0.8.2.15:
[sbcl/lichteblau.git] / src / runtime / gencgc.c
blob1afe504dc67479ce11d0b6411e41c48e9a73df31
1 /*
2 * GENerational Conservative Garbage Collector for SBCL x86
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdio.h>
28 #include <signal.h>
29 #include <errno.h>
30 #include "runtime.h"
31 #include "sbcl.h"
32 #include "os.h"
33 #include "interr.h"
34 #include "globals.h"
35 #include "interrupt.h"
36 #include "validate.h"
37 #include "lispregs.h"
38 #include "arch.h"
39 #include "gc.h"
40 #include "gc-internal.h"
41 #include "thread.h"
42 #include "genesis/vector.h"
43 #include "genesis/weak-pointer.h"
44 #include "genesis/simple-fun.h"
46 #ifdef LISP_FEATURE_SB_THREAD
47 #include <sys/ptrace.h>
48 #include <linux/user.h> /* threading is presently linux-only */
49 #endif
51 /* assembly language stub that executes trap_PendingInterrupt */
52 void do_pending_interrupt(void);
56 * GC parameters
59 /* the number of actual generations. (The number of 'struct
60 * generation' objects is one more than this, because one object
61 * serves as scratch when GC'ing.) */
62 #define NUM_GENERATIONS 6
64 /* Should we use page protection to help avoid the scavenging of pages
65 * that don't have pointers to younger generations? */
66 boolean enable_page_protection = 1;
68 /* Should we unmap a page and re-mmap it to have it zero filled? */
69 #if defined(__FreeBSD__) || defined(__OpenBSD__)
70 /* comment from cmucl-2.4.8: This can waste a lot of swap on FreeBSD
71 * so don't unmap there.
73 * The CMU CL comment didn't specify a version, but was probably an
74 * old version of FreeBSD (pre-4.0), so this might no longer be true.
75 * OTOH, if it is true, this behavior might exist on OpenBSD too, so
76 * for now we don't unmap there either. -- WHN 2001-04-07 */
77 boolean gencgc_unmap_zero = 0;
78 #else
79 boolean gencgc_unmap_zero = 1;
80 #endif
82 /* the minimum size (in bytes) for a large object*/
83 unsigned large_object_size = 4 * 4096;
86 * debugging
91 /* the verbosity level. All non-error messages are disabled at level 0;
92 * and only a few rare messages are printed at level 1. */
93 unsigned gencgc_verbose = (QSHOW ? 1 : 0);
95 /* FIXME: At some point enable the various error-checking things below
96 * and see what they say. */
98 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
99 * Set verify_gens to NUM_GENERATIONS to disable this kind of check. */
100 int verify_gens = NUM_GENERATIONS;
102 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
103 boolean pre_verify_gen_0 = 0;
105 /* Should we check for bad pointers after gc_free_heap is called
106 * from Lisp PURIFY? */
107 boolean verify_after_free_heap = 0;
109 /* Should we print a note when code objects are found in the dynamic space
110 * during a heap verify? */
111 boolean verify_dynamic_code_check = 0;
113 /* Should we check code objects for fixup errors after they are transported? */
114 boolean check_code_fixups = 0;
116 /* Should we check that newly allocated regions are zero filled? */
117 boolean gencgc_zero_check = 0;
119 /* Should we check that the free space is zero filled? */
120 boolean gencgc_enable_verify_zero_fill = 0;
122 /* Should we check that free pages are zero filled during gc_free_heap
123 * called after Lisp PURIFY? */
124 boolean gencgc_zero_check_during_free_heap = 0;
127 * GC structures and variables
130 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
131 unsigned long bytes_allocated = 0;
132 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
133 unsigned long auto_gc_trigger = 0;
135 /* the source and destination generations. These are set before a GC starts
136 * scavenging. */
137 int from_space;
138 int new_space;
141 /* FIXME: It would be nice to use this symbolic constant instead of
142 * bare 4096 almost everywhere. We could also use an assertion that
143 * it's equal to getpagesize(). */
145 #define PAGE_BYTES 4096
147 /* An array of page structures is statically allocated.
148 * This helps quickly map between an address its page structure.
149 * NUM_PAGES is set from the size of the dynamic space. */
150 struct page page_table[NUM_PAGES];
152 /* To map addresses to page structures the address of the first page
153 * is needed. */
154 static void *heap_base = NULL;
157 /* Calculate the start address for the given page number. */
158 inline void *
159 page_address(int page_num)
161 return (heap_base + (page_num * 4096));
164 /* Find the page index within the page_table for the given
165 * address. Return -1 on failure. */
166 inline int
167 find_page_index(void *addr)
169 int index = addr-heap_base;
171 if (index >= 0) {
172 index = ((unsigned int)index)/4096;
173 if (index < NUM_PAGES)
174 return (index);
177 return (-1);
180 /* a structure to hold the state of a generation */
181 struct generation {
183 /* the first page that gc_alloc() checks on its next call */
184 int alloc_start_page;
186 /* the first page that gc_alloc_unboxed() checks on its next call */
187 int alloc_unboxed_start_page;
189 /* the first page that gc_alloc_large (boxed) considers on its next
190 * call. (Although it always allocates after the boxed_region.) */
191 int alloc_large_start_page;
193 /* the first page that gc_alloc_large (unboxed) considers on its
194 * next call. (Although it always allocates after the
195 * current_unboxed_region.) */
196 int alloc_large_unboxed_start_page;
198 /* the bytes allocated to this generation */
199 int bytes_allocated;
201 /* the number of bytes at which to trigger a GC */
202 int gc_trigger;
204 /* to calculate a new level for gc_trigger */
205 int bytes_consed_between_gc;
207 /* the number of GCs since the last raise */
208 int num_gc;
210 /* the average age after which a GC will raise objects to the
211 * next generation */
212 int trigger_age;
214 /* the cumulative sum of the bytes allocated to this generation. It is
215 * cleared after a GC on this generations, and update before new
216 * objects are added from a GC of a younger generation. Dividing by
217 * the bytes_allocated will give the average age of the memory in
218 * this generation since its last GC. */
219 int cum_sum_bytes_allocated;
221 /* a minimum average memory age before a GC will occur helps
222 * prevent a GC when a large number of new live objects have been
223 * added, in which case a GC could be a waste of time */
224 double min_av_mem_age;
226 /* the number of actual generations. (The number of 'struct
227 * generation' objects is one more than this, because one object
228 * serves as scratch when GC'ing.) */
229 #define NUM_GENERATIONS 6
231 /* an array of generation structures. There needs to be one more
232 * generation structure than actual generations as the oldest
233 * generation is temporarily raised then lowered. */
234 struct generation generations[NUM_GENERATIONS+1];
236 /* the oldest generation that is will currently be GCed by default.
237 * Valid values are: 0, 1, ... (NUM_GENERATIONS-1)
239 * The default of (NUM_GENERATIONS-1) enables GC on all generations.
241 * Setting this to 0 effectively disables the generational nature of
242 * the GC. In some applications generational GC may not be useful
243 * because there are no long-lived objects.
245 * An intermediate value could be handy after moving long-lived data
246 * into an older generation so an unnecessary GC of this long-lived
247 * data can be avoided. */
248 unsigned int gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;
250 /* The maximum free page in the heap is maintained and used to update
251 * ALLOCATION_POINTER which is used by the room function to limit its
252 * search of the heap. XX Gencgc obviously needs to be better
253 * integrated with the Lisp code. */
254 static int last_free_page;
256 /* This lock is to prevent multiple threads from simultaneously
257 * allocating new regions which overlap each other. Note that the
258 * majority of GC is single-threaded, but alloc() may be called from
259 * >1 thread at a time and must be thread-safe. This lock must be
260 * seized before all accesses to generations[] or to parts of
261 * page_table[] that other threads may want to see */
263 static lispobj free_pages_lock=0;
267 * miscellaneous heap functions
270 /* Count the number of pages which are write-protected within the
271 * given generation. */
272 static int
273 count_write_protect_generation_pages(int generation)
275 int i;
276 int count = 0;
278 for (i = 0; i < last_free_page; i++)
279 if ((page_table[i].allocated != FREE_PAGE)
280 && (page_table[i].gen == generation)
281 && (page_table[i].write_protected == 1))
282 count++;
283 return count;
286 /* Count the number of pages within the given generation. */
287 static int
288 count_generation_pages(int generation)
290 int i;
291 int count = 0;
293 for (i = 0; i < last_free_page; i++)
294 if ((page_table[i].allocated != 0)
295 && (page_table[i].gen == generation))
296 count++;
297 return count;
300 /* Count the number of dont_move pages. */
301 static int
302 count_dont_move_pages(void)
304 int i;
305 int count = 0;
306 for (i = 0; i < last_free_page; i++) {
307 if ((page_table[i].allocated != 0) && (page_table[i].dont_move != 0)) {
308 ++count;
311 return count;
314 /* Work through the pages and add up the number of bytes used for the
315 * given generation. */
316 static int
317 count_generation_bytes_allocated (int gen)
319 int i;
320 int result = 0;
321 for (i = 0; i < last_free_page; i++) {
322 if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
323 result += page_table[i].bytes_used;
325 return result;
328 /* Return the average age of the memory in a generation. */
329 static double
330 gen_av_mem_age(int gen)
332 if (generations[gen].bytes_allocated == 0)
333 return 0.0;
335 return
336 ((double)generations[gen].cum_sum_bytes_allocated)
337 / ((double)generations[gen].bytes_allocated);
340 /* The verbose argument controls how much to print: 0 for normal
341 * level of detail; 1 for debugging. */
342 static void
343 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
345 int i, gens;
346 int fpu_state[27];
348 /* This code uses the FP instructions which may be set up for Lisp
349 * so they need to be saved and reset for C. */
350 fpu_save(fpu_state);
352 /* number of generations to print */
353 if (verbose)
354 gens = NUM_GENERATIONS+1;
355 else
356 gens = NUM_GENERATIONS;
358 /* Print the heap stats. */
359 fprintf(stderr,
360 " Generation Boxed Unboxed LB LUB Alloc Waste Trig WP GCs Mem-age\n");
362 for (i = 0; i < gens; i++) {
363 int j;
364 int boxed_cnt = 0;
365 int unboxed_cnt = 0;
366 int large_boxed_cnt = 0;
367 int large_unboxed_cnt = 0;
369 for (j = 0; j < last_free_page; j++)
370 if (page_table[j].gen == i) {
372 /* Count the number of boxed pages within the given
373 * generation. */
374 if (page_table[j].allocated & BOXED_PAGE) {
375 if (page_table[j].large_object)
376 large_boxed_cnt++;
377 else
378 boxed_cnt++;
381 /* Count the number of unboxed pages within the given
382 * generation. */
383 if (page_table[j].allocated & UNBOXED_PAGE) {
384 if (page_table[j].large_object)
385 large_unboxed_cnt++;
386 else
387 unboxed_cnt++;
391 gc_assert(generations[i].bytes_allocated
392 == count_generation_bytes_allocated(i));
393 fprintf(stderr,
394 " %8d: %5d %5d %5d %5d %8d %5d %8d %4d %3d %7.4f\n",
396 boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
397 generations[i].bytes_allocated,
398 (count_generation_pages(i)*4096
399 - generations[i].bytes_allocated),
400 generations[i].gc_trigger,
401 count_write_protect_generation_pages(i),
402 generations[i].num_gc,
403 gen_av_mem_age(i));
405 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
407 fpu_restore(fpu_state);
411 * allocation routines
415 * To support quick and inline allocation, regions of memory can be
416 * allocated and then allocated from with just a free pointer and a
417 * check against an end address.
419 * Since objects can be allocated to spaces with different properties
420 * e.g. boxed/unboxed, generation, ages; there may need to be many
421 * allocation regions.
423 * Each allocation region may be start within a partly used page. Many
424 * features of memory use are noted on a page wise basis, e.g. the
425 * generation; so if a region starts within an existing allocated page
426 * it must be consistent with this page.
428 * During the scavenging of the newspace, objects will be transported
429 * into an allocation region, and pointers updated to point to this
430 * allocation region. It is possible that these pointers will be
431 * scavenged again before the allocation region is closed, e.g. due to
432 * trans_list which jumps all over the place to cleanup the list. It
433 * is important to be able to determine properties of all objects
434 * pointed to when scavenging, e.g to detect pointers to the oldspace.
435 * Thus it's important that the allocation regions have the correct
436 * properties set when allocated, and not just set when closed. The
437 * region allocation routines return regions with the specified
438 * properties, and grab all the pages, setting their properties
439 * appropriately, except that the amount used is not known.
441 * These regions are used to support quicker allocation using just a
442 * free pointer. The actual space used by the region is not reflected
443 * in the pages tables until it is closed. It can't be scavenged until
444 * closed.
446 * When finished with the region it should be closed, which will
447 * update the page tables for the actual space used returning unused
448 * space. Further it may be noted in the new regions which is
449 * necessary when scavenging the newspace.
451 * Large objects may be allocated directly without an allocation
452 * region, the page tables are updated immediately.
454 * Unboxed objects don't contain pointers to other objects and so
455 * don't need scavenging. Further they can't contain pointers to
456 * younger generations so WP is not needed. By allocating pages to
457 * unboxed objects the whole page never needs scavenging or
458 * write-protecting. */
460 /* We are only using two regions at present. Both are for the current
461 * newspace generation. */
462 struct alloc_region boxed_region;
463 struct alloc_region unboxed_region;
465 /* The generation currently being allocated to. */
466 static int gc_alloc_generation;
468 /* Find a new region with room for at least the given number of bytes.
470 * It starts looking at the current generation's alloc_start_page. So
471 * may pick up from the previous region if there is enough space. This
472 * keeps the allocation contiguous when scavenging the newspace.
474 * The alloc_region should have been closed by a call to
475 * gc_alloc_update_page_tables(), and will thus be in an empty state.
477 * To assist the scavenging functions write-protected pages are not
478 * used. Free pages should not be write-protected.
480 * It is critical to the conservative GC that the start of regions be
481 * known. To help achieve this only small regions are allocated at a
482 * time.
484 * During scavenging, pointers may be found to within the current
485 * region and the page generation must be set so that pointers to the
486 * from space can be recognized. Therefore the generation of pages in
487 * the region are set to gc_alloc_generation. To prevent another
488 * allocation call using the same pages, all the pages in the region
489 * are allocated, although they will initially be empty.
491 static void
492 gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
494 int first_page;
495 int last_page;
496 int bytes_found;
497 int i;
500 FSHOW((stderr,
501 "/alloc_new_region for %d bytes from gen %d\n",
502 nbytes, gc_alloc_generation));
505 /* Check that the region is in a reset state. */
506 gc_assert((alloc_region->first_page == 0)
507 && (alloc_region->last_page == -1)
508 && (alloc_region->free_pointer == alloc_region->end_addr));
509 get_spinlock(&free_pages_lock,alloc_region);
510 if (unboxed) {
511 first_page =
512 generations[gc_alloc_generation].alloc_unboxed_start_page;
513 } else {
514 first_page =
515 generations[gc_alloc_generation].alloc_start_page;
517 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed,alloc_region);
518 bytes_found=(4096 - page_table[first_page].bytes_used)
519 + 4096*(last_page-first_page);
521 /* Set up the alloc_region. */
522 alloc_region->first_page = first_page;
523 alloc_region->last_page = last_page;
524 alloc_region->start_addr = page_table[first_page].bytes_used
525 + page_address(first_page);
526 alloc_region->free_pointer = alloc_region->start_addr;
527 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
529 /* Set up the pages. */
531 /* The first page may have already been in use. */
532 if (page_table[first_page].bytes_used == 0) {
533 if (unboxed)
534 page_table[first_page].allocated = UNBOXED_PAGE;
535 else
536 page_table[first_page].allocated = BOXED_PAGE;
537 page_table[first_page].gen = gc_alloc_generation;
538 page_table[first_page].large_object = 0;
539 page_table[first_page].first_object_offset = 0;
542 if (unboxed)
543 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
544 else
545 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
546 page_table[first_page].allocated |= OPEN_REGION_PAGE;
548 gc_assert(page_table[first_page].gen == gc_alloc_generation);
549 gc_assert(page_table[first_page].large_object == 0);
551 for (i = first_page+1; i <= last_page; i++) {
552 if (unboxed)
553 page_table[i].allocated = UNBOXED_PAGE;
554 else
555 page_table[i].allocated = BOXED_PAGE;
556 page_table[i].gen = gc_alloc_generation;
557 page_table[i].large_object = 0;
558 /* This may not be necessary for unboxed regions (think it was
559 * broken before!) */
560 page_table[i].first_object_offset =
561 alloc_region->start_addr - page_address(i);
562 page_table[i].allocated |= OPEN_REGION_PAGE ;
564 /* Bump up last_free_page. */
565 if (last_page+1 > last_free_page) {
566 last_free_page = last_page+1;
567 SetSymbolValue(ALLOCATION_POINTER,
568 (lispobj)(((char *)heap_base) + last_free_page*4096),
571 free_pages_lock=0;
573 /* we can do this after releasing free_pages_lock */
574 if (gencgc_zero_check) {
575 int *p;
576 for (p = (int *)alloc_region->start_addr;
577 p < (int *)alloc_region->end_addr; p++) {
578 if (*p != 0) {
579 /* KLUDGE: It would be nice to use %lx and explicit casts
580 * (long) in code like this, so that it is less likely to
581 * break randomly when running on a machine with different
582 * word sizes. -- WHN 19991129 */
583 lose("The new region at %x is not zero.", p);
590 /* If the record_new_objects flag is 2 then all new regions created
591 * are recorded.
593 * If it's 1 then then it is only recorded if the first page of the
594 * current region is <= new_areas_ignore_page. This helps avoid
595 * unnecessary recording when doing full scavenge pass.
597 * The new_object structure holds the page, byte offset, and size of
598 * new regions of objects. Each new area is placed in the array of
599 * these structures pointer to by new_areas. new_areas_index holds the
600 * offset into new_areas.
602 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
603 * later code must detect this and handle it, probably by doing a full
604 * scavenge of a generation. */
605 #define NUM_NEW_AREAS 512
606 static int record_new_objects = 0;
607 static int new_areas_ignore_page;
608 struct new_area {
609 int page;
610 int offset;
611 int size;
613 static struct new_area (*new_areas)[];
614 static int new_areas_index;
615 int max_new_areas;
617 /* Add a new area to new_areas. */
618 static void
619 add_new_area(int first_page, int offset, int size)
621 unsigned new_area_start,c;
622 int i;
624 /* Ignore if full. */
625 if (new_areas_index >= NUM_NEW_AREAS)
626 return;
628 switch (record_new_objects) {
629 case 0:
630 return;
631 case 1:
632 if (first_page > new_areas_ignore_page)
633 return;
634 break;
635 case 2:
636 break;
637 default:
638 gc_abort();
641 new_area_start = 4096*first_page + offset;
643 /* Search backwards for a prior area that this follows from. If
644 found this will save adding a new area. */
645 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
646 unsigned area_end =
647 4096*((*new_areas)[i].page)
648 + (*new_areas)[i].offset
649 + (*new_areas)[i].size;
650 /*FSHOW((stderr,
651 "/add_new_area S1 %d %d %d %d\n",
652 i, c, new_area_start, area_end));*/
653 if (new_area_start == area_end) {
654 /*FSHOW((stderr,
655 "/adding to [%d] %d %d %d with %d %d %d:\n",
657 (*new_areas)[i].page,
658 (*new_areas)[i].offset,
659 (*new_areas)[i].size,
660 first_page,
661 offset,
662 size);*/
663 (*new_areas)[i].size += size;
664 return;
668 (*new_areas)[new_areas_index].page = first_page;
669 (*new_areas)[new_areas_index].offset = offset;
670 (*new_areas)[new_areas_index].size = size;
671 /*FSHOW((stderr,
672 "/new_area %d page %d offset %d size %d\n",
673 new_areas_index, first_page, offset, size));*/
674 new_areas_index++;
676 /* Note the max new_areas used. */
677 if (new_areas_index > max_new_areas)
678 max_new_areas = new_areas_index;
681 /* Update the tables for the alloc_region. The region maybe added to
682 * the new_areas.
684 * When done the alloc_region is set up so that the next quick alloc
685 * will fail safely and thus a new region will be allocated. Further
686 * it is safe to try to re-update the page table of this reset
687 * alloc_region. */
688 void
689 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
691 int more;
692 int first_page;
693 int next_page;
694 int bytes_used;
695 int orig_first_page_bytes_used;
696 int region_size;
697 int byte_cnt;
700 FSHOW((stderr,
701 "/gc_alloc_update_page_tables() to gen %d:\n",
702 gc_alloc_generation));
705 first_page = alloc_region->first_page;
707 /* Catch an unused alloc_region. */
708 if ((first_page == 0) && (alloc_region->last_page == -1))
709 return;
711 next_page = first_page+1;
713 get_spinlock(&free_pages_lock,alloc_region);
714 if (alloc_region->free_pointer != alloc_region->start_addr) {
715 /* some bytes were allocated in the region */
716 orig_first_page_bytes_used = page_table[first_page].bytes_used;
718 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
720 /* All the pages used need to be updated */
722 /* Update the first page. */
724 /* If the page was free then set up the gen, and
725 * first_object_offset. */
726 if (page_table[first_page].bytes_used == 0)
727 gc_assert(page_table[first_page].first_object_offset == 0);
728 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE);
730 if (unboxed)
731 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
732 else
733 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
734 gc_assert(page_table[first_page].gen == gc_alloc_generation);
735 gc_assert(page_table[first_page].large_object == 0);
737 byte_cnt = 0;
739 /* Calculate the number of bytes used in this page. This is not
740 * always the number of new bytes, unless it was free. */
741 more = 0;
742 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>4096) {
743 bytes_used = 4096;
744 more = 1;
746 page_table[first_page].bytes_used = bytes_used;
747 byte_cnt += bytes_used;
750 /* All the rest of the pages should be free. We need to set their
751 * first_object_offset pointer to the start of the region, and set
752 * the bytes_used. */
753 while (more) {
754 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE);
755 if (unboxed)
756 gc_assert(page_table[next_page].allocated == UNBOXED_PAGE);
757 else
758 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
759 gc_assert(page_table[next_page].bytes_used == 0);
760 gc_assert(page_table[next_page].gen == gc_alloc_generation);
761 gc_assert(page_table[next_page].large_object == 0);
763 gc_assert(page_table[next_page].first_object_offset ==
764 alloc_region->start_addr - page_address(next_page));
766 /* Calculate the number of bytes used in this page. */
767 more = 0;
768 if ((bytes_used = (alloc_region->free_pointer
769 - page_address(next_page)))>4096) {
770 bytes_used = 4096;
771 more = 1;
773 page_table[next_page].bytes_used = bytes_used;
774 byte_cnt += bytes_used;
776 next_page++;
779 region_size = alloc_region->free_pointer - alloc_region->start_addr;
780 bytes_allocated += region_size;
781 generations[gc_alloc_generation].bytes_allocated += region_size;
783 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
785 /* Set the generations alloc restart page to the last page of
786 * the region. */
787 if (unboxed)
788 generations[gc_alloc_generation].alloc_unboxed_start_page =
789 next_page-1;
790 else
791 generations[gc_alloc_generation].alloc_start_page = next_page-1;
793 /* Add the region to the new_areas if requested. */
794 if (!unboxed)
795 add_new_area(first_page,orig_first_page_bytes_used, region_size);
798 FSHOW((stderr,
799 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
800 region_size,
801 gc_alloc_generation));
803 } else {
804 /* There are no bytes allocated. Unallocate the first_page if
805 * there are 0 bytes_used. */
806 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE);
807 if (page_table[first_page].bytes_used == 0)
808 page_table[first_page].allocated = FREE_PAGE;
811 /* Unallocate any unused pages. */
812 while (next_page <= alloc_region->last_page) {
813 gc_assert(page_table[next_page].bytes_used == 0);
814 page_table[next_page].allocated = FREE_PAGE;
815 next_page++;
817 free_pages_lock=0;
818 /* alloc_region is per-thread, we're ok to do this unlocked */
819 gc_set_region_empty(alloc_region);
822 static inline void *gc_quick_alloc(int nbytes);
824 /* Allocate a possibly large object. */
825 void *
826 gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
828 int first_page;
829 int last_page;
830 int orig_first_page_bytes_used;
831 int byte_cnt;
832 int more;
833 int bytes_used;
834 int next_page;
835 int large = (nbytes >= large_object_size);
838 if (nbytes > 200000)
839 FSHOW((stderr, "/alloc_large %d\n", nbytes));
843 FSHOW((stderr,
844 "/gc_alloc_large() for %d bytes from gen %d\n",
845 nbytes, gc_alloc_generation));
848 /* If the object is small, and there is room in the current region
849 then allocate it in the current region. */
850 if (!large
851 && ((alloc_region->end_addr-alloc_region->free_pointer) >= nbytes))
852 return gc_quick_alloc(nbytes);
854 /* To allow the allocation of small objects without the danger of
855 using a page in the current boxed region, the search starts after
856 the current boxed free region. XX could probably keep a page
857 index ahead of the current region and bumped up here to save a
858 lot of re-scanning. */
860 get_spinlock(&free_pages_lock,alloc_region);
862 if (unboxed) {
863 first_page =
864 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
865 } else {
866 first_page = generations[gc_alloc_generation].alloc_large_start_page;
868 if (first_page <= alloc_region->last_page) {
869 first_page = alloc_region->last_page+1;
872 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed,0);
874 gc_assert(first_page > alloc_region->last_page);
875 if (unboxed)
876 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
877 last_page;
878 else
879 generations[gc_alloc_generation].alloc_large_start_page = last_page;
881 /* Set up the pages. */
882 orig_first_page_bytes_used = page_table[first_page].bytes_used;
884 /* If the first page was free then set up the gen, and
885 * first_object_offset. */
886 if (page_table[first_page].bytes_used == 0) {
887 if (unboxed)
888 page_table[first_page].allocated = UNBOXED_PAGE;
889 else
890 page_table[first_page].allocated = BOXED_PAGE;
891 page_table[first_page].gen = gc_alloc_generation;
892 page_table[first_page].first_object_offset = 0;
893 page_table[first_page].large_object = large;
896 if (unboxed)
897 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
898 else
899 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
900 gc_assert(page_table[first_page].gen == gc_alloc_generation);
901 gc_assert(page_table[first_page].large_object == large);
903 byte_cnt = 0;
905 /* Calc. the number of bytes used in this page. This is not
906 * always the number of new bytes, unless it was free. */
907 more = 0;
908 if ((bytes_used = nbytes+orig_first_page_bytes_used) > 4096) {
909 bytes_used = 4096;
910 more = 1;
912 page_table[first_page].bytes_used = bytes_used;
913 byte_cnt += bytes_used;
915 next_page = first_page+1;
917 /* All the rest of the pages should be free. We need to set their
918 * first_object_offset pointer to the start of the region, and
919 * set the bytes_used. */
920 while (more) {
921 gc_assert(page_table[next_page].allocated == FREE_PAGE);
922 gc_assert(page_table[next_page].bytes_used == 0);
923 if (unboxed)
924 page_table[next_page].allocated = UNBOXED_PAGE;
925 else
926 page_table[next_page].allocated = BOXED_PAGE;
927 page_table[next_page].gen = gc_alloc_generation;
928 page_table[next_page].large_object = large;
930 page_table[next_page].first_object_offset =
931 orig_first_page_bytes_used - 4096*(next_page-first_page);
933 /* Calculate the number of bytes used in this page. */
934 more = 0;
935 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > 4096) {
936 bytes_used = 4096;
937 more = 1;
939 page_table[next_page].bytes_used = bytes_used;
940 byte_cnt += bytes_used;
942 next_page++;
945 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
947 bytes_allocated += nbytes;
948 generations[gc_alloc_generation].bytes_allocated += nbytes;
950 /* Add the region to the new_areas if requested. */
951 if (!unboxed)
952 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
954 /* Bump up last_free_page */
955 if (last_page+1 > last_free_page) {
956 last_free_page = last_page+1;
957 SetSymbolValue(ALLOCATION_POINTER,
958 (lispobj)(((char *)heap_base) + last_free_page*4096),0);
960 free_pages_lock=0;
962 return((void *)(page_address(first_page)+orig_first_page_bytes_used));
966 gc_find_freeish_pages(int *restart_page_ptr, int nbytes, int unboxed, struct alloc_region *alloc_region)
968 /* if alloc_region is 0, we assume this is for a potentially large
969 object */
970 int first_page;
971 int last_page;
972 int region_size;
973 int restart_page=*restart_page_ptr;
974 int bytes_found;
975 int num_pages;
976 int large = !alloc_region && (nbytes >= large_object_size);
978 gc_assert(free_pages_lock);
979 /* Search for a contiguous free space of at least nbytes. If it's a
980 large object then align it on a page boundary by searching for a
981 free page. */
983 /* To allow the allocation of small objects without the danger of
984 using a page in the current boxed region, the search starts after
985 the current boxed free region. XX could probably keep a page
986 index ahead of the current region and bumped up here to save a
987 lot of re-scanning. */
989 do {
990 first_page = restart_page;
991 if (large)
992 while ((first_page < NUM_PAGES)
993 && (page_table[first_page].allocated != FREE_PAGE))
994 first_page++;
995 else
996 while (first_page < NUM_PAGES) {
997 if(page_table[first_page].allocated == FREE_PAGE)
998 break;
999 /* I don't know why we need the gen=0 test, but it
1000 * breaks randomly if that's omitted -dan 2003.02.26
1002 if((page_table[first_page].allocated ==
1003 (unboxed ? UNBOXED_PAGE : BOXED_PAGE)) &&
1004 (page_table[first_page].large_object == 0) &&
1005 (gc_alloc_generation == 0) &&
1006 (page_table[first_page].gen == gc_alloc_generation) &&
1007 (page_table[first_page].bytes_used < (4096-32)) &&
1008 (page_table[first_page].write_protected == 0) &&
1009 (page_table[first_page].dont_move == 0))
1010 break;
1011 first_page++;
1014 if (first_page >= NUM_PAGES) {
1015 fprintf(stderr,
1016 "Argh! gc_find_free_space failed (first_page), nbytes=%d.\n",
1017 nbytes);
1018 print_generation_stats(1);
1019 lose(NULL);
1022 gc_assert(page_table[first_page].write_protected == 0);
1024 last_page = first_page;
1025 bytes_found = 4096 - page_table[first_page].bytes_used;
1026 num_pages = 1;
1027 while (((bytes_found < nbytes)
1028 || (alloc_region && (num_pages < 2)))
1029 && (last_page < (NUM_PAGES-1))
1030 && (page_table[last_page+1].allocated == FREE_PAGE)) {
1031 last_page++;
1032 num_pages++;
1033 bytes_found += 4096;
1034 gc_assert(page_table[last_page].write_protected == 0);
1037 region_size = (4096 - page_table[first_page].bytes_used)
1038 + 4096*(last_page-first_page);
1040 gc_assert(bytes_found == region_size);
1041 restart_page = last_page + 1;
1042 } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
1044 /* Check for a failure */
1045 if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
1046 fprintf(stderr,
1047 "Argh! gc_find_freeish_pages failed (restart_page), nbytes=%d.\n",
1048 nbytes);
1049 print_generation_stats(1);
1050 lose(NULL);
1052 *restart_page_ptr=first_page;
1053 return last_page;
1056 /* Allocate bytes. All the rest of the special-purpose allocation
1057 * functions will eventually call this (instead of just duplicating
1058 * parts of its code) */
1060 void *
1061 gc_alloc_with_region(int nbytes,int unboxed_p, struct alloc_region *my_region,
1062 int quick_p)
1064 void *new_free_pointer;
1066 /* FSHOW((stderr, "/gc_alloc %d\n", nbytes)); */
1068 /* Check whether there is room in the current alloc region. */
1069 new_free_pointer = my_region->free_pointer + nbytes;
1071 if (new_free_pointer <= my_region->end_addr) {
1072 /* If so then allocate from the current alloc region. */
1073 void *new_obj = my_region->free_pointer;
1074 my_region->free_pointer = new_free_pointer;
1076 /* Unless a `quick' alloc was requested, check whether the
1077 alloc region is almost empty. */
1078 if (!quick_p &&
1079 (my_region->end_addr - my_region->free_pointer) <= 32) {
1080 /* If so, finished with the current region. */
1081 gc_alloc_update_page_tables(unboxed_p, my_region);
1082 /* Set up a new region. */
1083 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1086 return((void *)new_obj);
1089 /* Else not enough free space in the current region. */
1091 /* If there some room left in the current region, enough to be worth
1092 * saving, then allocate a large object. */
1093 /* FIXME: "32" should be a named parameter. */
1094 if ((my_region->end_addr-my_region->free_pointer) > 32)
1095 return gc_alloc_large(nbytes, unboxed_p, my_region);
1097 /* Else find a new region. */
1099 /* Finished with the current region. */
1100 gc_alloc_update_page_tables(unboxed_p, my_region);
1102 /* Set up a new region. */
1103 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1105 /* Should now be enough room. */
1107 /* Check whether there is room in the current region. */
1108 new_free_pointer = my_region->free_pointer + nbytes;
1110 if (new_free_pointer <= my_region->end_addr) {
1111 /* If so then allocate from the current region. */
1112 void *new_obj = my_region->free_pointer;
1113 my_region->free_pointer = new_free_pointer;
1114 /* Check whether the current region is almost empty. */
1115 if ((my_region->end_addr - my_region->free_pointer) <= 32) {
1116 /* If so find, finished with the current region. */
1117 gc_alloc_update_page_tables(unboxed_p, my_region);
1119 /* Set up a new region. */
1120 gc_alloc_new_region(32, unboxed_p, my_region);
1123 return((void *)new_obj);
1126 /* shouldn't happen */
1127 gc_assert(0);
1128 return((void *) NIL); /* dummy value: return something ... */
1131 void *
1132 gc_general_alloc(int nbytes,int unboxed_p,int quick_p)
1134 struct alloc_region *my_region =
1135 unboxed_p ? &unboxed_region : &boxed_region;
1136 return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
1141 static void *
1142 gc_alloc(int nbytes,int unboxed_p)
1144 /* this is the only function that the external interface to
1145 * allocation presently knows how to call: Lisp code will never
1146 * allocate large objects, or to unboxed space, or `quick'ly.
1147 * Any of that stuff will only ever happen inside of GC */
1148 return gc_general_alloc(nbytes,unboxed_p,0);
1151 /* Allocate space from the boxed_region. If there is not enough free
1152 * space then call gc_alloc to do the job. A pointer to the start of
1153 * the object is returned. */
1154 static inline void *
1155 gc_quick_alloc(int nbytes)
1157 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1160 /* Allocate space for the possibly large boxed object. If it is a
1161 * large object then do a large alloc else use gc_quick_alloc. Note
1162 * that gc_quick_alloc will eventually fall through to
1163 * gc_general_alloc which may allocate the object in a large way
1164 * anyway, but based on decisions about the free space in the current
1165 * region, not the object size itself */
1167 static inline void *
1168 gc_quick_alloc_large(int nbytes)
1170 if (nbytes >= large_object_size)
1171 return gc_alloc_large(nbytes, ALLOC_BOXED, &boxed_region);
1172 else
1173 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1176 static inline void *
1177 gc_alloc_unboxed(int nbytes)
1179 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1182 static inline void *
1183 gc_quick_alloc_unboxed(int nbytes)
1185 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1188 /* Allocate space for the object. If it is a large object then do a
1189 * large alloc else allocate from the current region. If there is not
1190 * enough free space then call general gc_alloc_unboxed() to do the job.
1192 * A pointer to the start of the object is returned. */
1193 static inline void *
1194 gc_quick_alloc_large_unboxed(int nbytes)
1196 if (nbytes >= large_object_size)
1197 return gc_alloc_large(nbytes,ALLOC_UNBOXED,&unboxed_region);
1198 else
1199 return gc_quick_alloc_unboxed(nbytes);
1203 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1206 extern int (*scavtab[256])(lispobj *where, lispobj object);
1207 extern lispobj (*transother[256])(lispobj object);
1208 extern int (*sizetab[256])(lispobj *where);
1210 /* Copy a large boxed object. If the object is in a large object
1211 * region then it is simply promoted, else it is copied. If it's large
1212 * enough then it's copied to a large object region.
1214 * Vectors may have shrunk. If the object is not copied the space
1215 * needs to be reclaimed, and the page_tables corrected. */
1216 lispobj
1217 copy_large_object(lispobj object, int nwords)
1219 int tag;
1220 lispobj *new;
1221 lispobj *source, *dest;
1222 int first_page;
1224 gc_assert(is_lisp_pointer(object));
1225 gc_assert(from_space_p(object));
1226 gc_assert((nwords & 0x01) == 0);
1229 /* Check whether it's a large object. */
1230 first_page = find_page_index((void *)object);
1231 gc_assert(first_page >= 0);
1233 if (page_table[first_page].large_object) {
1235 /* Promote the object. */
1237 int remaining_bytes;
1238 int next_page;
1239 int bytes_freed;
1240 int old_bytes_used;
1242 /* Note: Any page write-protection must be removed, else a
1243 * later scavenge_newspace may incorrectly not scavenge these
1244 * pages. This would not be necessary if they are added to the
1245 * new areas, but let's do it for them all (they'll probably
1246 * be written anyway?). */
1248 gc_assert(page_table[first_page].first_object_offset == 0);
1250 next_page = first_page;
1251 remaining_bytes = nwords*4;
1252 while (remaining_bytes > 4096) {
1253 gc_assert(page_table[next_page].gen == from_space);
1254 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
1255 gc_assert(page_table[next_page].large_object);
1256 gc_assert(page_table[next_page].first_object_offset==
1257 -4096*(next_page-first_page));
1258 gc_assert(page_table[next_page].bytes_used == 4096);
1260 page_table[next_page].gen = new_space;
1262 /* Remove any write-protection. We should be able to rely
1263 * on the write-protect flag to avoid redundant calls. */
1264 if (page_table[next_page].write_protected) {
1265 os_protect(page_address(next_page), 4096, OS_VM_PROT_ALL);
1266 page_table[next_page].write_protected = 0;
1268 remaining_bytes -= 4096;
1269 next_page++;
1272 /* Now only one page remains, but the object may have shrunk
1273 * so there may be more unused pages which will be freed. */
1275 /* The object may have shrunk but shouldn't have grown. */
1276 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1278 page_table[next_page].gen = new_space;
1279 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
1281 /* Adjust the bytes_used. */
1282 old_bytes_used = page_table[next_page].bytes_used;
1283 page_table[next_page].bytes_used = remaining_bytes;
1285 bytes_freed = old_bytes_used - remaining_bytes;
1287 /* Free any remaining pages; needs care. */
1288 next_page++;
1289 while ((old_bytes_used == 4096) &&
1290 (page_table[next_page].gen == from_space) &&
1291 (page_table[next_page].allocated == BOXED_PAGE) &&
1292 page_table[next_page].large_object &&
1293 (page_table[next_page].first_object_offset ==
1294 -(next_page - first_page)*4096)) {
1295 /* Checks out OK, free the page. Don't need to bother zeroing
1296 * pages as this should have been done before shrinking the
1297 * object. These pages shouldn't be write-protected as they
1298 * should be zero filled. */
1299 gc_assert(page_table[next_page].write_protected == 0);
1301 old_bytes_used = page_table[next_page].bytes_used;
1302 page_table[next_page].allocated = FREE_PAGE;
1303 page_table[next_page].bytes_used = 0;
1304 bytes_freed += old_bytes_used;
1305 next_page++;
1308 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1309 generations[new_space].bytes_allocated += 4*nwords;
1310 bytes_allocated -= bytes_freed;
1312 /* Add the region to the new_areas if requested. */
1313 add_new_area(first_page,0,nwords*4);
1315 return(object);
1316 } else {
1317 /* Get tag of object. */
1318 tag = lowtag_of(object);
1320 /* Allocate space. */
1321 new = gc_quick_alloc_large(nwords*4);
1323 dest = new;
1324 source = (lispobj *) native_pointer(object);
1326 /* Copy the object. */
1327 while (nwords > 0) {
1328 dest[0] = source[0];
1329 dest[1] = source[1];
1330 dest += 2;
1331 source += 2;
1332 nwords -= 2;
1335 /* Return Lisp pointer of new object. */
1336 return ((lispobj) new) | tag;
1340 /* to copy unboxed objects */
1341 lispobj
1342 copy_unboxed_object(lispobj object, int nwords)
1344 int tag;
1345 lispobj *new;
1346 lispobj *source, *dest;
1348 gc_assert(is_lisp_pointer(object));
1349 gc_assert(from_space_p(object));
1350 gc_assert((nwords & 0x01) == 0);
1352 /* Get tag of object. */
1353 tag = lowtag_of(object);
1355 /* Allocate space. */
1356 new = gc_quick_alloc_unboxed(nwords*4);
1358 dest = new;
1359 source = (lispobj *) native_pointer(object);
1361 /* Copy the object. */
1362 while (nwords > 0) {
1363 dest[0] = source[0];
1364 dest[1] = source[1];
1365 dest += 2;
1366 source += 2;
1367 nwords -= 2;
1370 /* Return Lisp pointer of new object. */
1371 return ((lispobj) new) | tag;
1374 /* to copy large unboxed objects
1376 * If the object is in a large object region then it is simply
1377 * promoted, else it is copied. If it's large enough then it's copied
1378 * to a large object region.
1380 * Bignums and vectors may have shrunk. If the object is not copied
1381 * the space needs to be reclaimed, and the page_tables corrected.
1383 * KLUDGE: There's a lot of cut-and-paste duplication between this
1384 * function and copy_large_object(..). -- WHN 20000619 */
1385 lispobj
1386 copy_large_unboxed_object(lispobj object, int nwords)
1388 int tag;
1389 lispobj *new;
1390 lispobj *source, *dest;
1391 int first_page;
1393 gc_assert(is_lisp_pointer(object));
1394 gc_assert(from_space_p(object));
1395 gc_assert((nwords & 0x01) == 0);
1397 if ((nwords > 1024*1024) && gencgc_verbose)
1398 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*4));
1400 /* Check whether it's a large object. */
1401 first_page = find_page_index((void *)object);
1402 gc_assert(first_page >= 0);
1404 if (page_table[first_page].large_object) {
1405 /* Promote the object. Note: Unboxed objects may have been
1406 * allocated to a BOXED region so it may be necessary to
1407 * change the region to UNBOXED. */
1408 int remaining_bytes;
1409 int next_page;
1410 int bytes_freed;
1411 int old_bytes_used;
1413 gc_assert(page_table[first_page].first_object_offset == 0);
1415 next_page = first_page;
1416 remaining_bytes = nwords*4;
1417 while (remaining_bytes > 4096) {
1418 gc_assert(page_table[next_page].gen == from_space);
1419 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE)
1420 || (page_table[next_page].allocated == BOXED_PAGE));
1421 gc_assert(page_table[next_page].large_object);
1422 gc_assert(page_table[next_page].first_object_offset==
1423 -4096*(next_page-first_page));
1424 gc_assert(page_table[next_page].bytes_used == 4096);
1426 page_table[next_page].gen = new_space;
1427 page_table[next_page].allocated = UNBOXED_PAGE;
1428 remaining_bytes -= 4096;
1429 next_page++;
1432 /* Now only one page remains, but the object may have shrunk so
1433 * there may be more unused pages which will be freed. */
1435 /* Object may have shrunk but shouldn't have grown - check. */
1436 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1438 page_table[next_page].gen = new_space;
1439 page_table[next_page].allocated = UNBOXED_PAGE;
1441 /* Adjust the bytes_used. */
1442 old_bytes_used = page_table[next_page].bytes_used;
1443 page_table[next_page].bytes_used = remaining_bytes;
1445 bytes_freed = old_bytes_used - remaining_bytes;
1447 /* Free any remaining pages; needs care. */
1448 next_page++;
1449 while ((old_bytes_used == 4096) &&
1450 (page_table[next_page].gen == from_space) &&
1451 ((page_table[next_page].allocated == UNBOXED_PAGE)
1452 || (page_table[next_page].allocated == BOXED_PAGE)) &&
1453 page_table[next_page].large_object &&
1454 (page_table[next_page].first_object_offset ==
1455 -(next_page - first_page)*4096)) {
1456 /* Checks out OK, free the page. Don't need to both zeroing
1457 * pages as this should have been done before shrinking the
1458 * object. These pages shouldn't be write-protected, even if
1459 * boxed they should be zero filled. */
1460 gc_assert(page_table[next_page].write_protected == 0);
1462 old_bytes_used = page_table[next_page].bytes_used;
1463 page_table[next_page].allocated = FREE_PAGE;
1464 page_table[next_page].bytes_used = 0;
1465 bytes_freed += old_bytes_used;
1466 next_page++;
1469 if ((bytes_freed > 0) && gencgc_verbose)
1470 FSHOW((stderr,
1471 "/copy_large_unboxed bytes_freed=%d\n",
1472 bytes_freed));
1474 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1475 generations[new_space].bytes_allocated += 4*nwords;
1476 bytes_allocated -= bytes_freed;
1478 return(object);
1480 else {
1481 /* Get tag of object. */
1482 tag = lowtag_of(object);
1484 /* Allocate space. */
1485 new = gc_quick_alloc_large_unboxed(nwords*4);
1487 dest = new;
1488 source = (lispobj *) native_pointer(object);
1490 /* Copy the object. */
1491 while (nwords > 0) {
1492 dest[0] = source[0];
1493 dest[1] = source[1];
1494 dest += 2;
1495 source += 2;
1496 nwords -= 2;
1499 /* Return Lisp pointer of new object. */
1500 return ((lispobj) new) | tag;
1509 * code and code-related objects
1512 static lispobj trans_fun_header(lispobj object);
1513 static lispobj trans_boxed(lispobj object);
1516 /* Scan a x86 compiled code object, looking for possible fixups that
1517 * have been missed after a move.
1519 * Two types of fixups are needed:
1520 * 1. Absolute fixups to within the code object.
1521 * 2. Relative fixups to outside the code object.
1523 * Currently only absolute fixups to the constant vector, or to the
1524 * code area are checked. */
1525 void
1526 sniff_code_object(struct code *code, unsigned displacement)
1528 int nheader_words, ncode_words, nwords;
1529 void *p;
1530 void *constants_start_addr, *constants_end_addr;
1531 void *code_start_addr, *code_end_addr;
1532 int fixup_found = 0;
1534 if (!check_code_fixups)
1535 return;
1537 ncode_words = fixnum_value(code->code_size);
1538 nheader_words = HeaderValue(*(lispobj *)code);
1539 nwords = ncode_words + nheader_words;
1541 constants_start_addr = (void *)code + 5*4;
1542 constants_end_addr = (void *)code + nheader_words*4;
1543 code_start_addr = (void *)code + nheader_words*4;
1544 code_end_addr = (void *)code + nwords*4;
1546 /* Work through the unboxed code. */
1547 for (p = code_start_addr; p < code_end_addr; p++) {
1548 void *data = *(void **)p;
1549 unsigned d1 = *((unsigned char *)p - 1);
1550 unsigned d2 = *((unsigned char *)p - 2);
1551 unsigned d3 = *((unsigned char *)p - 3);
1552 unsigned d4 = *((unsigned char *)p - 4);
1553 #if QSHOW
1554 unsigned d5 = *((unsigned char *)p - 5);
1555 unsigned d6 = *((unsigned char *)p - 6);
1556 #endif
1558 /* Check for code references. */
1559 /* Check for a 32 bit word that looks like an absolute
1560 reference to within the code adea of the code object. */
1561 if ((data >= (code_start_addr-displacement))
1562 && (data < (code_end_addr-displacement))) {
1563 /* function header */
1564 if ((d4 == 0x5e)
1565 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1566 /* Skip the function header */
1567 p += 6*4 - 4 - 1;
1568 continue;
1570 /* the case of PUSH imm32 */
1571 if (d1 == 0x68) {
1572 fixup_found = 1;
1573 FSHOW((stderr,
1574 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1575 p, d6, d5, d4, d3, d2, d1, data));
1576 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1578 /* the case of MOV [reg-8],imm32 */
1579 if ((d3 == 0xc7)
1580 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1581 || d2==0x45 || d2==0x46 || d2==0x47)
1582 && (d1 == 0xf8)) {
1583 fixup_found = 1;
1584 FSHOW((stderr,
1585 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1586 p, d6, d5, d4, d3, d2, d1, data));
1587 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1589 /* the case of LEA reg,[disp32] */
1590 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1591 fixup_found = 1;
1592 FSHOW((stderr,
1593 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1594 p, d6, d5, d4, d3, d2, d1, data));
1595 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1599 /* Check for constant references. */
1600 /* Check for a 32 bit word that looks like an absolute
1601 reference to within the constant vector. Constant references
1602 will be aligned. */
1603 if ((data >= (constants_start_addr-displacement))
1604 && (data < (constants_end_addr-displacement))
1605 && (((unsigned)data & 0x3) == 0)) {
1606 /* Mov eax,m32 */
1607 if (d1 == 0xa1) {
1608 fixup_found = 1;
1609 FSHOW((stderr,
1610 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1611 p, d6, d5, d4, d3, d2, d1, data));
1612 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1615 /* the case of MOV m32,EAX */
1616 if (d1 == 0xa3) {
1617 fixup_found = 1;
1618 FSHOW((stderr,
1619 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1620 p, d6, d5, d4, d3, d2, d1, data));
1621 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1624 /* the case of CMP m32,imm32 */
1625 if ((d1 == 0x3d) && (d2 == 0x81)) {
1626 fixup_found = 1;
1627 FSHOW((stderr,
1628 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1629 p, d6, d5, d4, d3, d2, d1, data));
1630 /* XX Check this */
1631 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1634 /* Check for a mod=00, r/m=101 byte. */
1635 if ((d1 & 0xc7) == 5) {
1636 /* Cmp m32,reg */
1637 if (d2 == 0x39) {
1638 fixup_found = 1;
1639 FSHOW((stderr,
1640 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1641 p, d6, d5, d4, d3, d2, d1, data));
1642 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1644 /* the case of CMP reg32,m32 */
1645 if (d2 == 0x3b) {
1646 fixup_found = 1;
1647 FSHOW((stderr,
1648 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1649 p, d6, d5, d4, d3, d2, d1, data));
1650 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1652 /* the case of MOV m32,reg32 */
1653 if (d2 == 0x89) {
1654 fixup_found = 1;
1655 FSHOW((stderr,
1656 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1657 p, d6, d5, d4, d3, d2, d1, data));
1658 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1660 /* the case of MOV reg32,m32 */
1661 if (d2 == 0x8b) {
1662 fixup_found = 1;
1663 FSHOW((stderr,
1664 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1665 p, d6, d5, d4, d3, d2, d1, data));
1666 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1668 /* the case of LEA reg32,m32 */
1669 if (d2 == 0x8d) {
1670 fixup_found = 1;
1671 FSHOW((stderr,
1672 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1673 p, d6, d5, d4, d3, d2, d1, data));
1674 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1680 /* If anything was found, print some information on the code
1681 * object. */
1682 if (fixup_found) {
1683 FSHOW((stderr,
1684 "/compiled code object at %x: header words = %d, code words = %d\n",
1685 code, nheader_words, ncode_words));
1686 FSHOW((stderr,
1687 "/const start = %x, end = %x\n",
1688 constants_start_addr, constants_end_addr));
1689 FSHOW((stderr,
1690 "/code start = %x, end = %x\n",
1691 code_start_addr, code_end_addr));
1695 void
1696 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1698 int nheader_words, ncode_words, nwords;
1699 void *constants_start_addr, *constants_end_addr;
1700 void *code_start_addr, *code_end_addr;
1701 lispobj fixups = NIL;
1702 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
1703 struct vector *fixups_vector;
1705 ncode_words = fixnum_value(new_code->code_size);
1706 nheader_words = HeaderValue(*(lispobj *)new_code);
1707 nwords = ncode_words + nheader_words;
1708 /* FSHOW((stderr,
1709 "/compiled code object at %x: header words = %d, code words = %d\n",
1710 new_code, nheader_words, ncode_words)); */
1711 constants_start_addr = (void *)new_code + 5*4;
1712 constants_end_addr = (void *)new_code + nheader_words*4;
1713 code_start_addr = (void *)new_code + nheader_words*4;
1714 code_end_addr = (void *)new_code + nwords*4;
1716 FSHOW((stderr,
1717 "/const start = %x, end = %x\n",
1718 constants_start_addr,constants_end_addr));
1719 FSHOW((stderr,
1720 "/code start = %x; end = %x\n",
1721 code_start_addr,code_end_addr));
1724 /* The first constant should be a pointer to the fixups for this
1725 code objects. Check. */
1726 fixups = new_code->constants[0];
1728 /* It will be 0 or the unbound-marker if there are no fixups, and
1729 * will be an other pointer if it is valid. */
1730 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1731 !is_lisp_pointer(fixups)) {
1732 /* Check for possible errors. */
1733 if (check_code_fixups)
1734 sniff_code_object(new_code, displacement);
1736 /*fprintf(stderr,"Fixups for code object not found!?\n");
1737 fprintf(stderr,"*** Compiled code object at %x: header_words=%d code_words=%d .\n",
1738 new_code, nheader_words, ncode_words);
1739 fprintf(stderr,"*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
1740 constants_start_addr,constants_end_addr,
1741 code_start_addr,code_end_addr);*/
1742 return;
1745 fixups_vector = (struct vector *)native_pointer(fixups);
1747 /* Could be pointing to a forwarding pointer. */
1748 if (is_lisp_pointer(fixups) &&
1749 (find_page_index((void*)fixups_vector) != -1) &&
1750 (fixups_vector->header == 0x01)) {
1751 /* If so, then follow it. */
1752 /*SHOW("following pointer to a forwarding pointer");*/
1753 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1756 /*SHOW("got fixups");*/
1758 if (widetag_of(fixups_vector->header) ==
1759 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
1760 /* Got the fixups for the code block. Now work through the vector,
1761 and apply a fixup at each address. */
1762 int length = fixnum_value(fixups_vector->length);
1763 int i;
1764 for (i = 0; i < length; i++) {
1765 unsigned offset = fixups_vector->data[i];
1766 /* Now check the current value of offset. */
1767 unsigned old_value =
1768 *(unsigned *)((unsigned)code_start_addr + offset);
1770 /* If it's within the old_code object then it must be an
1771 * absolute fixup (relative ones are not saved) */
1772 if ((old_value >= (unsigned)old_code)
1773 && (old_value < ((unsigned)old_code + nwords*4)))
1774 /* So add the dispacement. */
1775 *(unsigned *)((unsigned)code_start_addr + offset) =
1776 old_value + displacement;
1777 else
1778 /* It is outside the old code object so it must be a
1779 * relative fixup (absolute fixups are not saved). So
1780 * subtract the displacement. */
1781 *(unsigned *)((unsigned)code_start_addr + offset) =
1782 old_value - displacement;
1786 /* Check for possible errors. */
1787 if (check_code_fixups) {
1788 sniff_code_object(new_code,displacement);
1793 static lispobj
1794 trans_boxed_large(lispobj object)
1796 lispobj header;
1797 unsigned long length;
1799 gc_assert(is_lisp_pointer(object));
1801 header = *((lispobj *) native_pointer(object));
1802 length = HeaderValue(header) + 1;
1803 length = CEILING(length, 2);
1805 return copy_large_object(object, length);
1809 static lispobj
1810 trans_unboxed_large(lispobj object)
1812 lispobj header;
1813 unsigned long length;
1816 gc_assert(is_lisp_pointer(object));
1818 header = *((lispobj *) native_pointer(object));
1819 length = HeaderValue(header) + 1;
1820 length = CEILING(length, 2);
1822 return copy_large_unboxed_object(object, length);
1827 * vector-like objects
1831 /* FIXME: What does this mean? */
1832 int gencgc_hash = 1;
1834 static int
1835 scav_vector(lispobj *where, lispobj object)
1837 unsigned int kv_length;
1838 lispobj *kv_vector;
1839 unsigned int length = 0; /* (0 = dummy to stop GCC warning) */
1840 lispobj *hash_table;
1841 lispobj empty_symbol;
1842 unsigned int *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1843 unsigned int *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1844 unsigned int *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1845 lispobj weak_p_obj;
1846 unsigned next_vector_length = 0;
1848 /* FIXME: A comment explaining this would be nice. It looks as
1849 * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
1850 * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
1851 if (HeaderValue(object) != subtype_VectorValidHashing)
1852 return 1;
1854 if (!gencgc_hash) {
1855 /* This is set for backward compatibility. FIXME: Do we need
1856 * this any more? */
1857 *where =
1858 (subtype_VectorMustRehash<<N_WIDETAG_BITS) | SIMPLE_VECTOR_WIDETAG;
1859 return 1;
1862 kv_length = fixnum_value(where[1]);
1863 kv_vector = where + 2; /* Skip the header and length. */
1864 /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
1866 /* Scavenge element 0, which may be a hash-table structure. */
1867 scavenge(where+2, 1);
1868 if (!is_lisp_pointer(where[2])) {
1869 lose("no pointer at %x in hash table", where[2]);
1871 hash_table = (lispobj *)native_pointer(where[2]);
1872 /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
1873 if (widetag_of(hash_table[0]) != INSTANCE_HEADER_WIDETAG) {
1874 lose("hash table not instance (%x at %x)", hash_table[0], hash_table);
1877 /* Scavenge element 1, which should be some internal symbol that
1878 * the hash table code reserves for marking empty slots. */
1879 scavenge(where+3, 1);
1880 if (!is_lisp_pointer(where[3])) {
1881 lose("not empty-hash-table-slot symbol pointer: %x", where[3]);
1883 empty_symbol = where[3];
1884 /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
1885 if (widetag_of(*(lispobj *)native_pointer(empty_symbol)) !=
1886 SYMBOL_HEADER_WIDETAG) {
1887 lose("not a symbol where empty-hash-table-slot symbol expected: %x",
1888 *(lispobj *)native_pointer(empty_symbol));
1891 /* Scavenge hash table, which will fix the positions of the other
1892 * needed objects. */
1893 scavenge(hash_table, 16);
1895 /* Cross-check the kv_vector. */
1896 if (where != (lispobj *)native_pointer(hash_table[9])) {
1897 lose("hash_table table!=this table %x", hash_table[9]);
1900 /* WEAK-P */
1901 weak_p_obj = hash_table[10];
1903 /* index vector */
1905 lispobj index_vector_obj = hash_table[13];
1907 if (is_lisp_pointer(index_vector_obj) &&
1908 (widetag_of(*(lispobj *)native_pointer(index_vector_obj)) ==
1909 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1910 index_vector = ((unsigned int *)native_pointer(index_vector_obj)) + 2;
1911 /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
1912 length = fixnum_value(((unsigned int *)native_pointer(index_vector_obj))[1]);
1913 /*FSHOW((stderr, "/length = %d\n", length));*/
1914 } else {
1915 lose("invalid index_vector %x", index_vector_obj);
1919 /* next vector */
1921 lispobj next_vector_obj = hash_table[14];
1923 if (is_lisp_pointer(next_vector_obj) &&
1924 (widetag_of(*(lispobj *)native_pointer(next_vector_obj)) ==
1925 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1926 next_vector = ((unsigned int *)native_pointer(next_vector_obj)) + 2;
1927 /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
1928 next_vector_length = fixnum_value(((unsigned int *)native_pointer(next_vector_obj))[1]);
1929 /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
1930 } else {
1931 lose("invalid next_vector %x", next_vector_obj);
1935 /* maybe hash vector */
1937 /* FIXME: This bare "15" offset should become a symbolic
1938 * expression of some sort. And all the other bare offsets
1939 * too. And the bare "16" in scavenge(hash_table, 16). And
1940 * probably other stuff too. Ugh.. */
1941 lispobj hash_vector_obj = hash_table[15];
1943 if (is_lisp_pointer(hash_vector_obj) &&
1944 (widetag_of(*(lispobj *)native_pointer(hash_vector_obj))
1945 == SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1946 hash_vector = ((unsigned int *)native_pointer(hash_vector_obj)) + 2;
1947 /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
1948 gc_assert(fixnum_value(((unsigned int *)native_pointer(hash_vector_obj))[1])
1949 == next_vector_length);
1950 } else {
1951 hash_vector = NULL;
1952 /*FSHOW((stderr, "/no hash_vector: %x\n", hash_vector_obj));*/
1956 /* These lengths could be different as the index_vector can be a
1957 * different length from the others, a larger index_vector could help
1958 * reduce collisions. */
1959 gc_assert(next_vector_length*2 == kv_length);
1961 /* now all set up.. */
1963 /* Work through the KV vector. */
1965 int i;
1966 for (i = 1; i < next_vector_length; i++) {
1967 lispobj old_key = kv_vector[2*i];
1968 unsigned int old_index = (old_key & 0x1fffffff)%length;
1970 /* Scavenge the key and value. */
1971 scavenge(&kv_vector[2*i],2);
1973 /* Check whether the key has moved and is EQ based. */
1975 lispobj new_key = kv_vector[2*i];
1976 unsigned int new_index = (new_key & 0x1fffffff)%length;
1978 if ((old_index != new_index) &&
1979 ((!hash_vector) || (hash_vector[i] == 0x80000000)) &&
1980 ((new_key != empty_symbol) ||
1981 (kv_vector[2*i] != empty_symbol))) {
1983 /*FSHOW((stderr,
1984 "* EQ key %d moved from %x to %x; index %d to %d\n",
1985 i, old_key, new_key, old_index, new_index));*/
1987 if (index_vector[old_index] != 0) {
1988 /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
1990 /* Unlink the key from the old_index chain. */
1991 if (index_vector[old_index] == i) {
1992 /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
1993 index_vector[old_index] = next_vector[i];
1994 /* Link it into the needing rehash chain. */
1995 next_vector[i] = fixnum_value(hash_table[11]);
1996 hash_table[11] = make_fixnum(i);
1997 /*SHOW("P2");*/
1998 } else {
1999 unsigned prior = index_vector[old_index];
2000 unsigned next = next_vector[prior];
2002 /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
2004 while (next != 0) {
2005 /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
2006 if (next == i) {
2007 /* Unlink it. */
2008 next_vector[prior] = next_vector[next];
2009 /* Link it into the needing rehash
2010 * chain. */
2011 next_vector[next] =
2012 fixnum_value(hash_table[11]);
2013 hash_table[11] = make_fixnum(next);
2014 /*SHOW("/P3");*/
2015 break;
2017 prior = next;
2018 next = next_vector[next];
2026 return (CEILING(kv_length + 2, 2));
2032 * weak pointers
2035 /* XX This is a hack adapted from cgc.c. These don't work too
2036 * efficiently with the gencgc as a list of the weak pointers is
2037 * maintained within the objects which causes writes to the pages. A
2038 * limited attempt is made to avoid unnecessary writes, but this needs
2039 * a re-think. */
2040 #define WEAK_POINTER_NWORDS \
2041 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2043 static int
2044 scav_weak_pointer(lispobj *where, lispobj object)
2046 struct weak_pointer *wp = weak_pointers;
2047 /* Push the weak pointer onto the list of weak pointers.
2048 * Do I have to watch for duplicates? Originally this was
2049 * part of trans_weak_pointer but that didn't work in the
2050 * case where the WP was in a promoted region.
2053 /* Check whether it's already in the list. */
2054 while (wp != NULL) {
2055 if (wp == (struct weak_pointer*)where) {
2056 break;
2058 wp = wp->next;
2060 if (wp == NULL) {
2061 /* Add it to the start of the list. */
2062 wp = (struct weak_pointer*)where;
2063 if (wp->next != weak_pointers) {
2064 wp->next = weak_pointers;
2065 } else {
2066 /*SHOW("avoided write to weak pointer");*/
2068 weak_pointers = wp;
2071 /* Do not let GC scavenge the value slot of the weak pointer.
2072 * (That is why it is a weak pointer.) */
2074 return WEAK_POINTER_NWORDS;
2078 /* Scan an area looking for an object which encloses the given pointer.
2079 * Return the object start on success or NULL on failure. */
2080 static lispobj *
2081 search_space(lispobj *start, size_t words, lispobj *pointer)
2083 while (words > 0) {
2084 size_t count = 1;
2085 lispobj thing = *start;
2087 /* If thing is an immediate then this is a cons. */
2088 if (is_lisp_pointer(thing)
2089 || ((thing & 3) == 0) /* fixnum */
2090 || (widetag_of(thing) == BASE_CHAR_WIDETAG)
2091 || (widetag_of(thing) == UNBOUND_MARKER_WIDETAG))
2092 count = 2;
2093 else
2094 count = (sizetab[widetag_of(thing)])(start);
2096 /* Check whether the pointer is within this object. */
2097 if ((pointer >= start) && (pointer < (start+count))) {
2098 /* found it! */
2099 /*FSHOW((stderr,"/found %x in %x %x\n", pointer, start, thing));*/
2100 return(start);
2103 /* Round up the count. */
2104 count = CEILING(count,2);
2106 start += count;
2107 words -= count;
2109 return (NULL);
2112 static lispobj*
2113 search_read_only_space(lispobj *pointer)
2115 lispobj* start = (lispobj*)READ_ONLY_SPACE_START;
2116 lispobj* end = (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2117 if ((pointer < start) || (pointer >= end))
2118 return NULL;
2119 return (search_space(start, (pointer+2)-start, pointer));
2122 static lispobj *
2123 search_static_space(lispobj *pointer)
2125 lispobj* start = (lispobj*)STATIC_SPACE_START;
2126 lispobj* end = (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2127 if ((pointer < start) || (pointer >= end))
2128 return NULL;
2129 return (search_space(start, (pointer+2)-start, pointer));
2132 /* a faster version for searching the dynamic space. This will work even
2133 * if the object is in a current allocation region. */
2134 lispobj *
2135 search_dynamic_space(lispobj *pointer)
2137 int page_index = find_page_index(pointer);
2138 lispobj *start;
2140 /* The address may be invalid, so do some checks. */
2141 if ((page_index == -1) || (page_table[page_index].allocated == FREE_PAGE))
2142 return NULL;
2143 start = (lispobj *)((void *)page_address(page_index)
2144 + page_table[page_index].first_object_offset);
2145 return (search_space(start, (pointer+2)-start, pointer));
2148 /* Is there any possibility that pointer is a valid Lisp object
2149 * reference, and/or something else (e.g. subroutine call return
2150 * address) which should prevent us from moving the referred-to thing?
2151 * This is called from preserve_pointers() */
2152 static int
2153 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2155 lispobj *start_addr;
2157 /* Find the object start address. */
2158 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2159 return 0;
2162 /* We need to allow raw pointers into Code objects for return
2163 * addresses. This will also pick up pointers to functions in code
2164 * objects. */
2165 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
2166 /* XXX could do some further checks here */
2167 return 1;
2170 /* If it's not a return address then it needs to be a valid Lisp
2171 * pointer. */
2172 if (!is_lisp_pointer((lispobj)pointer)) {
2173 return 0;
2176 /* Check that the object pointed to is consistent with the pointer
2177 * low tag.
2179 switch (lowtag_of((lispobj)pointer)) {
2180 case FUN_POINTER_LOWTAG:
2181 /* Start_addr should be the enclosing code object, or a closure
2182 * header. */
2183 switch (widetag_of(*start_addr)) {
2184 case CODE_HEADER_WIDETAG:
2185 /* This case is probably caught above. */
2186 break;
2187 case CLOSURE_HEADER_WIDETAG:
2188 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2189 if ((unsigned)pointer !=
2190 ((unsigned)start_addr+FUN_POINTER_LOWTAG)) {
2191 if (gencgc_verbose)
2192 FSHOW((stderr,
2193 "/Wf2: %x %x %x\n",
2194 pointer, start_addr, *start_addr));
2195 return 0;
2197 break;
2198 default:
2199 if (gencgc_verbose)
2200 FSHOW((stderr,
2201 "/Wf3: %x %x %x\n",
2202 pointer, start_addr, *start_addr));
2203 return 0;
2205 break;
2206 case LIST_POINTER_LOWTAG:
2207 if ((unsigned)pointer !=
2208 ((unsigned)start_addr+LIST_POINTER_LOWTAG)) {
2209 if (gencgc_verbose)
2210 FSHOW((stderr,
2211 "/Wl1: %x %x %x\n",
2212 pointer, start_addr, *start_addr));
2213 return 0;
2215 /* Is it plausible cons? */
2216 if ((is_lisp_pointer(start_addr[0])
2217 || ((start_addr[0] & 3) == 0) /* fixnum */
2218 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
2219 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
2220 && (is_lisp_pointer(start_addr[1])
2221 || ((start_addr[1] & 3) == 0) /* fixnum */
2222 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
2223 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
2224 break;
2225 else {
2226 if (gencgc_verbose)
2227 FSHOW((stderr,
2228 "/Wl2: %x %x %x\n",
2229 pointer, start_addr, *start_addr));
2230 return 0;
2232 case INSTANCE_POINTER_LOWTAG:
2233 if ((unsigned)pointer !=
2234 ((unsigned)start_addr+INSTANCE_POINTER_LOWTAG)) {
2235 if (gencgc_verbose)
2236 FSHOW((stderr,
2237 "/Wi1: %x %x %x\n",
2238 pointer, start_addr, *start_addr));
2239 return 0;
2241 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2242 if (gencgc_verbose)
2243 FSHOW((stderr,
2244 "/Wi2: %x %x %x\n",
2245 pointer, start_addr, *start_addr));
2246 return 0;
2248 break;
2249 case OTHER_POINTER_LOWTAG:
2250 if ((unsigned)pointer !=
2251 ((int)start_addr+OTHER_POINTER_LOWTAG)) {
2252 if (gencgc_verbose)
2253 FSHOW((stderr,
2254 "/Wo1: %x %x %x\n",
2255 pointer, start_addr, *start_addr));
2256 return 0;
2258 /* Is it plausible? Not a cons. XXX should check the headers. */
2259 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2260 if (gencgc_verbose)
2261 FSHOW((stderr,
2262 "/Wo2: %x %x %x\n",
2263 pointer, start_addr, *start_addr));
2264 return 0;
2266 switch (widetag_of(start_addr[0])) {
2267 case UNBOUND_MARKER_WIDETAG:
2268 case BASE_CHAR_WIDETAG:
2269 if (gencgc_verbose)
2270 FSHOW((stderr,
2271 "*Wo3: %x %x %x\n",
2272 pointer, start_addr, *start_addr));
2273 return 0;
2275 /* only pointed to by function pointers? */
2276 case CLOSURE_HEADER_WIDETAG:
2277 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2278 if (gencgc_verbose)
2279 FSHOW((stderr,
2280 "*Wo4: %x %x %x\n",
2281 pointer, start_addr, *start_addr));
2282 return 0;
2284 case INSTANCE_HEADER_WIDETAG:
2285 if (gencgc_verbose)
2286 FSHOW((stderr,
2287 "*Wo5: %x %x %x\n",
2288 pointer, start_addr, *start_addr));
2289 return 0;
2291 /* the valid other immediate pointer objects */
2292 case SIMPLE_VECTOR_WIDETAG:
2293 case RATIO_WIDETAG:
2294 case COMPLEX_WIDETAG:
2295 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2296 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2297 #endif
2298 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2299 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2300 #endif
2301 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2302 case COMPLEX_LONG_FLOAT_WIDETAG:
2303 #endif
2304 case SIMPLE_ARRAY_WIDETAG:
2305 case COMPLEX_BASE_STRING_WIDETAG:
2306 case COMPLEX_VECTOR_NIL_WIDETAG:
2307 case COMPLEX_BIT_VECTOR_WIDETAG:
2308 case COMPLEX_VECTOR_WIDETAG:
2309 case COMPLEX_ARRAY_WIDETAG:
2310 case VALUE_CELL_HEADER_WIDETAG:
2311 case SYMBOL_HEADER_WIDETAG:
2312 case FDEFN_WIDETAG:
2313 case CODE_HEADER_WIDETAG:
2314 case BIGNUM_WIDETAG:
2315 case SINGLE_FLOAT_WIDETAG:
2316 case DOUBLE_FLOAT_WIDETAG:
2317 #ifdef LONG_FLOAT_WIDETAG
2318 case LONG_FLOAT_WIDETAG:
2319 #endif
2320 case SIMPLE_BASE_STRING_WIDETAG:
2321 case SIMPLE_BIT_VECTOR_WIDETAG:
2322 case SIMPLE_ARRAY_NIL_WIDETAG:
2323 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2324 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2325 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2326 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2327 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2328 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2329 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2330 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2331 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2332 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2333 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2334 #endif
2335 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2336 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2337 #endif
2338 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2339 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2340 #endif
2341 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2342 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2343 #endif
2344 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2345 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2346 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2347 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2348 #endif
2349 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2350 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2351 #endif
2352 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2353 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2354 #endif
2355 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2356 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2357 #endif
2358 case SAP_WIDETAG:
2359 case WEAK_POINTER_WIDETAG:
2360 break;
2362 default:
2363 if (gencgc_verbose)
2364 FSHOW((stderr,
2365 "/Wo6: %x %x %x\n",
2366 pointer, start_addr, *start_addr));
2367 return 0;
2369 break;
2370 default:
2371 if (gencgc_verbose)
2372 FSHOW((stderr,
2373 "*W?: %x %x %x\n",
2374 pointer, start_addr, *start_addr));
2375 return 0;
2378 /* looks good */
2379 return 1;
2382 /* Adjust large bignum and vector objects. This will adjust the
2383 * allocated region if the size has shrunk, and move unboxed objects
2384 * into unboxed pages. The pages are not promoted here, and the
2385 * promoted region is not added to the new_regions; this is really
2386 * only designed to be called from preserve_pointer(). Shouldn't fail
2387 * if this is missed, just may delay the moving of objects to unboxed
2388 * pages, and the freeing of pages. */
2389 static void
2390 maybe_adjust_large_object(lispobj *where)
2392 int first_page;
2393 int nwords;
2395 int remaining_bytes;
2396 int next_page;
2397 int bytes_freed;
2398 int old_bytes_used;
2400 int boxed;
2402 /* Check whether it's a vector or bignum object. */
2403 switch (widetag_of(where[0])) {
2404 case SIMPLE_VECTOR_WIDETAG:
2405 boxed = BOXED_PAGE;
2406 break;
2407 case BIGNUM_WIDETAG:
2408 case SIMPLE_BASE_STRING_WIDETAG:
2409 case SIMPLE_BIT_VECTOR_WIDETAG:
2410 case SIMPLE_ARRAY_NIL_WIDETAG:
2411 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2412 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2413 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2414 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2415 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2416 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2417 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2418 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2419 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2420 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2421 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2422 #endif
2423 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2424 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2425 #endif
2426 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2427 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2428 #endif
2429 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2430 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2431 #endif
2432 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2433 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2434 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2435 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2436 #endif
2437 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2438 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2439 #endif
2440 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2441 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2442 #endif
2443 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2444 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2445 #endif
2446 boxed = UNBOXED_PAGE;
2447 break;
2448 default:
2449 return;
2452 /* Find its current size. */
2453 nwords = (sizetab[widetag_of(where[0])])(where);
2455 first_page = find_page_index((void *)where);
2456 gc_assert(first_page >= 0);
2458 /* Note: Any page write-protection must be removed, else a later
2459 * scavenge_newspace may incorrectly not scavenge these pages.
2460 * This would not be necessary if they are added to the new areas,
2461 * but lets do it for them all (they'll probably be written
2462 * anyway?). */
2464 gc_assert(page_table[first_page].first_object_offset == 0);
2466 next_page = first_page;
2467 remaining_bytes = nwords*4;
2468 while (remaining_bytes > 4096) {
2469 gc_assert(page_table[next_page].gen == from_space);
2470 gc_assert((page_table[next_page].allocated == BOXED_PAGE)
2471 || (page_table[next_page].allocated == UNBOXED_PAGE));
2472 gc_assert(page_table[next_page].large_object);
2473 gc_assert(page_table[next_page].first_object_offset ==
2474 -4096*(next_page-first_page));
2475 gc_assert(page_table[next_page].bytes_used == 4096);
2477 page_table[next_page].allocated = boxed;
2479 /* Shouldn't be write-protected at this stage. Essential that the
2480 * pages aren't. */
2481 gc_assert(!page_table[next_page].write_protected);
2482 remaining_bytes -= 4096;
2483 next_page++;
2486 /* Now only one page remains, but the object may have shrunk so
2487 * there may be more unused pages which will be freed. */
2489 /* Object may have shrunk but shouldn't have grown - check. */
2490 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2492 page_table[next_page].allocated = boxed;
2493 gc_assert(page_table[next_page].allocated ==
2494 page_table[first_page].allocated);
2496 /* Adjust the bytes_used. */
2497 old_bytes_used = page_table[next_page].bytes_used;
2498 page_table[next_page].bytes_used = remaining_bytes;
2500 bytes_freed = old_bytes_used - remaining_bytes;
2502 /* Free any remaining pages; needs care. */
2503 next_page++;
2504 while ((old_bytes_used == 4096) &&
2505 (page_table[next_page].gen == from_space) &&
2506 ((page_table[next_page].allocated == UNBOXED_PAGE)
2507 || (page_table[next_page].allocated == BOXED_PAGE)) &&
2508 page_table[next_page].large_object &&
2509 (page_table[next_page].first_object_offset ==
2510 -(next_page - first_page)*4096)) {
2511 /* It checks out OK, free the page. We don't need to both zeroing
2512 * pages as this should have been done before shrinking the
2513 * object. These pages shouldn't be write protected as they
2514 * should be zero filled. */
2515 gc_assert(page_table[next_page].write_protected == 0);
2517 old_bytes_used = page_table[next_page].bytes_used;
2518 page_table[next_page].allocated = FREE_PAGE;
2519 page_table[next_page].bytes_used = 0;
2520 bytes_freed += old_bytes_used;
2521 next_page++;
2524 if ((bytes_freed > 0) && gencgc_verbose) {
2525 FSHOW((stderr,
2526 "/maybe_adjust_large_object() freed %d\n",
2527 bytes_freed));
2530 generations[from_space].bytes_allocated -= bytes_freed;
2531 bytes_allocated -= bytes_freed;
2533 return;
2536 /* Take a possible pointer to a Lisp object and mark its page in the
2537 * page_table so that it will not be relocated during a GC.
2539 * This involves locating the page it points to, then backing up to
2540 * the first page that has its first object start at offset 0, and
2541 * then marking all pages dont_move from the first until a page that
2542 * ends by being full, or having free gen.
2544 * This ensures that objects spanning pages are not broken.
2546 * It is assumed that all the page static flags have been cleared at
2547 * the start of a GC.
2549 * It is also assumed that the current gc_alloc() region has been
2550 * flushed and the tables updated. */
2551 static void
2552 preserve_pointer(void *addr)
2554 int addr_page_index = find_page_index(addr);
2555 int first_page;
2556 int i;
2557 unsigned region_allocation;
2559 /* quick check 1: Address is quite likely to have been invalid. */
2560 if ((addr_page_index == -1)
2561 || (page_table[addr_page_index].allocated == FREE_PAGE)
2562 || (page_table[addr_page_index].bytes_used == 0)
2563 || (page_table[addr_page_index].gen != from_space)
2564 /* Skip if already marked dont_move. */
2565 || (page_table[addr_page_index].dont_move != 0))
2566 return;
2567 gc_assert(!(page_table[addr_page_index].allocated & OPEN_REGION_PAGE));
2568 /* (Now that we know that addr_page_index is in range, it's
2569 * safe to index into page_table[] with it.) */
2570 region_allocation = page_table[addr_page_index].allocated;
2572 /* quick check 2: Check the offset within the page.
2574 * FIXME: The mask should have a symbolic name, and ideally should
2575 * be derived from page size instead of hardwired to 0xfff.
2576 * (Also fix other uses of 0xfff, elsewhere.) */
2577 if (((unsigned)addr & 0xfff) > page_table[addr_page_index].bytes_used)
2578 return;
2580 /* Filter out anything which can't be a pointer to a Lisp object
2581 * (or, as a special case which also requires dont_move, a return
2582 * address referring to something in a CodeObject). This is
2583 * expensive but important, since it vastly reduces the
2584 * probability that random garbage will be bogusly interpreted as
2585 * a pointer which prevents a page from moving. */
2586 if (!(possibly_valid_dynamic_space_pointer(addr)))
2587 return;
2588 first_page = addr_page_index;
2590 /* Work backwards to find a page with a first_object_offset of 0.
2591 * The pages should be contiguous with all bytes used in the same
2592 * gen. Assumes the first_object_offset is negative or zero. */
2594 /* this is probably needlessly conservative. The first object in
2595 * the page may not even be the one we were passed a pointer to:
2596 * if this is the case, we will write-protect all the previous
2597 * object's pages too.
2600 while (page_table[first_page].first_object_offset != 0) {
2601 --first_page;
2602 /* Do some checks. */
2603 gc_assert(page_table[first_page].bytes_used == 4096);
2604 gc_assert(page_table[first_page].gen == from_space);
2605 gc_assert(page_table[first_page].allocated == region_allocation);
2608 /* Adjust any large objects before promotion as they won't be
2609 * copied after promotion. */
2610 if (page_table[first_page].large_object) {
2611 maybe_adjust_large_object(page_address(first_page));
2612 /* If a large object has shrunk then addr may now point to a
2613 * free area in which case it's ignored here. Note it gets
2614 * through the valid pointer test above because the tail looks
2615 * like conses. */
2616 if ((page_table[addr_page_index].allocated == FREE_PAGE)
2617 || (page_table[addr_page_index].bytes_used == 0)
2618 /* Check the offset within the page. */
2619 || (((unsigned)addr & 0xfff)
2620 > page_table[addr_page_index].bytes_used)) {
2621 FSHOW((stderr,
2622 "weird? ignore ptr 0x%x to freed area of large object\n",
2623 addr));
2624 return;
2626 /* It may have moved to unboxed pages. */
2627 region_allocation = page_table[first_page].allocated;
2630 /* Now work forward until the end of this contiguous area is found,
2631 * marking all pages as dont_move. */
2632 for (i = first_page; ;i++) {
2633 gc_assert(page_table[i].allocated == region_allocation);
2635 /* Mark the page static. */
2636 page_table[i].dont_move = 1;
2638 /* Move the page to the new_space. XX I'd rather not do this
2639 * but the GC logic is not quite able to copy with the static
2640 * pages remaining in the from space. This also requires the
2641 * generation bytes_allocated counters be updated. */
2642 page_table[i].gen = new_space;
2643 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2644 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2646 /* It is essential that the pages are not write protected as
2647 * they may have pointers into the old-space which need
2648 * scavenging. They shouldn't be write protected at this
2649 * stage. */
2650 gc_assert(!page_table[i].write_protected);
2652 /* Check whether this is the last page in this contiguous block.. */
2653 if ((page_table[i].bytes_used < 4096)
2654 /* ..or it is 4096 and is the last in the block */
2655 || (page_table[i+1].allocated == FREE_PAGE)
2656 || (page_table[i+1].bytes_used == 0) /* next page free */
2657 || (page_table[i+1].gen != from_space) /* diff. gen */
2658 || (page_table[i+1].first_object_offset == 0))
2659 break;
2662 /* Check that the page is now static. */
2663 gc_assert(page_table[addr_page_index].dont_move != 0);
2666 /* If the given page is not write-protected, then scan it for pointers
2667 * to younger generations or the top temp. generation, if no
2668 * suspicious pointers are found then the page is write-protected.
2670 * Care is taken to check for pointers to the current gc_alloc()
2671 * region if it is a younger generation or the temp. generation. This
2672 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2673 * the gc_alloc_generation does not need to be checked as this is only
2674 * called from scavenge_generation() when the gc_alloc generation is
2675 * younger, so it just checks if there is a pointer to the current
2676 * region.
2678 * We return 1 if the page was write-protected, else 0. */
2679 static int
2680 update_page_write_prot(int page)
2682 int gen = page_table[page].gen;
2683 int j;
2684 int wp_it = 1;
2685 void **page_addr = (void **)page_address(page);
2686 int num_words = page_table[page].bytes_used / 4;
2688 /* Shouldn't be a free page. */
2689 gc_assert(page_table[page].allocated != FREE_PAGE);
2690 gc_assert(page_table[page].bytes_used != 0);
2692 /* Skip if it's already write-protected or an unboxed page. */
2693 if (page_table[page].write_protected
2694 || (page_table[page].allocated & UNBOXED_PAGE))
2695 return (0);
2697 /* Scan the page for pointers to younger generations or the
2698 * top temp. generation. */
2700 for (j = 0; j < num_words; j++) {
2701 void *ptr = *(page_addr+j);
2702 int index = find_page_index(ptr);
2704 /* Check that it's in the dynamic space */
2705 if (index != -1)
2706 if (/* Does it point to a younger or the temp. generation? */
2707 ((page_table[index].allocated != FREE_PAGE)
2708 && (page_table[index].bytes_used != 0)
2709 && ((page_table[index].gen < gen)
2710 || (page_table[index].gen == NUM_GENERATIONS)))
2712 /* Or does it point within a current gc_alloc() region? */
2713 || ((boxed_region.start_addr <= ptr)
2714 && (ptr <= boxed_region.free_pointer))
2715 || ((unboxed_region.start_addr <= ptr)
2716 && (ptr <= unboxed_region.free_pointer))) {
2717 wp_it = 0;
2718 break;
2722 if (wp_it == 1) {
2723 /* Write-protect the page. */
2724 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2726 os_protect((void *)page_addr,
2727 4096,
2728 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2730 /* Note the page as protected in the page tables. */
2731 page_table[page].write_protected = 1;
2734 return (wp_it);
2737 /* Scavenge a generation.
2739 * This will not resolve all pointers when generation is the new
2740 * space, as new objects may be added which are not check here - use
2741 * scavenge_newspace generation.
2743 * Write-protected pages should not have any pointers to the
2744 * from_space so do need scavenging; thus write-protected pages are
2745 * not always scavenged. There is some code to check that these pages
2746 * are not written; but to check fully the write-protected pages need
2747 * to be scavenged by disabling the code to skip them.
2749 * Under the current scheme when a generation is GCed the younger
2750 * generations will be empty. So, when a generation is being GCed it
2751 * is only necessary to scavenge the older generations for pointers
2752 * not the younger. So a page that does not have pointers to younger
2753 * generations does not need to be scavenged.
2755 * The write-protection can be used to note pages that don't have
2756 * pointers to younger pages. But pages can be written without having
2757 * pointers to younger generations. After the pages are scavenged here
2758 * they can be scanned for pointers to younger generations and if
2759 * there are none the page can be write-protected.
2761 * One complication is when the newspace is the top temp. generation.
2763 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2764 * that none were written, which they shouldn't be as they should have
2765 * no pointers to younger generations. This breaks down for weak
2766 * pointers as the objects contain a link to the next and are written
2767 * if a weak pointer is scavenged. Still it's a useful check. */
2768 static void
2769 scavenge_generation(int generation)
2771 int i;
2772 int num_wp = 0;
2774 #define SC_GEN_CK 0
2775 #if SC_GEN_CK
2776 /* Clear the write_protected_cleared flags on all pages. */
2777 for (i = 0; i < NUM_PAGES; i++)
2778 page_table[i].write_protected_cleared = 0;
2779 #endif
2781 for (i = 0; i < last_free_page; i++) {
2782 if ((page_table[i].allocated & BOXED_PAGE)
2783 && (page_table[i].bytes_used != 0)
2784 && (page_table[i].gen == generation)) {
2785 int last_page;
2787 /* This should be the start of a contiguous block. */
2788 gc_assert(page_table[i].first_object_offset == 0);
2790 /* We need to find the full extent of this contiguous
2791 * block in case objects span pages. */
2793 /* Now work forward until the end of this contiguous area
2794 * is found. A small area is preferred as there is a
2795 * better chance of its pages being write-protected. */
2796 for (last_page = i; ; last_page++)
2797 /* Check whether this is the last page in this contiguous
2798 * block. */
2799 if ((page_table[last_page].bytes_used < 4096)
2800 /* Or it is 4096 and is the last in the block */
2801 || (!(page_table[last_page+1].allocated & BOXED_PAGE))
2802 || (page_table[last_page+1].bytes_used == 0)
2803 || (page_table[last_page+1].gen != generation)
2804 || (page_table[last_page+1].first_object_offset == 0))
2805 break;
2807 /* Do a limited check for write_protected pages. If all pages
2808 * are write_protected then there is no need to scavenge. */
2810 int j, all_wp = 1;
2811 for (j = i; j <= last_page; j++)
2812 if (page_table[j].write_protected == 0) {
2813 all_wp = 0;
2814 break;
2816 #if !SC_GEN_CK
2817 if (all_wp == 0)
2818 #endif
2820 scavenge(page_address(i), (page_table[last_page].bytes_used
2821 + (last_page-i)*4096)/4);
2823 /* Now scan the pages and write protect those
2824 * that don't have pointers to younger
2825 * generations. */
2826 if (enable_page_protection) {
2827 for (j = i; j <= last_page; j++) {
2828 num_wp += update_page_write_prot(j);
2833 i = last_page;
2837 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2838 FSHOW((stderr,
2839 "/write protected %d pages within generation %d\n",
2840 num_wp, generation));
2843 #if SC_GEN_CK
2844 /* Check that none of the write_protected pages in this generation
2845 * have been written to. */
2846 for (i = 0; i < NUM_PAGES; i++) {
2847 if ((page_table[i].allocation ! =FREE_PAGE)
2848 && (page_table[i].bytes_used != 0)
2849 && (page_table[i].gen == generation)
2850 && (page_table[i].write_protected_cleared != 0)) {
2851 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2852 FSHOW((stderr,
2853 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2854 page_table[i].bytes_used,
2855 page_table[i].first_object_offset,
2856 page_table[i].dont_move));
2857 lose("write to protected page %d in scavenge_generation()", i);
2860 #endif
2864 /* Scavenge a newspace generation. As it is scavenged new objects may
2865 * be allocated to it; these will also need to be scavenged. This
2866 * repeats until there are no more objects unscavenged in the
2867 * newspace generation.
2869 * To help improve the efficiency, areas written are recorded by
2870 * gc_alloc() and only these scavenged. Sometimes a little more will be
2871 * scavenged, but this causes no harm. An easy check is done that the
2872 * scavenged bytes equals the number allocated in the previous
2873 * scavenge.
2875 * Write-protected pages are not scanned except if they are marked
2876 * dont_move in which case they may have been promoted and still have
2877 * pointers to the from space.
2879 * Write-protected pages could potentially be written by alloc however
2880 * to avoid having to handle re-scavenging of write-protected pages
2881 * gc_alloc() does not write to write-protected pages.
2883 * New areas of objects allocated are recorded alternatively in the two
2884 * new_areas arrays below. */
2885 static struct new_area new_areas_1[NUM_NEW_AREAS];
2886 static struct new_area new_areas_2[NUM_NEW_AREAS];
2888 /* Do one full scan of the new space generation. This is not enough to
2889 * complete the job as new objects may be added to the generation in
2890 * the process which are not scavenged. */
2891 static void
2892 scavenge_newspace_generation_one_scan(int generation)
2894 int i;
2896 FSHOW((stderr,
2897 "/starting one full scan of newspace generation %d\n",
2898 generation));
2899 for (i = 0; i < last_free_page; i++) {
2900 /* note that this skips over open regions when it encounters them */
2901 if ((page_table[i].allocated == BOXED_PAGE)
2902 && (page_table[i].bytes_used != 0)
2903 && (page_table[i].gen == generation)
2904 && ((page_table[i].write_protected == 0)
2905 /* (This may be redundant as write_protected is now
2906 * cleared before promotion.) */
2907 || (page_table[i].dont_move == 1))) {
2908 int last_page;
2910 /* The scavenge will start at the first_object_offset of page i.
2912 * We need to find the full extent of this contiguous
2913 * block in case objects span pages.
2915 * Now work forward until the end of this contiguous area
2916 * is found. A small area is preferred as there is a
2917 * better chance of its pages being write-protected. */
2918 for (last_page = i; ;last_page++) {
2919 /* Check whether this is the last page in this
2920 * contiguous block */
2921 if ((page_table[last_page].bytes_used < 4096)
2922 /* Or it is 4096 and is the last in the block */
2923 || (!(page_table[last_page+1].allocated & BOXED_PAGE))
2924 || (page_table[last_page+1].bytes_used == 0)
2925 || (page_table[last_page+1].gen != generation)
2926 || (page_table[last_page+1].first_object_offset == 0))
2927 break;
2930 /* Do a limited check for write-protected pages. If all
2931 * pages are write-protected then no need to scavenge,
2932 * except if the pages are marked dont_move. */
2934 int j, all_wp = 1;
2935 for (j = i; j <= last_page; j++)
2936 if ((page_table[j].write_protected == 0)
2937 || (page_table[j].dont_move != 0)) {
2938 all_wp = 0;
2939 break;
2942 if (!all_wp) {
2943 int size;
2945 /* Calculate the size. */
2946 if (last_page == i)
2947 size = (page_table[last_page].bytes_used
2948 - page_table[i].first_object_offset)/4;
2949 else
2950 size = (page_table[last_page].bytes_used
2951 + (last_page-i)*4096
2952 - page_table[i].first_object_offset)/4;
2955 new_areas_ignore_page = last_page;
2957 scavenge(page_address(i) +
2958 page_table[i].first_object_offset,
2959 size);
2965 i = last_page;
2968 FSHOW((stderr,
2969 "/done with one full scan of newspace generation %d\n",
2970 generation));
2973 /* Do a complete scavenge of the newspace generation. */
2974 static void
2975 scavenge_newspace_generation(int generation)
2977 int i;
2979 /* the new_areas array currently being written to by gc_alloc() */
2980 struct new_area (*current_new_areas)[] = &new_areas_1;
2981 int current_new_areas_index;
2983 /* the new_areas created but the previous scavenge cycle */
2984 struct new_area (*previous_new_areas)[] = NULL;
2985 int previous_new_areas_index;
2987 /* Flush the current regions updating the tables. */
2988 gc_alloc_update_all_page_tables();
2990 /* Turn on the recording of new areas by gc_alloc(). */
2991 new_areas = current_new_areas;
2992 new_areas_index = 0;
2994 /* Don't need to record new areas that get scavenged anyway during
2995 * scavenge_newspace_generation_one_scan. */
2996 record_new_objects = 1;
2998 /* Start with a full scavenge. */
2999 scavenge_newspace_generation_one_scan(generation);
3001 /* Record all new areas now. */
3002 record_new_objects = 2;
3004 /* Flush the current regions updating the tables. */
3005 gc_alloc_update_all_page_tables();
3007 /* Grab new_areas_index. */
3008 current_new_areas_index = new_areas_index;
3010 /*FSHOW((stderr,
3011 "The first scan is finished; current_new_areas_index=%d.\n",
3012 current_new_areas_index));*/
3014 while (current_new_areas_index > 0) {
3015 /* Move the current to the previous new areas */
3016 previous_new_areas = current_new_areas;
3017 previous_new_areas_index = current_new_areas_index;
3019 /* Scavenge all the areas in previous new areas. Any new areas
3020 * allocated are saved in current_new_areas. */
3022 /* Allocate an array for current_new_areas; alternating between
3023 * new_areas_1 and 2 */
3024 if (previous_new_areas == &new_areas_1)
3025 current_new_areas = &new_areas_2;
3026 else
3027 current_new_areas = &new_areas_1;
3029 /* Set up for gc_alloc(). */
3030 new_areas = current_new_areas;
3031 new_areas_index = 0;
3033 /* Check whether previous_new_areas had overflowed. */
3034 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3036 /* New areas of objects allocated have been lost so need to do a
3037 * full scan to be sure! If this becomes a problem try
3038 * increasing NUM_NEW_AREAS. */
3039 if (gencgc_verbose)
3040 SHOW("new_areas overflow, doing full scavenge");
3042 /* Don't need to record new areas that get scavenge anyway
3043 * during scavenge_newspace_generation_one_scan. */
3044 record_new_objects = 1;
3046 scavenge_newspace_generation_one_scan(generation);
3048 /* Record all new areas now. */
3049 record_new_objects = 2;
3051 /* Flush the current regions updating the tables. */
3052 gc_alloc_update_all_page_tables();
3054 } else {
3056 /* Work through previous_new_areas. */
3057 for (i = 0; i < previous_new_areas_index; i++) {
3058 /* FIXME: All these bare *4 and /4 should be something
3059 * like BYTES_PER_WORD or WBYTES. */
3060 int page = (*previous_new_areas)[i].page;
3061 int offset = (*previous_new_areas)[i].offset;
3062 int size = (*previous_new_areas)[i].size / 4;
3063 gc_assert((*previous_new_areas)[i].size % 4 == 0);
3064 scavenge(page_address(page)+offset, size);
3067 /* Flush the current regions updating the tables. */
3068 gc_alloc_update_all_page_tables();
3071 current_new_areas_index = new_areas_index;
3073 /*FSHOW((stderr,
3074 "The re-scan has finished; current_new_areas_index=%d.\n",
3075 current_new_areas_index));*/
3078 /* Turn off recording of areas allocated by gc_alloc(). */
3079 record_new_objects = 0;
3081 #if SC_NS_GEN_CK
3082 /* Check that none of the write_protected pages in this generation
3083 * have been written to. */
3084 for (i = 0; i < NUM_PAGES; i++) {
3085 if ((page_table[i].allocation != FREE_PAGE)
3086 && (page_table[i].bytes_used != 0)
3087 && (page_table[i].gen == generation)
3088 && (page_table[i].write_protected_cleared != 0)
3089 && (page_table[i].dont_move == 0)) {
3090 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d",
3091 i, generation, page_table[i].dont_move);
3094 #endif
3097 /* Un-write-protect all the pages in from_space. This is done at the
3098 * start of a GC else there may be many page faults while scavenging
3099 * the newspace (I've seen drive the system time to 99%). These pages
3100 * would need to be unprotected anyway before unmapping in
3101 * free_oldspace; not sure what effect this has on paging.. */
3102 static void
3103 unprotect_oldspace(void)
3105 int i;
3107 for (i = 0; i < last_free_page; i++) {
3108 if ((page_table[i].allocated != FREE_PAGE)
3109 && (page_table[i].bytes_used != 0)
3110 && (page_table[i].gen == from_space)) {
3111 void *page_start;
3113 page_start = (void *)page_address(i);
3115 /* Remove any write-protection. We should be able to rely
3116 * on the write-protect flag to avoid redundant calls. */
3117 if (page_table[i].write_protected) {
3118 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3119 page_table[i].write_protected = 0;
3125 /* Work through all the pages and free any in from_space. This
3126 * assumes that all objects have been copied or promoted to an older
3127 * generation. Bytes_allocated and the generation bytes_allocated
3128 * counter are updated. The number of bytes freed is returned. */
3129 extern void i586_bzero(void *addr, int nbytes);
3130 static int
3131 free_oldspace(void)
3133 int bytes_freed = 0;
3134 int first_page, last_page;
3136 first_page = 0;
3138 do {
3139 /* Find a first page for the next region of pages. */
3140 while ((first_page < last_free_page)
3141 && ((page_table[first_page].allocated == FREE_PAGE)
3142 || (page_table[first_page].bytes_used == 0)
3143 || (page_table[first_page].gen != from_space)))
3144 first_page++;
3146 if (first_page >= last_free_page)
3147 break;
3149 /* Find the last page of this region. */
3150 last_page = first_page;
3152 do {
3153 /* Free the page. */
3154 bytes_freed += page_table[last_page].bytes_used;
3155 generations[page_table[last_page].gen].bytes_allocated -=
3156 page_table[last_page].bytes_used;
3157 page_table[last_page].allocated = FREE_PAGE;
3158 page_table[last_page].bytes_used = 0;
3160 /* Remove any write-protection. We should be able to rely
3161 * on the write-protect flag to avoid redundant calls. */
3163 void *page_start = (void *)page_address(last_page);
3165 if (page_table[last_page].write_protected) {
3166 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3167 page_table[last_page].write_protected = 0;
3170 last_page++;
3172 while ((last_page < last_free_page)
3173 && (page_table[last_page].allocated != FREE_PAGE)
3174 && (page_table[last_page].bytes_used != 0)
3175 && (page_table[last_page].gen == from_space));
3177 /* Zero pages from first_page to (last_page-1).
3179 * FIXME: Why not use os_zero(..) function instead of
3180 * hand-coding this again? (Check other gencgc_unmap_zero
3181 * stuff too. */
3182 if (gencgc_unmap_zero) {
3183 void *page_start, *addr;
3185 page_start = (void *)page_address(first_page);
3187 os_invalidate(page_start, 4096*(last_page-first_page));
3188 addr = os_validate(page_start, 4096*(last_page-first_page));
3189 if (addr == NULL || addr != page_start) {
3190 /* Is this an error condition? I couldn't really tell from
3191 * the old CMU CL code, which fprintf'ed a message with
3192 * an exclamation point at the end. But I've never seen the
3193 * message, so it must at least be unusual..
3195 * (The same condition is also tested for in gc_free_heap.)
3197 * -- WHN 19991129 */
3198 lose("i586_bzero: page moved, 0x%08x ==> 0x%08x",
3199 page_start,
3200 addr);
3202 } else {
3203 int *page_start;
3205 page_start = (int *)page_address(first_page);
3206 i586_bzero(page_start, 4096*(last_page-first_page));
3209 first_page = last_page;
3211 } while (first_page < last_free_page);
3213 bytes_allocated -= bytes_freed;
3214 return bytes_freed;
3217 #if 0
3218 /* Print some information about a pointer at the given address. */
3219 static void
3220 print_ptr(lispobj *addr)
3222 /* If addr is in the dynamic space then out the page information. */
3223 int pi1 = find_page_index((void*)addr);
3225 if (pi1 != -1)
3226 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3227 (unsigned int) addr,
3228 pi1,
3229 page_table[pi1].allocated,
3230 page_table[pi1].gen,
3231 page_table[pi1].bytes_used,
3232 page_table[pi1].first_object_offset,
3233 page_table[pi1].dont_move);
3234 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3235 *(addr-4),
3236 *(addr-3),
3237 *(addr-2),
3238 *(addr-1),
3239 *(addr-0),
3240 *(addr+1),
3241 *(addr+2),
3242 *(addr+3),
3243 *(addr+4));
3245 #endif
3247 extern int undefined_tramp;
3249 static void
3250 verify_space(lispobj *start, size_t words)
3252 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3253 int is_in_readonly_space =
3254 (READ_ONLY_SPACE_START <= (unsigned)start &&
3255 (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3257 while (words > 0) {
3258 size_t count = 1;
3259 lispobj thing = *(lispobj*)start;
3261 if (is_lisp_pointer(thing)) {
3262 int page_index = find_page_index((void*)thing);
3263 int to_readonly_space =
3264 (READ_ONLY_SPACE_START <= thing &&
3265 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3266 int to_static_space =
3267 (STATIC_SPACE_START <= thing &&
3268 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3270 /* Does it point to the dynamic space? */
3271 if (page_index != -1) {
3272 /* If it's within the dynamic space it should point to a used
3273 * page. XX Could check the offset too. */
3274 if ((page_table[page_index].allocated != FREE_PAGE)
3275 && (page_table[page_index].bytes_used == 0))
3276 lose ("Ptr %x @ %x sees free page.", thing, start);
3277 /* Check that it doesn't point to a forwarding pointer! */
3278 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3279 lose("Ptr %x @ %x sees forwarding ptr.", thing, start);
3281 /* Check that its not in the RO space as it would then be a
3282 * pointer from the RO to the dynamic space. */
3283 if (is_in_readonly_space) {
3284 lose("ptr to dynamic space %x from RO space %x",
3285 thing, start);
3287 /* Does it point to a plausible object? This check slows
3288 * it down a lot (so it's commented out).
3290 * "a lot" is serious: it ate 50 minutes cpu time on
3291 * my duron 950 before I came back from lunch and
3292 * killed it.
3294 * FIXME: Add a variable to enable this
3295 * dynamically. */
3297 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3298 lose("ptr %x to invalid object %x", thing, start);
3301 } else {
3302 /* Verify that it points to another valid space. */
3303 if (!to_readonly_space && !to_static_space
3304 && (thing != (unsigned)&undefined_tramp)) {
3305 lose("Ptr %x @ %x sees junk.", thing, start);
3308 } else {
3309 if (thing & 0x3) { /* Skip fixnums. FIXME: There should be an
3310 * is_fixnum for this. */
3312 switch(widetag_of(*start)) {
3314 /* boxed objects */
3315 case SIMPLE_VECTOR_WIDETAG:
3316 case RATIO_WIDETAG:
3317 case COMPLEX_WIDETAG:
3318 case SIMPLE_ARRAY_WIDETAG:
3319 case COMPLEX_BASE_STRING_WIDETAG:
3320 case COMPLEX_VECTOR_NIL_WIDETAG:
3321 case COMPLEX_BIT_VECTOR_WIDETAG:
3322 case COMPLEX_VECTOR_WIDETAG:
3323 case COMPLEX_ARRAY_WIDETAG:
3324 case CLOSURE_HEADER_WIDETAG:
3325 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3326 case VALUE_CELL_HEADER_WIDETAG:
3327 case SYMBOL_HEADER_WIDETAG:
3328 case BASE_CHAR_WIDETAG:
3329 case UNBOUND_MARKER_WIDETAG:
3330 case INSTANCE_HEADER_WIDETAG:
3331 case FDEFN_WIDETAG:
3332 count = 1;
3333 break;
3335 case CODE_HEADER_WIDETAG:
3337 lispobj object = *start;
3338 struct code *code;
3339 int nheader_words, ncode_words, nwords;
3340 lispobj fheaderl;
3341 struct simple_fun *fheaderp;
3343 code = (struct code *) start;
3345 /* Check that it's not in the dynamic space.
3346 * FIXME: Isn't is supposed to be OK for code
3347 * objects to be in the dynamic space these days? */
3348 if (is_in_dynamic_space
3349 /* It's ok if it's byte compiled code. The trace
3350 * table offset will be a fixnum if it's x86
3351 * compiled code - check.
3353 * FIXME: #^#@@! lack of abstraction here..
3354 * This line can probably go away now that
3355 * there's no byte compiler, but I've got
3356 * too much to worry about right now to try
3357 * to make sure. -- WHN 2001-10-06 */
3358 && !(code->trace_table_offset & 0x3)
3359 /* Only when enabled */
3360 && verify_dynamic_code_check) {
3361 FSHOW((stderr,
3362 "/code object at %x in the dynamic space\n",
3363 start));
3366 ncode_words = fixnum_value(code->code_size);
3367 nheader_words = HeaderValue(object);
3368 nwords = ncode_words + nheader_words;
3369 nwords = CEILING(nwords, 2);
3370 /* Scavenge the boxed section of the code data block */
3371 verify_space(start + 1, nheader_words - 1);
3373 /* Scavenge the boxed section of each function
3374 * object in the code data block. */
3375 fheaderl = code->entry_points;
3376 while (fheaderl != NIL) {
3377 fheaderp =
3378 (struct simple_fun *) native_pointer(fheaderl);
3379 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3380 verify_space(&fheaderp->name, 1);
3381 verify_space(&fheaderp->arglist, 1);
3382 verify_space(&fheaderp->type, 1);
3383 fheaderl = fheaderp->next;
3385 count = nwords;
3386 break;
3389 /* unboxed objects */
3390 case BIGNUM_WIDETAG:
3391 case SINGLE_FLOAT_WIDETAG:
3392 case DOUBLE_FLOAT_WIDETAG:
3393 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3394 case LONG_FLOAT_WIDETAG:
3395 #endif
3396 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3397 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3398 #endif
3399 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3400 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3401 #endif
3402 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3403 case COMPLEX_LONG_FLOAT_WIDETAG:
3404 #endif
3405 case SIMPLE_BASE_STRING_WIDETAG:
3406 case SIMPLE_BIT_VECTOR_WIDETAG:
3407 case SIMPLE_ARRAY_NIL_WIDETAG:
3408 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3409 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3410 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3411 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3412 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3413 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3414 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3415 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3416 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3417 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3418 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3419 #endif
3420 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3421 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3422 #endif
3423 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3424 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3425 #endif
3426 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3427 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3428 #endif
3429 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3430 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3431 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3432 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3433 #endif
3434 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3435 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3436 #endif
3437 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3438 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3439 #endif
3440 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3441 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3442 #endif
3443 case SAP_WIDETAG:
3444 case WEAK_POINTER_WIDETAG:
3445 count = (sizetab[widetag_of(*start)])(start);
3446 break;
3448 default:
3449 gc_abort();
3453 start += count;
3454 words -= count;
3458 static void
3459 verify_gc(void)
3461 /* FIXME: It would be nice to make names consistent so that
3462 * foo_size meant size *in* *bytes* instead of size in some
3463 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3464 * Some counts of lispobjs are called foo_count; it might be good
3465 * to grep for all foo_size and rename the appropriate ones to
3466 * foo_count. */
3467 int read_only_space_size =
3468 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3469 - (lispobj*)READ_ONLY_SPACE_START;
3470 int static_space_size =
3471 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3472 - (lispobj*)STATIC_SPACE_START;
3473 struct thread *th;
3474 for_each_thread(th) {
3475 int binding_stack_size =
3476 (lispobj*)SymbolValue(BINDING_STACK_POINTER,th)
3477 - (lispobj*)th->binding_stack_start;
3478 verify_space(th->binding_stack_start, binding_stack_size);
3480 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3481 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3484 static void
3485 verify_generation(int generation)
3487 int i;
3489 for (i = 0; i < last_free_page; i++) {
3490 if ((page_table[i].allocated != FREE_PAGE)
3491 && (page_table[i].bytes_used != 0)
3492 && (page_table[i].gen == generation)) {
3493 int last_page;
3494 int region_allocation = page_table[i].allocated;
3496 /* This should be the start of a contiguous block */
3497 gc_assert(page_table[i].first_object_offset == 0);
3499 /* Need to find the full extent of this contiguous block in case
3500 objects span pages. */
3502 /* Now work forward until the end of this contiguous area is
3503 found. */
3504 for (last_page = i; ;last_page++)
3505 /* Check whether this is the last page in this contiguous
3506 * block. */
3507 if ((page_table[last_page].bytes_used < 4096)
3508 /* Or it is 4096 and is the last in the block */
3509 || (page_table[last_page+1].allocated != region_allocation)
3510 || (page_table[last_page+1].bytes_used == 0)
3511 || (page_table[last_page+1].gen != generation)
3512 || (page_table[last_page+1].first_object_offset == 0))
3513 break;
3515 verify_space(page_address(i), (page_table[last_page].bytes_used
3516 + (last_page-i)*4096)/4);
3517 i = last_page;
3522 /* Check that all the free space is zero filled. */
3523 static void
3524 verify_zero_fill(void)
3526 int page;
3528 for (page = 0; page < last_free_page; page++) {
3529 if (page_table[page].allocated == FREE_PAGE) {
3530 /* The whole page should be zero filled. */
3531 int *start_addr = (int *)page_address(page);
3532 int size = 1024;
3533 int i;
3534 for (i = 0; i < size; i++) {
3535 if (start_addr[i] != 0) {
3536 lose("free page not zero at %x", start_addr + i);
3539 } else {
3540 int free_bytes = 4096 - page_table[page].bytes_used;
3541 if (free_bytes > 0) {
3542 int *start_addr = (int *)((unsigned)page_address(page)
3543 + page_table[page].bytes_used);
3544 int size = free_bytes / 4;
3545 int i;
3546 for (i = 0; i < size; i++) {
3547 if (start_addr[i] != 0) {
3548 lose("free region not zero at %x", start_addr + i);
3556 /* External entry point for verify_zero_fill */
3557 void
3558 gencgc_verify_zero_fill(void)
3560 /* Flush the alloc regions updating the tables. */
3561 gc_alloc_update_all_page_tables();
3562 SHOW("verifying zero fill");
3563 verify_zero_fill();
3566 static void
3567 verify_dynamic_space(void)
3569 int i;
3571 for (i = 0; i < NUM_GENERATIONS; i++)
3572 verify_generation(i);
3574 if (gencgc_enable_verify_zero_fill)
3575 verify_zero_fill();
3578 /* Write-protect all the dynamic boxed pages in the given generation. */
3579 static void
3580 write_protect_generation_pages(int generation)
3582 int i;
3584 gc_assert(generation < NUM_GENERATIONS);
3586 for (i = 0; i < last_free_page; i++)
3587 if ((page_table[i].allocated == BOXED_PAGE)
3588 && (page_table[i].bytes_used != 0)
3589 && (page_table[i].gen == generation)) {
3590 void *page_start;
3592 page_start = (void *)page_address(i);
3594 os_protect(page_start,
3595 4096,
3596 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3598 /* Note the page as protected in the page tables. */
3599 page_table[i].write_protected = 1;
3602 if (gencgc_verbose > 1) {
3603 FSHOW((stderr,
3604 "/write protected %d of %d pages in generation %d\n",
3605 count_write_protect_generation_pages(generation),
3606 count_generation_pages(generation),
3607 generation));
3611 /* Garbage collect a generation. If raise is 0 then the remains of the
3612 * generation are not raised to the next generation. */
3613 static void
3614 garbage_collect_generation(int generation, int raise)
3616 unsigned long bytes_freed;
3617 unsigned long i;
3618 unsigned long static_space_size;
3619 struct thread *th;
3620 gc_assert(generation <= (NUM_GENERATIONS-1));
3622 /* The oldest generation can't be raised. */
3623 gc_assert((generation != (NUM_GENERATIONS-1)) || (raise == 0));
3625 /* Initialize the weak pointer list. */
3626 weak_pointers = NULL;
3628 /* When a generation is not being raised it is transported to a
3629 * temporary generation (NUM_GENERATIONS), and lowered when
3630 * done. Set up this new generation. There should be no pages
3631 * allocated to it yet. */
3632 if (!raise)
3633 gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
3635 /* Set the global src and dest. generations */
3636 from_space = generation;
3637 if (raise)
3638 new_space = generation+1;
3639 else
3640 new_space = NUM_GENERATIONS;
3642 /* Change to a new space for allocation, resetting the alloc_start_page */
3643 gc_alloc_generation = new_space;
3644 generations[new_space].alloc_start_page = 0;
3645 generations[new_space].alloc_unboxed_start_page = 0;
3646 generations[new_space].alloc_large_start_page = 0;
3647 generations[new_space].alloc_large_unboxed_start_page = 0;
3649 /* Before any pointers are preserved, the dont_move flags on the
3650 * pages need to be cleared. */
3651 for (i = 0; i < last_free_page; i++)
3652 page_table[i].dont_move = 0;
3654 /* Un-write-protect the old-space pages. This is essential for the
3655 * promoted pages as they may contain pointers into the old-space
3656 * which need to be scavenged. It also helps avoid unnecessary page
3657 * faults as forwarding pointers are written into them. They need to
3658 * be un-protected anyway before unmapping later. */
3659 unprotect_oldspace();
3661 /* Scavenge the stacks' conservative roots. */
3662 for_each_thread(th) {
3663 void **ptr;
3664 #ifdef LISP_FEATURE_SB_THREAD
3665 struct user_regs_struct regs;
3666 if(ptrace(PTRACE_GETREGS,th->pid,0,&regs)){
3667 /* probably doesn't exist any more. */
3668 fprintf(stderr,"child pid %d, %s\n",th->pid,strerror(errno));
3669 perror("PTRACE_GETREGS");
3671 preserve_pointer(regs.ebx);
3672 preserve_pointer(regs.ecx);
3673 preserve_pointer(regs.edx);
3674 preserve_pointer(regs.esi);
3675 preserve_pointer(regs.edi);
3676 preserve_pointer(regs.ebp);
3677 preserve_pointer(regs.eax);
3678 #endif
3679 for (ptr = th->control_stack_end;
3680 #ifdef LISP_FEATURE_SB_THREAD
3681 ptr > regs.esp;
3682 #else
3683 ptr > (void **)&raise;
3684 #endif
3685 ptr--) {
3686 preserve_pointer(*ptr);
3690 #if QSHOW
3691 if (gencgc_verbose > 1) {
3692 int num_dont_move_pages = count_dont_move_pages();
3693 fprintf(stderr,
3694 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3695 num_dont_move_pages,
3696 /* FIXME: 4096 should be symbolic constant here and
3697 * prob'ly elsewhere too. */
3698 num_dont_move_pages * 4096);
3700 #endif
3702 /* Scavenge all the rest of the roots. */
3704 /* Scavenge the Lisp functions of the interrupt handlers, taking
3705 * care to avoid SIG_DFL and SIG_IGN. */
3706 for_each_thread(th) {
3707 struct interrupt_data *data=th->interrupt_data;
3708 for (i = 0; i < NSIG; i++) {
3709 union interrupt_handler handler = data->interrupt_handlers[i];
3710 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3711 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3712 scavenge((lispobj *)(data->interrupt_handlers + i), 1);
3716 /* Scavenge the binding stacks. */
3718 struct thread *th;
3719 for_each_thread(th) {
3720 long len= (lispobj *)SymbolValue(BINDING_STACK_POINTER,th) -
3721 th->binding_stack_start;
3722 scavenge((lispobj *) th->binding_stack_start,len);
3723 #ifdef LISP_FEATURE_SB_THREAD
3724 /* do the tls as well */
3725 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
3726 (sizeof (struct thread))/(sizeof (lispobj));
3727 scavenge((lispobj *) (th+1),len);
3728 #endif
3732 /* The original CMU CL code had scavenge-read-only-space code
3733 * controlled by the Lisp-level variable
3734 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3735 * wasn't documented under what circumstances it was useful or
3736 * safe to turn it on, so it's been turned off in SBCL. If you
3737 * want/need this functionality, and can test and document it,
3738 * please submit a patch. */
3739 #if 0
3740 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3741 unsigned long read_only_space_size =
3742 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3743 (lispobj*)READ_ONLY_SPACE_START;
3744 FSHOW((stderr,
3745 "/scavenge read only space: %d bytes\n",
3746 read_only_space_size * sizeof(lispobj)));
3747 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3749 #endif
3751 /* Scavenge static space. */
3752 static_space_size =
3753 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
3754 (lispobj *)STATIC_SPACE_START;
3755 if (gencgc_verbose > 1) {
3756 FSHOW((stderr,
3757 "/scavenge static space: %d bytes\n",
3758 static_space_size * sizeof(lispobj)));
3760 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3762 /* All generations but the generation being GCed need to be
3763 * scavenged. The new_space generation needs special handling as
3764 * objects may be moved in - it is handled separately below. */
3765 for (i = 0; i < NUM_GENERATIONS; i++) {
3766 if ((i != generation) && (i != new_space)) {
3767 scavenge_generation(i);
3771 /* Finally scavenge the new_space generation. Keep going until no
3772 * more objects are moved into the new generation */
3773 scavenge_newspace_generation(new_space);
3775 /* FIXME: I tried reenabling this check when debugging unrelated
3776 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3777 * Since the current GC code seems to work well, I'm guessing that
3778 * this debugging code is just stale, but I haven't tried to
3779 * figure it out. It should be figured out and then either made to
3780 * work or just deleted. */
3781 #define RESCAN_CHECK 0
3782 #if RESCAN_CHECK
3783 /* As a check re-scavenge the newspace once; no new objects should
3784 * be found. */
3786 int old_bytes_allocated = bytes_allocated;
3787 int bytes_allocated;
3789 /* Start with a full scavenge. */
3790 scavenge_newspace_generation_one_scan(new_space);
3792 /* Flush the current regions, updating the tables. */
3793 gc_alloc_update_all_page_tables();
3795 bytes_allocated = bytes_allocated - old_bytes_allocated;
3797 if (bytes_allocated != 0) {
3798 lose("Rescan of new_space allocated %d more bytes.",
3799 bytes_allocated);
3802 #endif
3804 scan_weak_pointers();
3806 /* Flush the current regions, updating the tables. */
3807 gc_alloc_update_all_page_tables();
3809 /* Free the pages in oldspace, but not those marked dont_move. */
3810 bytes_freed = free_oldspace();
3812 /* If the GC is not raising the age then lower the generation back
3813 * to its normal generation number */
3814 if (!raise) {
3815 for (i = 0; i < last_free_page; i++)
3816 if ((page_table[i].bytes_used != 0)
3817 && (page_table[i].gen == NUM_GENERATIONS))
3818 page_table[i].gen = generation;
3819 gc_assert(generations[generation].bytes_allocated == 0);
3820 generations[generation].bytes_allocated =
3821 generations[NUM_GENERATIONS].bytes_allocated;
3822 generations[NUM_GENERATIONS].bytes_allocated = 0;
3825 /* Reset the alloc_start_page for generation. */
3826 generations[generation].alloc_start_page = 0;
3827 generations[generation].alloc_unboxed_start_page = 0;
3828 generations[generation].alloc_large_start_page = 0;
3829 generations[generation].alloc_large_unboxed_start_page = 0;
3831 if (generation >= verify_gens) {
3832 if (gencgc_verbose)
3833 SHOW("verifying");
3834 verify_gc();
3835 verify_dynamic_space();
3838 /* Set the new gc trigger for the GCed generation. */
3839 generations[generation].gc_trigger =
3840 generations[generation].bytes_allocated
3841 + generations[generation].bytes_consed_between_gc;
3843 if (raise)
3844 generations[generation].num_gc = 0;
3845 else
3846 ++generations[generation].num_gc;
3849 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3851 update_x86_dynamic_space_free_pointer(void)
3853 int last_page = -1;
3854 int i;
3856 for (i = 0; i < NUM_PAGES; i++)
3857 if ((page_table[i].allocated != FREE_PAGE)
3858 && (page_table[i].bytes_used != 0))
3859 last_page = i;
3861 last_free_page = last_page+1;
3863 SetSymbolValue(ALLOCATION_POINTER,
3864 (lispobj)(((char *)heap_base) + last_free_page*4096),0);
3865 return 0; /* dummy value: return something ... */
3868 /* GC all generations newer than last_gen, raising the objects in each
3869 * to the next older generation - we finish when all generations below
3870 * last_gen are empty. Then if last_gen is due for a GC, or if
3871 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
3872 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3874 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
3875 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
3877 void
3878 collect_garbage(unsigned last_gen)
3880 int gen = 0;
3881 int raise;
3882 int gen_to_wp;
3883 int i;
3885 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
3887 if (last_gen > NUM_GENERATIONS) {
3888 FSHOW((stderr,
3889 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
3890 last_gen));
3891 last_gen = 0;
3894 /* Flush the alloc regions updating the tables. */
3895 gc_alloc_update_all_page_tables();
3897 /* Verify the new objects created by Lisp code. */
3898 if (pre_verify_gen_0) {
3899 FSHOW((stderr, "pre-checking generation 0\n"));
3900 verify_generation(0);
3903 if (gencgc_verbose > 1)
3904 print_generation_stats(0);
3906 do {
3907 /* Collect the generation. */
3909 if (gen >= gencgc_oldest_gen_to_gc) {
3910 /* Never raise the oldest generation. */
3911 raise = 0;
3912 } else {
3913 raise =
3914 (gen < last_gen)
3915 || (generations[gen].num_gc >= generations[gen].trigger_age);
3918 if (gencgc_verbose > 1) {
3919 FSHOW((stderr,
3920 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
3921 gen,
3922 raise,
3923 generations[gen].bytes_allocated,
3924 generations[gen].gc_trigger,
3925 generations[gen].num_gc));
3928 /* If an older generation is being filled, then update its
3929 * memory age. */
3930 if (raise == 1) {
3931 generations[gen+1].cum_sum_bytes_allocated +=
3932 generations[gen+1].bytes_allocated;
3935 garbage_collect_generation(gen, raise);
3937 /* Reset the memory age cum_sum. */
3938 generations[gen].cum_sum_bytes_allocated = 0;
3940 if (gencgc_verbose > 1) {
3941 FSHOW((stderr, "GC of generation %d finished:\n", gen));
3942 print_generation_stats(0);
3945 gen++;
3946 } while ((gen <= gencgc_oldest_gen_to_gc)
3947 && ((gen < last_gen)
3948 || ((gen <= gencgc_oldest_gen_to_gc)
3949 && raise
3950 && (generations[gen].bytes_allocated
3951 > generations[gen].gc_trigger)
3952 && (gen_av_mem_age(gen)
3953 > generations[gen].min_av_mem_age))));
3955 /* Now if gen-1 was raised all generations before gen are empty.
3956 * If it wasn't raised then all generations before gen-1 are empty.
3958 * Now objects within this gen's pages cannot point to younger
3959 * generations unless they are written to. This can be exploited
3960 * by write-protecting the pages of gen; then when younger
3961 * generations are GCed only the pages which have been written
3962 * need scanning. */
3963 if (raise)
3964 gen_to_wp = gen;
3965 else
3966 gen_to_wp = gen - 1;
3968 /* There's not much point in WPing pages in generation 0 as it is
3969 * never scavenged (except promoted pages). */
3970 if ((gen_to_wp > 0) && enable_page_protection) {
3971 /* Check that they are all empty. */
3972 for (i = 0; i < gen_to_wp; i++) {
3973 if (generations[i].bytes_allocated)
3974 lose("trying to write-protect gen. %d when gen. %d nonempty",
3975 gen_to_wp, i);
3977 write_protect_generation_pages(gen_to_wp);
3980 /* Set gc_alloc() back to generation 0. The current regions should
3981 * be flushed after the above GCs. */
3982 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
3983 gc_alloc_generation = 0;
3985 update_x86_dynamic_space_free_pointer();
3986 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
3987 if(gencgc_verbose)
3988 fprintf(stderr,"Next gc when %d bytes have been consed\n",
3989 auto_gc_trigger);
3990 SHOW("returning from collect_garbage");
3993 /* This is called by Lisp PURIFY when it is finished. All live objects
3994 * will have been moved to the RO and Static heaps. The dynamic space
3995 * will need a full re-initialization. We don't bother having Lisp
3996 * PURIFY flush the current gc_alloc() region, as the page_tables are
3997 * re-initialized, and every page is zeroed to be sure. */
3998 void
3999 gc_free_heap(void)
4001 int page;
4003 if (gencgc_verbose > 1)
4004 SHOW("entering gc_free_heap");
4006 for (page = 0; page < NUM_PAGES; page++) {
4007 /* Skip free pages which should already be zero filled. */
4008 if (page_table[page].allocated != FREE_PAGE) {
4009 void *page_start, *addr;
4011 /* Mark the page free. The other slots are assumed invalid
4012 * when it is a FREE_PAGE and bytes_used is 0 and it
4013 * should not be write-protected -- except that the
4014 * generation is used for the current region but it sets
4015 * that up. */
4016 page_table[page].allocated = FREE_PAGE;
4017 page_table[page].bytes_used = 0;
4019 /* Zero the page. */
4020 page_start = (void *)page_address(page);
4022 /* First, remove any write-protection. */
4023 os_protect(page_start, 4096, OS_VM_PROT_ALL);
4024 page_table[page].write_protected = 0;
4026 os_invalidate(page_start,4096);
4027 addr = os_validate(page_start,4096);
4028 if (addr == NULL || addr != page_start) {
4029 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
4030 page_start,
4031 addr);
4033 } else if (gencgc_zero_check_during_free_heap) {
4034 /* Double-check that the page is zero filled. */
4035 int *page_start, i;
4036 gc_assert(page_table[page].allocated == FREE_PAGE);
4037 gc_assert(page_table[page].bytes_used == 0);
4038 page_start = (int *)page_address(page);
4039 for (i=0; i<1024; i++) {
4040 if (page_start[i] != 0) {
4041 lose("free region not zero at %x", page_start + i);
4047 bytes_allocated = 0;
4049 /* Initialize the generations. */
4050 for (page = 0; page < NUM_GENERATIONS; page++) {
4051 generations[page].alloc_start_page = 0;
4052 generations[page].alloc_unboxed_start_page = 0;
4053 generations[page].alloc_large_start_page = 0;
4054 generations[page].alloc_large_unboxed_start_page = 0;
4055 generations[page].bytes_allocated = 0;
4056 generations[page].gc_trigger = 2000000;
4057 generations[page].num_gc = 0;
4058 generations[page].cum_sum_bytes_allocated = 0;
4061 if (gencgc_verbose > 1)
4062 print_generation_stats(0);
4064 /* Initialize gc_alloc(). */
4065 gc_alloc_generation = 0;
4067 gc_set_region_empty(&boxed_region);
4068 gc_set_region_empty(&unboxed_region);
4070 last_free_page = 0;
4071 SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base),0);
4073 if (verify_after_free_heap) {
4074 /* Check whether purify has left any bad pointers. */
4075 if (gencgc_verbose)
4076 SHOW("checking after free_heap\n");
4077 verify_gc();
4081 void
4082 gc_init(void)
4084 int i;
4086 gc_init_tables();
4087 scavtab[SIMPLE_VECTOR_WIDETAG] = scav_vector;
4088 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4089 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4091 heap_base = (void*)DYNAMIC_SPACE_START;
4093 /* Initialize each page structure. */
4094 for (i = 0; i < NUM_PAGES; i++) {
4095 /* Initialize all pages as free. */
4096 page_table[i].allocated = FREE_PAGE;
4097 page_table[i].bytes_used = 0;
4099 /* Pages are not write-protected at startup. */
4100 page_table[i].write_protected = 0;
4103 bytes_allocated = 0;
4105 /* Initialize the generations.
4107 * FIXME: very similar to code in gc_free_heap(), should be shared */
4108 for (i = 0; i < NUM_GENERATIONS; i++) {
4109 generations[i].alloc_start_page = 0;
4110 generations[i].alloc_unboxed_start_page = 0;
4111 generations[i].alloc_large_start_page = 0;
4112 generations[i].alloc_large_unboxed_start_page = 0;
4113 generations[i].bytes_allocated = 0;
4114 generations[i].gc_trigger = 2000000;
4115 generations[i].num_gc = 0;
4116 generations[i].cum_sum_bytes_allocated = 0;
4117 /* the tune-able parameters */
4118 generations[i].bytes_consed_between_gc = 2000000;
4119 generations[i].trigger_age = 1;
4120 generations[i].min_av_mem_age = 0.75;
4123 /* Initialize gc_alloc. */
4124 gc_alloc_generation = 0;
4125 gc_set_region_empty(&boxed_region);
4126 gc_set_region_empty(&unboxed_region);
4128 last_free_page = 0;
4132 /* Pick up the dynamic space from after a core load.
4134 * The ALLOCATION_POINTER points to the end of the dynamic space.
4136 * XX A scan is needed to identify the closest first objects for pages. */
4137 static void
4138 gencgc_pickup_dynamic(void)
4140 int page = 0;
4141 int addr = DYNAMIC_SPACE_START;
4142 int alloc_ptr = SymbolValue(ALLOCATION_POINTER,0);
4144 /* Initialize the first region. */
4145 do {
4146 page_table[page].allocated = BOXED_PAGE;
4147 page_table[page].gen = 0;
4148 page_table[page].bytes_used = 4096;
4149 page_table[page].large_object = 0;
4150 page_table[page].first_object_offset =
4151 (void *)DYNAMIC_SPACE_START - page_address(page);
4152 addr += 4096;
4153 page++;
4154 } while (addr < alloc_ptr);
4156 generations[0].bytes_allocated = 4096*page;
4157 bytes_allocated = 4096*page;
4161 void
4162 gc_initialize_pointers(void)
4164 gencgc_pickup_dynamic();
4170 extern boolean maybe_gc_pending ;
4171 /* alloc(..) is the external interface for memory allocation. It
4172 * allocates to generation 0. It is not called from within the garbage
4173 * collector as it is only external uses that need the check for heap
4174 * size (GC trigger) and to disable the interrupts (interrupts are
4175 * always disabled during a GC).
4177 * The vops that call alloc(..) assume that the returned space is zero-filled.
4178 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4180 * The check for a GC trigger is only performed when the current
4181 * region is full, so in most cases it's not needed. */
4183 char *
4184 alloc(int nbytes)
4186 struct thread *th=arch_os_get_current_thread();
4187 struct alloc_region *region=
4188 th ? &(th->alloc_region) : &boxed_region;
4189 void *new_obj;
4190 void *new_free_pointer;
4192 /* Check for alignment allocation problems. */
4193 gc_assert((((unsigned)region->free_pointer & 0x7) == 0)
4194 && ((nbytes & 0x7) == 0));
4195 if(all_threads)
4196 /* there are a few places in the C code that allocate data in the
4197 * heap before Lisp starts. This is before interrupts are enabled,
4198 * so we don't need to check for pseudo-atomic */
4199 #ifdef LISP_FEATURE_SB_THREAD
4200 if(!SymbolValue(PSEUDO_ATOMIC_ATOMIC,th)) {
4201 register u32 fs;
4202 fprintf(stderr, "fatal error in thread 0x%x, pid=%d\n",
4203 th,getpid());
4204 __asm__("movl %fs,%0" : "=r" (fs) : );
4205 fprintf(stderr, "fs is %x, th->tls_cookie=%x (should be identical)\n",
4206 debug_get_fs(),th->tls_cookie);
4207 lose("If you see this message before 2003.05.01, mail details to sbcl-devel\n");
4209 #else
4210 gc_assert(SymbolValue(PSEUDO_ATOMIC_ATOMIC,th));
4211 #endif
4213 /* maybe we can do this quickly ... */
4214 new_free_pointer = region->free_pointer + nbytes;
4215 if (new_free_pointer <= region->end_addr) {
4216 new_obj = (void*)(region->free_pointer);
4217 region->free_pointer = new_free_pointer;
4218 return(new_obj); /* yup */
4221 /* we have to go the long way around, it seems. Check whether
4222 * we should GC in the near future
4224 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4225 /* set things up so that GC happens when we finish the PA
4226 * section. */
4227 maybe_gc_pending=1;
4228 SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(1),th);
4230 new_obj = gc_alloc_with_region(nbytes,0,region,0);
4231 return (new_obj);
4235 /* Find the code object for the given pc, or return NULL on failure.
4237 * FIXME: PC shouldn't be lispobj*, should it? Maybe void*? */
4238 lispobj *
4239 component_ptr_from_pc(lispobj *pc)
4241 lispobj *object = NULL;
4243 if ( (object = search_read_only_space(pc)) )
4245 else if ( (object = search_static_space(pc)) )
4247 else
4248 object = search_dynamic_space(pc);
4250 if (object) /* if we found something */
4251 if (widetag_of(*object) == CODE_HEADER_WIDETAG) /* if it's a code object */
4252 return(object);
4254 return (NULL);
4258 * shared support for the OS-dependent signal handlers which
4259 * catch GENCGC-related write-protect violations
4262 void unhandled_sigmemoryfault(void);
4264 /* Depending on which OS we're running under, different signals might
4265 * be raised for a violation of write protection in the heap. This
4266 * function factors out the common generational GC magic which needs
4267 * to invoked in this case, and should be called from whatever signal
4268 * handler is appropriate for the OS we're running under.
4270 * Return true if this signal is a normal generational GC thing that
4271 * we were able to handle, or false if it was abnormal and control
4272 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4275 gencgc_handle_wp_violation(void* fault_addr)
4277 int page_index = find_page_index(fault_addr);
4279 #if defined QSHOW_SIGNALS
4280 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4281 fault_addr, page_index));
4282 #endif
4284 /* Check whether the fault is within the dynamic space. */
4285 if (page_index == (-1)) {
4287 /* It can be helpful to be able to put a breakpoint on this
4288 * case to help diagnose low-level problems. */
4289 unhandled_sigmemoryfault();
4291 /* not within the dynamic space -- not our responsibility */
4292 return 0;
4294 } else {
4295 if (page_table[page_index].write_protected) {
4296 /* Unprotect the page. */
4297 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4298 page_table[page_index].write_protected_cleared = 1;
4299 page_table[page_index].write_protected = 0;
4300 } else {
4301 /* The only acceptable reason for this signal on a heap
4302 * access is that GENCGC write-protected the page.
4303 * However, if two CPUs hit a wp page near-simultaneously,
4304 * we had better not have the second one lose here if it
4305 * does this test after the first one has already set wp=0
4307 if(page_table[page_index].write_protected_cleared != 1)
4308 lose("fault in heap page not marked as write-protected");
4310 /* Don't worry, we can handle it. */
4311 return 1;
4315 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4316 * it's not just a case of the program hitting the write barrier, and
4317 * are about to let Lisp deal with it. It's basically just a
4318 * convenient place to set a gdb breakpoint. */
4319 void
4320 unhandled_sigmemoryfault()
4323 gc_alloc_update_all_page_tables(void)
4325 /* Flush the alloc regions updating the tables. */
4326 struct thread *th;
4327 for_each_thread(th)
4328 gc_alloc_update_page_tables(0, &th->alloc_region);
4329 gc_alloc_update_page_tables(1, &unboxed_region);
4330 gc_alloc_update_page_tables(0, &boxed_region);
4332 void
4333 gc_set_region_empty(struct alloc_region *region)
4335 region->first_page = 0;
4336 region->last_page = -1;
4337 region->start_addr = page_address(0);
4338 region->free_pointer = page_address(0);
4339 region->end_addr = page_address(0);