0.8.7.10:
[sbcl/lichteblau.git] / src / runtime / purify.c
blob9e8159a93394f368685d18ea53355f3fa2c780aa
1 /*
2 * C-level stuff to implement Lisp-level PURIFY
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
16 #include <stdio.h>
17 #include <sys/types.h>
18 #include <stdlib.h>
19 #include <strings.h>
20 #include <errno.h>
22 #include "runtime.h"
23 #include "os.h"
24 #include "sbcl.h"
25 #include "globals.h"
26 #include "validate.h"
27 #include "interrupt.h"
28 #include "purify.h"
29 #include "interr.h"
30 #include "gc.h"
31 #include "gc-internal.h"
32 #include "thread.h"
33 #include "genesis/primitive-objects.h"
34 #include "genesis/static-symbols.h"
36 #define PRINTNOISE
38 #if defined(LISP_FEATURE_X86)
39 /* again, what's so special about the x86 that this is differently
40 * visible there than on other platforms? -dan 20010125
42 static lispobj *dynamic_space_free_pointer;
43 #endif
44 extern unsigned long bytes_consed_between_gcs;
46 #define gc_abort() \
47 lose("GC invariant lost, file \"%s\", line %d", __FILE__, __LINE__)
49 #if 1
50 #define gc_assert(ex) do { \
51 if (!(ex)) gc_abort(); \
52 } while (0)
53 #else
54 #define gc_assert(ex)
55 #endif
58 /* These hold the original end of the read_only and static spaces so
59 * we can tell what are forwarding pointers. */
61 static lispobj *read_only_end, *static_end;
63 static lispobj *read_only_free, *static_free;
65 static lispobj *pscav(lispobj *addr, int nwords, boolean constant);
67 #define LATERBLOCKSIZE 1020
68 #define LATERMAXCOUNT 10
70 static struct
71 later {
72 struct later *next;
73 union {
74 lispobj *ptr;
75 int count;
76 } u[LATERBLOCKSIZE];
77 } *later_blocks = NULL;
78 static int later_count = 0;
80 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
81 #define NWORDS(x,y) (CEILING((x),(y)) / (y))
83 /* FIXME: Shouldn't this be defined in sbcl.h? See also notes in
84 * cheneygc.c */
86 #ifdef sparc
87 #define FUN_RAW_ADDR_OFFSET 0
88 #else
89 #define FUN_RAW_ADDR_OFFSET (6*sizeof(lispobj) - FUN_POINTER_LOWTAG)
90 #endif
92 static boolean
93 forwarding_pointer_p(lispobj obj)
95 lispobj *ptr = native_pointer(obj);
97 return ((static_end <= ptr && ptr <= static_free) ||
98 (read_only_end <= ptr && ptr <= read_only_free));
101 static boolean
102 dynamic_pointer_p(lispobj ptr)
104 #ifndef LISP_FEATURE_GENCGC
105 return (ptr >= (lispobj)current_dynamic_space
107 ptr < (lispobj)dynamic_space_free_pointer);
108 #else
109 /* Be more conservative, and remember, this is a maybe. */
110 return (ptr >= (lispobj)DYNAMIC_SPACE_START
112 ptr < (lispobj)dynamic_space_free_pointer);
113 #endif
116 static inline newspace_alloc(int nwords, int constantp)
118 lispobj *ret;
119 nwords=CEILING(nwords,2);
120 if(constantp) {
121 ret=read_only_free;
122 read_only_free+=nwords;
123 } else {
124 ret=static_free;
125 static_free+=nwords;
127 return ret;
132 #ifdef LISP_FEATURE_X86
134 #ifdef LISP_FEATURE_GENCGC
136 * enhanced x86/GENCGC stack scavenging by Douglas Crosher
138 * Scavenging the stack on the i386 is problematic due to conservative
139 * roots and raw return addresses. Here it is handled in two passes:
140 * the first pass runs before any objects are moved and tries to
141 * identify valid pointers and return address on the stack, the second
142 * pass scavenges these.
145 static unsigned pointer_filter_verbose = 0;
147 /* FIXME: This is substantially the same code as
148 * possibly_valid_dynamic_space_pointer in gencgc.c. The only
149 * relevant difference seems to be that the gencgc code also checks
150 * for raw pointers into Code objects, whereas in purify these are
151 * checked separately in setup_i386_stack_scav - they go onto
152 * valid_stack_ra_locations instead of just valid_stack_locations */
154 static int
155 valid_dynamic_space_pointer(lispobj *pointer, lispobj *start_addr)
157 /* If it's not a return address then it needs to be a valid Lisp
158 * pointer. */
159 if (!is_lisp_pointer((lispobj)pointer))
160 return 0;
162 /* Check that the object pointed to is consistent with the pointer
163 * low tag. */
164 switch (lowtag_of((lispobj)pointer)) {
165 case FUN_POINTER_LOWTAG:
166 /* Start_addr should be the enclosing code object, or a closure
167 * header. */
168 switch (widetag_of(*start_addr)) {
169 case CODE_HEADER_WIDETAG:
170 /* This case is probably caught above. */
171 break;
172 case CLOSURE_HEADER_WIDETAG:
173 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
174 if ((int)pointer != ((int)start_addr+FUN_POINTER_LOWTAG)) {
175 if (pointer_filter_verbose) {
176 fprintf(stderr,"*Wf2: %x %x %x\n", (unsigned int) pointer,
177 (unsigned int) start_addr, *start_addr);
179 return 0;
181 break;
182 default:
183 if (pointer_filter_verbose) {
184 fprintf(stderr,"*Wf3: %x %x %x\n", (unsigned int) pointer,
185 (unsigned int) start_addr, *start_addr);
187 return 0;
189 break;
190 case LIST_POINTER_LOWTAG:
191 if ((int)pointer != ((int)start_addr+LIST_POINTER_LOWTAG)) {
192 if (pointer_filter_verbose)
193 fprintf(stderr,"*Wl1: %x %x %x\n", (unsigned int) pointer,
194 (unsigned int) start_addr, *start_addr);
195 return 0;
197 /* Is it plausible cons? */
198 if ((is_lisp_pointer(start_addr[0])
199 || ((start_addr[0] & 3) == 0) /* fixnum */
200 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
201 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
202 && (is_lisp_pointer(start_addr[1])
203 || ((start_addr[1] & 3) == 0) /* fixnum */
204 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
205 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG))) {
206 break;
207 } else {
208 if (pointer_filter_verbose) {
209 fprintf(stderr,"*Wl2: %x %x %x\n", (unsigned int) pointer,
210 (unsigned int) start_addr, *start_addr);
212 return 0;
214 case INSTANCE_POINTER_LOWTAG:
215 if ((int)pointer != ((int)start_addr+INSTANCE_POINTER_LOWTAG)) {
216 if (pointer_filter_verbose) {
217 fprintf(stderr,"*Wi1: %x %x %x\n", (unsigned int) pointer,
218 (unsigned int) start_addr, *start_addr);
220 return 0;
222 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
223 if (pointer_filter_verbose) {
224 fprintf(stderr,"*Wi2: %x %x %x\n", (unsigned int) pointer,
225 (unsigned int) start_addr, *start_addr);
227 return 0;
229 break;
230 case OTHER_POINTER_LOWTAG:
231 if ((int)pointer != ((int)start_addr+OTHER_POINTER_LOWTAG)) {
232 if (pointer_filter_verbose) {
233 fprintf(stderr,"*Wo1: %x %x %x\n", (unsigned int) pointer,
234 (unsigned int) start_addr, *start_addr);
236 return 0;
238 /* Is it plausible? Not a cons. XXX should check the headers. */
239 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
240 if (pointer_filter_verbose) {
241 fprintf(stderr,"*Wo2: %x %x %x\n", (unsigned int) pointer,
242 (unsigned int) start_addr, *start_addr);
244 return 0;
246 switch (widetag_of(start_addr[0])) {
247 case UNBOUND_MARKER_WIDETAG:
248 case BASE_CHAR_WIDETAG:
249 if (pointer_filter_verbose) {
250 fprintf(stderr,"*Wo3: %x %x %x\n", (unsigned int) pointer,
251 (unsigned int) start_addr, *start_addr);
253 return 0;
255 /* only pointed to by function pointers? */
256 case CLOSURE_HEADER_WIDETAG:
257 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
258 if (pointer_filter_verbose) {
259 fprintf(stderr,"*Wo4: %x %x %x\n", (unsigned int) pointer,
260 (unsigned int) start_addr, *start_addr);
262 return 0;
264 case INSTANCE_HEADER_WIDETAG:
265 if (pointer_filter_verbose) {
266 fprintf(stderr,"*Wo5: %x %x %x\n", (unsigned int) pointer,
267 (unsigned int) start_addr, *start_addr);
269 return 0;
271 /* the valid other immediate pointer objects */
272 case SIMPLE_VECTOR_WIDETAG:
273 case RATIO_WIDETAG:
274 case COMPLEX_WIDETAG:
275 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
276 case COMPLEX_SINGLE_FLOAT_WIDETAG:
277 #endif
278 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
279 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
280 #endif
281 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
282 case COMPLEX_LONG_FLOAT_WIDETAG:
283 #endif
284 case SIMPLE_ARRAY_WIDETAG:
285 case COMPLEX_BASE_STRING_WIDETAG:
286 case COMPLEX_VECTOR_NIL_WIDETAG:
287 case COMPLEX_BIT_VECTOR_WIDETAG:
288 case COMPLEX_VECTOR_WIDETAG:
289 case COMPLEX_ARRAY_WIDETAG:
290 case VALUE_CELL_HEADER_WIDETAG:
291 case SYMBOL_HEADER_WIDETAG:
292 case FDEFN_WIDETAG:
293 case CODE_HEADER_WIDETAG:
294 case BIGNUM_WIDETAG:
295 case SINGLE_FLOAT_WIDETAG:
296 case DOUBLE_FLOAT_WIDETAG:
297 #ifdef LONG_FLOAT_WIDETAG
298 case LONG_FLOAT_WIDETAG:
299 #endif
300 case SIMPLE_ARRAY_NIL_WIDETAG:
301 case SIMPLE_BASE_STRING_WIDETAG:
302 case SIMPLE_BIT_VECTOR_WIDETAG:
303 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
304 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
305 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
306 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
307 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
308 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
309 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
310 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
311 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
312 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
313 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
314 #endif
315 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
316 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
317 #endif
318 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
319 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
320 #endif
321 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
322 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
323 #endif
324 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
325 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
326 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
327 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
328 #endif
329 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
330 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
331 #endif
332 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
333 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
334 #endif
335 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
336 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
337 #endif
338 case SAP_WIDETAG:
339 case WEAK_POINTER_WIDETAG:
340 break;
342 default:
343 if (pointer_filter_verbose) {
344 fprintf(stderr,"*Wo6: %x %x %x\n", (unsigned int) pointer,
345 (unsigned int) start_addr, *start_addr);
347 return 0;
349 break;
350 default:
351 if (pointer_filter_verbose) {
352 fprintf(stderr,"*W?: %x %x %x\n", (unsigned int) pointer,
353 (unsigned int) start_addr, *start_addr);
355 return 0;
358 /* looks good */
359 return 1;
362 #define MAX_STACK_POINTERS 256
363 lispobj *valid_stack_locations[MAX_STACK_POINTERS];
364 unsigned int num_valid_stack_locations;
366 #define MAX_STACK_RETURN_ADDRESSES 128
367 lispobj *valid_stack_ra_locations[MAX_STACK_RETURN_ADDRESSES];
368 lispobj *valid_stack_ra_code_objects[MAX_STACK_RETURN_ADDRESSES];
369 unsigned int num_valid_stack_ra_locations;
371 /* Identify valid stack slots. */
372 static void
373 setup_i386_stack_scav(lispobj *lowaddr, lispobj *base)
375 lispobj *sp = lowaddr;
376 num_valid_stack_locations = 0;
377 num_valid_stack_ra_locations = 0;
378 for (sp = lowaddr; sp < base; sp++) {
379 lispobj thing = *sp;
380 /* Find the object start address */
381 lispobj *start_addr = search_dynamic_space((void *)thing);
382 if (start_addr) {
383 /* We need to allow raw pointers into Code objects for
384 * return addresses. This will also pick up pointers to
385 * functions in code objects. */
386 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
387 /* FIXME asserting here is a really dumb thing to do.
388 * If we've overflowed some arbitrary static limit, we
389 * should just refuse to purify, instead of killing
390 * the whole lisp session
392 gc_assert(num_valid_stack_ra_locations <
393 MAX_STACK_RETURN_ADDRESSES);
394 valid_stack_ra_locations[num_valid_stack_ra_locations] = sp;
395 valid_stack_ra_code_objects[num_valid_stack_ra_locations++] =
396 (lispobj *)((int)start_addr + OTHER_POINTER_LOWTAG);
397 } else {
398 if (valid_dynamic_space_pointer((void *)thing, start_addr)) {
399 gc_assert(num_valid_stack_locations < MAX_STACK_POINTERS);
400 valid_stack_locations[num_valid_stack_locations++] = sp;
405 if (pointer_filter_verbose) {
406 fprintf(stderr, "number of valid stack pointers = %d\n",
407 num_valid_stack_locations);
408 fprintf(stderr, "number of stack return addresses = %d\n",
409 num_valid_stack_ra_locations);
413 static void
414 pscav_i386_stack(void)
416 int i;
418 for (i = 0; i < num_valid_stack_locations; i++)
419 pscav(valid_stack_locations[i], 1, 0);
421 for (i = 0; i < num_valid_stack_ra_locations; i++) {
422 lispobj code_obj = (lispobj)valid_stack_ra_code_objects[i];
423 pscav(&code_obj, 1, 0);
424 if (pointer_filter_verbose) {
425 fprintf(stderr,"*C moved RA %x to %x; for code object %x to %x\n",
426 *valid_stack_ra_locations[i],
427 (int)(*valid_stack_ra_locations[i])
428 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj),
429 (unsigned int) valid_stack_ra_code_objects[i], code_obj);
431 *valid_stack_ra_locations[i] =
432 ((int)(*valid_stack_ra_locations[i])
433 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj));
436 #endif
437 #endif
440 static void
441 pscav_later(lispobj *where, int count)
443 struct later *new;
445 if (count > LATERMAXCOUNT) {
446 while (count > LATERMAXCOUNT) {
447 pscav_later(where, LATERMAXCOUNT);
448 count -= LATERMAXCOUNT;
449 where += LATERMAXCOUNT;
452 else {
453 if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
454 (later_count == LATERBLOCKSIZE-1 && count > 1)) {
455 new = (struct later *)malloc(sizeof(struct later));
456 new->next = later_blocks;
457 if (later_blocks && later_count < LATERBLOCKSIZE)
458 later_blocks->u[later_count].ptr = NULL;
459 later_blocks = new;
460 later_count = 0;
463 if (count != 1)
464 later_blocks->u[later_count++].count = count;
465 later_blocks->u[later_count++].ptr = where;
469 static lispobj
470 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
472 int nwords;
473 lispobj result, *new, *old;
475 nwords = 1 + HeaderValue(header);
477 /* Allocate it */
478 old = (lispobj *)native_pointer(thing);
479 new = newspace_alloc(nwords,constant);
481 /* Copy it. */
482 bcopy(old, new, nwords * sizeof(lispobj));
484 /* Deposit forwarding pointer. */
485 result = make_lispobj(new, lowtag_of(thing));
486 *old = result;
488 /* Scavenge it. */
489 pscav(new, nwords, constant);
491 return result;
494 /* We need to look at the layout to see whether it is a pure structure
495 * class, and only then can we transport as constant. If it is pure,
496 * we can ALWAYS transport as a constant. */
497 static lispobj
498 ptrans_instance(lispobj thing, lispobj header, boolean /* ignored */ constant)
500 lispobj layout = ((struct instance *)native_pointer(thing))->slots[0];
501 lispobj pure = ((struct instance *)native_pointer(layout))->slots[15];
503 switch (pure) {
504 case T:
505 return (ptrans_boxed(thing, header, 1));
506 case NIL:
507 return (ptrans_boxed(thing, header, 0));
508 case 0:
510 /* Substructure: special case for the COMPACT-INFO-ENVs,
511 * where the instance may have a point to the dynamic
512 * space placed into it (e.g. the cache-name slot), but
513 * the lists and arrays at the time of a purify can be
514 * moved to the RO space. */
515 int nwords;
516 lispobj result, *new, *old;
518 nwords = 1 + HeaderValue(header);
520 /* Allocate it */
521 old = (lispobj *)native_pointer(thing);
522 new = newspace_alloc(nwords, 0); /* inconstant */
524 /* Copy it. */
525 bcopy(old, new, nwords * sizeof(lispobj));
527 /* Deposit forwarding pointer. */
528 result = make_lispobj(new, lowtag_of(thing));
529 *old = result;
531 /* Scavenge it. */
532 pscav(new, nwords, 1);
534 return result;
536 default:
537 gc_abort();
538 return NIL; /* dummy value: return something ... */
542 static lispobj
543 ptrans_fdefn(lispobj thing, lispobj header)
545 int nwords;
546 lispobj result, *new, *old, oldfn;
547 struct fdefn *fdefn;
549 nwords = 1 + HeaderValue(header);
551 /* Allocate it */
552 old = (lispobj *)native_pointer(thing);
553 new = newspace_alloc(nwords, 0); /* inconstant */
555 /* Copy it. */
556 bcopy(old, new, nwords * sizeof(lispobj));
558 /* Deposit forwarding pointer. */
559 result = make_lispobj(new, lowtag_of(thing));
560 *old = result;
562 /* Scavenge the function. */
563 fdefn = (struct fdefn *)new;
564 oldfn = fdefn->fun;
565 pscav(&fdefn->fun, 1, 0);
566 if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
567 fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
569 return result;
572 static lispobj
573 ptrans_unboxed(lispobj thing, lispobj header)
575 int nwords;
576 lispobj result, *new, *old;
578 nwords = 1 + HeaderValue(header);
580 /* Allocate it */
581 old = (lispobj *)native_pointer(thing);
582 new = newspace_alloc(nwords,1); /* always constant */
584 /* copy it. */
585 bcopy(old, new, nwords * sizeof(lispobj));
587 /* Deposit forwarding pointer. */
588 result = make_lispobj(new , lowtag_of(thing));
589 *old = result;
591 return result;
594 static lispobj
595 ptrans_vector(lispobj thing, int bits, int extra,
596 boolean boxed, boolean constant)
598 struct vector *vector;
599 int nwords;
600 lispobj result, *new;
602 vector = (struct vector *)native_pointer(thing);
603 nwords = 2 + (CEILING((fixnum_value(vector->length)+extra)*bits,32)>>5);
605 new=newspace_alloc(nwords, (constant || !boxed));
606 bcopy(vector, new, nwords * sizeof(lispobj));
608 result = make_lispobj(new, lowtag_of(thing));
609 vector->header = result;
611 if (boxed)
612 pscav(new, nwords, constant);
614 return result;
617 #ifdef LISP_FEATURE_X86
618 static void
619 apply_code_fixups_during_purify(struct code *old_code, struct code *new_code)
621 int nheader_words, ncode_words, nwords;
622 void *constants_start_addr, *constants_end_addr;
623 void *code_start_addr, *code_end_addr;
624 lispobj fixups = NIL;
625 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
626 struct vector *fixups_vector;
628 ncode_words = fixnum_value(new_code->code_size);
629 nheader_words = HeaderValue(*(lispobj *)new_code);
630 nwords = ncode_words + nheader_words;
632 constants_start_addr = (void *)new_code + 5*4;
633 constants_end_addr = (void *)new_code + nheader_words*4;
634 code_start_addr = (void *)new_code + nheader_words*4;
635 code_end_addr = (void *)new_code + nwords*4;
637 /* The first constant should be a pointer to the fixups for this
638 * code objects. Check. */
639 fixups = new_code->constants[0];
641 /* It will be 0 or the unbound-marker if there are no fixups, and
642 * will be an other-pointer to a vector if it is valid. */
643 if ((fixups==0) ||
644 (fixups==UNBOUND_MARKER_WIDETAG) ||
645 !is_lisp_pointer(fixups)) {
646 #ifdef LISP_FEATURE_GENCGC
647 /* Check for a possible errors. */
648 sniff_code_object(new_code,displacement);
649 #endif
650 return;
653 fixups_vector = (struct vector *)native_pointer(fixups);
655 /* Could be pointing to a forwarding pointer. */
656 if (is_lisp_pointer(fixups) && (dynamic_pointer_p(fixups))
657 && forwarding_pointer_p(*(lispobj *)fixups_vector)) {
658 /* If so then follow it. */
659 fixups_vector =
660 (struct vector *)native_pointer(*(lispobj *)fixups_vector);
663 if (widetag_of(fixups_vector->header) ==
664 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
665 /* We got the fixups for the code block. Now work through the
666 * vector, and apply a fixup at each address. */
667 int length = fixnum_value(fixups_vector->length);
668 int i;
669 for (i=0; i<length; i++) {
670 unsigned offset = fixups_vector->data[i];
671 /* Now check the current value of offset. */
672 unsigned old_value =
673 *(unsigned *)((unsigned)code_start_addr + offset);
675 /* If it's within the old_code object then it must be an
676 * absolute fixup (relative ones are not saved) */
677 if ((old_value>=(unsigned)old_code)
678 && (old_value<((unsigned)old_code + nwords*4)))
679 /* So add the dispacement. */
680 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
681 + displacement;
682 else
683 /* It is outside the old code object so it must be a relative
684 * fixup (absolute fixups are not saved). So subtract the
685 * displacement. */
686 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
687 - displacement;
691 /* No longer need the fixups. */
692 new_code->constants[0] = 0;
694 #ifdef LISP_FEATURE_GENCGC
695 /* Check for possible errors. */
696 sniff_code_object(new_code,displacement);
697 #endif
699 #endif
701 static lispobj
702 ptrans_code(lispobj thing)
704 struct code *code, *new;
705 int nwords;
706 lispobj func, result;
708 code = (struct code *)native_pointer(thing);
709 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
711 new = (struct code *)newspace_alloc(nwords,1); /* constant */
713 bcopy(code, new, nwords * sizeof(lispobj));
715 #ifdef LISP_FEATURE_X86
716 apply_code_fixups_during_purify(code,new);
717 #endif
719 result = make_lispobj(new, OTHER_POINTER_LOWTAG);
721 /* Stick in a forwarding pointer for the code object. */
722 *(lispobj *)code = result;
724 /* Put in forwarding pointers for all the functions. */
725 for (func = code->entry_points;
726 func != NIL;
727 func = ((struct simple_fun *)native_pointer(func))->next) {
729 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
731 *(lispobj *)native_pointer(func) = result + (func - thing);
734 /* Arrange to scavenge the debug info later. */
735 pscav_later(&new->debug_info, 1);
737 /* FIXME: why would this be a fixnum? */
738 /* "why" is a hard word, but apparently for compiled functions the
739 trace_table_offset contains the length of the instructions, as
740 a fixnum. See CODE-INST-AREA-LENGTH in
741 src/compiler/target-disassem.lisp. -- CSR, 2004-01-08 */
742 if (!(fixnump(new->trace_table_offset)))
743 #if 0
744 pscav(&new->trace_table_offset, 1, 0);
745 #else
746 new->trace_table_offset = NIL; /* limit lifetime */
747 #endif
749 /* Scavenge the constants. */
750 pscav(new->constants, HeaderValue(new->header)-5, 1);
752 /* Scavenge all the functions. */
753 pscav(&new->entry_points, 1, 1);
754 for (func = new->entry_points;
755 func != NIL;
756 func = ((struct simple_fun *)native_pointer(func))->next) {
757 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
758 gc_assert(!dynamic_pointer_p(func));
760 #ifdef LISP_FEATURE_X86
761 /* Temporarily convert the self pointer to a real function pointer. */
762 ((struct simple_fun *)native_pointer(func))->self
763 -= FUN_RAW_ADDR_OFFSET;
764 #endif
765 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
766 #ifdef LISP_FEATURE_X86
767 ((struct simple_fun *)native_pointer(func))->self
768 += FUN_RAW_ADDR_OFFSET;
769 #endif
770 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
773 return result;
776 static lispobj
777 ptrans_func(lispobj thing, lispobj header)
779 int nwords;
780 lispobj code, *new, *old, result;
781 struct simple_fun *function;
783 /* Thing can either be a function header, a closure function
784 * header, a closure, or a funcallable-instance. If it's a closure
785 * or a funcallable-instance, we do the same as ptrans_boxed.
786 * Otherwise we have to do something strange, 'cause it is buried
787 * inside a code object. */
789 if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG) {
791 /* We can only end up here if the code object has not been
792 * scavenged, because if it had been scavenged, forwarding pointers
793 * would have been left behind for all the entry points. */
795 function = (struct simple_fun *)native_pointer(thing);
796 code =
797 make_lispobj
798 ((native_pointer(thing) -
799 (HeaderValue(function->header))), OTHER_POINTER_LOWTAG);
801 /* This will cause the function's header to be replaced with a
802 * forwarding pointer. */
804 ptrans_code(code);
806 /* So we can just return that. */
807 return function->header;
809 else {
810 /* It's some kind of closure-like thing. */
811 nwords = 1 + HeaderValue(header);
812 old = (lispobj *)native_pointer(thing);
814 /* Allocate the new one. FINs *must* not go in read_only
815 * space. Closures can; they never change */
817 new = newspace_alloc
818 (nwords,(widetag_of(header)!=FUNCALLABLE_INSTANCE_HEADER_WIDETAG));
820 /* Copy it. */
821 bcopy(old, new, nwords * sizeof(lispobj));
823 /* Deposit forwarding pointer. */
824 result = make_lispobj(new, lowtag_of(thing));
825 *old = result;
827 /* Scavenge it. */
828 pscav(new, nwords, 0);
830 return result;
834 static lispobj
835 ptrans_returnpc(lispobj thing, lispobj header)
837 lispobj code, new;
839 /* Find the corresponding code object. */
840 code = thing - HeaderValue(header)*sizeof(lispobj);
842 /* Make sure it's been transported. */
843 new = *(lispobj *)native_pointer(code);
844 if (!forwarding_pointer_p(new))
845 new = ptrans_code(code);
847 /* Maintain the offset: */
848 return new + (thing - code);
851 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
853 static lispobj
854 ptrans_list(lispobj thing, boolean constant)
856 struct cons *old, *new, *orig;
857 int length;
859 orig = newspace_alloc(0,constant);
860 length = 0;
862 do {
863 /* Allocate a new cons cell. */
864 old = (struct cons *)native_pointer(thing);
865 new = (struct cons *) newspace_alloc(WORDS_PER_CONS,constant);
867 /* Copy the cons cell and keep a pointer to the cdr. */
868 new->car = old->car;
869 thing = new->cdr = old->cdr;
871 /* Set up the forwarding pointer. */
872 *(lispobj *)old = make_lispobj(new, LIST_POINTER_LOWTAG);
874 /* And count this cell. */
875 length++;
876 } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
877 dynamic_pointer_p(thing) &&
878 !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
880 /* Scavenge the list we just copied. */
881 pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
883 return make_lispobj(orig, LIST_POINTER_LOWTAG);
886 static lispobj
887 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
889 switch (widetag_of(header)) {
890 /* FIXME: this needs a reindent */
891 case BIGNUM_WIDETAG:
892 case SINGLE_FLOAT_WIDETAG:
893 case DOUBLE_FLOAT_WIDETAG:
894 #ifdef LONG_FLOAT_WIDETAG
895 case LONG_FLOAT_WIDETAG:
896 #endif
897 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
898 case COMPLEX_SINGLE_FLOAT_WIDETAG:
899 #endif
900 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
901 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
902 #endif
903 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
904 case COMPLEX_LONG_FLOAT_WIDETAG:
905 #endif
906 case SAP_WIDETAG:
907 return ptrans_unboxed(thing, header);
909 case RATIO_WIDETAG:
910 case COMPLEX_WIDETAG:
911 case SIMPLE_ARRAY_WIDETAG:
912 case COMPLEX_BASE_STRING_WIDETAG:
913 case COMPLEX_BIT_VECTOR_WIDETAG:
914 case COMPLEX_VECTOR_NIL_WIDETAG:
915 case COMPLEX_VECTOR_WIDETAG:
916 case COMPLEX_ARRAY_WIDETAG:
917 return ptrans_boxed(thing, header, constant);
919 case VALUE_CELL_HEADER_WIDETAG:
920 case WEAK_POINTER_WIDETAG:
921 return ptrans_boxed(thing, header, 0);
923 case SYMBOL_HEADER_WIDETAG:
924 return ptrans_boxed(thing, header, 0);
926 case SIMPLE_ARRAY_NIL_WIDETAG:
927 return ptrans_vector(thing, 0, 0, 0, constant);
929 case SIMPLE_BASE_STRING_WIDETAG:
930 return ptrans_vector(thing, 8, 1, 0, constant);
932 case SIMPLE_BIT_VECTOR_WIDETAG:
933 return ptrans_vector(thing, 1, 0, 0, constant);
935 case SIMPLE_VECTOR_WIDETAG:
936 return ptrans_vector(thing, 32, 0, 1, constant);
938 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
939 return ptrans_vector(thing, 2, 0, 0, constant);
941 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
942 return ptrans_vector(thing, 4, 0, 0, constant);
944 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
945 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
946 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
947 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
948 #endif
949 return ptrans_vector(thing, 8, 0, 0, constant);
951 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
952 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
953 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
954 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
955 #endif
956 return ptrans_vector(thing, 16, 0, 0, constant);
958 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
959 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
960 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
961 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
962 #endif
963 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
964 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
965 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
966 #endif
967 return ptrans_vector(thing, 32, 0, 0, constant);
969 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
970 return ptrans_vector(thing, 32, 0, 0, constant);
972 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
973 return ptrans_vector(thing, 64, 0, 0, constant);
975 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
976 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
977 #ifdef LISP_FEATURE_X86
978 return ptrans_vector(thing, 96, 0, 0, constant);
979 #endif
980 #ifdef sparc
981 return ptrans_vector(thing, 128, 0, 0, constant);
982 #endif
983 #endif
985 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
986 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
987 return ptrans_vector(thing, 64, 0, 0, constant);
988 #endif
990 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
991 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
992 return ptrans_vector(thing, 128, 0, 0, constant);
993 #endif
995 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
996 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
997 #ifdef LISP_FEATURE_X86
998 return ptrans_vector(thing, 192, 0, 0, constant);
999 #endif
1000 #ifdef sparc
1001 return ptrans_vector(thing, 256, 0, 0, constant);
1002 #endif
1003 #endif
1005 case CODE_HEADER_WIDETAG:
1006 return ptrans_code(thing);
1008 case RETURN_PC_HEADER_WIDETAG:
1009 return ptrans_returnpc(thing, header);
1011 case FDEFN_WIDETAG:
1012 return ptrans_fdefn(thing, header);
1014 default:
1015 /* Should only come across other pointers to the above stuff. */
1016 gc_abort();
1017 return NIL;
1021 static int
1022 pscav_fdefn(struct fdefn *fdefn)
1024 boolean fix_func;
1026 fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
1027 pscav(&fdefn->name, 1, 1);
1028 pscav(&fdefn->fun, 1, 0);
1029 if (fix_func)
1030 fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
1031 return sizeof(struct fdefn) / sizeof(lispobj);
1034 #ifdef LISP_FEATURE_X86
1035 /* now putting code objects in static space */
1036 static int
1037 pscav_code(struct code*code)
1039 int nwords;
1040 lispobj func;
1041 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
1043 /* Arrange to scavenge the debug info later. */
1044 pscav_later(&code->debug_info, 1);
1046 /* Scavenge the constants. */
1047 pscav(code->constants, HeaderValue(code->header)-5, 1);
1049 /* Scavenge all the functions. */
1050 pscav(&code->entry_points, 1, 1);
1051 for (func = code->entry_points;
1052 func != NIL;
1053 func = ((struct simple_fun *)native_pointer(func))->next) {
1054 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
1055 gc_assert(!dynamic_pointer_p(func));
1057 #ifdef LISP_FEATURE_X86
1058 /* Temporarily convert the self pointer to a real function
1059 * pointer. */
1060 ((struct simple_fun *)native_pointer(func))->self
1061 -= FUN_RAW_ADDR_OFFSET;
1062 #endif
1063 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
1064 #ifdef LISP_FEATURE_X86
1065 ((struct simple_fun *)native_pointer(func))->self
1066 += FUN_RAW_ADDR_OFFSET;
1067 #endif
1068 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
1071 return CEILING(nwords,2);
1073 #endif
1075 static lispobj *
1076 pscav(lispobj *addr, int nwords, boolean constant)
1078 lispobj thing, *thingp, header;
1079 int count = 0; /* (0 = dummy init value to stop GCC warning) */
1080 struct vector *vector;
1082 while (nwords > 0) {
1083 thing = *addr;
1084 if (is_lisp_pointer(thing)) {
1085 /* It's a pointer. Is it something we might have to move? */
1086 if (dynamic_pointer_p(thing)) {
1087 /* Maybe. Have we already moved it? */
1088 thingp = (lispobj *)native_pointer(thing);
1089 header = *thingp;
1090 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
1091 /* Yep, so just copy the forwarding pointer. */
1092 thing = header;
1093 else {
1094 /* Nope, copy the object. */
1095 switch (lowtag_of(thing)) {
1096 case FUN_POINTER_LOWTAG:
1097 thing = ptrans_func(thing, header);
1098 break;
1100 case LIST_POINTER_LOWTAG:
1101 thing = ptrans_list(thing, constant);
1102 break;
1104 case INSTANCE_POINTER_LOWTAG:
1105 thing = ptrans_instance(thing, header, constant);
1106 break;
1108 case OTHER_POINTER_LOWTAG:
1109 thing = ptrans_otherptr(thing, header, constant);
1110 break;
1112 default:
1113 /* It was a pointer, but not one of them? */
1114 gc_abort();
1117 *addr = thing;
1119 count = 1;
1121 else if (thing & 3) { /* FIXME: 3? not 2? */
1122 /* It's an other immediate. Maybe the header for an unboxed */
1123 /* object. */
1124 switch (widetag_of(thing)) {
1125 case BIGNUM_WIDETAG:
1126 case SINGLE_FLOAT_WIDETAG:
1127 case DOUBLE_FLOAT_WIDETAG:
1128 #ifdef LONG_FLOAT_WIDETAG
1129 case LONG_FLOAT_WIDETAG:
1130 #endif
1131 case SAP_WIDETAG:
1132 /* It's an unboxed simple object. */
1133 count = HeaderValue(thing)+1;
1134 break;
1136 case SIMPLE_VECTOR_WIDETAG:
1137 if (HeaderValue(thing) == subtype_VectorValidHashing) {
1138 *addr = (subtype_VectorMustRehash << N_WIDETAG_BITS) |
1139 SIMPLE_VECTOR_WIDETAG;
1141 count = 1;
1142 break;
1144 case SIMPLE_ARRAY_NIL_WIDETAG:
1145 count = 2;
1146 break;
1148 case SIMPLE_BASE_STRING_WIDETAG:
1149 vector = (struct vector *)addr;
1150 count = CEILING(NWORDS(fixnum_value(vector->length)+1,4)+2,2);
1151 break;
1153 case SIMPLE_BIT_VECTOR_WIDETAG:
1154 vector = (struct vector *)addr;
1155 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
1156 break;
1158 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
1159 vector = (struct vector *)addr;
1160 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
1161 break;
1163 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1164 vector = (struct vector *)addr;
1165 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
1166 break;
1168 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1169 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1170 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1171 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
1172 #endif
1173 vector = (struct vector *)addr;
1174 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
1175 break;
1177 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1178 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1179 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1180 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
1181 #endif
1182 vector = (struct vector *)addr;
1183 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
1184 break;
1186 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1187 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1188 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1189 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
1190 #endif
1191 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1192 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1193 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
1194 #endif
1195 vector = (struct vector *)addr;
1196 count = CEILING(fixnum_value(vector->length)+2,2);
1197 break;
1199 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1200 vector = (struct vector *)addr;
1201 count = CEILING(fixnum_value(vector->length)+2,2);
1202 break;
1204 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1205 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1206 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1207 #endif
1208 vector = (struct vector *)addr;
1209 count = fixnum_value(vector->length)*2+2;
1210 break;
1212 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1213 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1214 vector = (struct vector *)addr;
1215 #ifdef LISP_FEATURE_X86
1216 count = fixnum_value(vector->length)*3+2;
1217 #endif
1218 #ifdef sparc
1219 count = fixnum_value(vector->length)*4+2;
1220 #endif
1221 break;
1222 #endif
1224 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1225 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1226 vector = (struct vector *)addr;
1227 count = fixnum_value(vector->length)*4+2;
1228 break;
1229 #endif
1231 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1232 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1233 vector = (struct vector *)addr;
1234 #ifdef LISP_FEATURE_X86
1235 count = fixnum_value(vector->length)*6+2;
1236 #endif
1237 #ifdef sparc
1238 count = fixnum_value(vector->length)*8+2;
1239 #endif
1240 break;
1241 #endif
1243 case CODE_HEADER_WIDETAG:
1244 #ifndef LISP_FEATURE_X86
1245 gc_abort(); /* no code headers in static space */
1246 #else
1247 count = pscav_code((struct code*)addr);
1248 #endif
1249 break;
1251 case SIMPLE_FUN_HEADER_WIDETAG:
1252 case RETURN_PC_HEADER_WIDETAG:
1253 /* We should never hit any of these, 'cause they occur
1254 * buried in the middle of code objects. */
1255 gc_abort();
1256 break;
1258 #ifdef LISP_FEATURE_X86
1259 case CLOSURE_HEADER_WIDETAG:
1260 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
1261 /* The function self pointer needs special care on the
1262 * x86 because it is the real entry point. */
1264 lispobj fun = ((struct closure *)addr)->fun
1265 - FUN_RAW_ADDR_OFFSET;
1266 pscav(&fun, 1, constant);
1267 ((struct closure *)addr)->fun = fun + FUN_RAW_ADDR_OFFSET;
1269 count = 2;
1270 break;
1271 #endif
1273 case WEAK_POINTER_WIDETAG:
1274 /* Weak pointers get preserved during purify, 'cause I
1275 * don't feel like figuring out how to break them. */
1276 pscav(addr+1, 2, constant);
1277 count = 4;
1278 break;
1280 case FDEFN_WIDETAG:
1281 /* We have to handle fdefn objects specially, so we
1282 * can fix up the raw function address. */
1283 count = pscav_fdefn((struct fdefn *)addr);
1284 break;
1286 default:
1287 count = 1;
1288 break;
1291 else {
1292 /* It's a fixnum. */
1293 count = 1;
1296 addr += count;
1297 nwords -= count;
1300 return addr;
1304 purify(lispobj static_roots, lispobj read_only_roots)
1306 lispobj *clean;
1307 int count, i;
1308 struct later *laters, *next;
1309 struct thread *thread;
1311 if(all_threads->next) {
1312 /* FIXME: there should be _some_ sensible error reporting
1313 * convention. See following comment too */
1314 fprintf(stderr,"Can't purify when more than one thread exists\n");
1315 fflush(stderr);
1316 return 0;
1319 #ifdef PRINTNOISE
1320 printf("[doing purification:");
1321 fflush(stdout);
1322 #endif
1323 #ifdef LISP_FEATURE_GENCGC
1324 gc_alloc_update_all_page_tables();
1325 #endif
1326 for_each_thread(thread)
1327 if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread)) != 0) {
1328 /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
1329 * its error simply by a. printing a string b. to stdout instead
1330 * of stderr. */
1331 printf(" Ack! Can't purify interrupt contexts. ");
1332 fflush(stdout);
1333 return 0;
1336 #if defined(LISP_FEATURE_X86)
1337 dynamic_space_free_pointer =
1338 (lispobj*)SymbolValue(ALLOCATION_POINTER,0);
1339 #endif
1341 read_only_end = read_only_free =
1342 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
1343 static_end = static_free =
1344 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
1346 #ifdef PRINTNOISE
1347 printf(" roots");
1348 fflush(stdout);
1349 #endif
1351 #if (defined(LISP_FEATURE_GENCGC) && defined(LISP_FEATURE_X86))
1352 /* note this expects only one thread to be active. We'd have to
1353 * stop all the others in the same way as GC does if we wanted
1354 * PURIFY to work when >1 thread exists */
1355 setup_i386_stack_scav(((&static_roots)-2),
1356 ((void *)all_threads->control_stack_end));
1357 #endif
1359 pscav(&static_roots, 1, 0);
1360 pscav(&read_only_roots, 1, 1);
1362 #ifdef PRINTNOISE
1363 printf(" handlers");
1364 fflush(stdout);
1365 #endif
1366 pscav((lispobj *) all_threads->interrupt_data->interrupt_handlers,
1367 sizeof(all_threads->interrupt_data->interrupt_handlers)
1368 / sizeof(lispobj),
1371 #ifdef PRINTNOISE
1372 printf(" stack");
1373 fflush(stdout);
1374 #endif
1375 #ifndef LISP_FEATURE_X86
1376 pscav((lispobj *)all_threads->control_stack_start,
1377 current_control_stack_pointer -
1378 all_threads->control_stack_start,
1380 #else
1381 #ifdef LISP_FEATURE_GENCGC
1382 pscav_i386_stack();
1383 #endif
1384 #endif
1386 #ifdef PRINTNOISE
1387 printf(" bindings");
1388 fflush(stdout);
1389 #endif
1390 #if !defined(LISP_FEATURE_X86)
1391 pscav( (lispobj *)all_threads->binding_stack_start,
1392 (lispobj *)current_binding_stack_pointer -
1393 all_threads->binding_stack_start,
1395 #else
1396 for_each_thread(thread) {
1397 pscav( (lispobj *)thread->binding_stack_start,
1398 (lispobj *)SymbolValue(BINDING_STACK_POINTER,thread) -
1399 (lispobj *)thread->binding_stack_start,
1401 pscav( (lispobj *) (thread+1),
1402 fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
1403 (sizeof (struct thread))/(sizeof (lispobj)),
1408 #endif
1410 /* The original CMU CL code had scavenge-read-only-space code
1411 * controlled by the Lisp-level variable
1412 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
1413 * wasn't documented under what circumstances it was useful or
1414 * safe to turn it on, so it's been turned off in SBCL. If you
1415 * want/need this functionality, and can test and document it,
1416 * please submit a patch. */
1417 #if 0
1418 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
1419 && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
1420 unsigned read_only_space_size =
1421 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
1422 (lispobj *)READ_ONLY_SPACE_START;
1423 fprintf(stderr,
1424 "scavenging read only space: %d bytes\n",
1425 read_only_space_size * sizeof(lispobj));
1426 pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
1428 #endif
1430 #ifdef PRINTNOISE
1431 printf(" static");
1432 fflush(stdout);
1433 #endif
1434 clean = (lispobj *)STATIC_SPACE_START;
1435 do {
1436 while (clean != static_free)
1437 clean = pscav(clean, static_free - clean, 0);
1438 laters = later_blocks;
1439 count = later_count;
1440 later_blocks = NULL;
1441 later_count = 0;
1442 while (laters != NULL) {
1443 for (i = 0; i < count; i++) {
1444 if (laters->u[i].count == 0) {
1446 } else if (laters->u[i].count <= LATERMAXCOUNT) {
1447 pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
1448 i++;
1449 } else {
1450 pscav(laters->u[i].ptr, 1, 1);
1453 next = laters->next;
1454 free(laters);
1455 laters = next;
1456 count = LATERBLOCKSIZE;
1458 } while (clean != static_free || later_blocks != NULL);
1460 #ifdef PRINTNOISE
1461 printf(" cleanup");
1462 fflush(stdout);
1463 #endif
1465 os_zero((os_vm_address_t) current_dynamic_space,
1466 (os_vm_size_t) DYNAMIC_SPACE_SIZE);
1468 /* Zero the stack. Note that the stack is also zeroed by SUB-GC
1469 * calling SCRUB-CONTROL-STACK - this zeros the stack on the x86. */
1470 #ifndef LISP_FEATURE_X86
1471 os_zero((os_vm_address_t) current_control_stack_pointer,
1472 (os_vm_size_t)
1473 ((all_threads->control_stack_end -
1474 current_control_stack_pointer) * sizeof(lispobj)));
1475 #endif
1477 /* It helps to update the heap free pointers so that free_heap can
1478 * verify after it's done. */
1479 SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free,0);
1480 SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free,0);
1482 #if !defined(LISP_FEATURE_X86)
1483 dynamic_space_free_pointer = current_dynamic_space;
1484 set_auto_gc_trigger(bytes_consed_between_gcs);
1485 #else
1486 #if defined LISP_FEATURE_GENCGC
1487 gc_free_heap();
1488 #else
1489 #error unsupported case /* in CMU CL, was "ibmrt using GC" */
1490 #endif
1491 #endif
1493 #ifdef PRINTNOISE
1494 printf(" done]\n");
1495 fflush(stdout);
1496 #endif
1497 return 0;