0.pre8.28
[sbcl/lichteblau.git] / src / runtime / purify.c
blobe061156d7fa74355496e5bc9cdd49d7fd3109eca
1 /*
2 * C-level stuff to implement Lisp-level PURIFY
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
16 #include <stdio.h>
17 #include <sys/types.h>
18 #include <stdlib.h>
19 #include <strings.h>
20 #include <sys/ptrace.h>
21 #include <linux/user.h>
22 #include <errno.h>
24 #include "runtime.h"
25 #include "os.h"
26 #include "sbcl.h"
27 #include "globals.h"
28 #include "validate.h"
29 #include "interrupt.h"
30 #include "purify.h"
31 #include "interr.h"
32 #include "gc.h"
33 #include "gc-internal.h"
34 #include "thread.h"
35 #include "genesis/primitive-objects.h"
36 #include "genesis/static-symbols.h"
38 #define PRINTNOISE
40 #if defined(__i386__)
41 /* again, what's so special about the x86 that this is differently
42 * visible there than on other platforms? -dan 20010125
44 static lispobj *dynamic_space_free_pointer;
45 #endif
47 #define gc_abort() \
48 lose("GC invariant lost, file \"%s\", line %d", __FILE__, __LINE__)
50 #if 1
51 #define gc_assert(ex) do { \
52 if (!(ex)) gc_abort(); \
53 } while (0)
54 #else
55 #define gc_assert(ex)
56 #endif
59 /* These hold the original end of the read_only and static spaces so
60 * we can tell what are forwarding pointers. */
62 static lispobj *read_only_end, *static_end;
64 static lispobj *read_only_free, *static_free;
66 static lispobj *pscav(lispobj *addr, int nwords, boolean constant);
68 #define LATERBLOCKSIZE 1020
69 #define LATERMAXCOUNT 10
71 static struct
72 later {
73 struct later *next;
74 union {
75 lispobj *ptr;
76 int count;
77 } u[LATERBLOCKSIZE];
78 } *later_blocks = NULL;
79 static int later_count = 0;
81 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
82 #define NWORDS(x,y) (CEILING((x),(y)) / (y))
84 /* FIXME: Shouldn't this be defined in sbcl.h? See also notes in
85 * cheneygc.c */
87 #ifdef sparc
88 #define FUN_RAW_ADDR_OFFSET 0
89 #else
90 #define FUN_RAW_ADDR_OFFSET (6*sizeof(lispobj) - FUN_POINTER_LOWTAG)
91 #endif
93 static boolean
94 forwarding_pointer_p(lispobj obj)
96 lispobj *ptr = native_pointer(obj);
98 return ((static_end <= ptr && ptr <= static_free) ||
99 (read_only_end <= ptr && ptr <= read_only_free));
102 static boolean
103 dynamic_pointer_p(lispobj ptr)
105 #ifndef __i386__
106 return (ptr >= (lispobj)current_dynamic_space
108 ptr < (lispobj)dynamic_space_free_pointer);
109 #else
110 /* Be more conservative, and remember, this is a maybe. */
111 return (ptr >= (lispobj)DYNAMIC_SPACE_START
113 ptr < (lispobj)dynamic_space_free_pointer);
114 #endif
118 #ifdef __i386__
120 #ifdef LISP_FEATURE_GENCGC
122 * enhanced x86/GENCGC stack scavenging by Douglas Crosher
124 * Scavenging the stack on the i386 is problematic due to conservative
125 * roots and raw return addresses. Here it is handled in two passes:
126 * the first pass runs before any objects are moved and tries to
127 * identify valid pointers and return address on the stack, the second
128 * pass scavenges these.
131 static unsigned pointer_filter_verbose = 0;
133 /* FIXME: This is substantially the same code as in gencgc.c. (There
134 * are some differences, at least (1) the gencgc.c code needs to worry
135 * about return addresses on the stack pinning code objects, (2) the
136 * gencgc.c code needs to worry about the GC maybe happening in an
137 * interrupt service routine when the main thread of control was
138 * interrupted just as it had allocated memory and before it
139 * initialized it, while PURIFY needn't worry about that, and (3) the
140 * gencgc.c code has mutated more under maintenance since the fork
141 * from CMU CL than the code here has.) The two versions should be
142 * made to explicitly share common code, instead of just two different
143 * cut-and-pasted versions. */
144 static int
145 valid_dynamic_space_pointer(lispobj *pointer, lispobj *start_addr)
147 /* If it's not a return address then it needs to be a valid Lisp
148 * pointer. */
149 if (!is_lisp_pointer((lispobj)pointer))
150 return 0;
152 /* Check that the object pointed to is consistent with the pointer
153 * low tag. */
154 switch (lowtag_of((lispobj)pointer)) {
155 case FUN_POINTER_LOWTAG:
156 /* Start_addr should be the enclosing code object, or a closure
157 * header. */
158 switch (widetag_of(*start_addr)) {
159 case CODE_HEADER_WIDETAG:
160 /* This case is probably caught above. */
161 break;
162 case CLOSURE_HEADER_WIDETAG:
163 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
164 if ((int)pointer != ((int)start_addr+FUN_POINTER_LOWTAG)) {
165 if (pointer_filter_verbose) {
166 fprintf(stderr,"*Wf2: %x %x %x\n", (unsigned int) pointer,
167 (unsigned int) start_addr, *start_addr);
169 return 0;
171 break;
172 default:
173 if (pointer_filter_verbose) {
174 fprintf(stderr,"*Wf3: %x %x %x\n", (unsigned int) pointer,
175 (unsigned int) start_addr, *start_addr);
177 return 0;
179 break;
180 case LIST_POINTER_LOWTAG:
181 if ((int)pointer != ((int)start_addr+LIST_POINTER_LOWTAG)) {
182 if (pointer_filter_verbose)
183 fprintf(stderr,"*Wl1: %x %x %x\n", (unsigned int) pointer,
184 (unsigned int) start_addr, *start_addr);
185 return 0;
187 /* Is it plausible cons? */
188 if ((is_lisp_pointer(start_addr[0])
189 || ((start_addr[0] & 3) == 0) /* fixnum */
190 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
191 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
192 && (is_lisp_pointer(start_addr[1])
193 || ((start_addr[1] & 3) == 0) /* fixnum */
194 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
195 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG))) {
196 break;
197 } else {
198 if (pointer_filter_verbose) {
199 fprintf(stderr,"*Wl2: %x %x %x\n", (unsigned int) pointer,
200 (unsigned int) start_addr, *start_addr);
202 return 0;
204 case INSTANCE_POINTER_LOWTAG:
205 if ((int)pointer != ((int)start_addr+INSTANCE_POINTER_LOWTAG)) {
206 if (pointer_filter_verbose) {
207 fprintf(stderr,"*Wi1: %x %x %x\n", (unsigned int) pointer,
208 (unsigned int) start_addr, *start_addr);
210 return 0;
212 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
213 if (pointer_filter_verbose) {
214 fprintf(stderr,"*Wi2: %x %x %x\n", (unsigned int) pointer,
215 (unsigned int) start_addr, *start_addr);
217 return 0;
219 break;
220 case OTHER_POINTER_LOWTAG:
221 if ((int)pointer != ((int)start_addr+OTHER_POINTER_LOWTAG)) {
222 if (pointer_filter_verbose) {
223 fprintf(stderr,"*Wo1: %x %x %x\n", (unsigned int) pointer,
224 (unsigned int) start_addr, *start_addr);
226 return 0;
228 /* Is it plausible? Not a cons. XXX should check the headers. */
229 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
230 if (pointer_filter_verbose) {
231 fprintf(stderr,"*Wo2: %x %x %x\n", (unsigned int) pointer,
232 (unsigned int) start_addr, *start_addr);
234 return 0;
236 switch (widetag_of(start_addr[0])) {
237 case UNBOUND_MARKER_WIDETAG:
238 case BASE_CHAR_WIDETAG:
239 if (pointer_filter_verbose) {
240 fprintf(stderr,"*Wo3: %x %x %x\n", (unsigned int) pointer,
241 (unsigned int) start_addr, *start_addr);
243 return 0;
245 /* only pointed to by function pointers? */
246 case CLOSURE_HEADER_WIDETAG:
247 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
248 if (pointer_filter_verbose) {
249 fprintf(stderr,"*Wo4: %x %x %x\n", (unsigned int) pointer,
250 (unsigned int) start_addr, *start_addr);
252 return 0;
254 case INSTANCE_HEADER_WIDETAG:
255 if (pointer_filter_verbose) {
256 fprintf(stderr,"*Wo5: %x %x %x\n", (unsigned int) pointer,
257 (unsigned int) start_addr, *start_addr);
259 return 0;
261 /* the valid other immediate pointer objects */
262 case SIMPLE_VECTOR_WIDETAG:
263 case RATIO_WIDETAG:
264 case COMPLEX_WIDETAG:
265 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
266 case COMPLEX_SINGLE_FLOAT_WIDETAG:
267 #endif
268 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
269 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
270 #endif
271 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
272 case COMPLEX_LONG_FLOAT_WIDETAG:
273 #endif
274 case SIMPLE_ARRAY_WIDETAG:
275 case COMPLEX_STRING_WIDETAG:
276 case COMPLEX_BIT_VECTOR_WIDETAG:
277 case COMPLEX_VECTOR_WIDETAG:
278 case COMPLEX_ARRAY_WIDETAG:
279 case VALUE_CELL_HEADER_WIDETAG:
280 case SYMBOL_HEADER_WIDETAG:
281 case FDEFN_WIDETAG:
282 case CODE_HEADER_WIDETAG:
283 case BIGNUM_WIDETAG:
284 case SINGLE_FLOAT_WIDETAG:
285 case DOUBLE_FLOAT_WIDETAG:
286 #ifdef LONG_FLOAT_WIDETAG
287 case LONG_FLOAT_WIDETAG:
288 #endif
289 case SIMPLE_STRING_WIDETAG:
290 case SIMPLE_BIT_VECTOR_WIDETAG:
291 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
292 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
293 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
294 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
295 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
296 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
297 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
298 #endif
299 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
300 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
301 #endif
302 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
303 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
304 #endif
305 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
306 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
307 #endif
308 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
309 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
310 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
311 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
312 #endif
313 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
314 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
315 #endif
316 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
317 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
318 #endif
319 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
320 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
321 #endif
322 case SAP_WIDETAG:
323 case WEAK_POINTER_WIDETAG:
324 break;
326 default:
327 if (pointer_filter_verbose) {
328 fprintf(stderr,"*Wo6: %x %x %x\n", (unsigned int) pointer,
329 (unsigned int) start_addr, *start_addr);
331 return 0;
333 break;
334 default:
335 if (pointer_filter_verbose) {
336 fprintf(stderr,"*W?: %x %x %x\n", (unsigned int) pointer,
337 (unsigned int) start_addr, *start_addr);
339 return 0;
342 /* looks good */
343 return 1;
346 #define MAX_STACK_POINTERS 256
347 lispobj *valid_stack_locations[MAX_STACK_POINTERS];
348 unsigned int num_valid_stack_locations;
350 #define MAX_STACK_RETURN_ADDRESSES 128
351 lispobj *valid_stack_ra_locations[MAX_STACK_RETURN_ADDRESSES];
352 lispobj *valid_stack_ra_code_objects[MAX_STACK_RETURN_ADDRESSES];
353 unsigned int num_valid_stack_ra_locations;
355 /* Identify valid stack slots. */
356 static void
357 setup_i386_stack_scav(lispobj *lowaddr, lispobj *base)
359 lispobj *sp = lowaddr;
360 num_valid_stack_locations = 0;
361 num_valid_stack_ra_locations = 0;
362 for (sp = lowaddr; sp < base; sp++) {
363 lispobj thing = *sp;
364 /* Find the object start address */
365 lispobj *start_addr = search_dynamic_space((void *)thing);
366 if (start_addr) {
367 /* We need to allow raw pointers into Code objects for
368 * return addresses. This will also pick up pointers to
369 * functions in code objects. */
370 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
371 /* FIXME asserting here is a really dumb thing to do.
372 * If we've overflowed some arbitrary static limit, we
373 * should just refuse to purify, instead of killing
374 * the whole lisp session
376 gc_assert(num_valid_stack_ra_locations <
377 MAX_STACK_RETURN_ADDRESSES);
378 valid_stack_ra_locations[num_valid_stack_ra_locations] = sp;
379 valid_stack_ra_code_objects[num_valid_stack_ra_locations++] =
380 (lispobj *)((int)start_addr + OTHER_POINTER_LOWTAG);
381 } else {
382 if (valid_dynamic_space_pointer((void *)thing, start_addr)) {
383 gc_assert(num_valid_stack_locations < MAX_STACK_POINTERS);
384 valid_stack_locations[num_valid_stack_locations++] = sp;
389 if (pointer_filter_verbose) {
390 fprintf(stderr, "number of valid stack pointers = %d\n",
391 num_valid_stack_locations);
392 fprintf(stderr, "number of stack return addresses = %d\n",
393 num_valid_stack_ra_locations);
397 static void
398 pscav_i386_stack(void)
400 int i;
402 for (i = 0; i < num_valid_stack_locations; i++)
403 pscav(valid_stack_locations[i], 1, 0);
405 for (i = 0; i < num_valid_stack_ra_locations; i++) {
406 lispobj code_obj = (lispobj)valid_stack_ra_code_objects[i];
407 pscav(&code_obj, 1, 0);
408 if (pointer_filter_verbose) {
409 fprintf(stderr,"*C moved RA %x to %x; for code object %x to %x\n",
410 *valid_stack_ra_locations[i],
411 (int)(*valid_stack_ra_locations[i])
412 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj),
413 (unsigned int) valid_stack_ra_code_objects[i], code_obj);
415 *valid_stack_ra_locations[i] =
416 ((int)(*valid_stack_ra_locations[i])
417 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj));
420 #endif
421 #endif
424 static void
425 pscav_later(lispobj *where, int count)
427 struct later *new;
429 if (count > LATERMAXCOUNT) {
430 while (count > LATERMAXCOUNT) {
431 pscav_later(where, LATERMAXCOUNT);
432 count -= LATERMAXCOUNT;
433 where += LATERMAXCOUNT;
436 else {
437 if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
438 (later_count == LATERBLOCKSIZE-1 && count > 1)) {
439 new = (struct later *)malloc(sizeof(struct later));
440 new->next = later_blocks;
441 if (later_blocks && later_count < LATERBLOCKSIZE)
442 later_blocks->u[later_count].ptr = NULL;
443 later_blocks = new;
444 later_count = 0;
447 if (count != 1)
448 later_blocks->u[later_count++].count = count;
449 later_blocks->u[later_count++].ptr = where;
453 static lispobj
454 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
456 int nwords;
457 lispobj result, *new, *old;
459 nwords = 1 + HeaderValue(header);
461 /* Allocate it */
462 old = (lispobj *)native_pointer(thing);
463 if (constant) {
464 new = read_only_free;
465 read_only_free += CEILING(nwords, 2);
467 else {
468 new = static_free;
469 static_free += CEILING(nwords, 2);
472 /* Copy it. */
473 bcopy(old, new, nwords * sizeof(lispobj));
475 /* Deposit forwarding pointer. */
476 result = make_lispobj(new, lowtag_of(thing));
477 *old = result;
479 /* Scavenge it. */
480 pscav(new, nwords, constant);
482 return result;
485 /* We need to look at the layout to see whether it is a pure structure
486 * class, and only then can we transport as constant. If it is pure,
487 * we can ALWAYS transport as a constant. */
488 static lispobj
489 ptrans_instance(lispobj thing, lispobj header, boolean constant)
491 lispobj layout = ((struct instance *)native_pointer(thing))->slots[0];
492 lispobj pure = ((struct instance *)native_pointer(layout))->slots[15];
494 switch (pure) {
495 case T:
496 return (ptrans_boxed(thing, header, 1));
497 case NIL:
498 return (ptrans_boxed(thing, header, 0));
499 case 0:
501 /* Substructure: special case for the COMPACT-INFO-ENVs,
502 * where the instance may have a point to the dynamic
503 * space placed into it (e.g. the cache-name slot), but
504 * the lists and arrays at the time of a purify can be
505 * moved to the RO space. */
506 int nwords;
507 lispobj result, *new, *old;
509 nwords = 1 + HeaderValue(header);
511 /* Allocate it */
512 old = (lispobj *)native_pointer(thing);
513 new = static_free;
514 static_free += CEILING(nwords, 2);
516 /* Copy it. */
517 bcopy(old, new, nwords * sizeof(lispobj));
519 /* Deposit forwarding pointer. */
520 result = make_lispobj(new, lowtag_of(thing));
521 *old = result;
523 /* Scavenge it. */
524 pscav(new, nwords, 1);
526 return result;
528 default:
529 gc_abort();
530 return NIL; /* dummy value: return something ... */
534 static lispobj
535 ptrans_fdefn(lispobj thing, lispobj header)
537 int nwords;
538 lispobj result, *new, *old, oldfn;
539 struct fdefn *fdefn;
541 nwords = 1 + HeaderValue(header);
543 /* Allocate it */
544 old = (lispobj *)native_pointer(thing);
545 new = static_free;
546 static_free += CEILING(nwords, 2);
548 /* Copy it. */
549 bcopy(old, new, nwords * sizeof(lispobj));
551 /* Deposit forwarding pointer. */
552 result = make_lispobj(new, lowtag_of(thing));
553 *old = result;
555 /* Scavenge the function. */
556 fdefn = (struct fdefn *)new;
557 oldfn = fdefn->fun;
558 pscav(&fdefn->fun, 1, 0);
559 if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
560 fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
562 return result;
565 static lispobj
566 ptrans_unboxed(lispobj thing, lispobj header)
568 int nwords;
569 lispobj result, *new, *old;
571 nwords = 1 + HeaderValue(header);
573 /* Allocate it */
574 old = (lispobj *)native_pointer(thing);
575 new = read_only_free;
576 read_only_free += CEILING(nwords, 2);
578 /* Copy it. */
579 bcopy(old, new, nwords * sizeof(lispobj));
581 /* Deposit forwarding pointer. */
582 result = make_lispobj(new , lowtag_of(thing));
583 *old = result;
585 return result;
588 static lispobj
589 ptrans_vector(lispobj thing, int bits, int extra,
590 boolean boxed, boolean constant)
592 struct vector *vector;
593 int nwords;
594 lispobj result, *new;
596 vector = (struct vector *)native_pointer(thing);
597 nwords = 2 + (CEILING((fixnum_value(vector->length)+extra)*bits,32)>>5);
599 if (boxed && !constant) {
600 new = static_free;
601 static_free += CEILING(nwords, 2);
603 else {
604 new = read_only_free;
605 read_only_free += CEILING(nwords, 2);
608 bcopy(vector, new, nwords * sizeof(lispobj));
610 result = make_lispobj(new, lowtag_of(thing));
611 vector->header = result;
613 if (boxed)
614 pscav(new, nwords, constant);
616 return result;
619 #ifdef __i386__
620 static void
621 apply_code_fixups_during_purify(struct code *old_code, struct code *new_code)
623 int nheader_words, ncode_words, nwords;
624 void *constants_start_addr, *constants_end_addr;
625 void *code_start_addr, *code_end_addr;
626 lispobj fixups = NIL;
627 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
628 struct vector *fixups_vector;
630 ncode_words = fixnum_value(new_code->code_size);
631 nheader_words = HeaderValue(*(lispobj *)new_code);
632 nwords = ncode_words + nheader_words;
634 constants_start_addr = (void *)new_code + 5*4;
635 constants_end_addr = (void *)new_code + nheader_words*4;
636 code_start_addr = (void *)new_code + nheader_words*4;
637 code_end_addr = (void *)new_code + nwords*4;
639 /* The first constant should be a pointer to the fixups for this
640 * code objects. Check. */
641 fixups = new_code->constants[0];
643 /* It will be 0 or the unbound-marker if there are no fixups, and
644 * will be an other-pointer to a vector if it is valid. */
645 if ((fixups==0) ||
646 (fixups==UNBOUND_MARKER_WIDETAG) ||
647 !is_lisp_pointer(fixups)) {
648 #ifdef LISP_FEATURE_GENCGC
649 /* Check for a possible errors. */
650 sniff_code_object(new_code,displacement);
651 #endif
652 return;
655 fixups_vector = (struct vector *)native_pointer(fixups);
657 /* Could be pointing to a forwarding pointer. */
658 if (is_lisp_pointer(fixups) && (dynamic_pointer_p(fixups))
659 && forwarding_pointer_p(*(lispobj *)fixups_vector)) {
660 /* If so then follow it. */
661 fixups_vector =
662 (struct vector *)native_pointer(*(lispobj *)fixups_vector);
665 if (widetag_of(fixups_vector->header) ==
666 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
667 /* We got the fixups for the code block. Now work through the
668 * vector, and apply a fixup at each address. */
669 int length = fixnum_value(fixups_vector->length);
670 int i;
671 for (i=0; i<length; i++) {
672 unsigned offset = fixups_vector->data[i];
673 /* Now check the current value of offset. */
674 unsigned old_value =
675 *(unsigned *)((unsigned)code_start_addr + offset);
677 /* If it's within the old_code object then it must be an
678 * absolute fixup (relative ones are not saved) */
679 if ((old_value>=(unsigned)old_code)
680 && (old_value<((unsigned)old_code + nwords*4)))
681 /* So add the dispacement. */
682 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
683 + displacement;
684 else
685 /* It is outside the old code object so it must be a relative
686 * fixup (absolute fixups are not saved). So subtract the
687 * displacement. */
688 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
689 - displacement;
693 /* No longer need the fixups. */
694 new_code->constants[0] = 0;
696 #ifdef LISP_FEATURE_GENCGC
697 /* Check for possible errors. */
698 sniff_code_object(new_code,displacement);
699 #endif
701 #endif
703 static lispobj
704 ptrans_code(lispobj thing)
706 struct code *code, *new;
707 int nwords;
708 lispobj func, result;
710 code = (struct code *)native_pointer(thing);
711 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
713 new = (struct code *)read_only_free;
714 read_only_free += CEILING(nwords, 2);
716 bcopy(code, new, nwords * sizeof(lispobj));
718 #ifdef LISP_FEATURE_X86
719 apply_code_fixups_during_purify(code,new);
720 #endif
722 result = make_lispobj(new, OTHER_POINTER_LOWTAG);
724 /* Stick in a forwarding pointer for the code object. */
725 *(lispobj *)code = result;
727 /* Put in forwarding pointers for all the functions. */
728 for (func = code->entry_points;
729 func != NIL;
730 func = ((struct simple_fun *)native_pointer(func))->next) {
732 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
734 *(lispobj *)native_pointer(func) = result + (func - thing);
737 /* Arrange to scavenge the debug info later. */
738 pscav_later(&new->debug_info, 1);
740 if (new->trace_table_offset & 0x3)
741 #if 0
742 pscav(&new->trace_table_offset, 1, 0);
743 #else
744 new->trace_table_offset = NIL; /* limit lifetime */
745 #endif
747 /* Scavenge the constants. */
748 pscav(new->constants, HeaderValue(new->header)-5, 1);
750 /* Scavenge all the functions. */
751 pscav(&new->entry_points, 1, 1);
752 for (func = new->entry_points;
753 func != NIL;
754 func = ((struct simple_fun *)native_pointer(func))->next) {
755 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
756 gc_assert(!dynamic_pointer_p(func));
758 #ifdef __i386__
759 /* Temporarly convert the self pointer to a real function pointer. */
760 ((struct simple_fun *)native_pointer(func))->self
761 -= FUN_RAW_ADDR_OFFSET;
762 #endif
763 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
764 #ifdef __i386__
765 ((struct simple_fun *)native_pointer(func))->self
766 += FUN_RAW_ADDR_OFFSET;
767 #endif
768 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
771 return result;
774 static lispobj
775 ptrans_func(lispobj thing, lispobj header)
777 int nwords;
778 lispobj code, *new, *old, result;
779 struct simple_fun *function;
781 /* Thing can either be a function header, a closure function
782 * header, a closure, or a funcallable-instance. If it's a closure
783 * or a funcallable-instance, we do the same as ptrans_boxed.
784 * Otherwise we have to do something strange, 'cause it is buried
785 * inside a code object. */
787 if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG ||
788 widetag_of(header) == CLOSURE_FUN_HEADER_WIDETAG) {
790 /* We can only end up here if the code object has not been
791 * scavenged, because if it had been scavenged, forwarding pointers
792 * would have been left behind for all the entry points. */
794 function = (struct simple_fun *)native_pointer(thing);
795 code =
796 make_lispobj
797 ((native_pointer(thing) -
798 (HeaderValue(function->header))), OTHER_POINTER_LOWTAG);
800 /* This will cause the function's header to be replaced with a
801 * forwarding pointer. */
803 ptrans_code(code);
805 /* So we can just return that. */
806 return function->header;
808 else {
809 /* It's some kind of closure-like thing. */
810 nwords = 1 + HeaderValue(header);
811 old = (lispobj *)native_pointer(thing);
813 /* Allocate the new one. */
814 if (widetag_of(header) == FUNCALLABLE_INSTANCE_HEADER_WIDETAG) {
815 /* FINs *must* not go in read_only space. */
816 new = static_free;
817 static_free += CEILING(nwords, 2);
819 else {
820 /* Closures can always go in read-only space, 'cause they
821 * never change. */
823 new = read_only_free;
824 read_only_free += CEILING(nwords, 2);
826 /* Copy it. */
827 bcopy(old, new, nwords * sizeof(lispobj));
829 /* Deposit forwarding pointer. */
830 result = make_lispobj(new, lowtag_of(thing));
831 *old = result;
833 /* Scavenge it. */
834 pscav(new, nwords, 0);
836 return result;
840 static lispobj
841 ptrans_returnpc(lispobj thing, lispobj header)
843 lispobj code, new;
845 /* Find the corresponding code object. */
846 code = thing - HeaderValue(header)*sizeof(lispobj);
848 /* Make sure it's been transported. */
849 new = *(lispobj *)native_pointer(code);
850 if (!forwarding_pointer_p(new))
851 new = ptrans_code(code);
853 /* Maintain the offset: */
854 return new + (thing - code);
857 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
859 static lispobj
860 ptrans_list(lispobj thing, boolean constant)
862 struct cons *old, *new, *orig;
863 int length;
865 if (constant)
866 orig = (struct cons *)read_only_free;
867 else
868 orig = (struct cons *)static_free;
869 length = 0;
871 do {
872 /* Allocate a new cons cell. */
873 old = (struct cons *)native_pointer(thing);
874 if (constant) {
875 new = (struct cons *)read_only_free;
876 read_only_free += WORDS_PER_CONS;
878 else {
879 new = (struct cons *)static_free;
880 static_free += WORDS_PER_CONS;
883 /* Copy the cons cell and keep a pointer to the cdr. */
884 new->car = old->car;
885 thing = new->cdr = old->cdr;
887 /* Set up the forwarding pointer. */
888 *(lispobj *)old = make_lispobj(new, LIST_POINTER_LOWTAG);
890 /* And count this cell. */
891 length++;
892 } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
893 dynamic_pointer_p(thing) &&
894 !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
896 /* Scavenge the list we just copied. */
897 pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
899 return make_lispobj(orig, LIST_POINTER_LOWTAG);
902 static lispobj
903 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
905 switch (widetag_of(header)) {
906 case BIGNUM_WIDETAG:
907 case SINGLE_FLOAT_WIDETAG:
908 case DOUBLE_FLOAT_WIDETAG:
909 #ifdef LONG_FLOAT_WIDETAG
910 case LONG_FLOAT_WIDETAG:
911 #endif
912 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
913 case COMPLEX_SINGLE_FLOAT_WIDETAG:
914 #endif
915 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
916 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
917 #endif
918 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
919 case COMPLEX_LONG_FLOAT_WIDETAG:
920 #endif
921 case SAP_WIDETAG:
922 return ptrans_unboxed(thing, header);
924 case RATIO_WIDETAG:
925 case COMPLEX_WIDETAG:
926 case SIMPLE_ARRAY_WIDETAG:
927 case COMPLEX_STRING_WIDETAG:
928 case COMPLEX_VECTOR_WIDETAG:
929 case COMPLEX_ARRAY_WIDETAG:
930 return ptrans_boxed(thing, header, constant);
932 case VALUE_CELL_HEADER_WIDETAG:
933 case WEAK_POINTER_WIDETAG:
934 return ptrans_boxed(thing, header, 0);
936 case SYMBOL_HEADER_WIDETAG:
937 return ptrans_boxed(thing, header, 0);
939 case SIMPLE_STRING_WIDETAG:
940 return ptrans_vector(thing, 8, 1, 0, constant);
942 case SIMPLE_BIT_VECTOR_WIDETAG:
943 return ptrans_vector(thing, 1, 0, 0, constant);
945 case SIMPLE_VECTOR_WIDETAG:
946 return ptrans_vector(thing, 32, 0, 1, constant);
948 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
949 return ptrans_vector(thing, 2, 0, 0, constant);
951 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
952 return ptrans_vector(thing, 4, 0, 0, constant);
954 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
955 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
956 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
957 #endif
958 return ptrans_vector(thing, 8, 0, 0, constant);
960 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
961 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
962 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
963 #endif
964 return ptrans_vector(thing, 16, 0, 0, constant);
966 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
967 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
968 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
969 #endif
970 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
971 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
972 #endif
973 return ptrans_vector(thing, 32, 0, 0, constant);
975 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
976 return ptrans_vector(thing, 32, 0, 0, constant);
978 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
979 return ptrans_vector(thing, 64, 0, 0, constant);
981 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
982 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
983 #ifdef __i386__
984 return ptrans_vector(thing, 96, 0, 0, constant);
985 #endif
986 #ifdef sparc
987 return ptrans_vector(thing, 128, 0, 0, constant);
988 #endif
989 #endif
991 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
992 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
993 return ptrans_vector(thing, 64, 0, 0, constant);
994 #endif
996 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
997 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
998 return ptrans_vector(thing, 128, 0, 0, constant);
999 #endif
1001 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1002 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1003 #ifdef __i386__
1004 return ptrans_vector(thing, 192, 0, 0, constant);
1005 #endif
1006 #ifdef sparc
1007 return ptrans_vector(thing, 256, 0, 0, constant);
1008 #endif
1009 #endif
1011 case CODE_HEADER_WIDETAG:
1012 return ptrans_code(thing);
1014 case RETURN_PC_HEADER_WIDETAG:
1015 return ptrans_returnpc(thing, header);
1017 case FDEFN_WIDETAG:
1018 return ptrans_fdefn(thing, header);
1020 default:
1021 /* Should only come across other pointers to the above stuff. */
1022 gc_abort();
1023 return NIL;
1027 static int
1028 pscav_fdefn(struct fdefn *fdefn)
1030 boolean fix_func;
1032 fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
1033 pscav(&fdefn->name, 1, 1);
1034 pscav(&fdefn->fun, 1, 0);
1035 if (fix_func)
1036 fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
1037 return sizeof(struct fdefn) / sizeof(lispobj);
1040 #ifdef __i386__
1041 /* now putting code objects in static space */
1042 static int
1043 pscav_code(struct code*code)
1045 int nwords;
1046 lispobj func;
1047 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
1049 /* Arrange to scavenge the debug info later. */
1050 pscav_later(&code->debug_info, 1);
1052 /* Scavenge the constants. */
1053 pscav(code->constants, HeaderValue(code->header)-5, 1);
1055 /* Scavenge all the functions. */
1056 pscav(&code->entry_points, 1, 1);
1057 for (func = code->entry_points;
1058 func != NIL;
1059 func = ((struct simple_fun *)native_pointer(func))->next) {
1060 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
1061 gc_assert(!dynamic_pointer_p(func));
1063 #ifdef __i386__
1064 /* Temporarly convert the self pointer to a real function
1065 * pointer. */
1066 ((struct simple_fun *)native_pointer(func))->self
1067 -= FUN_RAW_ADDR_OFFSET;
1068 #endif
1069 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
1070 #ifdef __i386__
1071 ((struct simple_fun *)native_pointer(func))->self
1072 += FUN_RAW_ADDR_OFFSET;
1073 #endif
1074 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
1077 return CEILING(nwords,2);
1079 #endif
1081 static lispobj *
1082 pscav(lispobj *addr, int nwords, boolean constant)
1084 lispobj thing, *thingp, header;
1085 int count = 0; /* (0 = dummy init value to stop GCC warning) */
1086 struct vector *vector;
1088 while (nwords > 0) {
1089 thing = *addr;
1090 if (is_lisp_pointer(thing)) {
1091 /* It's a pointer. Is it something we might have to move? */
1092 if (dynamic_pointer_p(thing)) {
1093 /* Maybe. Have we already moved it? */
1094 thingp = (lispobj *)native_pointer(thing);
1095 header = *thingp;
1096 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
1097 /* Yep, so just copy the forwarding pointer. */
1098 thing = header;
1099 else {
1100 /* Nope, copy the object. */
1101 switch (lowtag_of(thing)) {
1102 case FUN_POINTER_LOWTAG:
1103 thing = ptrans_func(thing, header);
1104 break;
1106 case LIST_POINTER_LOWTAG:
1107 thing = ptrans_list(thing, constant);
1108 break;
1110 case INSTANCE_POINTER_LOWTAG:
1111 thing = ptrans_instance(thing, header, constant);
1112 break;
1114 case OTHER_POINTER_LOWTAG:
1115 thing = ptrans_otherptr(thing, header, constant);
1116 break;
1118 default:
1119 /* It was a pointer, but not one of them? */
1120 gc_abort();
1123 *addr = thing;
1125 count = 1;
1127 else if (thing & 3) {
1128 /* It's an other immediate. Maybe the header for an unboxed */
1129 /* object. */
1130 switch (widetag_of(thing)) {
1131 case BIGNUM_WIDETAG:
1132 case SINGLE_FLOAT_WIDETAG:
1133 case DOUBLE_FLOAT_WIDETAG:
1134 #ifdef LONG_FLOAT_WIDETAG
1135 case LONG_FLOAT_WIDETAG:
1136 #endif
1137 case SAP_WIDETAG:
1138 /* It's an unboxed simple object. */
1139 count = HeaderValue(thing)+1;
1140 break;
1142 case SIMPLE_VECTOR_WIDETAG:
1143 if (HeaderValue(thing) == subtype_VectorValidHashing) {
1144 *addr = (subtype_VectorMustRehash << N_WIDETAG_BITS) |
1145 SIMPLE_VECTOR_WIDETAG;
1147 count = 1;
1148 break;
1150 case SIMPLE_STRING_WIDETAG:
1151 vector = (struct vector *)addr;
1152 count = CEILING(NWORDS(fixnum_value(vector->length)+1,4)+2,2);
1153 break;
1155 case SIMPLE_BIT_VECTOR_WIDETAG:
1156 vector = (struct vector *)addr;
1157 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
1158 break;
1160 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
1161 vector = (struct vector *)addr;
1162 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
1163 break;
1165 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1166 vector = (struct vector *)addr;
1167 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
1168 break;
1170 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1171 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1172 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1173 #endif
1174 vector = (struct vector *)addr;
1175 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
1176 break;
1178 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1179 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1180 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1181 #endif
1182 vector = (struct vector *)addr;
1183 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
1184 break;
1186 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1187 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1188 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1189 #endif
1190 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1191 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1192 #endif
1193 vector = (struct vector *)addr;
1194 count = CEILING(fixnum_value(vector->length)+2,2);
1195 break;
1197 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1198 vector = (struct vector *)addr;
1199 count = CEILING(fixnum_value(vector->length)+2,2);
1200 break;
1202 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1203 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1204 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1205 #endif
1206 vector = (struct vector *)addr;
1207 count = fixnum_value(vector->length)*2+2;
1208 break;
1210 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1211 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1212 vector = (struct vector *)addr;
1213 #ifdef __i386__
1214 count = fixnum_value(vector->length)*3+2;
1215 #endif
1216 #ifdef sparc
1217 count = fixnum_value(vector->length)*4+2;
1218 #endif
1219 break;
1220 #endif
1222 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1223 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1224 vector = (struct vector *)addr;
1225 count = fixnum_value(vector->length)*4+2;
1226 break;
1227 #endif
1229 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1230 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1231 vector = (struct vector *)addr;
1232 #ifdef __i386__
1233 count = fixnum_value(vector->length)*6+2;
1234 #endif
1235 #ifdef sparc
1236 count = fixnum_value(vector->length)*8+2;
1237 #endif
1238 break;
1239 #endif
1241 case CODE_HEADER_WIDETAG:
1242 #ifndef __i386__
1243 gc_abort(); /* no code headers in static space */
1244 #else
1245 count = pscav_code((struct code*)addr);
1246 #endif
1247 break;
1249 case SIMPLE_FUN_HEADER_WIDETAG:
1250 case CLOSURE_FUN_HEADER_WIDETAG:
1251 case RETURN_PC_HEADER_WIDETAG:
1252 /* We should never hit any of these, 'cause they occur
1253 * buried in the middle of code objects. */
1254 gc_abort();
1255 break;
1257 #ifdef __i386__
1258 case CLOSURE_HEADER_WIDETAG:
1259 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
1260 /* The function self pointer needs special care on the
1261 * x86 because it is the real entry point. */
1263 lispobj fun = ((struct closure *)addr)->fun
1264 - FUN_RAW_ADDR_OFFSET;
1265 pscav(&fun, 1, constant);
1266 ((struct closure *)addr)->fun = fun + FUN_RAW_ADDR_OFFSET;
1268 count = 2;
1269 break;
1270 #endif
1272 case WEAK_POINTER_WIDETAG:
1273 /* Weak pointers get preserved during purify, 'cause I
1274 * don't feel like figuring out how to break them. */
1275 pscav(addr+1, 2, constant);
1276 count = 4;
1277 break;
1279 case FDEFN_WIDETAG:
1280 /* We have to handle fdefn objects specially, so we
1281 * can fix up the raw function address. */
1282 count = pscav_fdefn((struct fdefn *)addr);
1283 break;
1285 default:
1286 count = 1;
1287 break;
1290 else {
1291 /* It's a fixnum. */
1292 count = 1;
1295 addr += count;
1296 nwords -= count;
1299 return addr;
1303 purify(lispobj static_roots, lispobj read_only_roots)
1305 lispobj *clean;
1306 int count, i;
1307 struct later *laters, *next;
1308 struct thread *thread;
1310 #ifdef PRINTNOISE
1311 printf("[doing purification:");
1312 fflush(stdout);
1313 #endif
1314 #ifdef LISP_FEATURE_GENCGC
1315 gc_alloc_update_all_page_tables();
1316 #endif
1317 for_each_thread(thread)
1318 if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread)) != 0) {
1319 /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
1320 * its error simply by a. printing a string b. to stdout instead
1321 * of stderr. */
1322 printf(" Ack! Can't purify interrupt contexts. ");
1323 fflush(stdout);
1324 return 0;
1327 #if defined(__i386__)
1328 dynamic_space_free_pointer =
1329 (lispobj*)SymbolValue(ALLOCATION_POINTER,0);
1330 #endif
1332 read_only_end = read_only_free =
1333 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
1334 static_end = static_free =
1335 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
1337 #ifdef PRINTNOISE
1338 printf(" roots");
1339 fflush(stdout);
1340 #endif
1342 #if 0
1343 /* can't do this unless the threads in question are suspended with
1344 * ptrace
1346 #if (defined(LISP_FEATURE_GENCGC) && defined(LISP_FEATURE_X86))
1347 for_each_thread(thread) {
1348 void **ptr;
1349 struct user_regs_struct regs;
1350 if(ptrace(PTRACE_GETREGS,thread->pid,0,&regs)){
1351 fprintf(stderr,"child pid %d, %s\n",thread->pid,strerror(errno));
1352 lose("PTRACE_GETREGS");
1354 setup_i386_stack_scav(regs.ebp,
1355 ((void *)thread->control_stack_start)
1356 +THREAD_CONTROL_STACK_SIZE);
1358 #endif
1359 #endif
1360 setup_i386_stack_scav(((&static_roots)-2),
1361 ((void *)all_threads->control_stack_start)
1362 +THREAD_CONTROL_STACK_SIZE);
1366 pscav(&static_roots, 1, 0);
1367 pscav(&read_only_roots, 1, 1);
1369 #ifdef PRINTNOISE
1370 printf(" handlers");
1371 fflush(stdout);
1372 #endif
1373 pscav((lispobj *) all_threads->interrupt_data->interrupt_handlers,
1374 sizeof(all_threads->interrupt_data->interrupt_handlers)
1375 / sizeof(lispobj),
1378 #ifdef PRINTNOISE
1379 printf(" stack");
1380 fflush(stdout);
1381 #endif
1382 #ifndef __i386__
1383 pscav((lispobj *)CONTROL_STACK_START,
1384 current_control_stack_pointer - (lispobj *)CONTROL_STACK_START,
1386 #else
1387 #ifdef LISP_FEATURE_GENCGC
1388 pscav_i386_stack();
1389 #endif
1390 #endif
1392 #ifdef PRINTNOISE
1393 printf(" bindings");
1394 fflush(stdout);
1395 #endif
1396 #if !defined(__i386__)
1397 pscav( (lispobj *)BINDING_STACK_START,
1398 (lispobj *)current_binding_stack_pointer - (lispobj *)BINDING_STACK_START,
1400 #else
1401 for_each_thread(thread) {
1402 pscav( (lispobj *)thread->binding_stack_start,
1403 (lispobj *)SymbolValue(BINDING_STACK_POINTER,thread) -
1404 (lispobj *)thread->binding_stack_start,
1406 pscav( (lispobj *) (thread+1),
1407 fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
1408 (sizeof (struct thread))/(sizeof (lispobj)),
1413 #endif
1415 /* The original CMU CL code had scavenge-read-only-space code
1416 * controlled by the Lisp-level variable
1417 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
1418 * wasn't documented under what circumstances it was useful or
1419 * safe to turn it on, so it's been turned off in SBCL. If you
1420 * want/need this functionality, and can test and document it,
1421 * please submit a patch. */
1422 #if 0
1423 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
1424 && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
1425 unsigned read_only_space_size =
1426 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
1427 (lispobj *)READ_ONLY_SPACE_START;
1428 fprintf(stderr,
1429 "scavenging read only space: %d bytes\n",
1430 read_only_space_size * sizeof(lispobj));
1431 pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
1433 #endif
1435 #ifdef PRINTNOISE
1436 printf(" static");
1437 fflush(stdout);
1438 #endif
1439 clean = (lispobj *)STATIC_SPACE_START;
1440 do {
1441 while (clean != static_free)
1442 clean = pscav(clean, static_free - clean, 0);
1443 laters = later_blocks;
1444 count = later_count;
1445 later_blocks = NULL;
1446 later_count = 0;
1447 while (laters != NULL) {
1448 for (i = 0; i < count; i++) {
1449 if (laters->u[i].count == 0) {
1451 } else if (laters->u[i].count <= LATERMAXCOUNT) {
1452 pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
1453 i++;
1454 } else {
1455 pscav(laters->u[i].ptr, 1, 1);
1458 next = laters->next;
1459 free(laters);
1460 laters = next;
1461 count = LATERBLOCKSIZE;
1463 } while (clean != static_free || later_blocks != NULL);
1465 #ifdef PRINTNOISE
1466 printf(" cleanup");
1467 fflush(stdout);
1468 #endif
1470 os_zero((os_vm_address_t) current_dynamic_space,
1471 (os_vm_size_t) DYNAMIC_SPACE_SIZE);
1473 /* Zero the stack. Note that the stack is also zeroed by SUB-GC
1474 * calling SCRUB-CONTROL-STACK - this zeros the stack on the x86. */
1475 #ifndef __i386__
1476 os_zero((os_vm_address_t) current_control_stack_pointer,
1477 (os_vm_size_t) (CONTROL_STACK_SIZE -
1478 ((current_control_stack_pointer -
1479 (lispobj *)CONTROL_STACK_START) *
1480 sizeof(lispobj))));
1481 #endif
1483 /* It helps to update the heap free pointers so that free_heap can
1484 * verify after it's done. */
1485 SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free,0);
1486 SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free,0);
1488 #if !defined(__i386__)
1489 dynamic_space_free_pointer = current_dynamic_space;
1490 #else
1491 #if defined LISP_FEATURE_GENCGC
1492 gc_free_heap();
1493 #else
1494 #error unsupported case /* in CMU CL, was "ibmrt using GC" */
1495 #endif
1496 #endif
1498 #ifdef PRINTNOISE
1499 printf(" done]\n");
1500 fflush(stdout);
1501 #endif
1503 return 0;