1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y
)
19 (declare (type node node
) (type ir2-block block
) (type tn x y
))
21 (vop move node block x y
))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node
(> insert-step-conditions
1))
28 (typep node
'combination
))
29 (combination-step-info node
)
32 ;;; If there is any CHECK-xxx template for TYPE, then return it,
33 ;;; otherwise return NIL.
34 (defun type-check-template (type)
35 (declare (type ctype type
))
36 (multiple-value-bind (check-ptype exact
) (primitive-type type
)
38 (primitive-type-check check-ptype
)
39 (let ((name (hairy-type-check-template-name type
)))
41 (template-or-lose name
)
44 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
45 ;;; yielding the checked result in RESULT. VALUE and result may be of
46 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
47 ;;; other type checks should have been converted to an explicit type
49 (defun emit-type-check (node block value result type
)
50 (declare (type tn value result
) (type node node
) (type ir2-block block
)
52 (emit-move-template node block
(type-check-template type
) value result
)
55 ;;; Allocate an indirect value cell.
56 (defevent make-value-cell-event
"Allocate heap value cell for lexical var.")
57 (defun emit-make-value-cell (node block value res
)
58 (event make-value-cell-event node
)
59 (let ((leaf (tn-leaf res
)))
60 (vop make-value-cell node block value
61 (and leaf
(leaf-dynamic-extent leaf
)
63 (policy node
(> stack-allocate-value-cells
1)))
68 ;;; Return the TN that holds the value of THING in the environment ENV.
69 (declaim (ftype (function ((or nlx-info lambda-var clambda
) physenv
) tn
)
71 (defun find-in-physenv (thing physenv
)
72 (or (cdr (assoc thing
(ir2-physenv-closure (physenv-info physenv
))))
75 ;; I think that a failure of this assertion means that we're
76 ;; trying to access a variable which was improperly closed
77 ;; over. The PHYSENV describes a physical environment. Every
78 ;; variable that a form refers to should either be in its
79 ;; physical environment directly, or grabbed from a
80 ;; surrounding physical environment when it was closed over.
81 ;; The ASSOC expression above finds closed-over variables, so
82 ;; if we fell through the ASSOC expression, it wasn't closed
83 ;; over. Therefore, it must be in our physical environment
84 ;; directly. If instead it is in some other physical
85 ;; environment, then it's bogus for us to reference it here
86 ;; without it being closed over. -- WHN 2001-09-29
87 (aver (eq physenv
(lambda-physenv (lambda-var-home thing
))))
90 (aver (eq physenv
(block-physenv (nlx-info-target thing
))))
91 (ir2-nlx-info-home (nlx-info-info thing
)))
94 (entry-info-closure-tn (lambda-info thing
))))
95 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv
)))
97 ;;; If LEAF already has a constant TN, return that, otherwise make a
99 (defun constant-tn (leaf)
100 (declare (type constant leaf
))
102 (setf (leaf-info leaf
)
103 (make-constant-tn leaf
))))
105 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
106 ;;; isn't directly represented by a TN. ENV is the environment that
107 ;;; the reference is done in.
108 (defun leaf-tn (leaf env
)
109 (declare (type leaf leaf
) (type physenv env
))
112 (unless (lambda-var-indirect leaf
)
113 (find-in-physenv leaf env
)))
114 (constant (constant-tn leaf
))
117 ;;; This is used to conveniently get a handle on a constant TN during
118 ;;; IR2 conversion. It returns a constant TN representing the Lisp
120 (defun emit-constant (value)
121 (constant-tn (find-constant value
)))
123 ;;; Convert a REF node. The reference must not be delayed.
124 (defun ir2-convert-ref (node block
)
125 (declare (type ref node
) (type ir2-block block
))
126 (let* ((lvar (node-lvar node
))
127 (leaf (ref-leaf node
))
128 (locs (lvar-result-tns
129 lvar
(list (primitive-type (leaf-type leaf
)))))
133 (let ((tn (find-in-physenv leaf
(node-physenv node
))))
134 (if (lambda-var-indirect leaf
)
135 (vop value-cell-ref node block tn res
)
136 (emit-move node block tn res
))))
138 (emit-move node block
(constant-tn leaf
) res
))
140 (ir2-convert-closure node block leaf res
))
142 (let ((unsafe (policy node
(zerop safety
)))
143 (name (leaf-source-name leaf
)))
144 (ecase (global-var-kind leaf
)
146 (aver (symbolp name
))
147 (let ((name-tn (emit-constant name
)))
149 (vop fast-symbol-value node block name-tn res
)
150 (vop symbol-value node block name-tn res
))))
152 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name
)))
154 (vop fdefn-fun node block fdefn-tn res
)
155 (vop safe-fdefn-fun node block fdefn-tn res
))))))))
156 (move-lvar-result node block locs lvar
))
159 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
160 (defun assertions-on-ir2-converted-clambda (clambda)
161 ;; This assertion was sort of an experiment. It would be nice and
162 ;; sane and easier to understand things if it were *always* true,
163 ;; but experimentally I observe that it's only *almost* always
164 ;; true. -- WHN 2001-01-02
166 (aver (eql (lambda-component clambda
)
167 (block-component (ir2-block-block ir2-block
))))
168 ;; Check for some weirdness which came up in bug
171 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
172 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
174 ;; * treats every HANDLEless :ENTRY record into a
176 ;; * expects every patch to correspond to an
177 ;; IR2-COMPONENT-ENTRIES record.
178 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
179 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
180 ;; was a HANDLEless :ENTRY record which didn't correspond to an
181 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
182 ;; when it's caught at dump time, so this assertion tries to catch
184 (aver (member clambda
185 (component-lambdas (lambda-component clambda
))))
186 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
187 ;; used as a queue for stuff pending to do in IR1, and now that
188 ;; we're doing IR2 it should've been completely flushed (but
190 (aver (null (component-new-functionals (lambda-component clambda
))))
193 ;;; Emit code to load a function object implementing FUNCTIONAL into
194 ;;; RES. This gets interesting when the referenced function is a
195 ;;; closure: we must make the closure and move the closed-over values
198 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
199 ;;; for the called function, since local call analysis converts all
200 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
203 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
204 ;;; don't initialize that slot. This can happen with closures over
205 ;;; top level variables, where optimization of the closure deleted the
206 ;;; variable. Since we committed to the closure format when we
207 ;;; pre-analyzed the top level code, we just leave an empty slot.
208 (defun ir2-convert-closure (ref ir2-block functional res
)
209 (declare (type ref ref
)
210 (type ir2-block ir2-block
)
211 (type functional functional
)
213 (aver (not (eql (functional-kind functional
) :deleted
)))
214 (unless (leaf-info functional
)
215 (setf (leaf-info functional
)
216 (make-entry-info :name
(functional-debug-name functional
))))
217 (let ((closure (etypecase functional
219 (assertions-on-ir2-converted-clambda functional
)
220 (physenv-closure (get-lambda-physenv functional
)))
222 (aver (eq (functional-kind functional
) :toplevel-xep
))
226 (let* ((physenv (node-physenv ref
))
227 (tn (find-in-physenv functional physenv
)))
228 (emit-move ref ir2-block tn res
)))
230 (let ((entry (make-load-time-constant-tn :entry functional
)))
231 (emit-move ref ir2-block entry res
)))))
234 (defoptimizer (%allocate-closures ltn-annotate
) ((leaves) node ltn-policy
)
235 ltn-policy
; a hack to effectively (DECLARE (IGNORE LTN-POLICY))
236 (when (lvar-dynamic-extent leaves
)
237 (let ((info (make-ir2-lvar *backend-t-primitive-type
*)))
238 (setf (ir2-lvar-kind info
) :delayed
)
239 (setf (lvar-info leaves
) info
)
240 (setf (ir2-lvar-stack-pointer info
)
241 (make-stack-pointer-tn)))))
243 (defoptimizer (%allocate-closures ir2-convert
) ((leaves) call
2block
)
244 (let ((dx-p (lvar-dynamic-extent leaves
)))
247 (vop current-stack-pointer call
2block
248 (ir2-lvar-stack-pointer (lvar-info leaves
))))
249 (dolist (leaf (lvar-value leaves
))
250 (binding* ((xep (functional-entry-fun leaf
) :exit-if-null
)
251 (nil (aver (xep-p xep
)))
252 (entry-info (lambda-info xep
) :exit-if-null
)
253 (tn (entry-info-closure-tn entry-info
) :exit-if-null
)
254 (closure (physenv-closure (get-lambda-physenv xep
)))
255 (entry (make-load-time-constant-tn :entry xep
)))
256 (let ((this-env (node-physenv call
))
257 (leaf-dx-p (and dx-p
(leaf-dynamic-extent leaf
))))
258 (vop make-closure call
2block entry
(length closure
)
260 (loop for what in closure and n from
0 do
261 (unless (and (lambda-var-p what
)
262 (null (leaf-refs what
)))
263 ;; In LABELS a closure may refer to another closure
264 ;; in the same group, so we must be sure that we
265 ;; store a closure only after its creation.
267 ;; TODO: Here is a simple solution: we postpone
268 ;; putting of all closures after all creations
269 ;; (though it may require more registers).
271 (delayed (list tn
(find-in-physenv what this-env
) n
))
272 (vop closure-init call
2block
274 (find-in-physenv what this-env
)
276 (loop for
(tn what n
) in
(delayed)
277 do
(vop closure-init call
2block
281 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
282 ;;; deliver the value to that lvar. If the var is a lexical variable
283 ;;; with no refs, then we don't actually set anything, since the
284 ;;; variable has been deleted.
285 (defun ir2-convert-set (node block
)
286 (declare (type cset node
) (type ir2-block block
))
287 (let* ((lvar (node-lvar node
))
288 (leaf (set-var node
))
289 (val (lvar-tn node block
(set-value node
)))
292 lvar
(list (primitive-type (leaf-type leaf
))))
296 (when (leaf-refs leaf
)
297 (let ((tn (find-in-physenv leaf
(node-physenv node
))))
298 (if (lambda-var-indirect leaf
)
299 (vop value-cell-set node block tn val
)
300 (emit-move node block val tn
)))))
302 (ecase (global-var-kind leaf
)
304 (aver (symbolp (leaf-source-name leaf
)))
305 (vop set node block
(emit-constant (leaf-source-name leaf
)) val
)))))
307 (emit-move node block val
(first locs
))
308 (move-lvar-result node block locs lvar
)))
311 ;;;; utilities for receiving fixed values
313 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
314 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
315 ;;; single-value lvar.
317 ;;; The primitive-type of the result will always be the same as the
318 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
319 ;;; TNs that satisfy the operand primitive-type restriction. We may
320 ;;; have to make a temporary of the desired type and move the actual
321 ;;; lvar TN into it. This happens when we delete a type check in
322 ;;; unsafe code or when we locally know something about the type of an
323 ;;; argument variable.
324 (defun lvar-tn (node block lvar
)
325 (declare (type node node
) (type ir2-block block
) (type lvar lvar
))
326 (let* ((2lvar (lvar-info lvar
))
328 (ecase (ir2-lvar-kind 2lvar
)
330 (let ((ref (lvar-uses lvar
)))
331 (leaf-tn (ref-leaf ref
) (node-physenv ref
))))
333 (aver (= (length (ir2-lvar-locs 2lvar
)) 1))
334 (first (ir2-lvar-locs 2lvar
)))))
335 (ptype (ir2-lvar-primitive-type 2lvar
)))
337 (cond ((eq (tn-primitive-type lvar-tn
) ptype
) lvar-tn
)
339 (let ((temp (make-normal-tn ptype
)))
340 (emit-move node block lvar-tn temp
)
343 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
344 ;;; TNs holding the values of LVAR with PTYPES as their primitive
345 ;;; types. LVAR must be annotated for the same number of fixed values
346 ;;; are there are PTYPES.
348 ;;; If the lvar has a type check, check the values into temps and
349 ;;; return the temps. When we have more values than assertions, we
350 ;;; move the extra values with no check.
351 (defun lvar-tns (node block lvar ptypes
)
352 (declare (type node node
) (type ir2-block block
)
353 (type lvar lvar
) (list ptypes
))
354 (let* ((locs (ir2-lvar-locs (lvar-info lvar
)))
355 (nlocs (length locs
)))
356 (aver (= nlocs
(length ptypes
)))
358 (mapcar (lambda (from to-type
)
359 (if (eq (tn-primitive-type from
) to-type
)
361 (let ((temp (make-normal-tn to-type
)))
362 (emit-move node block from temp
)
367 ;;;; utilities for delivering values to lvars
369 ;;; Return a list of TNs with the specifier TYPES that can be used as
370 ;;; result TNs to evaluate an expression into LVAR. This is used
371 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
374 ;;; If the lvar isn't annotated (meaning the values are discarded) or
375 ;;; is unknown-values, the then we make temporaries for each supplied
376 ;;; value, providing a place to compute the result in until we decide
377 ;;; what to do with it (if anything.)
379 ;;; If the lvar is fixed-values, and wants the same number of values
380 ;;; as the user wants to deliver, then we just return the
381 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
382 ;;; discarded TNs. We always return a TN of the specified type, using
383 ;;; the lvar locs only when they are of the correct type.
384 (defun lvar-result-tns (lvar types
)
385 (declare (type (or lvar null
) lvar
) (type list types
))
387 (mapcar #'make-normal-tn types
)
388 (let ((2lvar (lvar-info lvar
)))
389 (ecase (ir2-lvar-kind 2lvar
)
391 (let* ((locs (ir2-lvar-locs 2lvar
))
392 (nlocs (length locs
))
393 (ntypes (length types
)))
394 (if (and (= nlocs ntypes
)
395 (do ((loc locs
(cdr loc
))
396 (type types
(cdr type
)))
398 (unless (eq (tn-primitive-type (car loc
)) (car type
))
401 (mapcar (lambda (loc type
)
402 (if (eq (tn-primitive-type loc
) type
)
404 (make-normal-tn type
)))
407 (mapcar #'make-normal-tn
408 (subseq types nlocs
)))
412 (mapcar #'make-normal-tn types
))))))
414 ;;; Make the first N standard value TNs, returning them in a list.
415 (defun make-standard-value-tns (n)
416 (declare (type unsigned-byte n
))
419 (res (standard-arg-location i
)))
422 ;;; Return a list of TNs wired to the standard value passing
423 ;;; conventions that can be used to receive values according to the
424 ;;; unknown-values convention. This is used with together
425 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
428 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
429 ;;; an empty list of temporaries.
431 ;;; If the lvar is annotated, then it must be :FIXED.
432 (defun standard-result-tns (lvar)
433 (declare (type (or lvar null
) lvar
))
435 (let ((2lvar (lvar-info lvar
)))
436 (ecase (ir2-lvar-kind 2lvar
)
438 (make-standard-value-tns (length (ir2-lvar-locs 2lvar
))))))
441 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
442 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
443 ;;; doing the appropriate coercions.
444 (defun move-results-coerced (node block src dest
)
445 (declare (type node node
) (type ir2-block block
) (list src dest
))
446 (let ((nsrc (length src
))
447 (ndest (length dest
)))
448 (mapc (lambda (from to
)
450 (emit-move node block from to
)))
452 (append src
(make-list (- ndest nsrc
)
453 :initial-element
(emit-constant nil
)))
458 ;;; Move each SRC TN into the corresponding DEST TN, checking types
459 ;;; and defaulting any unsupplied source values to NIL
460 (defun move-results-checked (node block src dest types
)
461 (declare (type node node
) (type ir2-block block
) (list src dest types
))
462 (let ((nsrc (length src
))
463 (ndest (length dest
))
464 (ntypes (length types
)))
465 (mapc (lambda (from to type
)
467 (emit-type-check node block from to type
)
468 (emit-move node block from to
)))
470 (append src
(make-list (- ndest nsrc
)
471 :initial-element
(emit-constant nil
)))
475 (append types
(make-list (- ndest ntypes
)))
479 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
480 ;;; the specified lvar. NODE and BLOCK provide context for emitting
481 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
482 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
485 ;;; If the lvar is fixed values, then move the results into the lvar
486 ;;; locations. If the lvar is unknown values, then do the moves into
487 ;;; the standard value locations, and use PUSH-VALUES to put the
488 ;;; values on the stack.
489 (defun move-lvar-result (node block results lvar
)
490 (declare (type node node
) (type ir2-block block
)
491 (list results
) (type (or lvar null
) lvar
))
493 (let ((2lvar (lvar-info lvar
)))
494 (ecase (ir2-lvar-kind 2lvar
)
496 (let ((locs (ir2-lvar-locs 2lvar
)))
497 (unless (eq locs results
)
498 (move-results-coerced node block results locs
))))
500 (let* ((nvals (length results
))
501 (locs (make-standard-value-tns nvals
)))
502 (move-results-coerced node block results locs
)
503 (vop* push-values node block
504 ((reference-tn-list locs nil
))
505 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))
510 (defun ir2-convert-cast (node block
)
511 (declare (type cast node
)
512 (type ir2-block block
))
513 (binding* ((lvar (node-lvar node
) :exit-if-null
)
514 (2lvar (lvar-info lvar
))
515 (value (cast-value node
))
516 (2value (lvar-info value
)))
517 (cond ((eq (ir2-lvar-kind 2lvar
) :unused
))
518 ((eq (ir2-lvar-kind 2lvar
) :unknown
)
519 (aver (eq (ir2-lvar-kind 2value
) :unknown
))
520 (aver (not (cast-type-check node
)))
521 (move-results-coerced node block
522 (ir2-lvar-locs 2value
)
523 (ir2-lvar-locs 2lvar
)))
524 ((eq (ir2-lvar-kind 2lvar
) :fixed
)
525 (aver (eq (ir2-lvar-kind 2value
) :fixed
))
526 (if (cast-type-check node
)
527 (move-results-checked node block
528 (ir2-lvar-locs 2value
)
529 (ir2-lvar-locs 2lvar
)
530 (multiple-value-bind (check types
)
531 (cast-check-types node nil
)
532 (aver (eq check
:simple
))
534 (move-results-coerced node block
535 (ir2-lvar-locs 2value
)
536 (ir2-lvar-locs 2lvar
))))
537 (t (bug "CAST cannot be :DELAYED.")))))
539 ;;;; template conversion
541 ;;; Build a TN-REFS list that represents access to the values of the
542 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
543 ;;; are returned in the second value as a list rather than being
544 ;;; accessed as a normal argument. NODE and BLOCK provide the context
545 ;;; for emitting any necessary type-checking code.
546 (defun reference-args (node block args template
)
547 (declare (type node node
) (type ir2-block block
) (list args
)
548 (type template template
))
549 (collect ((info-args))
552 (do ((args args
(cdr args
))
553 (types (template-arg-types template
) (cdr types
)))
555 (let ((type (first types
))
557 (if (and (consp type
) (eq (car type
) ':constant
))
558 (info-args (lvar-value arg
))
559 (let ((ref (reference-tn (lvar-tn node block arg
) nil
)))
561 (setf (tn-ref-across last
) ref
)
565 (values (the (or tn-ref null
) first
) (info-args)))))
567 ;;; Convert a conditional template. We try to exploit any
568 ;;; drop-through, but emit an unconditional branch afterward if we
569 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
571 (defun ir2-convert-conditional (node block template args info-args if not-p
)
572 (declare (type node node
) (type ir2-block block
)
573 (type template template
) (type (or tn-ref null
) args
)
574 (list info-args
) (type cif if
) (type boolean not-p
))
575 (aver (= (template-info-arg-count template
) (+ (length info-args
) 2)))
576 (let ((consequent (if-consequent if
))
577 (alternative (if-alternative if
)))
578 (cond ((drop-thru-p if consequent
)
579 (emit-template node block template args nil
580 (list* (block-label alternative
) (not not-p
)
583 (emit-template node block template args nil
584 (list* (block-label consequent
) not-p info-args
))
585 (unless (drop-thru-p if alternative
)
586 (vop branch node block
(block-label alternative
)))))))
588 ;;; Convert an IF that isn't the DEST of a conditional template.
589 (defun ir2-convert-if (node block
)
590 (declare (type ir2-block block
) (type cif node
))
591 (let* ((test (if-test node
))
592 (test-ref (reference-tn (lvar-tn node block test
) nil
))
593 (nil-ref (reference-tn (emit-constant nil
) nil
)))
594 (setf (tn-ref-across test-ref
) nil-ref
)
595 (ir2-convert-conditional node block
(template-or-lose 'if-eq
)
596 test-ref
() node t
)))
598 ;;; Return a list of primitive-types that we can pass to
599 ;;; LVAR-RESULT-TNS describing the result types we want for a
600 ;;; template call. We duplicate here the determination of output type
601 ;;; that was done in initially selecting the template, so we know that
602 ;;; the types we find are allowed by the template output type
604 (defun find-template-result-types (call template rtypes
)
605 (declare (type combination call
)
606 (type template template
) (list rtypes
))
607 (declare (ignore template
))
608 (let* ((dtype (node-derived-type call
))
610 (types (mapcar #'primitive-type
611 (if (values-type-p type
)
612 (append (values-type-required type
)
613 (values-type-optional type
))
615 (let ((nvals (length rtypes
))
616 (ntypes (length types
)))
617 (cond ((< ntypes nvals
)
619 (make-list (- nvals ntypes
)
620 :initial-element
*backend-t-primitive-type
*)))
622 (subseq types
0 nvals
))
626 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering
627 ;;; values to LVAR. As an efficiency hack, we pick off the common case
628 ;;; where the LVAR is fixed values and has locations that satisfy the
629 ;;; result restrictions. This can fail when there is a type check or a
630 ;;; values count mismatch.
631 (defun make-template-result-tns (call lvar template rtypes
)
632 (declare (type combination call
) (type (or lvar null
) lvar
)
633 (type template template
) (list rtypes
))
634 (let ((2lvar (when lvar
(lvar-info lvar
))))
635 (if (and 2lvar
(eq (ir2-lvar-kind 2lvar
) :fixed
))
636 (let ((locs (ir2-lvar-locs 2lvar
)))
637 (if (and (= (length rtypes
) (length locs
))
638 (do ((loc locs
(cdr loc
))
639 (rtype rtypes
(cdr rtype
)))
641 (unless (operand-restriction-ok
643 (tn-primitive-type (car loc
))
649 (find-template-result-types call template rtypes
))))
652 (find-template-result-types call template rtypes
)))))
654 ;;; Get the operands into TNs, make TN-REFs for them, and then call
655 ;;; the template emit function.
656 (defun ir2-convert-template (call block
)
657 (declare (type combination call
) (type ir2-block block
))
658 (let* ((template (combination-info call
))
659 (lvar (node-lvar call
))
660 (rtypes (template-result-types template
)))
661 (multiple-value-bind (args info-args
)
662 (reference-args call block
(combination-args call
) template
)
663 (aver (not (template-more-results-type template
)))
664 (if (eq rtypes
:conditional
)
665 (ir2-convert-conditional call block template args info-args
666 (lvar-dest lvar
) nil
)
667 (let* ((results (make-template-result-tns call lvar template rtypes
))
668 (r-refs (reference-tn-list results t
)))
669 (aver (= (length info-args
)
670 (template-info-arg-count template
)))
671 (when (and lvar
(lvar-dynamic-extent lvar
))
672 (vop current-stack-pointer call block
673 (ir2-lvar-stack-pointer (lvar-info lvar
))))
674 (when (emit-step-p call
)
675 (vop sb
!vm
::step-instrument-before-vop call block
))
677 (emit-template call block template args r-refs info-args
)
678 (emit-template call block template args r-refs
))
679 (move-lvar-result call block results lvar
)))))
682 ;;; We don't have to do much because operand count checking is done by
683 ;;; IR1 conversion. The only difference between this and the function
684 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
686 (defoptimizer (%%primitive ir2-convert
) ((template info
&rest args
) call block
)
687 (let* ((template (lvar-value template
))
688 (info (lvar-value info
))
689 (lvar (node-lvar call
))
690 (rtypes (template-result-types template
))
691 (results (make-template-result-tns call lvar template rtypes
))
692 (r-refs (reference-tn-list results t
)))
693 (multiple-value-bind (args info-args
)
694 (reference-args call block
(cddr (combination-args call
)) template
)
695 (aver (not (template-more-results-type template
)))
696 (aver (not (eq rtypes
:conditional
)))
697 (aver (null info-args
))
700 (emit-template call block template args r-refs info
)
701 (emit-template call block template args r-refs
))
703 (move-lvar-result call block results lvar
)))
708 ;;; Convert a LET by moving the argument values into the variables.
709 ;;; Since a LET doesn't have any passing locations, we move the
710 ;;; arguments directly into the variables. We must also allocate any
711 ;;; indirect value cells, since there is no function prologue to do
713 (defun ir2-convert-let (node block fun
)
714 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
715 (mapc (lambda (var arg
)
717 (let ((src (lvar-tn node block arg
))
718 (dest (leaf-info var
)))
719 (if (lambda-var-indirect var
)
720 (emit-make-value-cell node block src dest
)
721 (emit-move node block src dest
)))))
722 (lambda-vars fun
) (basic-combination-args node
))
725 ;;; Emit any necessary moves into assignment temps for a local call to
726 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
727 ;;; values, and (possibly EQ) TNs that are the actual destination of
728 ;;; the arguments. When necessary, we allocate temporaries for
729 ;;; arguments to preserve parallel assignment semantics. These lists
730 ;;; exclude unused arguments and include implicit environment
731 ;;; arguments, i.e. they exactly correspond to the arguments passed.
733 ;;; OLD-FP is the TN currently holding the value we want to pass as
734 ;;; OLD-FP. If null, then the call is to the same environment (an
735 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
736 ;;; environment alone.
737 (defun emit-psetq-moves (node block fun old-fp
)
738 (declare (type combination node
) (type ir2-block block
) (type clambda fun
)
739 (type (or tn null
) old-fp
))
740 (let ((actuals (mapcar (lambda (x)
742 (lvar-tn node block x
)))
743 (combination-args node
))))
746 (dolist (var (lambda-vars fun
))
747 (let ((actual (pop actuals
))
748 (loc (leaf-info var
)))
751 ((lambda-var-indirect var
)
753 (make-normal-tn *backend-t-primitive-type
*)))
754 (emit-make-value-cell node block actual temp
)
756 ((member actual
(locs))
757 (let ((temp (make-normal-tn (tn-primitive-type loc
))))
758 (emit-move node block actual temp
)
765 (let ((this-1env (node-physenv node
))
766 (called-env (physenv-info (lambda-physenv fun
))))
767 (dolist (thing (ir2-physenv-closure called-env
))
768 (temps (find-in-physenv (car thing
) this-1env
))
771 (locs (ir2-physenv-old-fp called-env
))))
773 (values (temps) (locs)))))
775 ;;; A tail-recursive local call is done by emitting moves of stuff
776 ;;; into the appropriate passing locations. After setting up the args
777 ;;; and environment, we just move our return-pc into the called
778 ;;; function's passing location.
779 (defun ir2-convert-tail-local-call (node block fun
)
780 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
781 (let ((this-env (physenv-info (node-physenv node
))))
782 (multiple-value-bind (temps locs
)
783 (emit-psetq-moves node block fun
(ir2-physenv-old-fp this-env
))
785 (mapc (lambda (temp loc
)
786 (emit-move node block temp loc
))
789 (emit-move node block
790 (ir2-physenv-return-pc this-env
)
791 (ir2-physenv-return-pc-pass
793 (lambda-physenv fun
)))))
797 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
798 ;;; except that the caller and callee environment are the same, so we
799 ;;; don't need to mess with the environment locations, return PC, etc.
800 (defun ir2-convert-assignment (node block fun
)
801 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
802 (multiple-value-bind (temps locs
) (emit-psetq-moves node block fun nil
)
804 (mapc (lambda (temp loc
)
805 (emit-move node block temp loc
))
809 ;;; Do stuff to set up the arguments to a non-tail local call
810 ;;; (including implicit environment args.) We allocate a frame
811 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
812 ;;; the values to pass and the list of passing location TNs.
813 (defun ir2-convert-local-call-args (node block fun
)
814 (declare (type combination node
) (type ir2-block block
) (type clambda fun
))
815 (let ((fp (make-stack-pointer-tn))
816 (nfp (make-number-stack-pointer-tn))
817 (old-fp (make-stack-pointer-tn)))
818 (multiple-value-bind (temps locs
)
819 (emit-psetq-moves node block fun old-fp
)
820 (vop current-fp node block old-fp
)
821 (vop allocate-frame node block
822 (physenv-info (lambda-physenv fun
))
824 (values fp nfp temps
(mapcar #'make-alias-tn locs
)))))
826 ;;; Handle a non-TR known-values local call. We emit the call, then
827 ;;; move the results to the lvar's destination.
828 (defun ir2-convert-local-known-call (node block fun returns lvar start
)
829 (declare (type node node
) (type ir2-block block
) (type clambda fun
)
830 (type return-info returns
) (type (or lvar null
) lvar
)
832 (multiple-value-bind (fp nfp temps arg-locs
)
833 (ir2-convert-local-call-args node block fun
)
834 (let ((locs (return-info-locations returns
)))
835 (vop* known-call-local node block
836 (fp nfp
(reference-tn-list temps nil
))
837 ((reference-tn-list locs t
))
838 arg-locs
(physenv-info (lambda-physenv fun
)) start
)
839 (move-lvar-result node block locs lvar
)))
842 ;;; Handle a non-TR unknown-values local call. We do different things
843 ;;; depending on what kind of values the lvar wants.
845 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
846 ;;; specifying the lvar's LOCS as the VOP results so that we don't
847 ;;; have to do anything after the call.
849 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
850 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
852 (defun ir2-convert-local-unknown-call (node block fun lvar start
)
853 (declare (type node node
) (type ir2-block block
) (type clambda fun
)
854 (type (or lvar null
) lvar
) (type label start
))
855 (multiple-value-bind (fp nfp temps arg-locs
)
856 (ir2-convert-local-call-args node block fun
)
857 (let ((2lvar (and lvar
(lvar-info lvar
)))
858 (env (physenv-info (lambda-physenv fun
)))
859 (temp-refs (reference-tn-list temps nil
)))
860 (if (and 2lvar
(eq (ir2-lvar-kind 2lvar
) :unknown
))
861 (vop* multiple-call-local node block
(fp nfp temp-refs
)
862 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))
864 (let ((locs (standard-result-tns lvar
)))
865 (vop* call-local node block
867 ((reference-tn-list locs t
))
868 arg-locs env start
(length locs
))
869 (move-lvar-result node block locs lvar
)))))
872 ;;; Dispatch to the appropriate function, depending on whether we have
873 ;;; a let, tail or normal call. If the function doesn't return, call
874 ;;; it using the unknown-value convention. We could compile it as a
875 ;;; tail call, but that might seem confusing in the debugger.
876 (defun ir2-convert-local-call (node block
)
877 (declare (type combination node
) (type ir2-block block
))
878 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node
))))
879 (kind (functional-kind fun
)))
880 (cond ((eq kind
:let
)
881 (ir2-convert-let node block fun
))
882 ((eq kind
:assignment
)
883 (ir2-convert-assignment node block fun
))
885 (ir2-convert-tail-local-call node block fun
))
887 (let ((start (block-label (lambda-block fun
)))
888 (returns (tail-set-info (lambda-tail-set fun
)))
889 (lvar (node-lvar node
)))
891 (return-info-kind returns
)
894 (ir2-convert-local-unknown-call node block fun lvar start
))
896 (ir2-convert-local-known-call node block fun returns
902 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
903 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
904 ;;; true if the thing is named (false if it is a function).
906 ;;; There are two interesting non-named cases:
907 ;;; -- We know it's a function. No check needed: return the
909 ;;; -- We don't know what it is.
910 (defun fun-lvar-tn (node block lvar
)
911 (declare (ignore node block
))
912 (declare (type lvar lvar
))
913 (let ((2lvar (lvar-info lvar
)))
914 (if (eq (ir2-lvar-kind 2lvar
) :delayed
)
915 (let ((name (lvar-fun-name lvar t
)))
917 (values (make-load-time-constant-tn :fdefinition name
) t
))
918 (let* ((locs (ir2-lvar-locs 2lvar
))
920 (function-ptype (primitive-type-or-lose 'function
)))
921 (aver (and (eq (ir2-lvar-kind 2lvar
) :fixed
)
922 (= (length locs
) 1)))
923 (aver (eq (tn-primitive-type loc
) function-ptype
))
926 ;;; Set up the args to NODE in the current frame, and return a TN-REF
927 ;;; list for the passing locations.
928 (defun move-tail-full-call-args (node block
)
929 (declare (type combination node
) (type ir2-block block
))
930 (let ((args (basic-combination-args node
))
933 (dotimes (num (length args
))
934 (let ((loc (standard-arg-location num
)))
935 (emit-move node block
(lvar-tn node block
(elt args num
)) loc
)
936 (let ((ref (reference-tn loc nil
)))
938 (setf (tn-ref-across last
) ref
)
943 ;;; Move the arguments into the passing locations and do a (possibly
944 ;;; named) tail call.
945 (defun ir2-convert-tail-full-call (node block
)
946 (declare (type combination node
) (type ir2-block block
))
947 (let* ((env (physenv-info (node-physenv node
)))
948 (args (basic-combination-args node
))
949 (nargs (length args
))
950 (pass-refs (move-tail-full-call-args node block
))
951 (old-fp (ir2-physenv-old-fp env
))
952 (return-pc (ir2-physenv-return-pc env
)))
954 (multiple-value-bind (fun-tn named
)
955 (fun-lvar-tn node block
(basic-combination-fun node
))
957 (vop* tail-call-named node block
958 (fun-tn old-fp return-pc pass-refs
)
962 (vop* tail-call node block
963 (fun-tn old-fp return-pc pass-refs
)
966 (emit-step-p node
)))))
970 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
971 (defun ir2-convert-full-call-args (node block
)
972 (declare (type combination node
) (type ir2-block block
))
973 (let* ((args (basic-combination-args node
))
974 (fp (make-stack-pointer-tn))
975 (nargs (length args
)))
976 (vop allocate-full-call-frame node block nargs fp
)
981 (locs (standard-arg-location num
))
982 (let ((ref (reference-tn (lvar-tn node block
(elt args num
))
985 (setf (tn-ref-across last
) ref
)
989 (values fp first
(locs) nargs
)))))
991 ;;; Do full call when a fixed number of values are desired. We make
992 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
993 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
994 (defun ir2-convert-fixed-full-call (node block
)
995 (declare (type combination node
) (type ir2-block block
))
996 (multiple-value-bind (fp args arg-locs nargs
)
997 (ir2-convert-full-call-args node block
)
998 (let* ((lvar (node-lvar node
))
999 (locs (standard-result-tns lvar
))
1000 (loc-refs (reference-tn-list locs t
))
1001 (nvals (length locs
)))
1002 (multiple-value-bind (fun-tn named
)
1003 (fun-lvar-tn node block
(basic-combination-fun node
))
1005 (vop* call-named node block
(fp fun-tn args
) (loc-refs)
1006 arg-locs nargs nvals
(emit-step-p node
))
1007 (vop* call node block
(fp fun-tn args
) (loc-refs)
1008 arg-locs nargs nvals
(emit-step-p node
)))
1009 (move-lvar-result node block locs lvar
))))
1012 ;;; Do full call when unknown values are desired.
1013 (defun ir2-convert-multiple-full-call (node block
)
1014 (declare (type combination node
) (type ir2-block block
))
1015 (multiple-value-bind (fp args arg-locs nargs
)
1016 (ir2-convert-full-call-args node block
)
1017 (let* ((lvar (node-lvar node
))
1018 (locs (ir2-lvar-locs (lvar-info lvar
)))
1019 (loc-refs (reference-tn-list locs t
)))
1020 (multiple-value-bind (fun-tn named
)
1021 (fun-lvar-tn node block
(basic-combination-fun node
))
1023 (vop* multiple-call-named node block
(fp fun-tn args
) (loc-refs)
1024 arg-locs nargs
(emit-step-p node
))
1025 (vop* multiple-call node block
(fp fun-tn args
) (loc-refs)
1026 arg-locs nargs
(emit-step-p node
))))))
1029 ;;; stuff to check in PONDER-FULL-CALL
1031 ;;; These came in handy when troubleshooting cold boot after making
1032 ;;; major changes in the package structure: various transforms and
1033 ;;; VOPs and stuff got attached to the wrong symbol, so that
1034 ;;; references to the right symbol were bogusly translated as full
1035 ;;; calls instead of primitives, sending the system off into infinite
1036 ;;; space. Having a report on all full calls generated makes it easier
1037 ;;; to figure out what form caused the problem this time.
1038 #!+sb-show
(defvar *show-full-called-fnames-p
* nil
)
1039 #!+sb-show
(defvar *full-called-fnames
* (make-hash-table :test
'equal
))
1041 ;;; Do some checks (and store some notes relevant for future checks)
1043 ;;; * Is this a full call to something we have reason to know should
1044 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1045 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1047 ;;; * Is this a full call to (SETF FOO) which might conflict with
1048 ;;; a DEFSETF or some such thing elsewhere in the program?
1049 (defun ponder-full-call (node)
1050 (let* ((lvar (basic-combination-fun node
))
1051 (fname (lvar-fun-name lvar t
)))
1052 (declare (type (or symbol cons
) fname
))
1054 #!+sb-show
(unless (gethash fname
*full-called-fnames
*)
1055 (setf (gethash fname
*full-called-fnames
*) t
))
1056 #!+sb-show
(when *show-full-called-fnames-p
*
1057 (/show
"converting full call to named function" fname
)
1058 (/show
(basic-combination-args node
))
1059 (/show
(policy node speed
) (policy node safety
))
1060 (/show
(policy node compilation-speed
))
1061 (let ((arg-types (mapcar (lambda (lvar)
1065 (basic-combination-args node
))))
1068 ;; When illegal code is compiled, all sorts of perverse paths
1069 ;; through the compiler can be taken, and it's much harder -- and
1070 ;; probably pointless -- to guarantee that always-optimized-away
1071 ;; functions are actually optimized away. Thus, we skip the check
1074 ;; check to see if we know anything about the function
1075 (let ((info (info :function
:info fname
)))
1076 ;; if we know something, check to see if the full call was valid
1077 (when (and info
(ir1-attributep (fun-info-attributes info
)
1078 always-translatable
))
1079 (/show
(policy node speed
) (policy node safety
))
1080 (/show
(policy node compilation-speed
))
1081 (bug "full call to ~S" fname
))))
1084 (aver (legal-fun-name-p fname
))
1085 (destructuring-bind (setfoid &rest stem
) fname
1086 (when (eq setfoid
'setf
)
1087 (setf (gethash (car stem
) *setf-assumed-fboundp
*) t
))))))
1089 ;;; If the call is in a tail recursive position and the return
1090 ;;; convention is standard, then do a tail full call. If one or fewer
1091 ;;; values are desired, then use a single-value call, otherwise use a
1092 ;;; multiple-values call.
1093 (defun ir2-convert-full-call (node block
)
1094 (declare (type combination node
) (type ir2-block block
))
1095 (ponder-full-call node
)
1096 (cond ((node-tail-p node
)
1097 (ir2-convert-tail-full-call node block
))
1098 ((let ((lvar (node-lvar node
)))
1100 (eq (ir2-lvar-kind (lvar-info lvar
)) :unknown
)))
1101 (ir2-convert-multiple-full-call node block
))
1103 (ir2-convert-fixed-full-call node block
)))
1106 ;;;; entering functions
1108 ;;; Do all the stuff that needs to be done on XEP entry:
1109 ;;; -- Create frame.
1110 ;;; -- Copy any more arg.
1111 ;;; -- Set up the environment, accessing any closure variables.
1112 ;;; -- Move args from the standard passing locations to their internal
1114 (defun init-xep-environment (node block fun
)
1115 (declare (type bind node
) (type ir2-block block
) (type clambda fun
))
1116 (let ((start-label (entry-info-offset (leaf-info fun
)))
1117 (env (physenv-info (node-physenv node
))))
1118 (let ((ef (functional-entry-fun fun
)))
1119 (cond ((and (optional-dispatch-p ef
) (optional-dispatch-more-entry ef
))
1120 ;; Special case the xep-allocate-frame + copy-more-arg case.
1121 (vop xep-allocate-frame node block start-label t
)
1122 (vop copy-more-arg node block
(optional-dispatch-max-args ef
)))
1124 ;; No more args, so normal entry.
1125 (vop xep-allocate-frame node block start-label nil
)))
1126 (if (ir2-physenv-closure env
)
1127 (let ((closure (make-normal-tn *backend-t-primitive-type
*)))
1128 (vop setup-closure-environment node block start-label closure
)
1130 (dolist (loc (ir2-physenv-closure env
))
1131 (vop closure-ref node block closure
(incf n
) (cdr loc
)))))
1132 (vop setup-environment node block start-label
)))
1134 (unless (eq (functional-kind fun
) :toplevel
)
1135 (let ((vars (lambda-vars fun
))
1137 (when (leaf-refs (first vars
))
1138 (emit-move node block
(make-arg-count-location)
1139 (leaf-info (first vars
))))
1140 (dolist (arg (rest vars
))
1141 (when (leaf-refs arg
)
1142 (let ((pass (standard-arg-location n
))
1143 (home (leaf-info arg
)))
1144 (if (lambda-var-indirect arg
)
1145 (emit-make-value-cell node block pass home
)
1146 (emit-move node block pass home
))))
1149 (emit-move node block
(make-old-fp-passing-location t
)
1150 (ir2-physenv-old-fp env
)))
1154 ;;; Emit function prolog code. This is only called on bind nodes for
1155 ;;; functions that allocate environments. All semantics of let calls
1156 ;;; are handled by IR2-CONVERT-LET.
1158 ;;; If not an XEP, all we do is move the return PC from its passing
1159 ;;; location, since in a local call, the caller allocates the frame
1160 ;;; and sets up the arguments.
1161 (defun ir2-convert-bind (node block
)
1162 (declare (type bind node
) (type ir2-block block
))
1163 (let* ((fun (bind-lambda node
))
1164 (env (physenv-info (lambda-physenv fun
))))
1165 (aver (member (functional-kind fun
)
1166 '(nil :external
:optional
:toplevel
:cleanup
)))
1169 (init-xep-environment node block fun
)
1171 (when *collect-dynamic-statistics
*
1172 (vop count-me node block
*dynamic-counts-tn
*
1173 (block-number (ir2-block-block block
)))))
1177 (ir2-physenv-return-pc-pass env
)
1178 (ir2-physenv-return-pc env
))
1180 #!+unwind-to-frame-and-call-vop
1181 (when (and (lambda-allow-instrumenting fun
)
1182 (not (lambda-inline-expanded fun
))
1184 (policy fun
(>= insert-debug-catch
2)))
1185 (vop sb
!vm
::bind-sentinel node block
))
1187 (let ((lab (gen-label)))
1188 (setf (ir2-physenv-environment-start env
) lab
)
1189 (vop note-environment-start node block lab
)))
1193 ;;;; function return
1195 ;;; Do stuff to return from a function with the specified values and
1196 ;;; convention. If the return convention is :FIXED and we aren't
1197 ;;; returning from an XEP, then we do a known return (letting
1198 ;;; representation selection insert the correct move-arg VOPs.)
1199 ;;; Otherwise, we use the unknown-values convention. If there is a
1200 ;;; fixed number of return values, then use RETURN, otherwise use
1201 ;;; RETURN-MULTIPLE.
1202 (defun ir2-convert-return (node block
)
1203 (declare (type creturn node
) (type ir2-block block
))
1204 (let* ((lvar (return-result node
))
1205 (2lvar (lvar-info lvar
))
1206 (lvar-kind (ir2-lvar-kind 2lvar
))
1207 (fun (return-lambda node
))
1208 (env (physenv-info (lambda-physenv fun
)))
1209 (old-fp (ir2-physenv-old-fp env
))
1210 (return-pc (ir2-physenv-return-pc env
))
1211 (returns (tail-set-info (lambda-tail-set fun
))))
1212 #!+unwind-to-frame-and-call-vop
1213 (when (and (lambda-allow-instrumenting fun
)
1214 (not (lambda-inline-expanded fun
))
1215 (policy fun
(>= insert-debug-catch
2)))
1216 (vop sb
!vm
::unbind-sentinel node block
))
1218 ((and (eq (return-info-kind returns
) :fixed
)
1220 (let ((locs (lvar-tns node block lvar
1221 (return-info-types returns
))))
1222 (vop* known-return node block
1223 (old-fp return-pc
(reference-tn-list locs nil
))
1225 (return-info-locations returns
))))
1226 ((eq lvar-kind
:fixed
)
1227 (let* ((types (mapcar #'tn-primitive-type
(ir2-lvar-locs 2lvar
)))
1228 (lvar-locs (lvar-tns node block lvar types
))
1229 (nvals (length lvar-locs
))
1230 (locs (make-standard-value-tns nvals
)))
1231 (mapc (lambda (val loc
)
1232 (emit-move node block val loc
))
1236 (vop return-single node block old-fp return-pc
(car locs
))
1237 (vop* return node block
1238 (old-fp return-pc
(reference-tn-list locs nil
))
1242 (aver (eq lvar-kind
:unknown
))
1243 (vop* return-multiple node block
1245 (reference-tn-list (ir2-lvar-locs 2lvar
) nil
))
1252 ;;; This is used by the debugger to find the top function on the
1253 ;;; stack. It returns the OLD-FP and RETURN-PC for the current
1254 ;;; function as multiple values.
1255 (defoptimizer (sb!kernel
:%caller-frame-and-pc ir2-convert
) (() node block
)
1256 (let ((ir2-physenv (physenv-info (node-physenv node
))))
1257 (move-lvar-result node block
1258 (list (ir2-physenv-old-fp ir2-physenv
)
1259 (ir2-physenv-return-pc ir2-physenv
))
1262 ;;;; multiple values
1264 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1265 ;;; the lvar for the correct number of values (with the lvar user
1266 ;;; responsible for defaulting), we can just pick them up from the
1268 (defun ir2-convert-mv-bind (node block
)
1269 (declare (type mv-combination node
) (type ir2-block block
))
1270 (let* ((lvar (first (basic-combination-args node
)))
1271 (fun (ref-leaf (lvar-uses (basic-combination-fun node
))))
1272 (vars (lambda-vars fun
)))
1273 (aver (eq (functional-kind fun
) :mv-let
))
1274 (mapc (lambda (src var
)
1275 (when (leaf-refs var
)
1276 (let ((dest (leaf-info var
)))
1277 (if (lambda-var-indirect var
)
1278 (emit-make-value-cell node block src dest
)
1279 (emit-move node block src dest
)))))
1280 (lvar-tns node block lvar
1282 (primitive-type (leaf-type x
)))
1287 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1288 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1289 ;;; the first argument: all the other argument lvar TNs are
1290 ;;; ignored. This is because we require all of the values globs to be
1291 ;;; contiguous and on stack top.
1292 (defun ir2-convert-mv-call (node block
)
1293 (declare (type mv-combination node
) (type ir2-block block
))
1294 (aver (basic-combination-args node
))
1295 (let* ((start-lvar (lvar-info (first (basic-combination-args node
))))
1296 (start (first (ir2-lvar-locs start-lvar
)))
1297 (tails (and (node-tail-p node
)
1298 (lambda-tail-set (node-home-lambda node
))))
1299 (lvar (node-lvar node
))
1300 (2lvar (and lvar
(lvar-info lvar
))))
1301 (multiple-value-bind (fun named
)
1302 (fun-lvar-tn node block
(basic-combination-fun node
))
1303 (aver (and (not named
)
1304 (eq (ir2-lvar-kind start-lvar
) :unknown
)))
1307 (let ((env (physenv-info (node-physenv node
))))
1308 (vop tail-call-variable node block start fun
1309 (ir2-physenv-old-fp env
)
1310 (ir2-physenv-return-pc env
))))
1312 (eq (ir2-lvar-kind 2lvar
) :unknown
))
1313 (vop* multiple-call-variable node block
(start fun nil
)
1314 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))
1315 (emit-step-p node
)))
1317 (let ((locs (standard-result-tns lvar
)))
1318 (vop* call-variable node block
(start fun nil
)
1319 ((reference-tn-list locs t
)) (length locs
)
1321 (move-lvar-result node block locs lvar
)))))))
1323 ;;; Reset the stack pointer to the start of the specified
1324 ;;; unknown-values lvar (discarding it and all values globs on top of
1326 (defoptimizer (%pop-values ir2-convert
) ((%lvar
) node block
)
1327 (let* ((lvar (lvar-value %lvar
))
1328 (2lvar (lvar-info lvar
)))
1329 (cond ((eq (ir2-lvar-kind 2lvar
) :unknown
)
1330 (vop reset-stack-pointer node block
1331 (first (ir2-lvar-locs 2lvar
))))
1332 ((lvar-dynamic-extent lvar
)
1333 (vop reset-stack-pointer node block
1334 (ir2-lvar-stack-pointer 2lvar
)))
1335 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1338 (defoptimizer (%nip-values ir2-convert
) ((last-nipped last-preserved
1341 (let* ( ;; pointer immediately after the nipped block
1342 (after (lvar-value last-nipped
))
1343 (2after (lvar-info after
))
1344 ;; pointer to the first nipped word
1345 (first (lvar-value last-preserved
))
1346 (2first (lvar-info first
))
1348 (moved-tns (loop for lvar-ref in moved
1349 for lvar
= (lvar-value lvar-ref
)
1350 for
2lvar
= (lvar-info lvar
)
1352 collect
(first (ir2-lvar-locs 2lvar
)))))
1353 (aver (or (eq (ir2-lvar-kind 2after
) :unknown
)
1354 (lvar-dynamic-extent after
)))
1355 (aver (eq (ir2-lvar-kind 2first
) :unknown
))
1356 (when *check-consistency
*
1357 ;; we cannot move stack-allocated DX objects
1358 (dolist (moved-lvar moved
)
1359 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar
)))
1361 (flet ((nip-aligned (nipped)
1362 (vop* %%nip-values node block
1364 (first (ir2-lvar-locs 2first
))
1365 (reference-tn-list moved-tns nil
))
1366 ((reference-tn-list moved-tns t
)))))
1367 (cond ((eq (ir2-lvar-kind 2after
) :unknown
)
1368 (nip-aligned (first (ir2-lvar-locs 2after
))))
1369 ((lvar-dynamic-extent after
)
1370 (nip-aligned (ir2-lvar-stack-pointer 2after
)))
1372 (bug "Trying to nip a not stack-allocated LVAR ~S." after
))))))
1374 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1375 (defoptimizer (values ir2-convert
) ((&rest values
) node block
)
1376 (let ((tns (mapcar (lambda (x)
1377 (lvar-tn node block x
))
1379 (move-lvar-result node block tns
(node-lvar node
))))
1381 ;;; In the normal case where unknown values are desired, we use the
1382 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1383 ;;; for a fixed number of values, we punt by doing a full call to the
1384 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1385 ;;; defaulting any unsupplied values. It seems unworthwhile to
1386 ;;; optimize this case.
1387 (defoptimizer (values-list ir2-convert
) ((list) node block
)
1388 (let* ((lvar (node-lvar node
))
1389 (2lvar (and lvar
(lvar-info lvar
))))
1391 (eq (ir2-lvar-kind 2lvar
) :unknown
))
1392 (let ((locs (ir2-lvar-locs 2lvar
)))
1393 (vop* values-list node block
1394 ((lvar-tn node block list
) nil
)
1395 ((reference-tn-list locs t
)))))
1396 (t (aver (or (not 2lvar
) ; i.e. we want to check the argument
1397 (eq (ir2-lvar-kind 2lvar
) :fixed
)))
1398 (ir2-convert-full-call node block
)))))
1400 (defoptimizer (%more-arg-values ir2-convert
) ((context start count
) node block
)
1401 (binding* ((lvar (node-lvar node
) :exit-if-null
)
1402 (2lvar (lvar-info lvar
)))
1403 (ecase (ir2-lvar-kind 2lvar
)
1404 (:fixed
(ir2-convert-full-call node block
))
1406 (let ((locs (ir2-lvar-locs 2lvar
)))
1407 (vop* %more-arg-values node block
1408 ((lvar-tn node block context
)
1409 (lvar-tn node block start
)
1410 (lvar-tn node block count
)
1412 ((reference-tn-list locs t
))))))))
1414 ;;;; special binding
1416 ;;; This is trivial, given our assumption of a shallow-binding
1418 (defoptimizer (%special-bind ir2-convert
) ((var value
) node block
)
1419 (let ((name (leaf-source-name (lvar-value var
))))
1420 (vop bind node block
(lvar-tn node block value
)
1421 (emit-constant name
))))
1422 (defoptimizer (%special-unbind ir2-convert
) ((var) node block
)
1423 (vop unbind node block
))
1425 ;;; ### It's not clear that this really belongs in this file, or
1426 ;;; should really be done this way, but this is the least violation of
1427 ;;; abstraction in the current setup. We don't want to wire
1428 ;;; shallow-binding assumptions into IR1tran.
1429 (def-ir1-translator progv
1430 ((vars vals
&body body
) start next result
)
1433 (with-unique-names (bind unbind
)
1434 (once-only ((n-save-bs '(%primitive current-binding-pointer
)))
1437 (labels ((,unbind
(vars)
1438 (declare (optimize (speed 2) (debug 0)))
1440 (%primitive bind nil var
)
1443 (declare (optimize (speed 2) (debug 0)))
1445 ((null vals
) (,unbind vars
))
1449 (,bind
(cdr vars
) (cdr vals
))))))
1450 (,bind
,vars
,vals
))
1453 ;; Technically ANSI CL doesn't allow declarations at the
1454 ;; start of the cleanup form. SBCL happens to allow for
1455 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1456 ;; is implemented; the cleanup forms are directly spliced
1457 ;; into an FLET definition body. And a declaration here
1458 ;; actually has exactly the right scope for what we need
1459 ;; (ensure that debug instrumentation is not emitted for the
1460 ;; cleanup function). -- JES, 2007-06-16
1461 (declare (optimize (insert-debug-catch 0)))
1462 (%primitive unbind-to-here
,n-save-bs
))))))
1466 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1467 ;;; environment. Note that this is never called on the escape exits
1468 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1470 (defun ir2-convert-exit (node block
)
1471 (declare (type exit node
) (type ir2-block block
))
1472 (let* ((nlx (exit-nlx-info node
))
1473 (loc (find-in-physenv nlx
(node-physenv node
)))
1474 (temp (make-stack-pointer-tn))
1475 (value (exit-value node
)))
1476 (if (nlx-info-safe-p nlx
)
1477 (vop value-cell-ref node block loc temp
)
1478 (emit-move node block loc temp
))
1480 (let ((locs (ir2-lvar-locs (lvar-info value
))))
1481 (vop unwind node block temp
(first locs
) (second locs
)))
1482 (let ((0-tn (emit-constant 0)))
1483 (vop unwind node block temp
0-tn
0-tn
))))
1487 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1488 ;;; being entirely deleted.
1489 (defoptimizer (%cleanup-point ir2-convert
) (() node block
) node block
)
1491 ;;; This function invalidates a lexical exit on exiting from the
1492 ;;; dynamic extent. This is done by storing 0 into the indirect value
1493 ;;; cell that holds the closed unwind block.
1494 (defoptimizer (%lexical-exit-breakup ir2-convert
) ((info) node block
)
1495 (let ((nlx (lvar-value info
)))
1496 (when (nlx-info-safe-p nlx
)
1497 (vop value-cell-set node block
1498 (find-in-physenv nlx
(node-physenv node
))
1499 (emit-constant 0)))))
1501 ;;; We have to do a spurious move of no values to the result lvar so
1502 ;;; that lifetime analysis won't get confused.
1503 (defun ir2-convert-throw (node block
)
1504 (declare (type mv-combination node
) (type ir2-block block
))
1505 (let ((args (basic-combination-args node
)))
1506 (check-catch-tag-type (first args
))
1507 (vop* throw node block
1508 ((lvar-tn node block
(first args
))
1510 (ir2-lvar-locs (lvar-info (second args
)))
1513 (move-lvar-result node block
() (node-lvar node
))
1516 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1517 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1518 ;;; the target PC by passing in the label to the vop. The vop is
1519 ;;; responsible for building a return-PC object.
1520 (defun emit-nlx-start (node block info tag
)
1521 (declare (type node node
) (type ir2-block block
) (type nlx-info info
)
1522 (type (or lvar null
) tag
))
1523 (let* ((2info (nlx-info-info info
))
1524 (kind (cleanup-kind (nlx-info-cleanup info
)))
1525 (block-tn (physenv-live-tn
1526 (make-normal-tn (primitive-type-or-lose 'catch-block
))
1527 (node-physenv node
)))
1528 (res (make-stack-pointer-tn))
1529 (target-label (ir2-nlx-info-target 2info
)))
1531 (vop current-binding-pointer node block
1532 (car (ir2-nlx-info-dynamic-state 2info
)))
1533 (vop* save-dynamic-state node block
1535 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info
)) t
)))
1536 (vop current-stack-pointer node block
(ir2-nlx-info-save-sp 2info
))
1540 (vop make-catch-block node block block-tn
1541 (lvar-tn node block tag
) target-label res
))
1542 ((:unwind-protect
:block
:tagbody
)
1543 (vop make-unwind-block node block block-tn target-label res
)))
1547 (if (nlx-info-safe-p info
)
1548 (emit-make-value-cell node block res
(ir2-nlx-info-home 2info
))
1549 (emit-move node block res
(ir2-nlx-info-home 2info
))))
1551 (vop set-unwind-protect node block block-tn
))
1556 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1557 (defun ir2-convert-entry (node block
)
1558 (declare (type entry node
) (type ir2-block block
))
1560 (dolist (exit (entry-exits node
))
1561 (let ((info (exit-nlx-info exit
)))
1563 (not (memq info nlxes
))
1564 (member (cleanup-kind (nlx-info-cleanup info
))
1565 '(:block
:tagbody
)))
1567 (emit-nlx-start node block info nil
)))))
1570 ;;; Set up the unwind block for these guys.
1571 (defoptimizer (%catch ir2-convert
) ((info-lvar tag
) node block
)
1572 (check-catch-tag-type tag
)
1573 (emit-nlx-start node block
(lvar-value info-lvar
) tag
))
1574 (defoptimizer (%unwind-protect ir2-convert
) ((info-lvar cleanup
) node block
)
1575 (emit-nlx-start node block
(lvar-value info-lvar
) nil
))
1577 ;;; Emit the entry code for a non-local exit. We receive values and
1578 ;;; restore dynamic state.
1580 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1581 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1582 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1583 ;;; values, make the appropriate number of temps in the standard
1584 ;;; values locations and use the other variant, delivering the temps
1585 ;;; to the lvar using MOVE-LVAR-RESULT.
1587 ;;; In the UNWIND-PROTECT case, we deliver the first register
1588 ;;; argument, the argument count and the argument pointer to our lvar
1589 ;;; as multiple values. These values are the block exited to and the
1590 ;;; values start and count.
1592 ;;; After receiving values, we restore dynamic state. Except in the
1593 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1594 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1595 ;;; pointer alone, since the thrown values are still out there.
1596 (defoptimizer (%nlx-entry ir2-convert
) ((info-lvar) node block
)
1597 (let* ((info (lvar-value info-lvar
))
1598 (lvar (node-lvar node
))
1599 (2info (nlx-info-info info
))
1600 (top-loc (ir2-nlx-info-save-sp 2info
))
1601 (start-loc (make-nlx-entry-arg-start-location))
1602 (count-loc (make-arg-count-location))
1603 (target (ir2-nlx-info-target 2info
)))
1605 (ecase (cleanup-kind (nlx-info-cleanup info
))
1606 ((:catch
:block
:tagbody
)
1607 (let ((2lvar (and lvar
(lvar-info lvar
))))
1608 (if (and 2lvar
(eq (ir2-lvar-kind 2lvar
) :unknown
))
1609 (vop* nlx-entry-multiple node block
1610 (top-loc start-loc count-loc nil
)
1611 ((reference-tn-list (ir2-lvar-locs 2lvar
) t
))
1613 (let ((locs (standard-result-tns lvar
)))
1614 (vop* nlx-entry node block
1615 (top-loc start-loc count-loc nil
)
1616 ((reference-tn-list locs t
))
1619 (move-lvar-result node block locs lvar
)))))
1621 (let ((block-loc (standard-arg-location 0)))
1622 (vop uwp-entry node block target block-loc start-loc count-loc
)
1625 (list block-loc start-loc count-loc
)
1629 (when *collect-dynamic-statistics
*
1630 (vop count-me node block
*dynamic-counts-tn
*
1631 (block-number (ir2-block-block block
))))
1633 (vop* restore-dynamic-state node block
1634 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info
)) nil
))
1636 (vop unbind-to-here node block
1637 (car (ir2-nlx-info-dynamic-state 2info
)))))
1639 ;;;; n-argument functions
1641 (macrolet ((def (name)
1642 `(defoptimizer (,name ir2-convert
) ((&rest args
) node block
)
1643 (let* ((refs (move-tail-full-call-args node block
))
1644 (lvar (node-lvar node
))
1645 (res (lvar-result-tns
1647 (list (primitive-type (specifier-type 'list
))))))
1648 (when (and lvar
(lvar-dynamic-extent lvar
))
1649 (vop current-stack-pointer node block
1650 (ir2-lvar-stack-pointer (lvar-info lvar
))))
1651 (vop* ,name node block
(refs) ((first res
) nil
)
1653 (move-lvar-result node block res lvar
)))))
1658 ;;; Convert the code in a component into VOPs.
1659 (defun ir2-convert (component)
1660 (declare (type component component
))
1661 (let (#!+sb-dyncount
1662 (*dynamic-counts-tn
*
1663 (when *collect-dynamic-statistics
*
1665 (block-number (block-next (component-head component
))))
1666 (counts (make-array blocks
1667 :element-type
'(unsigned-byte 32)
1668 :initial-element
0))
1669 (info (make-dyncount-info
1670 :for
(component-name component
)
1671 :costs
(make-array blocks
1672 :element-type
'(unsigned-byte 32)
1675 (setf (ir2-component-dyncount-info (component-info component
))
1677 (emit-constant info
)
1678 (emit-constant counts
)))))
1680 (declare (type index num
))
1681 (do-ir2-blocks (2block component
)
1682 (let ((block (ir2-block-block 2block
)))
1683 (when (block-start block
)
1684 (setf (block-number block
) num
)
1686 (when *collect-dynamic-statistics
*
1687 (let ((first-node (block-start-node block
)))
1688 (unless (or (and (bind-p first-node
)
1689 (xep-p (bind-lambda first-node
)))
1691 (node-lvar first-node
))
1696 #!+sb-dyncount
*dynamic-counts-tn
* #!-sb-dyncount nil
1698 (ir2-convert-block block
)
1702 ;;; If necessary, emit a terminal unconditional branch to go to the
1703 ;;; successor block. If the successor is the component tail, then
1704 ;;; there isn't really any successor, but if the end is an unknown,
1705 ;;; non-tail call, then we emit an error trap just in case the
1706 ;;; function really does return.
1707 (defun finish-ir2-block (block)
1708 (declare (type cblock block
))
1709 (let* ((2block (block-info block
))
1710 (last (block-last block
))
1711 (succ (block-succ block
)))
1713 (aver (singleton-p succ
))
1714 (let ((target (first succ
)))
1715 (cond ((eq target
(component-tail (block-component block
)))
1716 (when (and (basic-combination-p last
)
1717 (eq (basic-combination-kind last
) :full
))
1718 (let* ((fun (basic-combination-fun last
))
1719 (use (lvar-uses fun
))
1720 (name (and (ref-p use
)
1721 (leaf-has-source-name-p (ref-leaf use
))
1722 (leaf-source-name (ref-leaf use
)))))
1723 (unless (or (node-tail-p last
)
1724 (info :function
:info name
)
1725 (policy last
(zerop safety
)))
1726 (vop nil-fun-returned-error last
2block
1728 (emit-constant name
)
1729 (multiple-value-bind (tn named
)
1730 (fun-lvar-tn last
2block fun
)
1733 ((not (eq (ir2-block-next 2block
) (block-info target
)))
1734 (vop branch last
2block
(block-label target
)))))))
1738 ;;; Convert the code in a block into VOPs.
1739 (defun ir2-convert-block (block)
1740 (declare (type cblock block
))
1741 (let ((2block (block-info block
)))
1742 (do-nodes (node lvar block
)
1746 (let ((2lvar (lvar-info lvar
)))
1747 ;; function REF in a local call is not annotated
1748 (when (and 2lvar
(not (eq (ir2-lvar-kind 2lvar
) :delayed
)))
1749 (ir2-convert-ref node
2block
)))))
1751 (let ((kind (basic-combination-kind node
)))
1754 (ir2-convert-local-call node
2block
))
1756 (ir2-convert-full-call node
2block
))
1758 (let* ((info (basic-combination-fun-info node
))
1759 (fun (fun-info-ir2-convert info
)))
1761 (funcall fun node
2block
))
1762 ((eq (basic-combination-info node
) :full
)
1763 (ir2-convert-full-call node
2block
))
1765 (ir2-convert-template node
2block
))))))))
1767 (when (lvar-info (if-test node
))
1768 (ir2-convert-if node
2block
)))
1770 (let ((fun (bind-lambda node
)))
1771 (when (eq (lambda-home fun
) fun
)
1772 (ir2-convert-bind node
2block
))))
1774 (ir2-convert-return node
2block
))
1776 (ir2-convert-set node
2block
))
1778 (ir2-convert-cast node
2block
))
1781 ((eq (basic-combination-kind node
) :local
)
1782 (ir2-convert-mv-bind node
2block
))
1783 ((eq (lvar-fun-name (basic-combination-fun node
))
1785 (ir2-convert-throw node
2block
))
1787 (ir2-convert-mv-call node
2block
))))
1789 (when (exit-entry node
)
1790 (ir2-convert-exit node
2block
)))
1792 (ir2-convert-entry node
2block
)))))
1794 (finish-ir2-block block
)