1.0.17.24: refactor handling of constants in the compiler
[sbcl/pkhuong.git] / src / compiler / ir2tran.lisp
blobe98d8390a8afd12f2eb22154eb958ae0eda926b2
1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!C")
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
20 (unless (eq x y)
21 (vop move node block x y))
22 (values))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node (> insert-step-conditions 1))
28 (typep node 'combination))
29 (combination-step-info node)
30 nil))
32 ;;; If there is any CHECK-xxx template for TYPE, then return it,
33 ;;; otherwise return NIL.
34 (defun type-check-template (type)
35 (declare (type ctype type))
36 (multiple-value-bind (check-ptype exact) (primitive-type type)
37 (if exact
38 (primitive-type-check check-ptype)
39 (let ((name (hairy-type-check-template-name type)))
40 (if name
41 (template-or-lose name)
42 nil)))))
44 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
45 ;;; yielding the checked result in RESULT. VALUE and result may be of
46 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
47 ;;; other type checks should have been converted to an explicit type
48 ;;; test.
49 (defun emit-type-check (node block value result type)
50 (declare (type tn value result) (type node node) (type ir2-block block)
51 (type ctype type))
52 (emit-move-template node block (type-check-template type) value result)
53 (values))
55 ;;; Allocate an indirect value cell.
56 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
57 (defun emit-make-value-cell (node block value res)
58 (event make-value-cell-event node)
59 (let ((leaf (tn-leaf res)))
60 (vop make-value-cell node block value
61 (and leaf (leaf-dynamic-extent leaf)
62 ;; FIXME: See bug 419
63 (policy node (> stack-allocate-value-cells 1)))
64 res)))
66 ;;;; leaf reference
68 ;;; Return the TN that holds the value of THING in the environment ENV.
69 (declaim (ftype (function ((or nlx-info lambda-var clambda) physenv) tn)
70 find-in-physenv))
71 (defun find-in-physenv (thing physenv)
72 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
73 (etypecase thing
74 (lambda-var
75 ;; I think that a failure of this assertion means that we're
76 ;; trying to access a variable which was improperly closed
77 ;; over. The PHYSENV describes a physical environment. Every
78 ;; variable that a form refers to should either be in its
79 ;; physical environment directly, or grabbed from a
80 ;; surrounding physical environment when it was closed over.
81 ;; The ASSOC expression above finds closed-over variables, so
82 ;; if we fell through the ASSOC expression, it wasn't closed
83 ;; over. Therefore, it must be in our physical environment
84 ;; directly. If instead it is in some other physical
85 ;; environment, then it's bogus for us to reference it here
86 ;; without it being closed over. -- WHN 2001-09-29
87 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
88 (leaf-info thing))
89 (nlx-info
90 (aver (eq physenv (block-physenv (nlx-info-target thing))))
91 (ir2-nlx-info-home (nlx-info-info thing)))
92 (clambda
93 (aver (xep-p thing))
94 (entry-info-closure-tn (lambda-info thing))))
95 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
97 ;;; If LEAF already has a constant TN, return that, otherwise make a
98 ;;; TN for it.
99 (defun constant-tn (leaf)
100 (declare (type constant leaf))
101 (or (leaf-info leaf)
102 (setf (leaf-info leaf)
103 (make-constant-tn leaf))))
105 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
106 ;;; isn't directly represented by a TN. ENV is the environment that
107 ;;; the reference is done in.
108 (defun leaf-tn (leaf env)
109 (declare (type leaf leaf) (type physenv env))
110 (typecase leaf
111 (lambda-var
112 (unless (lambda-var-indirect leaf)
113 (find-in-physenv leaf env)))
114 (constant (constant-tn leaf))
115 (t nil)))
117 ;;; This is used to conveniently get a handle on a constant TN during
118 ;;; IR2 conversion. It returns a constant TN representing the Lisp
119 ;;; object VALUE.
120 (defun emit-constant (value)
121 (constant-tn (find-constant value)))
123 ;;; Convert a REF node. The reference must not be delayed.
124 (defun ir2-convert-ref (node block)
125 (declare (type ref node) (type ir2-block block))
126 (let* ((lvar (node-lvar node))
127 (leaf (ref-leaf node))
128 (locs (lvar-result-tns
129 lvar (list (primitive-type (leaf-type leaf)))))
130 (res (first locs)))
131 (etypecase leaf
132 (lambda-var
133 (let ((tn (find-in-physenv leaf (node-physenv node))))
134 (if (lambda-var-indirect leaf)
135 (vop value-cell-ref node block tn res)
136 (emit-move node block tn res))))
137 (constant
138 (emit-move node block (constant-tn leaf) res))
139 (functional
140 (ir2-convert-closure node block leaf res))
141 (global-var
142 (let ((unsafe (policy node (zerop safety)))
143 (name (leaf-source-name leaf)))
144 (ecase (global-var-kind leaf)
145 ((:special :global)
146 (aver (symbolp name))
147 (let ((name-tn (emit-constant name)))
148 (if unsafe
149 (vop fast-symbol-value node block name-tn res)
150 (vop symbol-value node block name-tn res))))
151 (:global-function
152 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
153 (if unsafe
154 (vop fdefn-fun node block fdefn-tn res)
155 (vop safe-fdefn-fun node block fdefn-tn res))))))))
156 (move-lvar-result node block locs lvar))
157 (values))
159 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
160 (defun assertions-on-ir2-converted-clambda (clambda)
161 ;; This assertion was sort of an experiment. It would be nice and
162 ;; sane and easier to understand things if it were *always* true,
163 ;; but experimentally I observe that it's only *almost* always
164 ;; true. -- WHN 2001-01-02
165 #+nil
166 (aver (eql (lambda-component clambda)
167 (block-component (ir2-block-block ir2-block))))
168 ;; Check for some weirdness which came up in bug
169 ;; 138, 2002-01-02.
171 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
172 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
173 ;; code
174 ;; * treats every HANDLEless :ENTRY record into a
175 ;; patch, and
176 ;; * expects every patch to correspond to an
177 ;; IR2-COMPONENT-ENTRIES record.
178 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
179 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
180 ;; was a HANDLEless :ENTRY record which didn't correspond to an
181 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
182 ;; when it's caught at dump time, so this assertion tries to catch
183 ;; it here.
184 (aver (member clambda
185 (component-lambdas (lambda-component clambda))))
186 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
187 ;; used as a queue for stuff pending to do in IR1, and now that
188 ;; we're doing IR2 it should've been completely flushed (but
189 ;; wasn't).
190 (aver (null (component-new-functionals (lambda-component clambda))))
191 (values))
193 ;;; Emit code to load a function object implementing FUNCTIONAL into
194 ;;; RES. This gets interesting when the referenced function is a
195 ;;; closure: we must make the closure and move the closed-over values
196 ;;; into it.
198 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
199 ;;; for the called function, since local call analysis converts all
200 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
201 ;;; closure.
203 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
204 ;;; don't initialize that slot. This can happen with closures over
205 ;;; top level variables, where optimization of the closure deleted the
206 ;;; variable. Since we committed to the closure format when we
207 ;;; pre-analyzed the top level code, we just leave an empty slot.
208 (defun ir2-convert-closure (ref ir2-block functional res)
209 (declare (type ref ref)
210 (type ir2-block ir2-block)
211 (type functional functional)
212 (type tn res))
213 (aver (not (eql (functional-kind functional) :deleted)))
214 (unless (leaf-info functional)
215 (setf (leaf-info functional)
216 (make-entry-info :name (functional-debug-name functional))))
217 (let ((closure (etypecase functional
218 (clambda
219 (assertions-on-ir2-converted-clambda functional)
220 (physenv-closure (get-lambda-physenv functional)))
221 (functional
222 (aver (eq (functional-kind functional) :toplevel-xep))
223 nil))))
225 (cond (closure
226 (let* ((physenv (node-physenv ref))
227 (tn (find-in-physenv functional physenv)))
228 (emit-move ref ir2-block tn res)))
230 (let ((entry (make-load-time-constant-tn :entry functional)))
231 (emit-move ref ir2-block entry res)))))
232 (values))
234 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
235 ltn-policy ; a hack to effectively (DECLARE (IGNORE LTN-POLICY))
236 (when (lvar-dynamic-extent leaves)
237 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
238 (setf (ir2-lvar-kind info) :delayed)
239 (setf (lvar-info leaves) info)
240 (setf (ir2-lvar-stack-pointer info)
241 (make-stack-pointer-tn)))))
243 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
244 (let ((dx-p (lvar-dynamic-extent leaves)))
245 (collect ((delayed))
246 (when dx-p
247 (vop current-stack-pointer call 2block
248 (ir2-lvar-stack-pointer (lvar-info leaves))))
249 (dolist (leaf (lvar-value leaves))
250 (binding* ((xep (functional-entry-fun leaf) :exit-if-null)
251 (nil (aver (xep-p xep)))
252 (entry-info (lambda-info xep) :exit-if-null)
253 (tn (entry-info-closure-tn entry-info) :exit-if-null)
254 (closure (physenv-closure (get-lambda-physenv xep)))
255 (entry (make-load-time-constant-tn :entry xep)))
256 (let ((this-env (node-physenv call))
257 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
258 (vop make-closure call 2block entry (length closure)
259 leaf-dx-p tn)
260 (loop for what in closure and n from 0 do
261 (unless (and (lambda-var-p what)
262 (null (leaf-refs what)))
263 ;; In LABELS a closure may refer to another closure
264 ;; in the same group, so we must be sure that we
265 ;; store a closure only after its creation.
267 ;; TODO: Here is a simple solution: we postpone
268 ;; putting of all closures after all creations
269 ;; (though it may require more registers).
270 (if (lambda-p what)
271 (delayed (list tn (find-in-physenv what this-env) n))
272 (vop closure-init call 2block
274 (find-in-physenv what this-env)
275 n)))))))
276 (loop for (tn what n) in (delayed)
277 do (vop closure-init call 2block
278 tn what n))))
279 (values))
281 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
282 ;;; deliver the value to that lvar. If the var is a lexical variable
283 ;;; with no refs, then we don't actually set anything, since the
284 ;;; variable has been deleted.
285 (defun ir2-convert-set (node block)
286 (declare (type cset node) (type ir2-block block))
287 (let* ((lvar (node-lvar node))
288 (leaf (set-var node))
289 (val (lvar-tn node block (set-value node)))
290 (locs (if lvar
291 (lvar-result-tns
292 lvar (list (primitive-type (leaf-type leaf))))
293 nil)))
294 (etypecase leaf
295 (lambda-var
296 (when (leaf-refs leaf)
297 (let ((tn (find-in-physenv leaf (node-physenv node))))
298 (if (lambda-var-indirect leaf)
299 (vop value-cell-set node block tn val)
300 (emit-move node block val tn)))))
301 (global-var
302 (ecase (global-var-kind leaf)
303 ((:special)
304 (aver (symbolp (leaf-source-name leaf)))
305 (vop set node block (emit-constant (leaf-source-name leaf)) val)))))
306 (when locs
307 (emit-move node block val (first locs))
308 (move-lvar-result node block locs lvar)))
309 (values))
311 ;;;; utilities for receiving fixed values
313 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
314 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
315 ;;; single-value lvar.
317 ;;; The primitive-type of the result will always be the same as the
318 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
319 ;;; TNs that satisfy the operand primitive-type restriction. We may
320 ;;; have to make a temporary of the desired type and move the actual
321 ;;; lvar TN into it. This happens when we delete a type check in
322 ;;; unsafe code or when we locally know something about the type of an
323 ;;; argument variable.
324 (defun lvar-tn (node block lvar)
325 (declare (type node node) (type ir2-block block) (type lvar lvar))
326 (let* ((2lvar (lvar-info lvar))
327 (lvar-tn
328 (ecase (ir2-lvar-kind 2lvar)
329 (:delayed
330 (let ((ref (lvar-uses lvar)))
331 (leaf-tn (ref-leaf ref) (node-physenv ref))))
332 (:fixed
333 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
334 (first (ir2-lvar-locs 2lvar)))))
335 (ptype (ir2-lvar-primitive-type 2lvar)))
337 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
339 (let ((temp (make-normal-tn ptype)))
340 (emit-move node block lvar-tn temp)
341 temp)))))
343 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
344 ;;; TNs holding the values of LVAR with PTYPES as their primitive
345 ;;; types. LVAR must be annotated for the same number of fixed values
346 ;;; are there are PTYPES.
348 ;;; If the lvar has a type check, check the values into temps and
349 ;;; return the temps. When we have more values than assertions, we
350 ;;; move the extra values with no check.
351 (defun lvar-tns (node block lvar ptypes)
352 (declare (type node node) (type ir2-block block)
353 (type lvar lvar) (list ptypes))
354 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
355 (nlocs (length locs)))
356 (aver (= nlocs (length ptypes)))
358 (mapcar (lambda (from to-type)
359 (if (eq (tn-primitive-type from) to-type)
360 from
361 (let ((temp (make-normal-tn to-type)))
362 (emit-move node block from temp)
363 temp)))
364 locs
365 ptypes)))
367 ;;;; utilities for delivering values to lvars
369 ;;; Return a list of TNs with the specifier TYPES that can be used as
370 ;;; result TNs to evaluate an expression into LVAR. This is used
371 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
372 ;;; an lvar.
374 ;;; If the lvar isn't annotated (meaning the values are discarded) or
375 ;;; is unknown-values, the then we make temporaries for each supplied
376 ;;; value, providing a place to compute the result in until we decide
377 ;;; what to do with it (if anything.)
379 ;;; If the lvar is fixed-values, and wants the same number of values
380 ;;; as the user wants to deliver, then we just return the
381 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
382 ;;; discarded TNs. We always return a TN of the specified type, using
383 ;;; the lvar locs only when they are of the correct type.
384 (defun lvar-result-tns (lvar types)
385 (declare (type (or lvar null) lvar) (type list types))
386 (if (not lvar)
387 (mapcar #'make-normal-tn types)
388 (let ((2lvar (lvar-info lvar)))
389 (ecase (ir2-lvar-kind 2lvar)
390 (:fixed
391 (let* ((locs (ir2-lvar-locs 2lvar))
392 (nlocs (length locs))
393 (ntypes (length types)))
394 (if (and (= nlocs ntypes)
395 (do ((loc locs (cdr loc))
396 (type types (cdr type)))
397 ((null loc) t)
398 (unless (eq (tn-primitive-type (car loc)) (car type))
399 (return nil))))
400 locs
401 (mapcar (lambda (loc type)
402 (if (eq (tn-primitive-type loc) type)
404 (make-normal-tn type)))
405 (if (< nlocs ntypes)
406 (append locs
407 (mapcar #'make-normal-tn
408 (subseq types nlocs)))
409 locs)
410 types))))
411 (:unknown
412 (mapcar #'make-normal-tn types))))))
414 ;;; Make the first N standard value TNs, returning them in a list.
415 (defun make-standard-value-tns (n)
416 (declare (type unsigned-byte n))
417 (collect ((res))
418 (dotimes (i n)
419 (res (standard-arg-location i)))
420 (res)))
422 ;;; Return a list of TNs wired to the standard value passing
423 ;;; conventions that can be used to receive values according to the
424 ;;; unknown-values convention. This is used with together
425 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
426 ;;; lvar.
428 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
429 ;;; an empty list of temporaries.
431 ;;; If the lvar is annotated, then it must be :FIXED.
432 (defun standard-result-tns (lvar)
433 (declare (type (or lvar null) lvar))
434 (if lvar
435 (let ((2lvar (lvar-info lvar)))
436 (ecase (ir2-lvar-kind 2lvar)
437 (:fixed
438 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
439 nil))
441 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
442 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
443 ;;; doing the appropriate coercions.
444 (defun move-results-coerced (node block src dest)
445 (declare (type node node) (type ir2-block block) (list src dest))
446 (let ((nsrc (length src))
447 (ndest (length dest)))
448 (mapc (lambda (from to)
449 (unless (eq from to)
450 (emit-move node block from to)))
451 (if (> ndest nsrc)
452 (append src (make-list (- ndest nsrc)
453 :initial-element (emit-constant nil)))
454 src)
455 dest))
456 (values))
458 ;;; Move each SRC TN into the corresponding DEST TN, checking types
459 ;;; and defaulting any unsupplied source values to NIL
460 (defun move-results-checked (node block src dest types)
461 (declare (type node node) (type ir2-block block) (list src dest types))
462 (let ((nsrc (length src))
463 (ndest (length dest))
464 (ntypes (length types)))
465 (mapc (lambda (from to type)
466 (if type
467 (emit-type-check node block from to type)
468 (emit-move node block from to)))
469 (if (> ndest nsrc)
470 (append src (make-list (- ndest nsrc)
471 :initial-element (emit-constant nil)))
472 src)
473 dest
474 (if (> ndest ntypes)
475 (append types (make-list (- ndest ntypes)))
476 types)))
477 (values))
479 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
480 ;;; the specified lvar. NODE and BLOCK provide context for emitting
481 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
482 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
483 ;;; number of TNs.
485 ;;; If the lvar is fixed values, then move the results into the lvar
486 ;;; locations. If the lvar is unknown values, then do the moves into
487 ;;; the standard value locations, and use PUSH-VALUES to put the
488 ;;; values on the stack.
489 (defun move-lvar-result (node block results lvar)
490 (declare (type node node) (type ir2-block block)
491 (list results) (type (or lvar null) lvar))
492 (when lvar
493 (let ((2lvar (lvar-info lvar)))
494 (ecase (ir2-lvar-kind 2lvar)
495 (:fixed
496 (let ((locs (ir2-lvar-locs 2lvar)))
497 (unless (eq locs results)
498 (move-results-coerced node block results locs))))
499 (:unknown
500 (let* ((nvals (length results))
501 (locs (make-standard-value-tns nvals)))
502 (move-results-coerced node block results locs)
503 (vop* push-values node block
504 ((reference-tn-list locs nil))
505 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
506 nvals))))))
507 (values))
509 ;;; CAST
510 (defun ir2-convert-cast (node block)
511 (declare (type cast node)
512 (type ir2-block block))
513 (binding* ((lvar (node-lvar node) :exit-if-null)
514 (2lvar (lvar-info lvar))
515 (value (cast-value node))
516 (2value (lvar-info value)))
517 (cond ((eq (ir2-lvar-kind 2lvar) :unused))
518 ((eq (ir2-lvar-kind 2lvar) :unknown)
519 (aver (eq (ir2-lvar-kind 2value) :unknown))
520 (aver (not (cast-type-check node)))
521 (move-results-coerced node block
522 (ir2-lvar-locs 2value)
523 (ir2-lvar-locs 2lvar)))
524 ((eq (ir2-lvar-kind 2lvar) :fixed)
525 (aver (eq (ir2-lvar-kind 2value) :fixed))
526 (if (cast-type-check node)
527 (move-results-checked node block
528 (ir2-lvar-locs 2value)
529 (ir2-lvar-locs 2lvar)
530 (multiple-value-bind (check types)
531 (cast-check-types node nil)
532 (aver (eq check :simple))
533 types))
534 (move-results-coerced node block
535 (ir2-lvar-locs 2value)
536 (ir2-lvar-locs 2lvar))))
537 (t (bug "CAST cannot be :DELAYED.")))))
539 ;;;; template conversion
541 ;;; Build a TN-REFS list that represents access to the values of the
542 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
543 ;;; are returned in the second value as a list rather than being
544 ;;; accessed as a normal argument. NODE and BLOCK provide the context
545 ;;; for emitting any necessary type-checking code.
546 (defun reference-args (node block args template)
547 (declare (type node node) (type ir2-block block) (list args)
548 (type template template))
549 (collect ((info-args))
550 (let ((last nil)
551 (first nil))
552 (do ((args args (cdr args))
553 (types (template-arg-types template) (cdr types)))
554 ((null args))
555 (let ((type (first types))
556 (arg (first args)))
557 (if (and (consp type) (eq (car type) ':constant))
558 (info-args (lvar-value arg))
559 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
560 (if last
561 (setf (tn-ref-across last) ref)
562 (setf first ref))
563 (setq last ref)))))
565 (values (the (or tn-ref null) first) (info-args)))))
567 ;;; Convert a conditional template. We try to exploit any
568 ;;; drop-through, but emit an unconditional branch afterward if we
569 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
570 ;;; negated.
571 (defun ir2-convert-conditional (node block template args info-args if not-p)
572 (declare (type node node) (type ir2-block block)
573 (type template template) (type (or tn-ref null) args)
574 (list info-args) (type cif if) (type boolean not-p))
575 (aver (= (template-info-arg-count template) (+ (length info-args) 2)))
576 (let ((consequent (if-consequent if))
577 (alternative (if-alternative if)))
578 (cond ((drop-thru-p if consequent)
579 (emit-template node block template args nil
580 (list* (block-label alternative) (not not-p)
581 info-args)))
583 (emit-template node block template args nil
584 (list* (block-label consequent) not-p info-args))
585 (unless (drop-thru-p if alternative)
586 (vop branch node block (block-label alternative)))))))
588 ;;; Convert an IF that isn't the DEST of a conditional template.
589 (defun ir2-convert-if (node block)
590 (declare (type ir2-block block) (type cif node))
591 (let* ((test (if-test node))
592 (test-ref (reference-tn (lvar-tn node block test) nil))
593 (nil-ref (reference-tn (emit-constant nil) nil)))
594 (setf (tn-ref-across test-ref) nil-ref)
595 (ir2-convert-conditional node block (template-or-lose 'if-eq)
596 test-ref () node t)))
598 ;;; Return a list of primitive-types that we can pass to
599 ;;; LVAR-RESULT-TNS describing the result types we want for a
600 ;;; template call. We duplicate here the determination of output type
601 ;;; that was done in initially selecting the template, so we know that
602 ;;; the types we find are allowed by the template output type
603 ;;; restrictions.
604 (defun find-template-result-types (call template rtypes)
605 (declare (type combination call)
606 (type template template) (list rtypes))
607 (declare (ignore template))
608 (let* ((dtype (node-derived-type call))
609 (type dtype)
610 (types (mapcar #'primitive-type
611 (if (values-type-p type)
612 (append (values-type-required type)
613 (values-type-optional type))
614 (list type)))))
615 (let ((nvals (length rtypes))
616 (ntypes (length types)))
617 (cond ((< ntypes nvals)
618 (append types
619 (make-list (- nvals ntypes)
620 :initial-element *backend-t-primitive-type*)))
621 ((> ntypes nvals)
622 (subseq types 0 nvals))
624 types)))))
626 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering
627 ;;; values to LVAR. As an efficiency hack, we pick off the common case
628 ;;; where the LVAR is fixed values and has locations that satisfy the
629 ;;; result restrictions. This can fail when there is a type check or a
630 ;;; values count mismatch.
631 (defun make-template-result-tns (call lvar template rtypes)
632 (declare (type combination call) (type (or lvar null) lvar)
633 (type template template) (list rtypes))
634 (let ((2lvar (when lvar (lvar-info lvar))))
635 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
636 (let ((locs (ir2-lvar-locs 2lvar)))
637 (if (and (= (length rtypes) (length locs))
638 (do ((loc locs (cdr loc))
639 (rtype rtypes (cdr rtype)))
640 ((null loc) t)
641 (unless (operand-restriction-ok
642 (car rtype)
643 (tn-primitive-type (car loc))
644 :t-ok nil)
645 (return nil))))
646 locs
647 (lvar-result-tns
648 lvar
649 (find-template-result-types call template rtypes))))
650 (lvar-result-tns
651 lvar
652 (find-template-result-types call template rtypes)))))
654 ;;; Get the operands into TNs, make TN-REFs for them, and then call
655 ;;; the template emit function.
656 (defun ir2-convert-template (call block)
657 (declare (type combination call) (type ir2-block block))
658 (let* ((template (combination-info call))
659 (lvar (node-lvar call))
660 (rtypes (template-result-types template)))
661 (multiple-value-bind (args info-args)
662 (reference-args call block (combination-args call) template)
663 (aver (not (template-more-results-type template)))
664 (if (eq rtypes :conditional)
665 (ir2-convert-conditional call block template args info-args
666 (lvar-dest lvar) nil)
667 (let* ((results (make-template-result-tns call lvar template rtypes))
668 (r-refs (reference-tn-list results t)))
669 (aver (= (length info-args)
670 (template-info-arg-count template)))
671 (when (and lvar (lvar-dynamic-extent lvar))
672 (vop current-stack-pointer call block
673 (ir2-lvar-stack-pointer (lvar-info lvar))))
674 (when (emit-step-p call)
675 (vop sb!vm::step-instrument-before-vop call block))
676 (if info-args
677 (emit-template call block template args r-refs info-args)
678 (emit-template call block template args r-refs))
679 (move-lvar-result call block results lvar)))))
680 (values))
682 ;;; We don't have to do much because operand count checking is done by
683 ;;; IR1 conversion. The only difference between this and the function
684 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
685 ;;; arguments.
686 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
687 (let* ((template (lvar-value template))
688 (info (lvar-value info))
689 (lvar (node-lvar call))
690 (rtypes (template-result-types template))
691 (results (make-template-result-tns call lvar template rtypes))
692 (r-refs (reference-tn-list results t)))
693 (multiple-value-bind (args info-args)
694 (reference-args call block (cddr (combination-args call)) template)
695 (aver (not (template-more-results-type template)))
696 (aver (not (eq rtypes :conditional)))
697 (aver (null info-args))
699 (if info
700 (emit-template call block template args r-refs info)
701 (emit-template call block template args r-refs))
703 (move-lvar-result call block results lvar)))
704 (values))
706 ;;;; local call
708 ;;; Convert a LET by moving the argument values into the variables.
709 ;;; Since a LET doesn't have any passing locations, we move the
710 ;;; arguments directly into the variables. We must also allocate any
711 ;;; indirect value cells, since there is no function prologue to do
712 ;;; this.
713 (defun ir2-convert-let (node block fun)
714 (declare (type combination node) (type ir2-block block) (type clambda fun))
715 (mapc (lambda (var arg)
716 (when arg
717 (let ((src (lvar-tn node block arg))
718 (dest (leaf-info var)))
719 (if (lambda-var-indirect var)
720 (emit-make-value-cell node block src dest)
721 (emit-move node block src dest)))))
722 (lambda-vars fun) (basic-combination-args node))
723 (values))
725 ;;; Emit any necessary moves into assignment temps for a local call to
726 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
727 ;;; values, and (possibly EQ) TNs that are the actual destination of
728 ;;; the arguments. When necessary, we allocate temporaries for
729 ;;; arguments to preserve parallel assignment semantics. These lists
730 ;;; exclude unused arguments and include implicit environment
731 ;;; arguments, i.e. they exactly correspond to the arguments passed.
733 ;;; OLD-FP is the TN currently holding the value we want to pass as
734 ;;; OLD-FP. If null, then the call is to the same environment (an
735 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
736 ;;; environment alone.
737 (defun emit-psetq-moves (node block fun old-fp)
738 (declare (type combination node) (type ir2-block block) (type clambda fun)
739 (type (or tn null) old-fp))
740 (let ((actuals (mapcar (lambda (x)
741 (when x
742 (lvar-tn node block x)))
743 (combination-args node))))
744 (collect ((temps)
745 (locs))
746 (dolist (var (lambda-vars fun))
747 (let ((actual (pop actuals))
748 (loc (leaf-info var)))
749 (when actual
750 (cond
751 ((lambda-var-indirect var)
752 (let ((temp
753 (make-normal-tn *backend-t-primitive-type*)))
754 (emit-make-value-cell node block actual temp)
755 (temps temp)))
756 ((member actual (locs))
757 (let ((temp (make-normal-tn (tn-primitive-type loc))))
758 (emit-move node block actual temp)
759 (temps temp)))
761 (temps actual)))
762 (locs loc))))
764 (when old-fp
765 (let ((this-1env (node-physenv node))
766 (called-env (physenv-info (lambda-physenv fun))))
767 (dolist (thing (ir2-physenv-closure called-env))
768 (temps (find-in-physenv (car thing) this-1env))
769 (locs (cdr thing)))
770 (temps old-fp)
771 (locs (ir2-physenv-old-fp called-env))))
773 (values (temps) (locs)))))
775 ;;; A tail-recursive local call is done by emitting moves of stuff
776 ;;; into the appropriate passing locations. After setting up the args
777 ;;; and environment, we just move our return-pc into the called
778 ;;; function's passing location.
779 (defun ir2-convert-tail-local-call (node block fun)
780 (declare (type combination node) (type ir2-block block) (type clambda fun))
781 (let ((this-env (physenv-info (node-physenv node))))
782 (multiple-value-bind (temps locs)
783 (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
785 (mapc (lambda (temp loc)
786 (emit-move node block temp loc))
787 temps locs))
789 (emit-move node block
790 (ir2-physenv-return-pc this-env)
791 (ir2-physenv-return-pc-pass
792 (physenv-info
793 (lambda-physenv fun)))))
795 (values))
797 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
798 ;;; except that the caller and callee environment are the same, so we
799 ;;; don't need to mess with the environment locations, return PC, etc.
800 (defun ir2-convert-assignment (node block fun)
801 (declare (type combination node) (type ir2-block block) (type clambda fun))
802 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
804 (mapc (lambda (temp loc)
805 (emit-move node block temp loc))
806 temps locs))
807 (values))
809 ;;; Do stuff to set up the arguments to a non-tail local call
810 ;;; (including implicit environment args.) We allocate a frame
811 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
812 ;;; the values to pass and the list of passing location TNs.
813 (defun ir2-convert-local-call-args (node block fun)
814 (declare (type combination node) (type ir2-block block) (type clambda fun))
815 (let ((fp (make-stack-pointer-tn))
816 (nfp (make-number-stack-pointer-tn))
817 (old-fp (make-stack-pointer-tn)))
818 (multiple-value-bind (temps locs)
819 (emit-psetq-moves node block fun old-fp)
820 (vop current-fp node block old-fp)
821 (vop allocate-frame node block
822 (physenv-info (lambda-physenv fun))
823 fp nfp)
824 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
826 ;;; Handle a non-TR known-values local call. We emit the call, then
827 ;;; move the results to the lvar's destination.
828 (defun ir2-convert-local-known-call (node block fun returns lvar start)
829 (declare (type node node) (type ir2-block block) (type clambda fun)
830 (type return-info returns) (type (or lvar null) lvar)
831 (type label start))
832 (multiple-value-bind (fp nfp temps arg-locs)
833 (ir2-convert-local-call-args node block fun)
834 (let ((locs (return-info-locations returns)))
835 (vop* known-call-local node block
836 (fp nfp (reference-tn-list temps nil))
837 ((reference-tn-list locs t))
838 arg-locs (physenv-info (lambda-physenv fun)) start)
839 (move-lvar-result node block locs lvar)))
840 (values))
842 ;;; Handle a non-TR unknown-values local call. We do different things
843 ;;; depending on what kind of values the lvar wants.
845 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
846 ;;; specifying the lvar's LOCS as the VOP results so that we don't
847 ;;; have to do anything after the call.
849 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
850 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
851 ;;; coercions.
852 (defun ir2-convert-local-unknown-call (node block fun lvar start)
853 (declare (type node node) (type ir2-block block) (type clambda fun)
854 (type (or lvar null) lvar) (type label start))
855 (multiple-value-bind (fp nfp temps arg-locs)
856 (ir2-convert-local-call-args node block fun)
857 (let ((2lvar (and lvar (lvar-info lvar)))
858 (env (physenv-info (lambda-physenv fun)))
859 (temp-refs (reference-tn-list temps nil)))
860 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
861 (vop* multiple-call-local node block (fp nfp temp-refs)
862 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
863 arg-locs env start)
864 (let ((locs (standard-result-tns lvar)))
865 (vop* call-local node block
866 (fp nfp temp-refs)
867 ((reference-tn-list locs t))
868 arg-locs env start (length locs))
869 (move-lvar-result node block locs lvar)))))
870 (values))
872 ;;; Dispatch to the appropriate function, depending on whether we have
873 ;;; a let, tail or normal call. If the function doesn't return, call
874 ;;; it using the unknown-value convention. We could compile it as a
875 ;;; tail call, but that might seem confusing in the debugger.
876 (defun ir2-convert-local-call (node block)
877 (declare (type combination node) (type ir2-block block))
878 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
879 (kind (functional-kind fun)))
880 (cond ((eq kind :let)
881 (ir2-convert-let node block fun))
882 ((eq kind :assignment)
883 (ir2-convert-assignment node block fun))
884 ((node-tail-p node)
885 (ir2-convert-tail-local-call node block fun))
887 (let ((start (block-label (lambda-block fun)))
888 (returns (tail-set-info (lambda-tail-set fun)))
889 (lvar (node-lvar node)))
890 (ecase (if returns
891 (return-info-kind returns)
892 :unknown)
893 (:unknown
894 (ir2-convert-local-unknown-call node block fun lvar start))
895 (:fixed
896 (ir2-convert-local-known-call node block fun returns
897 lvar start)))))))
898 (values))
900 ;;;; full call
902 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
903 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
904 ;;; true if the thing is named (false if it is a function).
906 ;;; There are two interesting non-named cases:
907 ;;; -- We know it's a function. No check needed: return the
908 ;;; lvar LOC.
909 ;;; -- We don't know what it is.
910 (defun fun-lvar-tn (node block lvar)
911 (declare (ignore node block))
912 (declare (type lvar lvar))
913 (let ((2lvar (lvar-info lvar)))
914 (if (eq (ir2-lvar-kind 2lvar) :delayed)
915 (let ((name (lvar-fun-name lvar t)))
916 (aver name)
917 (values (make-load-time-constant-tn :fdefinition name) t))
918 (let* ((locs (ir2-lvar-locs 2lvar))
919 (loc (first locs))
920 (function-ptype (primitive-type-or-lose 'function)))
921 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
922 (= (length locs) 1)))
923 (aver (eq (tn-primitive-type loc) function-ptype))
924 (values loc nil)))))
926 ;;; Set up the args to NODE in the current frame, and return a TN-REF
927 ;;; list for the passing locations.
928 (defun move-tail-full-call-args (node block)
929 (declare (type combination node) (type ir2-block block))
930 (let ((args (basic-combination-args node))
931 (last nil)
932 (first nil))
933 (dotimes (num (length args))
934 (let ((loc (standard-arg-location num)))
935 (emit-move node block (lvar-tn node block (elt args num)) loc)
936 (let ((ref (reference-tn loc nil)))
937 (if last
938 (setf (tn-ref-across last) ref)
939 (setf first ref))
940 (setq last ref))))
941 first))
943 ;;; Move the arguments into the passing locations and do a (possibly
944 ;;; named) tail call.
945 (defun ir2-convert-tail-full-call (node block)
946 (declare (type combination node) (type ir2-block block))
947 (let* ((env (physenv-info (node-physenv node)))
948 (args (basic-combination-args node))
949 (nargs (length args))
950 (pass-refs (move-tail-full-call-args node block))
951 (old-fp (ir2-physenv-old-fp env))
952 (return-pc (ir2-physenv-return-pc env)))
954 (multiple-value-bind (fun-tn named)
955 (fun-lvar-tn node block (basic-combination-fun node))
956 (if named
957 (vop* tail-call-named node block
958 (fun-tn old-fp return-pc pass-refs)
959 (nil)
960 nargs
961 (emit-step-p node))
962 (vop* tail-call node block
963 (fun-tn old-fp return-pc pass-refs)
964 (nil)
965 nargs
966 (emit-step-p node)))))
968 (values))
970 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
971 (defun ir2-convert-full-call-args (node block)
972 (declare (type combination node) (type ir2-block block))
973 (let* ((args (basic-combination-args node))
974 (fp (make-stack-pointer-tn))
975 (nargs (length args)))
976 (vop allocate-full-call-frame node block nargs fp)
977 (collect ((locs))
978 (let ((last nil)
979 (first nil))
980 (dotimes (num nargs)
981 (locs (standard-arg-location num))
982 (let ((ref (reference-tn (lvar-tn node block (elt args num))
983 nil)))
984 (if last
985 (setf (tn-ref-across last) ref)
986 (setf first ref))
987 (setq last ref)))
989 (values fp first (locs) nargs)))))
991 ;;; Do full call when a fixed number of values are desired. We make
992 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
993 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
994 (defun ir2-convert-fixed-full-call (node block)
995 (declare (type combination node) (type ir2-block block))
996 (multiple-value-bind (fp args arg-locs nargs)
997 (ir2-convert-full-call-args node block)
998 (let* ((lvar (node-lvar node))
999 (locs (standard-result-tns lvar))
1000 (loc-refs (reference-tn-list locs t))
1001 (nvals (length locs)))
1002 (multiple-value-bind (fun-tn named)
1003 (fun-lvar-tn node block (basic-combination-fun node))
1004 (if named
1005 (vop* call-named node block (fp fun-tn args) (loc-refs)
1006 arg-locs nargs nvals (emit-step-p node))
1007 (vop* call node block (fp fun-tn args) (loc-refs)
1008 arg-locs nargs nvals (emit-step-p node)))
1009 (move-lvar-result node block locs lvar))))
1010 (values))
1012 ;;; Do full call when unknown values are desired.
1013 (defun ir2-convert-multiple-full-call (node block)
1014 (declare (type combination node) (type ir2-block block))
1015 (multiple-value-bind (fp args arg-locs nargs)
1016 (ir2-convert-full-call-args node block)
1017 (let* ((lvar (node-lvar node))
1018 (locs (ir2-lvar-locs (lvar-info lvar)))
1019 (loc-refs (reference-tn-list locs t)))
1020 (multiple-value-bind (fun-tn named)
1021 (fun-lvar-tn node block (basic-combination-fun node))
1022 (if named
1023 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
1024 arg-locs nargs (emit-step-p node))
1025 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1026 arg-locs nargs (emit-step-p node))))))
1027 (values))
1029 ;;; stuff to check in PONDER-FULL-CALL
1031 ;;; These came in handy when troubleshooting cold boot after making
1032 ;;; major changes in the package structure: various transforms and
1033 ;;; VOPs and stuff got attached to the wrong symbol, so that
1034 ;;; references to the right symbol were bogusly translated as full
1035 ;;; calls instead of primitives, sending the system off into infinite
1036 ;;; space. Having a report on all full calls generated makes it easier
1037 ;;; to figure out what form caused the problem this time.
1038 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1039 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1041 ;;; Do some checks (and store some notes relevant for future checks)
1042 ;;; on a full call:
1043 ;;; * Is this a full call to something we have reason to know should
1044 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1045 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1046 ;;; been detected.)
1047 ;;; * Is this a full call to (SETF FOO) which might conflict with
1048 ;;; a DEFSETF or some such thing elsewhere in the program?
1049 (defun ponder-full-call (node)
1050 (let* ((lvar (basic-combination-fun node))
1051 (fname (lvar-fun-name lvar t)))
1052 (declare (type (or symbol cons) fname))
1054 #!+sb-show (unless (gethash fname *full-called-fnames*)
1055 (setf (gethash fname *full-called-fnames*) t))
1056 #!+sb-show (when *show-full-called-fnames-p*
1057 (/show "converting full call to named function" fname)
1058 (/show (basic-combination-args node))
1059 (/show (policy node speed) (policy node safety))
1060 (/show (policy node compilation-speed))
1061 (let ((arg-types (mapcar (lambda (lvar)
1062 (when lvar
1063 (type-specifier
1064 (lvar-type lvar))))
1065 (basic-combination-args node))))
1066 (/show arg-types)))
1068 ;; When illegal code is compiled, all sorts of perverse paths
1069 ;; through the compiler can be taken, and it's much harder -- and
1070 ;; probably pointless -- to guarantee that always-optimized-away
1071 ;; functions are actually optimized away. Thus, we skip the check
1072 ;; in that case.
1073 (unless *failure-p*
1074 ;; check to see if we know anything about the function
1075 (let ((info (info :function :info fname)))
1076 ;; if we know something, check to see if the full call was valid
1077 (when (and info (ir1-attributep (fun-info-attributes info)
1078 always-translatable))
1079 (/show (policy node speed) (policy node safety))
1080 (/show (policy node compilation-speed))
1081 (bug "full call to ~S" fname))))
1083 (when (consp fname)
1084 (aver (legal-fun-name-p fname))
1085 (destructuring-bind (setfoid &rest stem) fname
1086 (when (eq setfoid 'setf)
1087 (setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
1089 ;;; If the call is in a tail recursive position and the return
1090 ;;; convention is standard, then do a tail full call. If one or fewer
1091 ;;; values are desired, then use a single-value call, otherwise use a
1092 ;;; multiple-values call.
1093 (defun ir2-convert-full-call (node block)
1094 (declare (type combination node) (type ir2-block block))
1095 (ponder-full-call node)
1096 (cond ((node-tail-p node)
1097 (ir2-convert-tail-full-call node block))
1098 ((let ((lvar (node-lvar node)))
1099 (and lvar
1100 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1101 (ir2-convert-multiple-full-call node block))
1103 (ir2-convert-fixed-full-call node block)))
1104 (values))
1106 ;;;; entering functions
1108 ;;; Do all the stuff that needs to be done on XEP entry:
1109 ;;; -- Create frame.
1110 ;;; -- Copy any more arg.
1111 ;;; -- Set up the environment, accessing any closure variables.
1112 ;;; -- Move args from the standard passing locations to their internal
1113 ;;; locations.
1114 (defun init-xep-environment (node block fun)
1115 (declare (type bind node) (type ir2-block block) (type clambda fun))
1116 (let ((start-label (entry-info-offset (leaf-info fun)))
1117 (env (physenv-info (node-physenv node))))
1118 (let ((ef (functional-entry-fun fun)))
1119 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1120 ;; Special case the xep-allocate-frame + copy-more-arg case.
1121 (vop xep-allocate-frame node block start-label t)
1122 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1124 ;; No more args, so normal entry.
1125 (vop xep-allocate-frame node block start-label nil)))
1126 (if (ir2-physenv-closure env)
1127 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1128 (vop setup-closure-environment node block start-label closure)
1129 (let ((n -1))
1130 (dolist (loc (ir2-physenv-closure env))
1131 (vop closure-ref node block closure (incf n) (cdr loc)))))
1132 (vop setup-environment node block start-label)))
1134 (unless (eq (functional-kind fun) :toplevel)
1135 (let ((vars (lambda-vars fun))
1136 (n 0))
1137 (when (leaf-refs (first vars))
1138 (emit-move node block (make-arg-count-location)
1139 (leaf-info (first vars))))
1140 (dolist (arg (rest vars))
1141 (when (leaf-refs arg)
1142 (let ((pass (standard-arg-location n))
1143 (home (leaf-info arg)))
1144 (if (lambda-var-indirect arg)
1145 (emit-make-value-cell node block pass home)
1146 (emit-move node block pass home))))
1147 (incf n))))
1149 (emit-move node block (make-old-fp-passing-location t)
1150 (ir2-physenv-old-fp env)))
1152 (values))
1154 ;;; Emit function prolog code. This is only called on bind nodes for
1155 ;;; functions that allocate environments. All semantics of let calls
1156 ;;; are handled by IR2-CONVERT-LET.
1158 ;;; If not an XEP, all we do is move the return PC from its passing
1159 ;;; location, since in a local call, the caller allocates the frame
1160 ;;; and sets up the arguments.
1161 (defun ir2-convert-bind (node block)
1162 (declare (type bind node) (type ir2-block block))
1163 (let* ((fun (bind-lambda node))
1164 (env (physenv-info (lambda-physenv fun))))
1165 (aver (member (functional-kind fun)
1166 '(nil :external :optional :toplevel :cleanup)))
1168 (when (xep-p fun)
1169 (init-xep-environment node block fun)
1170 #!+sb-dyncount
1171 (when *collect-dynamic-statistics*
1172 (vop count-me node block *dynamic-counts-tn*
1173 (block-number (ir2-block-block block)))))
1175 (emit-move node
1176 block
1177 (ir2-physenv-return-pc-pass env)
1178 (ir2-physenv-return-pc env))
1180 #!+unwind-to-frame-and-call-vop
1181 (when (and (lambda-allow-instrumenting fun)
1182 (not (lambda-inline-expanded fun))
1183 (lambda-return fun)
1184 (policy fun (>= insert-debug-catch 2)))
1185 (vop sb!vm::bind-sentinel node block))
1187 (let ((lab (gen-label)))
1188 (setf (ir2-physenv-environment-start env) lab)
1189 (vop note-environment-start node block lab)))
1191 (values))
1193 ;;;; function return
1195 ;;; Do stuff to return from a function with the specified values and
1196 ;;; convention. If the return convention is :FIXED and we aren't
1197 ;;; returning from an XEP, then we do a known return (letting
1198 ;;; representation selection insert the correct move-arg VOPs.)
1199 ;;; Otherwise, we use the unknown-values convention. If there is a
1200 ;;; fixed number of return values, then use RETURN, otherwise use
1201 ;;; RETURN-MULTIPLE.
1202 (defun ir2-convert-return (node block)
1203 (declare (type creturn node) (type ir2-block block))
1204 (let* ((lvar (return-result node))
1205 (2lvar (lvar-info lvar))
1206 (lvar-kind (ir2-lvar-kind 2lvar))
1207 (fun (return-lambda node))
1208 (env (physenv-info (lambda-physenv fun)))
1209 (old-fp (ir2-physenv-old-fp env))
1210 (return-pc (ir2-physenv-return-pc env))
1211 (returns (tail-set-info (lambda-tail-set fun))))
1212 #!+unwind-to-frame-and-call-vop
1213 (when (and (lambda-allow-instrumenting fun)
1214 (not (lambda-inline-expanded fun))
1215 (policy fun (>= insert-debug-catch 2)))
1216 (vop sb!vm::unbind-sentinel node block))
1217 (cond
1218 ((and (eq (return-info-kind returns) :fixed)
1219 (not (xep-p fun)))
1220 (let ((locs (lvar-tns node block lvar
1221 (return-info-types returns))))
1222 (vop* known-return node block
1223 (old-fp return-pc (reference-tn-list locs nil))
1224 (nil)
1225 (return-info-locations returns))))
1226 ((eq lvar-kind :fixed)
1227 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1228 (lvar-locs (lvar-tns node block lvar types))
1229 (nvals (length lvar-locs))
1230 (locs (make-standard-value-tns nvals)))
1231 (mapc (lambda (val loc)
1232 (emit-move node block val loc))
1233 lvar-locs
1234 locs)
1235 (if (= nvals 1)
1236 (vop return-single node block old-fp return-pc (car locs))
1237 (vop* return node block
1238 (old-fp return-pc (reference-tn-list locs nil))
1239 (nil)
1240 nvals))))
1242 (aver (eq lvar-kind :unknown))
1243 (vop* return-multiple node block
1244 (old-fp return-pc
1245 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1246 (nil)))))
1248 (values))
1250 ;;;; debugger hooks
1252 ;;; This is used by the debugger to find the top function on the
1253 ;;; stack. It returns the OLD-FP and RETURN-PC for the current
1254 ;;; function as multiple values.
1255 (defoptimizer (sb!kernel:%caller-frame-and-pc ir2-convert) (() node block)
1256 (let ((ir2-physenv (physenv-info (node-physenv node))))
1257 (move-lvar-result node block
1258 (list (ir2-physenv-old-fp ir2-physenv)
1259 (ir2-physenv-return-pc ir2-physenv))
1260 (node-lvar node))))
1262 ;;;; multiple values
1264 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1265 ;;; the lvar for the correct number of values (with the lvar user
1266 ;;; responsible for defaulting), we can just pick them up from the
1267 ;;; lvar.
1268 (defun ir2-convert-mv-bind (node block)
1269 (declare (type mv-combination node) (type ir2-block block))
1270 (let* ((lvar (first (basic-combination-args node)))
1271 (fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1272 (vars (lambda-vars fun)))
1273 (aver (eq (functional-kind fun) :mv-let))
1274 (mapc (lambda (src var)
1275 (when (leaf-refs var)
1276 (let ((dest (leaf-info var)))
1277 (if (lambda-var-indirect var)
1278 (emit-make-value-cell node block src dest)
1279 (emit-move node block src dest)))))
1280 (lvar-tns node block lvar
1281 (mapcar (lambda (x)
1282 (primitive-type (leaf-type x)))
1283 vars))
1284 vars))
1285 (values))
1287 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1288 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1289 ;;; the first argument: all the other argument lvar TNs are
1290 ;;; ignored. This is because we require all of the values globs to be
1291 ;;; contiguous and on stack top.
1292 (defun ir2-convert-mv-call (node block)
1293 (declare (type mv-combination node) (type ir2-block block))
1294 (aver (basic-combination-args node))
1295 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1296 (start (first (ir2-lvar-locs start-lvar)))
1297 (tails (and (node-tail-p node)
1298 (lambda-tail-set (node-home-lambda node))))
1299 (lvar (node-lvar node))
1300 (2lvar (and lvar (lvar-info lvar))))
1301 (multiple-value-bind (fun named)
1302 (fun-lvar-tn node block (basic-combination-fun node))
1303 (aver (and (not named)
1304 (eq (ir2-lvar-kind start-lvar) :unknown)))
1305 (cond
1306 (tails
1307 (let ((env (physenv-info (node-physenv node))))
1308 (vop tail-call-variable node block start fun
1309 (ir2-physenv-old-fp env)
1310 (ir2-physenv-return-pc env))))
1311 ((and 2lvar
1312 (eq (ir2-lvar-kind 2lvar) :unknown))
1313 (vop* multiple-call-variable node block (start fun nil)
1314 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1315 (emit-step-p node)))
1317 (let ((locs (standard-result-tns lvar)))
1318 (vop* call-variable node block (start fun nil)
1319 ((reference-tn-list locs t)) (length locs)
1320 (emit-step-p node))
1321 (move-lvar-result node block locs lvar)))))))
1323 ;;; Reset the stack pointer to the start of the specified
1324 ;;; unknown-values lvar (discarding it and all values globs on top of
1325 ;;; it.)
1326 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1327 (let* ((lvar (lvar-value %lvar))
1328 (2lvar (lvar-info lvar)))
1329 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1330 (vop reset-stack-pointer node block
1331 (first (ir2-lvar-locs 2lvar))))
1332 ((lvar-dynamic-extent lvar)
1333 (vop reset-stack-pointer node block
1334 (ir2-lvar-stack-pointer 2lvar)))
1335 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1336 lvar)))))
1338 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1339 &rest moved)
1340 node block)
1341 (let* ( ;; pointer immediately after the nipped block
1342 (after (lvar-value last-nipped))
1343 (2after (lvar-info after))
1344 ;; pointer to the first nipped word
1345 (first (lvar-value last-preserved))
1346 (2first (lvar-info first))
1348 (moved-tns (loop for lvar-ref in moved
1349 for lvar = (lvar-value lvar-ref)
1350 for 2lvar = (lvar-info lvar)
1351 ;when 2lvar
1352 collect (first (ir2-lvar-locs 2lvar)))))
1353 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1354 (lvar-dynamic-extent after)))
1355 (aver (eq (ir2-lvar-kind 2first) :unknown))
1356 (when *check-consistency*
1357 ;; we cannot move stack-allocated DX objects
1358 (dolist (moved-lvar moved)
1359 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1360 :unknown))))
1361 (flet ((nip-aligned (nipped)
1362 (vop* %%nip-values node block
1363 (nipped
1364 (first (ir2-lvar-locs 2first))
1365 (reference-tn-list moved-tns nil))
1366 ((reference-tn-list moved-tns t)))))
1367 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1368 (nip-aligned (first (ir2-lvar-locs 2after))))
1369 ((lvar-dynamic-extent after)
1370 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1372 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1374 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1375 (defoptimizer (values ir2-convert) ((&rest values) node block)
1376 (let ((tns (mapcar (lambda (x)
1377 (lvar-tn node block x))
1378 values)))
1379 (move-lvar-result node block tns (node-lvar node))))
1381 ;;; In the normal case where unknown values are desired, we use the
1382 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1383 ;;; for a fixed number of values, we punt by doing a full call to the
1384 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1385 ;;; defaulting any unsupplied values. It seems unworthwhile to
1386 ;;; optimize this case.
1387 (defoptimizer (values-list ir2-convert) ((list) node block)
1388 (let* ((lvar (node-lvar node))
1389 (2lvar (and lvar (lvar-info lvar))))
1390 (cond ((and 2lvar
1391 (eq (ir2-lvar-kind 2lvar) :unknown))
1392 (let ((locs (ir2-lvar-locs 2lvar)))
1393 (vop* values-list node block
1394 ((lvar-tn node block list) nil)
1395 ((reference-tn-list locs t)))))
1396 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1397 (eq (ir2-lvar-kind 2lvar) :fixed)))
1398 (ir2-convert-full-call node block)))))
1400 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1401 (binding* ((lvar (node-lvar node) :exit-if-null)
1402 (2lvar (lvar-info lvar)))
1403 (ecase (ir2-lvar-kind 2lvar)
1404 (:fixed (ir2-convert-full-call node block))
1405 (:unknown
1406 (let ((locs (ir2-lvar-locs 2lvar)))
1407 (vop* %more-arg-values node block
1408 ((lvar-tn node block context)
1409 (lvar-tn node block start)
1410 (lvar-tn node block count)
1411 nil)
1412 ((reference-tn-list locs t))))))))
1414 ;;;; special binding
1416 ;;; This is trivial, given our assumption of a shallow-binding
1417 ;;; implementation.
1418 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1419 (let ((name (leaf-source-name (lvar-value var))))
1420 (vop bind node block (lvar-tn node block value)
1421 (emit-constant name))))
1422 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1423 (vop unbind node block))
1425 ;;; ### It's not clear that this really belongs in this file, or
1426 ;;; should really be done this way, but this is the least violation of
1427 ;;; abstraction in the current setup. We don't want to wire
1428 ;;; shallow-binding assumptions into IR1tran.
1429 (def-ir1-translator progv
1430 ((vars vals &body body) start next result)
1431 (ir1-convert
1432 start next result
1433 (with-unique-names (bind unbind)
1434 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1435 `(unwind-protect
1436 (progn
1437 (labels ((,unbind (vars)
1438 (declare (optimize (speed 2) (debug 0)))
1439 (dolist (var vars)
1440 (%primitive bind nil var)
1441 (makunbound var)))
1442 (,bind (vars vals)
1443 (declare (optimize (speed 2) (debug 0)))
1444 (cond ((null vars))
1445 ((null vals) (,unbind vars))
1446 (t (%primitive bind
1447 (car vals)
1448 (car vars))
1449 (,bind (cdr vars) (cdr vals))))))
1450 (,bind ,vars ,vals))
1452 ,@body)
1453 ;; Technically ANSI CL doesn't allow declarations at the
1454 ;; start of the cleanup form. SBCL happens to allow for
1455 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1456 ;; is implemented; the cleanup forms are directly spliced
1457 ;; into an FLET definition body. And a declaration here
1458 ;; actually has exactly the right scope for what we need
1459 ;; (ensure that debug instrumentation is not emitted for the
1460 ;; cleanup function). -- JES, 2007-06-16
1461 (declare (optimize (insert-debug-catch 0)))
1462 (%primitive unbind-to-here ,n-save-bs))))))
1464 ;;;; non-local exit
1466 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1467 ;;; environment. Note that this is never called on the escape exits
1468 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1469 ;;; IR2 converted.
1470 (defun ir2-convert-exit (node block)
1471 (declare (type exit node) (type ir2-block block))
1472 (let* ((nlx (exit-nlx-info node))
1473 (loc (find-in-physenv nlx (node-physenv node)))
1474 (temp (make-stack-pointer-tn))
1475 (value (exit-value node)))
1476 (if (nlx-info-safe-p nlx)
1477 (vop value-cell-ref node block loc temp)
1478 (emit-move node block loc temp))
1479 (if value
1480 (let ((locs (ir2-lvar-locs (lvar-info value))))
1481 (vop unwind node block temp (first locs) (second locs)))
1482 (let ((0-tn (emit-constant 0)))
1483 (vop unwind node block temp 0-tn 0-tn))))
1485 (values))
1487 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1488 ;;; being entirely deleted.
1489 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1491 ;;; This function invalidates a lexical exit on exiting from the
1492 ;;; dynamic extent. This is done by storing 0 into the indirect value
1493 ;;; cell that holds the closed unwind block.
1494 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1495 (let ((nlx (lvar-value info)))
1496 (when (nlx-info-safe-p nlx)
1497 (vop value-cell-set node block
1498 (find-in-physenv nlx (node-physenv node))
1499 (emit-constant 0)))))
1501 ;;; We have to do a spurious move of no values to the result lvar so
1502 ;;; that lifetime analysis won't get confused.
1503 (defun ir2-convert-throw (node block)
1504 (declare (type mv-combination node) (type ir2-block block))
1505 (let ((args (basic-combination-args node)))
1506 (check-catch-tag-type (first args))
1507 (vop* throw node block
1508 ((lvar-tn node block (first args))
1509 (reference-tn-list
1510 (ir2-lvar-locs (lvar-info (second args)))
1511 nil))
1512 (nil)))
1513 (move-lvar-result node block () (node-lvar node))
1514 (values))
1516 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1517 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1518 ;;; the target PC by passing in the label to the vop. The vop is
1519 ;;; responsible for building a return-PC object.
1520 (defun emit-nlx-start (node block info tag)
1521 (declare (type node node) (type ir2-block block) (type nlx-info info)
1522 (type (or lvar null) tag))
1523 (let* ((2info (nlx-info-info info))
1524 (kind (cleanup-kind (nlx-info-cleanup info)))
1525 (block-tn (physenv-live-tn
1526 (make-normal-tn (primitive-type-or-lose 'catch-block))
1527 (node-physenv node)))
1528 (res (make-stack-pointer-tn))
1529 (target-label (ir2-nlx-info-target 2info)))
1531 (vop current-binding-pointer node block
1532 (car (ir2-nlx-info-dynamic-state 2info)))
1533 (vop* save-dynamic-state node block
1534 (nil)
1535 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1536 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1538 (ecase kind
1539 (:catch
1540 (vop make-catch-block node block block-tn
1541 (lvar-tn node block tag) target-label res))
1542 ((:unwind-protect :block :tagbody)
1543 (vop make-unwind-block node block block-tn target-label res)))
1545 (ecase kind
1546 ((:block :tagbody)
1547 (if (nlx-info-safe-p info)
1548 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1549 (emit-move node block res (ir2-nlx-info-home 2info))))
1550 (:unwind-protect
1551 (vop set-unwind-protect node block block-tn))
1552 (:catch)))
1554 (values))
1556 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1557 (defun ir2-convert-entry (node block)
1558 (declare (type entry node) (type ir2-block block))
1559 (let ((nlxes '()))
1560 (dolist (exit (entry-exits node))
1561 (let ((info (exit-nlx-info exit)))
1562 (when (and info
1563 (not (memq info nlxes))
1564 (member (cleanup-kind (nlx-info-cleanup info))
1565 '(:block :tagbody)))
1566 (push info nlxes)
1567 (emit-nlx-start node block info nil)))))
1568 (values))
1570 ;;; Set up the unwind block for these guys.
1571 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1572 (check-catch-tag-type tag)
1573 (emit-nlx-start node block (lvar-value info-lvar) tag))
1574 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1575 (emit-nlx-start node block (lvar-value info-lvar) nil))
1577 ;;; Emit the entry code for a non-local exit. We receive values and
1578 ;;; restore dynamic state.
1580 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1581 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1582 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1583 ;;; values, make the appropriate number of temps in the standard
1584 ;;; values locations and use the other variant, delivering the temps
1585 ;;; to the lvar using MOVE-LVAR-RESULT.
1587 ;;; In the UNWIND-PROTECT case, we deliver the first register
1588 ;;; argument, the argument count and the argument pointer to our lvar
1589 ;;; as multiple values. These values are the block exited to and the
1590 ;;; values start and count.
1592 ;;; After receiving values, we restore dynamic state. Except in the
1593 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1594 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1595 ;;; pointer alone, since the thrown values are still out there.
1596 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1597 (let* ((info (lvar-value info-lvar))
1598 (lvar (node-lvar node))
1599 (2info (nlx-info-info info))
1600 (top-loc (ir2-nlx-info-save-sp 2info))
1601 (start-loc (make-nlx-entry-arg-start-location))
1602 (count-loc (make-arg-count-location))
1603 (target (ir2-nlx-info-target 2info)))
1605 (ecase (cleanup-kind (nlx-info-cleanup info))
1606 ((:catch :block :tagbody)
1607 (let ((2lvar (and lvar (lvar-info lvar))))
1608 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1609 (vop* nlx-entry-multiple node block
1610 (top-loc start-loc count-loc nil)
1611 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1612 target)
1613 (let ((locs (standard-result-tns lvar)))
1614 (vop* nlx-entry node block
1615 (top-loc start-loc count-loc nil)
1616 ((reference-tn-list locs t))
1617 target
1618 (length locs))
1619 (move-lvar-result node block locs lvar)))))
1620 (:unwind-protect
1621 (let ((block-loc (standard-arg-location 0)))
1622 (vop uwp-entry node block target block-loc start-loc count-loc)
1623 (move-lvar-result
1624 node block
1625 (list block-loc start-loc count-loc)
1626 lvar))))
1628 #!+sb-dyncount
1629 (when *collect-dynamic-statistics*
1630 (vop count-me node block *dynamic-counts-tn*
1631 (block-number (ir2-block-block block))))
1633 (vop* restore-dynamic-state node block
1634 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1635 (nil))
1636 (vop unbind-to-here node block
1637 (car (ir2-nlx-info-dynamic-state 2info)))))
1639 ;;;; n-argument functions
1641 (macrolet ((def (name)
1642 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1643 (let* ((refs (move-tail-full-call-args node block))
1644 (lvar (node-lvar node))
1645 (res (lvar-result-tns
1646 lvar
1647 (list (primitive-type (specifier-type 'list))))))
1648 (when (and lvar (lvar-dynamic-extent lvar))
1649 (vop current-stack-pointer node block
1650 (ir2-lvar-stack-pointer (lvar-info lvar))))
1651 (vop* ,name node block (refs) ((first res) nil)
1652 (length args))
1653 (move-lvar-result node block res lvar)))))
1654 (def list)
1655 (def list*))
1658 ;;; Convert the code in a component into VOPs.
1659 (defun ir2-convert (component)
1660 (declare (type component component))
1661 (let (#!+sb-dyncount
1662 (*dynamic-counts-tn*
1663 (when *collect-dynamic-statistics*
1664 (let* ((blocks
1665 (block-number (block-next (component-head component))))
1666 (counts (make-array blocks
1667 :element-type '(unsigned-byte 32)
1668 :initial-element 0))
1669 (info (make-dyncount-info
1670 :for (component-name component)
1671 :costs (make-array blocks
1672 :element-type '(unsigned-byte 32)
1673 :initial-element 0)
1674 :counts counts)))
1675 (setf (ir2-component-dyncount-info (component-info component))
1676 info)
1677 (emit-constant info)
1678 (emit-constant counts)))))
1679 (let ((num 0))
1680 (declare (type index num))
1681 (do-ir2-blocks (2block component)
1682 (let ((block (ir2-block-block 2block)))
1683 (when (block-start block)
1684 (setf (block-number block) num)
1685 #!+sb-dyncount
1686 (when *collect-dynamic-statistics*
1687 (let ((first-node (block-start-node block)))
1688 (unless (or (and (bind-p first-node)
1689 (xep-p (bind-lambda first-node)))
1690 (eq (lvar-fun-name
1691 (node-lvar first-node))
1692 '%nlx-entry))
1693 (vop count-me
1694 first-node
1695 2block
1696 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1697 num))))
1698 (ir2-convert-block block)
1699 (incf num))))))
1700 (values))
1702 ;;; If necessary, emit a terminal unconditional branch to go to the
1703 ;;; successor block. If the successor is the component tail, then
1704 ;;; there isn't really any successor, but if the end is an unknown,
1705 ;;; non-tail call, then we emit an error trap just in case the
1706 ;;; function really does return.
1707 (defun finish-ir2-block (block)
1708 (declare (type cblock block))
1709 (let* ((2block (block-info block))
1710 (last (block-last block))
1711 (succ (block-succ block)))
1712 (unless (if-p last)
1713 (aver (singleton-p succ))
1714 (let ((target (first succ)))
1715 (cond ((eq target (component-tail (block-component block)))
1716 (when (and (basic-combination-p last)
1717 (eq (basic-combination-kind last) :full))
1718 (let* ((fun (basic-combination-fun last))
1719 (use (lvar-uses fun))
1720 (name (and (ref-p use)
1721 (leaf-has-source-name-p (ref-leaf use))
1722 (leaf-source-name (ref-leaf use)))))
1723 (unless (or (node-tail-p last)
1724 (info :function :info name)
1725 (policy last (zerop safety)))
1726 (vop nil-fun-returned-error last 2block
1727 (if name
1728 (emit-constant name)
1729 (multiple-value-bind (tn named)
1730 (fun-lvar-tn last 2block fun)
1731 (aver (not named))
1732 tn)))))))
1733 ((not (eq (ir2-block-next 2block) (block-info target)))
1734 (vop branch last 2block (block-label target)))))))
1736 (values))
1738 ;;; Convert the code in a block into VOPs.
1739 (defun ir2-convert-block (block)
1740 (declare (type cblock block))
1741 (let ((2block (block-info block)))
1742 (do-nodes (node lvar block)
1743 (etypecase node
1744 (ref
1745 (when lvar
1746 (let ((2lvar (lvar-info lvar)))
1747 ;; function REF in a local call is not annotated
1748 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
1749 (ir2-convert-ref node 2block)))))
1750 (combination
1751 (let ((kind (basic-combination-kind node)))
1752 (ecase kind
1753 (:local
1754 (ir2-convert-local-call node 2block))
1755 (:full
1756 (ir2-convert-full-call node 2block))
1757 (:known
1758 (let* ((info (basic-combination-fun-info node))
1759 (fun (fun-info-ir2-convert info)))
1760 (cond (fun
1761 (funcall fun node 2block))
1762 ((eq (basic-combination-info node) :full)
1763 (ir2-convert-full-call node 2block))
1765 (ir2-convert-template node 2block))))))))
1766 (cif
1767 (when (lvar-info (if-test node))
1768 (ir2-convert-if node 2block)))
1769 (bind
1770 (let ((fun (bind-lambda node)))
1771 (when (eq (lambda-home fun) fun)
1772 (ir2-convert-bind node 2block))))
1773 (creturn
1774 (ir2-convert-return node 2block))
1775 (cset
1776 (ir2-convert-set node 2block))
1777 (cast
1778 (ir2-convert-cast node 2block))
1779 (mv-combination
1780 (cond
1781 ((eq (basic-combination-kind node) :local)
1782 (ir2-convert-mv-bind node 2block))
1783 ((eq (lvar-fun-name (basic-combination-fun node))
1784 '%throw)
1785 (ir2-convert-throw node 2block))
1787 (ir2-convert-mv-call node 2block))))
1788 (exit
1789 (when (exit-entry node)
1790 (ir2-convert-exit node 2block)))
1791 (entry
1792 (ir2-convert-entry node 2block)))))
1794 (finish-ir2-block block)
1796 (values))