial-element
550 '(:initial-element initial-element
))
551 ,@(when initial-contents
552 '(:initial-contents initial-contents
)))
553 (let* ((total-size (reduce #'* dims
))
556 ,(cond ((null element-type
) t
)
557 ((and (constant-lvar-p element-type
)
558 (ir1-transform-specifier-type
559 (lvar-value element-type
)))
560 (sb!xc
:upgraded-array-element-type
561 (lvar-value element-type
)))
563 ,(make-list rank
:initial-element
'*))))
564 `(let ((header (make-array-header sb
!vm
:simple-array-widetag
,rank
))
565 (data (make-array ,total-size
567 '(:element-type element-type
))
568 ,@(when initial-element
569 '(:initial-element initial-element
)))))
570 ,@(when initial-contents
571 ;; FIXME: This is could be open coded at least a bit too
572 `((sb!impl
::fill-data-vector data
',dims initial-contents
)))
573 (setf (%array-fill-pointer header
) ,total-size
)
574 (setf (%array-fill-pointer-p header
) nil
)
575 (setf (%array-available-elements header
) ,total-size
)
576 (setf (%array-data-vector header
) data
)
577 (setf (%array-displaced-p header
) nil
)
578 (setf (%array-displaced-from header
) nil
)
580 (mapcar (lambda (dim)
581 `(setf (%array-dimension header
,(incf axis
))
584 (truly-the ,spec header
)))))))
586 (deftransform make-array
((dims &key element-type initial-element initial-contents
)
588 (:element-type
(constant-arg *))
590 (:initial-contents
*))
593 (transform-make-array-vector dims
599 ;;;; miscellaneous properties of arrays
601 ;;; Transforms for various array properties. If the property is know
602 ;;; at compile time because of a type spec, use that constant value.
604 ;;; Most of this logic may end up belonging in code/late-type.lisp;
605 ;;; however, here we also need the -OR-GIVE-UP for the transforms, and
606 ;;; maybe this is just too sloppy for actual type logic. -- CSR,
608 (defun array-type-dimensions-or-give-up (type)
610 (array-type (array-type-dimensions type
))
612 (let ((types (union-type-types type
)))
613 ;; there are at least two types, right?
614 (aver (> (length types
) 1))
615 (let ((result (array-type-dimensions-or-give-up (car types
))))
616 (dolist (type (cdr types
) result
)
617 (unless (equal (array-type-dimensions-or-give-up type
) result
)
618 (give-up-ir1-transform
619 "~@<dimensions of arrays in union type ~S do not match~:@>"
620 (type-specifier type
)))))))
621 ;; FIXME: intersection type [e.g. (and (array * (*)) (satisfies foo)) ]
623 (give-up-ir1-transform
624 "~@<don't know how to extract array dimensions from type ~S~:@>"
625 (type-specifier type
)))))
627 (defun conservative-array-type-complexp (type)
629 (array-type (array-type-complexp type
))
631 (let ((types (union-type-types type
)))
632 (aver (> (length types
) 1))
633 (let ((result (conservative-array-type-complexp (car types
))))
634 (dolist (type (cdr types
) result
)
635 (unless (eq (conservative-array-type-complexp type
) result
)
636 (return-from conservative-array-type-complexp
:maybe
))))))
637 ;; FIXME: intersection type
640 ;;; If we can tell the rank from the type info, use it instead.
641 (deftransform array-rank
((array))
642 (let ((array-type (lvar-type array
)))
643 (let ((dims (array-type-dimensions-or-give-up array-type
)))
646 ((eq t
(array-type-complexp array-type
))
647 '(%array-rank array
))
649 `(if (array-header-p array
)
653 ;;; If we know the dimensions at compile time, just use it. Otherwise,
654 ;;; if we can tell that the axis is in bounds, convert to
655 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
656 ;;; (if it's simple and a vector).
657 (deftransform array-dimension
((array axis
)
659 (unless (constant-lvar-p axis
)
660 (give-up-ir1-transform "The axis is not constant."))
661 ;; Dimensions may change thanks to ADJUST-ARRAY, so we need the
662 ;; conservative type.
663 (let ((array-type (lvar-conservative-type array
))
664 (axis (lvar-value axis
)))
665 (let ((dims (array-type-dimensions-or-give-up array-type
)))
667 (give-up-ir1-transform
668 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
669 (unless (> (length dims
) axis
)
670 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
673 (let ((dim (nth axis dims
)))
674 (cond ((integerp dim
)
677 (ecase (conservative-array-type-complexp array-type
)
679 '(%array-dimension array
0))
681 '(vector-length array
))
683 `(if (array-header-p array
)
684 (%array-dimension array axis
)
685 (vector-length array
)))))
687 '(%array-dimension array axis
)))))))
689 ;;; If the length has been declared and it's simple, just return it.
690 (deftransform length
((vector)
691 ((simple-array * (*))))
692 (let ((type (lvar-type vector
)))
693 (let ((dims (array-type-dimensions-or-give-up type
)))
694 (unless (and (listp dims
) (integerp (car dims
)))
695 (give-up-ir1-transform
696 "Vector length is unknown, must call LENGTH at runtime."))
699 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
700 ;;; simple, it will extract the length slot from the vector. It it's
701 ;;; complex, it will extract the fill pointer slot from the array
703 (deftransform length
((vector) (vector))
704 '(vector-length vector
))
706 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
707 ;;; compile-time constant.
708 (deftransform vector-length
((vector))
709 (let ((vtype (lvar-type vector
)))
710 (let ((dim (first (array-type-dimensions-or-give-up vtype
))))
712 (give-up-ir1-transform))
713 (when (conservative-array-type-complexp vtype
)
714 (give-up-ir1-transform))
717 ;;; Again, if we can tell the results from the type, just use it.
718 ;;; Otherwise, if we know the rank, convert into a computation based
719 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
720 ;;; multiplications because we know that the total size must be an
722 (deftransform array-total-size
((array)
724 (let ((array-type (lvar-type array
)))
725 (let ((dims (array-type-dimensions-or-give-up array-type
)))
727 (give-up-ir1-transform "can't tell the rank at compile time"))
729 (do ((form 1 `(truly-the index
730 (* (array-dimension array
,i
) ,form
)))
732 ((= i
(length dims
)) form
))
733 (reduce #'* dims
)))))
735 ;;; Only complex vectors have fill pointers.
736 (deftransform array-has-fill-pointer-p
((array))
737 (let ((array-type (lvar-type array
)))
738 (let ((dims (array-type-dimensions-or-give-up array-type
)))
739 (if (and (listp dims
) (not (= (length dims
) 1)))
741 (ecase (conservative-array-type-complexp array-type
)
747 (give-up-ir1-transform
748 "The array type is ambiguous; must call ~
749 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
751 ;;; Primitive used to verify indices into arrays. If we can tell at
752 ;;; compile-time or we are generating unsafe code, don't bother with
754 (deftransform %check-bound
((array dimension index
) * * :node node
)
755 (cond ((policy node
(= insert-array-bounds-checks
0))
757 ((not (constant-lvar-p dimension
))
758 (give-up-ir1-transform))
760 (let ((dim (lvar-value dimension
)))
761 ;; FIXME: Can SPEED > SAFETY weaken this check to INTEGER?
762 `(the (integer 0 (,dim
)) index
)))))
766 ;;; This checks to see whether the array is simple and the start and
767 ;;; end are in bounds. If so, it proceeds with those values.
768 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
769 ;;; may be further optimized.
771 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
772 ;;; START-VAR and END-VAR to the start and end of the designated
773 ;;; portion of the data vector. SVALUE and EVALUE are any start and
774 ;;; end specified to the original operation, and are factored into the
775 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
776 ;;; offset of all displacements encountered, and does not include
779 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
780 ;;; forced to be inline, overriding the ordinary judgment of the
781 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
782 ;;; fairly picky about their arguments, figuring that if you haven't
783 ;;; bothered to get all your ducks in a row, you probably don't care
784 ;;; that much about speed anyway! But in some cases it makes sense to
785 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
786 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
787 ;;; sense to use FORCE-INLINE option in that case.
788 (def!macro with-array-data
(((data-var array
&key offset-var
)
789 (start-var &optional
(svalue 0))
790 (end-var &optional
(evalue nil
))
791 &key force-inline check-fill-pointer
)
794 (once-only ((n-array array
)
795 (n-svalue `(the index
,svalue
))
796 (n-evalue `(the (or index null
) ,evalue
)))
797 (let ((check-bounds (policy env
(plusp insert-array-bounds-checks
))))
798 `(multiple-value-bind (,data-var
801 ,@(when offset-var
`(,offset-var
)))
802 (if (not (array-header-p ,n-array
))
803 (let ((,n-array
,n-array
))
804 (declare (type (simple-array * (*)) ,n-array
))
805 ,(once-only ((n-len (if check-fill-pointer
807 `(array-total-size ,n-array
)))
808 (n-end `(or ,n-evalue
,n-len
)))
810 `(if (<= 0 ,n-svalue
,n-end
,n-len
)
811 (values ,n-array
,n-svalue
,n-end
0)
812 ,(if check-fill-pointer
813 `(sequence-bounding-indices-bad-error ,n-array
,n-svalue
,n-evalue
)
814 `(array-bounding-indices-bad-error ,n-array
,n-svalue
,n-evalue
)))
815 `(values ,n-array
,n-svalue
,n-end
0))))
817 `(%with-array-data-macro
,n-array
,n-svalue
,n-evalue
818 :check-bounds
,check-bounds
819 :check-fill-pointer
,check-fill-pointer
)
820 (if check-fill-pointer
821 `(%with-array-data
/fp
,n-array
,n-svalue
,n-evalue
)
822 `(%with-array-data
,n-array
,n-svalue
,n-evalue
))))
825 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
826 ;;; DEFTRANSFORMs and DEFUNs.
827 (def!macro %with-array-data-macro
(array
834 (with-unique-names (size defaulted-end data cumulative-offset
)
835 `(let* ((,size
,(if check-fill-pointer
837 `(array-total-size ,array
)))
838 (,defaulted-end
(or ,end
,size
)))
840 `((unless (<= ,start
,defaulted-end
,size
)
841 ,(if check-fill-pointer
842 `(sequence-bounding-indices-bad-error ,array
,start
,end
)
843 `(array-bounding-indices-bad-error ,array
,start
,end
)))))
844 (do ((,data
,array
(%array-data-vector
,data
))
845 (,cumulative-offset
0
846 (+ ,cumulative-offset
847 (%array-displacement
,data
))))
848 ((not (array-header-p ,data
))
849 (values (the (simple-array ,element-type
1) ,data
)
850 (the index
(+ ,cumulative-offset
,start
))
851 (the index
(+ ,cumulative-offset
,defaulted-end
))
852 (the index
,cumulative-offset
)))
853 (declare (type index
,cumulative-offset
))))))
855 (defun transform-%with-array-data
/muble
(array node check-fill-pointer
)
856 (let ((element-type (upgraded-element-type-specifier-or-give-up array
))
857 (type (lvar-type array
))
858 (check-bounds (policy node
(plusp insert-array-bounds-checks
))))
859 (if (and (array-type-p type
)
860 (not (array-type-complexp type
))
861 (listp (array-type-dimensions type
))
862 (not (null (cdr (array-type-dimensions type
)))))
863 ;; If it's a simple multidimensional array, then just return
864 ;; its data vector directly rather than going through
865 ;; %WITH-ARRAY-DATA-MACRO. SBCL doesn't generally generate
866 ;; code that would use this currently, but we have encouraged
867 ;; users to use WITH-ARRAY-DATA and we may use it ourselves at
868 ;; some point in the future for optimized libraries or
871 `(let* ((data (truly-the (simple-array ,element-type
(*))
872 (%array-data-vector array
)))
874 (real-end (or end len
)))
875 (unless (<= 0 start data-end lend
)
876 (sequence-bounding-indices-bad-error array start end
))
877 (values data
0 real-end
0))
878 `(let ((data (truly-the (simple-array ,element-type
(*))
879 (%array-data-vector array
))))
880 (values data
0 (or end
(length data
)) 0)))
881 `(%with-array-data-macro array start end
882 :check-fill-pointer
,check-fill-pointer
883 :check-bounds
,check-bounds
884 :element-type
,element-type
))))
886 ;; It might very well be reasonable to allow general ARRAY here, I
887 ;; just haven't tried to understand the performance issues involved.
888 ;; -- WHN, and also CSR 2002-05-26
889 (deftransform %with-array-data
((array start end
)
890 ((or vector simple-array
) index
(or index null
) t
)
893 :policy
(> speed space
))
894 "inline non-SIMPLE-vector-handling logic"
895 (transform-%with-array-data
/muble array node nil
))
896 (deftransform %with-array-data
/fp
((array start end
)
897 ((or vector simple-array
) index
(or index null
) t
)
900 :policy
(> speed space
))
901 "inline non-SIMPLE-vector-handling logic"
902 (transform-%with-array-data
/muble array node t
))
906 ;;; We convert all typed array accessors into AREF and %ASET with type
907 ;;; assertions on the array.
908 (macrolet ((define-bit-frob (reffer setter simplep
)
910 (define-source-transform ,reffer
(a &rest i
)
911 `(aref (the (,',(if simplep
'simple-array
'array
)
913 ,(mapcar (constantly '*) i
))
915 (define-source-transform ,setter
(a &rest i
)
916 `(%aset
(the (,',(if simplep
'simple-array
'array
)
918 ,(cdr (mapcar (constantly '*) i
)))
920 (define-bit-frob sbit %sbitset t
)
921 (define-bit-frob bit %bitset nil
))
922 (macrolet ((define-frob (reffer setter type
)
924 (define-source-transform ,reffer
(a i
)
925 `(aref (the ,',type
,a
) ,i
))
926 (define-source-transform ,setter
(a i v
)
927 `(%aset
(the ,',type
,a
) ,i
,v
)))))
928 (define-frob svref %svset simple-vector
)
929 (define-frob schar %scharset simple-string
)
930 (define-frob char %charset string
))
932 (macrolet (;; This is a handy macro for computing the row-major index
933 ;; given a set of indices. We wrap each index with a call
934 ;; to %CHECK-BOUND to ensure that everything works out
935 ;; correctly. We can wrap all the interior arithmetic with
936 ;; TRULY-THE INDEX because we know the resultant
937 ;; row-major index must be an index.
938 (with-row-major-index ((array indices index
&optional new-value
)
940 `(let (n-indices dims
)
941 (dotimes (i (length ,indices
))
942 (push (make-symbol (format nil
"INDEX-~D" i
)) n-indices
)
943 (push (make-symbol (format nil
"DIM-~D" i
)) dims
))
944 (setf n-indices
(nreverse n-indices
))
945 (setf dims
(nreverse dims
))
946 `(lambda (,',array
,@n-indices
947 ,@',(when new-value
(list new-value
)))
948 (let* (,@(let ((,index -
1))
949 (mapcar (lambda (name)
950 `(,name
(array-dimension
957 (do* ((dims dims
(cdr dims
))
958 (indices n-indices
(cdr indices
))
959 (last-dim nil
(car dims
))
960 (form `(%check-bound
,',array
972 ((null (cdr dims
)) form
)))))
975 ;; Just return the index after computing it.
976 (deftransform array-row-major-index
((array &rest indices
))
977 (with-row-major-index (array indices index
)
980 ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or
981 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
982 ;; expression for the row major index.
983 (deftransform aref
((array &rest indices
))
984 (with-row-major-index (array indices index
)
985 (hairy-data-vector-ref array index
)))
987 (deftransform %aset
((array &rest stuff
))
988 (let ((indices (butlast stuff
)))
989 (with-row-major-index (array indices index new-value
)
990 (hairy-data-vector-set array index new-value
)))))
992 ;; For AREF of vectors we do the bounds checking in the callee. This
993 ;; lets us do a significantly more efficient check for simple-arrays
994 ;; without bloating the code. If we already know the type of the array
995 ;; with sufficient precision, skip directly to DATA-VECTOR-REF.
996 (deftransform aref
((array index
) (t t
) * :node node
)
997 (let* ((type (lvar-type array
))
998 (element-ctype (extract-upgraded-element-type array
)))
1000 ((and (array-type-p type
)
1001 (null (array-type-complexp type
))
1002 (not (eql element-ctype
*wild-type
*))
1003 (eql (length (array-type-dimensions type
)) 1))
1004 (let* ((declared-element-ctype (extract-declared-element-type array
))
1006 `(data-vector-ref array
1007 (%check-bound array
(array-dimension array
0) index
))))
1008 (if (type= declared-element-ctype element-ctype
)
1010 `(the ,(type-specifier declared-element-ctype
) ,bare-form
))))
1011 ((policy node
(zerop insert-array-bounds-checks
))
1012 `(hairy-data-vector-ref array index
))
1013 (t `(hairy-data-vector-ref/check-bounds array index
)))))
1015 (deftransform %aset
((array index new-value
) (t t t
) * :node node
)
1016 (if (policy node
(zerop insert-array-bounds-checks
))
1017 `(hairy-data-vector-set array index new-value
)
1018 `(hairy-data-vector-set/check-bounds array index new-value
)))
1020 ;;; But if we find out later that there's some useful type information
1021 ;;; available, switch back to the normal one to give other transforms
1023 (macrolet ((define (name transform-to extra extra-type
)
1024 (declare (ignore extra-type
))
1025 `(deftransform ,name
((array index
,@extra
))
1026 (let ((type (lvar-type array
))
1027 (element-type (extract-upgraded-element-type array
))
1028 (declared-type (extract-declared-element-type array
)))
1029 ;; If an element type has been declared, we want to
1030 ;; use that information it for type checking (even
1031 ;; if the access can't be optimized due to the array
1032 ;; not being simple).
1033 (when (and (eql element-type
*wild-type
*)
1034 ;; This type logic corresponds to the special
1035 ;; case for strings in HAIRY-DATA-VECTOR-REF
1036 ;; (generic/vm-tran.lisp)
1037 (not (csubtypep type
(specifier-type 'simple-string
))))
1038 (when (or (not (array-type-p type
))
1039 ;; If it's a simple array, we might be able
1040 ;; to inline the access completely.
1041 (not (null (array-type-complexp type
))))
1042 (give-up-ir1-transform
1043 "Upgraded element type of array is not known at compile time.")))
1045 ``(truly-the ,declared-type
1046 (,',transform-to array
1048 (array-dimension array
0)
1050 (the ,declared-type
,@',extra
)))
1051 ``(the ,declared-type
1052 (,',transform-to array
1054 (array-dimension array
0)
1056 (define hairy-data-vector-ref
/check-bounds
1057 hairy-data-vector-ref nil nil
)
1058 (define hairy-data-vector-set
/check-bounds
1059 hairy-data-vector-set
(new-value) (*)))
1061 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
1062 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
1063 ;;; array total size.
1064 (deftransform row-major-aref
((array index
))
1065 `(hairy-data-vector-ref array
1066 (%check-bound array
(array-total-size array
) index
)))
1067 (deftransform %set-row-major-aref
((array index new-value
))
1068 `(hairy-data-vector-set array
1069 (%check-bound array
(array-total-size array
) index
)
1072 ;;;; bit-vector array operation canonicalization
1074 ;;;; We convert all bit-vector operations to have the result array
1075 ;;;; specified. This allows any result allocation to be open-coded,
1076 ;;;; and eliminates the need for any VM-dependent transforms to handle
1079 (macrolet ((def (fun)
1081 (deftransform ,fun
((bit-array-1 bit-array-2
1082 &optional result-bit-array
)
1083 (bit-vector bit-vector
&optional null
) *
1084 :policy
(>= speed space
))
1085 `(,',fun bit-array-1 bit-array-2
1086 (make-array (array-dimension bit-array-1
0) :element-type
'bit
)))
1087 ;; If result is T, make it the first arg.
1088 (deftransform ,fun
((bit-array-1 bit-array-2 result-bit-array
)
1089 (bit-vector bit-vector
(eql t
)) *)
1090 `(,',fun bit-array-1 bit-array-2 bit-array-1
)))))
1102 ;;; Similar for BIT-NOT, but there is only one arg...
1103 (deftransform bit-not
((bit-array-1 &optional result-bit-array
)
1104 (bit-vector &optional null
) *
1105 :policy
(>= speed space
))
1106 '(bit-not bit-array-1
1107 (make-array (array-dimension bit-array-1
0) :element-type
'bit
)))
1108 (deftransform bit-not
((bit-array-1 result-bit-array
)
1109 (bit-vector (eql t
)))
1110 '(bit-not bit-array-1 bit-array-1
))
1112 ;;; Pick off some constant cases.
1113 (defoptimizer (array-header-p derive-type
) ((array))
1114 (let ((type (lvar-type array
)))
1115 (cond ((not (array-type-p type
))
1116 ;; FIXME: use analogue of ARRAY-TYPE-DIMENSIONS-OR-GIVE-UP
1119 (let ((dims (array-type-dimensions type
)))
1120 (cond ((csubtypep type
(specifier-type '(simple-array * (*))))
1122 (specifier-type 'null
))
1123 ((and (listp dims
) (/= (length dims
) 1))
1124 ;; multi-dimensional array, will have a header
1125 (specifier-type '(eql t
)))
1126 ((eql (array-type-complexp type
) t
)
1127 (specifier-type '(eql t
)))