0.7.9.52:
[sbcl/lichteblau.git] / src / code / loop.lisp
blobd6e83a9903c3b106f713b6817a45edd69ee7eb99
1 ;;;; the LOOP iteration macro
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
6 ;;;; This code was modified by William Harold Newman beginning
7 ;;;; 19981106, originally to conform to the new SBCL bootstrap package
8 ;;;; system and then subsequently to address other cross-compiling
9 ;;;; bootstrap issues, SBCLification (e.g. DECLARE used to check
10 ;;;; argument types), and other maintenance. Whether or not it then
11 ;;;; supported all the environments implied by the reader conditionals
12 ;;;; in the source code (e.g. #!+CLOE-RUNTIME) before that
13 ;;;; modification, it sure doesn't now. It might perhaps, by blind
14 ;;;; luck, be appropriate for some other CMU-CL-derived system, but
15 ;;;; really it only attempts to be appropriate for SBCL.
17 ;;;; This software is derived from software originally released by the
18 ;;;; Massachusetts Institute of Technology and Symbolics, Inc. Copyright and
19 ;;;; release statements follow. Later modifications to the software are in
20 ;;;; the public domain and are provided with absolutely no warranty. See the
21 ;;;; COPYING and CREDITS files for more information.
23 ;;;; Portions of LOOP are Copyright (c) 1986 by the Massachusetts Institute
24 ;;;; of Technology. All Rights Reserved.
25 ;;;;
26 ;;;; Permission to use, copy, modify and distribute this software and its
27 ;;;; documentation for any purpose and without fee is hereby granted,
28 ;;;; provided that the M.I.T. copyright notice appear in all copies and that
29 ;;;; both that copyright notice and this permission notice appear in
30 ;;;; supporting documentation. The names "M.I.T." and "Massachusetts
31 ;;;; Institute of Technology" may not be used in advertising or publicity
32 ;;;; pertaining to distribution of the software without specific, written
33 ;;;; prior permission. Notice must be given in supporting documentation that
34 ;;;; copying distribution is by permission of M.I.T. M.I.T. makes no
35 ;;;; representations about the suitability of this software for any purpose.
36 ;;;; It is provided "as is" without express or implied warranty.
37 ;;;;
38 ;;;; Massachusetts Institute of Technology
39 ;;;; 77 Massachusetts Avenue
40 ;;;; Cambridge, Massachusetts 02139
41 ;;;; United States of America
42 ;;;; +1-617-253-1000
44 ;;;; Portions of LOOP are Copyright (c) 1989, 1990, 1991, 1992 by Symbolics,
45 ;;;; Inc. All Rights Reserved.
46 ;;;;
47 ;;;; Permission to use, copy, modify and distribute this software and its
48 ;;;; documentation for any purpose and without fee is hereby granted,
49 ;;;; provided that the Symbolics copyright notice appear in all copies and
50 ;;;; that both that copyright notice and this permission notice appear in
51 ;;;; supporting documentation. The name "Symbolics" may not be used in
52 ;;;; advertising or publicity pertaining to distribution of the software
53 ;;;; without specific, written prior permission. Notice must be given in
54 ;;;; supporting documentation that copying distribution is by permission of
55 ;;;; Symbolics. Symbolics makes no representations about the suitability of
56 ;;;; this software for any purpose. It is provided "as is" without express
57 ;;;; or implied warranty.
58 ;;;;
59 ;;;; Symbolics, CLOE Runtime, and Minima are trademarks, and CLOE, Genera,
60 ;;;; and Zetalisp are registered trademarks of Symbolics, Inc.
61 ;;;;
62 ;;;; Symbolics, Inc.
63 ;;;; 8 New England Executive Park, East
64 ;;;; Burlington, Massachusetts 01803
65 ;;;; United States of America
66 ;;;; +1-617-221-1000
68 (in-package "SB!LOOP")
70 ;;;; The design of this LOOP is intended to permit, using mostly the same
71 ;;;; kernel of code, up to three different "loop" macros:
72 ;;;;
73 ;;;; (1) The unextended, unextensible ANSI standard LOOP;
74 ;;;;
75 ;;;; (2) A clean "superset" extension of the ANSI LOOP which provides
76 ;;;; functionality similar to that of the old LOOP, but "in the style of"
77 ;;;; the ANSI LOOP. For instance, user-definable iteration paths, with a
78 ;;;; somewhat cleaned-up interface.
79 ;;;;
80 ;;;; (3) Extensions provided in another file which can make this LOOP
81 ;;;; kernel behave largely compatibly with the Genera-vintage LOOP macro,
82 ;;;; with only a small addition of code (instead of two whole, separate,
83 ;;;; LOOP macros).
84 ;;;;
85 ;;;; Each of the above three LOOP variations can coexist in the same LISP
86 ;;;; environment.
87 ;;;;
88 ;;;; KLUDGE: In SBCL, we only really use variant (1), and any generality
89 ;;;; for the other variants is wasted. -- WHN 20000121
91 ;;;; FIXME: the STEP-FUNCTION stuff in the code seems to've been
92 ;;;; intended to support code which was conditionalized with
93 ;;;; LOOP-PREFER-POP (not true on CMU CL) and which has since been
94 ;;;; removed. Thus, STEP-FUNCTION stuff could probably be removed too.
96 ;;;; list collection macrology
98 (sb!int:defmacro-mundanely with-loop-list-collection-head
99 ((head-var tail-var &optional user-head-var) &body body)
100 (let ((l (and user-head-var (list (list user-head-var nil)))))
101 `(let* ((,head-var (list nil)) (,tail-var ,head-var) ,@l)
102 ,@body)))
104 (sb!int:defmacro-mundanely loop-collect-rplacd
105 (&environment env (head-var tail-var &optional user-head-var) form)
106 (setq form (sb!xc:macroexpand form env))
107 (flet ((cdr-wrap (form n)
108 (declare (fixnum n))
109 (do () ((<= n 4) (setq form `(,(case n
110 (1 'cdr)
111 (2 'cddr)
112 (3 'cdddr)
113 (4 'cddddr))
114 ,form)))
115 (setq form `(cddddr ,form) n (- n 4)))))
116 (let ((tail-form form) (ncdrs nil))
117 ;; Determine whether the form being constructed is a list of known
118 ;; length.
119 (when (consp form)
120 (cond ((eq (car form) 'list)
121 (setq ncdrs (1- (length (cdr form)))))
122 ((member (car form) '(list* cons))
123 (when (and (cddr form) (member (car (last form)) '(nil 'nil)))
124 (setq ncdrs (- (length (cdr form)) 2))))))
125 (let ((answer
126 (cond ((null ncdrs)
127 `(when (setf (cdr ,tail-var) ,tail-form)
128 (setq ,tail-var (last (cdr ,tail-var)))))
129 ((< ncdrs 0) (return-from loop-collect-rplacd nil))
130 ((= ncdrs 0)
131 ;; @@@@ Here we have a choice of two idioms:
132 ;; (RPLACD TAIL (SETQ TAIL TAIL-FORM))
133 ;; (SETQ TAIL (SETF (CDR TAIL) TAIL-FORM)).
134 ;; Genera and most others I have seen do better with the
135 ;; former.
136 `(rplacd ,tail-var (setq ,tail-var ,tail-form)))
137 (t `(setq ,tail-var ,(cdr-wrap `(setf (cdr ,tail-var)
138 ,tail-form)
139 ncdrs))))))
140 ;; If not using locatives or something similar to update the
141 ;; user's head variable, we've got to set it... It's harmless
142 ;; to repeatedly set it unconditionally, and probably faster
143 ;; than checking.
144 (when user-head-var
145 (setq answer
146 `(progn ,answer
147 (setq ,user-head-var (cdr ,head-var)))))
148 answer))))
150 (sb!int:defmacro-mundanely loop-collect-answer (head-var
151 &optional user-head-var)
152 (or user-head-var
153 `(cdr ,head-var)))
155 ;;;; maximization technology
158 The basic idea of all this minimax randomness here is that we have to
159 have constructed all uses of maximize and minimize to a particular
160 "destination" before we can decide how to code them. The goal is to not
161 have to have any kinds of flags, by knowing both that (1) the type is
162 something which we can provide an initial minimum or maximum value for
163 and (2) know that a MAXIMIZE and MINIMIZE are not being combined.
165 SO, we have a datastructure which we annotate with all sorts of things,
166 incrementally updating it as we generate loop body code, and then use
167 a wrapper and internal macros to do the coding when the loop has been
168 constructed.
171 (defstruct (loop-minimax
172 (:constructor make-loop-minimax-internal)
173 (:copier nil)
174 (:predicate nil))
175 answer-variable
176 type
177 temp-variable
178 flag-variable
179 operations
180 infinity-data)
182 (defvar *loop-minimax-type-infinities-alist*
183 ;; FIXME: Now that SBCL supports floating point infinities again, we
184 ;; should have floating point infinities here, as cmucl-2.4.8 did.
185 '((fixnum most-positive-fixnum most-negative-fixnum)))
187 (defun make-loop-minimax (answer-variable type)
188 (let ((infinity-data (cdr (assoc type
189 *loop-minimax-type-infinities-alist*
190 :test #'sb!xc:subtypep))))
191 (make-loop-minimax-internal
192 :answer-variable answer-variable
193 :type type
194 :temp-variable (gensym "LOOP-MAXMIN-TEMP-")
195 :flag-variable (and (not infinity-data)
196 (gensym "LOOP-MAXMIN-FLAG-"))
197 :operations nil
198 :infinity-data infinity-data)))
200 (defun loop-note-minimax-operation (operation minimax)
201 (pushnew (the symbol operation) (loop-minimax-operations minimax))
202 (when (and (cdr (loop-minimax-operations minimax))
203 (not (loop-minimax-flag-variable minimax)))
204 (setf (loop-minimax-flag-variable minimax)
205 (gensym "LOOP-MAXMIN-FLAG-")))
206 operation)
208 (sb!int:defmacro-mundanely with-minimax-value (lm &body body)
209 (let ((init (loop-typed-init (loop-minimax-type lm)))
210 (which (car (loop-minimax-operations lm)))
211 (infinity-data (loop-minimax-infinity-data lm))
212 (answer-var (loop-minimax-answer-variable lm))
213 (temp-var (loop-minimax-temp-variable lm))
214 (flag-var (loop-minimax-flag-variable lm))
215 (type (loop-minimax-type lm)))
216 (if flag-var
217 `(let ((,answer-var ,init) (,temp-var ,init) (,flag-var nil))
218 (declare (type ,type ,answer-var ,temp-var))
219 ,@body)
220 `(let ((,answer-var ,(if (eq which 'min)
221 (first infinity-data)
222 (second infinity-data)))
223 (,temp-var ,init))
224 (declare (type ,type ,answer-var ,temp-var))
225 ,@body))))
227 (sb!int:defmacro-mundanely loop-accumulate-minimax-value (lm operation form)
228 (let* ((answer-var (loop-minimax-answer-variable lm))
229 (temp-var (loop-minimax-temp-variable lm))
230 (flag-var (loop-minimax-flag-variable lm))
231 (test `(,(ecase operation
232 (min '<)
233 (max '>))
234 ,temp-var ,answer-var)))
235 `(progn
236 (setq ,temp-var ,form)
237 (when ,(if flag-var `(or (not ,flag-var) ,test) test)
238 (setq ,@(and flag-var `(,flag-var t))
239 ,answer-var ,temp-var)))))
241 ;;;; LOOP keyword tables
244 LOOP keyword tables are hash tables string keys and a test of EQUAL.
246 The actual descriptive/dispatch structure used by LOOP is called a "loop
247 universe" contains a few tables and parameterizations. The basic idea is
248 that we can provide a non-extensible ANSI-compatible loop environment,
249 an extensible ANSI-superset loop environment, and (for such environments
250 as CLOE) one which is "sufficiently close" to the old Genera-vintage
251 LOOP for use by old user programs without requiring all of the old LOOP
252 code to be loaded.
255 ;;;; token hackery
257 ;;; Compare two "tokens". The first is the frob out of *LOOP-SOURCE-CODE*,
258 ;;; the second a symbol to check against.
259 (defun loop-tequal (x1 x2)
260 (and (symbolp x1) (string= x1 x2)))
262 (defun loop-tassoc (kwd alist)
263 (and (symbolp kwd) (assoc kwd alist :test #'string=)))
265 (defun loop-tmember (kwd list)
266 (and (symbolp kwd) (member kwd list :test #'string=)))
268 (defun loop-lookup-keyword (loop-token table)
269 (and (symbolp loop-token)
270 (values (gethash (symbol-name loop-token) table))))
272 (sb!int:defmacro-mundanely loop-store-table-data (symbol table datum)
273 `(setf (gethash (symbol-name ,symbol) ,table) ,datum))
275 (defstruct (loop-universe
276 (:copier nil)
277 (:predicate nil))
278 keywords ; hash table, value = (fn-name . extra-data)
279 iteration-keywords ; hash table, value = (fn-name . extra-data)
280 for-keywords ; hash table, value = (fn-name . extra-data)
281 path-keywords ; hash table, value = (fn-name . extra-data)
282 type-symbols ; hash table of type SYMBOLS, test EQ,
283 ; value = CL type specifier
284 type-keywords ; hash table of type STRINGS, test EQUAL,
285 ; value = CL type spec
286 ansi ; NIL, T, or :EXTENDED
287 implicit-for-required) ; see loop-hack-iteration
288 (sb!int:def!method print-object ((u loop-universe) stream)
289 (let ((string (case (loop-universe-ansi u)
290 ((nil) "non-ANSI")
291 ((t) "ANSI")
292 (:extended "extended-ANSI")
293 (t (loop-universe-ansi u)))))
294 (print-unreadable-object (u stream :type t)
295 (write-string string stream))))
297 ;;; This is the "current" loop context in use when we are expanding a
298 ;;; loop. It gets bound on each invocation of LOOP.
299 (defvar *loop-universe*)
301 (defun make-standard-loop-universe (&key keywords for-keywords
302 iteration-keywords path-keywords
303 type-keywords type-symbols ansi)
304 (declare (type (member nil t :extended) ansi))
305 (flet ((maketable (entries)
306 (let* ((size (length entries))
307 (ht (make-hash-table :size (if (< size 10) 10 size)
308 :test 'equal)))
309 (dolist (x entries)
310 (setf (gethash (symbol-name (car x)) ht) (cadr x)))
311 ht)))
312 (make-loop-universe
313 :keywords (maketable keywords)
314 :for-keywords (maketable for-keywords)
315 :iteration-keywords (maketable iteration-keywords)
316 :path-keywords (maketable path-keywords)
317 :ansi ansi
318 :implicit-for-required (not (null ansi))
319 :type-keywords (maketable type-keywords)
320 :type-symbols (let* ((size (length type-symbols))
321 (ht (make-hash-table :size (if (< size 10) 10 size)
322 :test 'eq)))
323 (dolist (x type-symbols)
324 (if (atom x)
325 (setf (gethash x ht) x)
326 (setf (gethash (car x) ht) (cadr x))))
327 ht))))
329 ;;;; SETQ hackery, including destructuring ("DESETQ")
331 (defun loop-make-psetq (frobs)
332 (and frobs
333 (loop-make-desetq
334 (list (car frobs)
335 (if (null (cddr frobs)) (cadr frobs)
336 `(prog1 ,(cadr frobs)
337 ,(loop-make-psetq (cddr frobs))))))))
339 (defun loop-make-desetq (var-val-pairs)
340 (if (null var-val-pairs)
342 (cons 'loop-really-desetq var-val-pairs)))
344 (defvar *loop-desetq-temporary*
345 (make-symbol "LOOP-DESETQ-TEMP"))
347 (sb!int:defmacro-mundanely loop-really-desetq (&environment env
348 &rest var-val-pairs)
349 (labels ((find-non-null (var)
350 ;; See whether there's any non-null thing here. Recurse
351 ;; if the list element is itself a list.
352 (do ((tail var)) ((not (consp tail)) tail)
353 (when (find-non-null (pop tail)) (return t))))
354 (loop-desetq-internal (var val &optional temp)
355 ;; returns a list of actions to be performed
356 (typecase var
357 (null
358 (when (consp val)
359 ;; Don't lose possible side effects.
360 (if (eq (car val) 'prog1)
361 ;; These can come from PSETQ or DESETQ below.
362 ;; Throw away the value, keep the side effects.
363 ;; Special case is for handling an expanded POP.
364 (mapcan (lambda (x)
365 (and (consp x)
366 (or (not (eq (car x) 'car))
367 (not (symbolp (cadr x)))
368 (not (symbolp (setq x (sb!xc:macroexpand x env)))))
369 (cons x nil)))
370 (cdr val))
371 `(,val))))
372 (cons
373 (let* ((car (car var))
374 (cdr (cdr var))
375 (car-non-null (find-non-null car))
376 (cdr-non-null (find-non-null cdr)))
377 (when (or car-non-null cdr-non-null)
378 (if cdr-non-null
379 (let* ((temp-p temp)
380 (temp (or temp *loop-desetq-temporary*))
381 (body `(,@(loop-desetq-internal car
382 `(car ,temp))
383 (setq ,temp (cdr ,temp))
384 ,@(loop-desetq-internal cdr
385 temp
386 temp))))
387 (if temp-p
388 `(,@(unless (eq temp val)
389 `((setq ,temp ,val)))
390 ,@body)
391 `((let ((,temp ,val))
392 ,@body))))
393 ;; no CDRing to do
394 (loop-desetq-internal car `(car ,val) temp)))))
395 (otherwise
396 (unless (eq var val)
397 `((setq ,var ,val)))))))
398 (do ((actions))
399 ((null var-val-pairs)
400 (if (null (cdr actions)) (car actions) `(progn ,@(nreverse actions))))
401 (setq actions (revappend
402 (loop-desetq-internal (pop var-val-pairs)
403 (pop var-val-pairs))
404 actions)))))
406 ;;;; LOOP-local variables
408 ;;; This is the "current" pointer into the LOOP source code.
409 (defvar *loop-source-code*)
411 ;;; This is the pointer to the original, for things like NAMED that
412 ;;; insist on being in a particular position
413 (defvar *loop-original-source-code*)
415 ;;; This is *loop-source-code* as of the "last" clause. It is used
416 ;;; primarily for generating error messages (see loop-error, loop-warn).
417 (defvar *loop-source-context*)
419 ;;; list of names for the LOOP, supplied by the NAMED clause
420 (defvar *loop-names*)
422 ;;; The macroexpansion environment given to the macro.
423 (defvar *loop-macro-environment*)
425 ;;; This holds variable names specified with the USING clause.
426 ;;; See LOOP-NAMED-VAR.
427 (defvar *loop-named-vars*)
429 ;;; LETlist-like list being accumulated for one group of parallel bindings.
430 (defvar *loop-vars*)
432 ;;; list of declarations being accumulated in parallel with *LOOP-VARS*
433 (defvar *loop-declarations*)
435 ;;; This is used by LOOP for destructuring binding, if it is doing
436 ;;; that itself. See LOOP-MAKE-VAR.
437 (defvar *loop-desetq-crocks*)
439 ;;; list of wrapping forms, innermost first, which go immediately
440 ;;; inside the current set of parallel bindings being accumulated in
441 ;;; *LOOP-VARS*. The wrappers are appended onto a body. E.g.,
442 ;;; this list could conceivably have as its value
443 ;;; ((WITH-OPEN-FILE (G0001 G0002 ...))),
444 ;;; with G0002 being one of the bindings in *LOOP-VARS* (This is
445 ;;; why the wrappers go inside of the variable bindings).
446 (defvar *loop-wrappers*)
448 ;;; This accumulates lists of previous values of *LOOP-VARS* and
449 ;;; the other lists above, for each new nesting of bindings. See
450 ;;; LOOP-BIND-BLOCK.
451 (defvar *loop-bind-stack*)
453 ;;; This is simply a list of LOOP iteration variables, used for
454 ;;; checking for duplications.
455 (defvar *loop-iteration-vars*)
457 ;;; list of prologue forms of the loop, accumulated in reverse order
458 (defvar *loop-prologue*)
460 (defvar *loop-before-loop*)
461 (defvar *loop-body*)
462 (defvar *loop-after-body*)
464 ;;; This is T if we have emitted any body code, so that iteration
465 ;;; driving clauses can be disallowed. This is not strictly the same
466 ;;; as checking *LOOP-BODY*, because we permit some clauses such as
467 ;;; RETURN to not be considered "real" body (so as to permit the user
468 ;;; to "code" an abnormal return value "in loop").
469 (defvar *loop-emitted-body*)
471 ;;; list of epilogue forms (supplied by FINALLY generally), accumulated
472 ;;; in reverse order
473 (defvar *loop-epilogue*)
475 ;;; list of epilogue forms which are supplied after the above "user"
476 ;;; epilogue. "Normal" termination return values are provide by
477 ;;; putting the return form in here. Normally this is done using
478 ;;; LOOP-EMIT-FINAL-VALUE, q.v.
479 (defvar *loop-after-epilogue*)
481 ;;; the "culprit" responsible for supplying a final value from the
482 ;;; loop. This is so LOOP-EMIT-FINAL-VALUE can moan about multiple
483 ;;; return values being supplied.
484 (defvar *loop-final-value-culprit*)
486 ;;; If this is true, we are in some branch of a conditional. Some
487 ;;; clauses may be disallowed.
488 (defvar *loop-inside-conditional*)
490 ;;; If not NIL, this is a temporary bound around the loop for holding
491 ;;; the temporary value for "it" in things like "when (f) collect it".
492 ;;; It may be used as a supertemporary by some other things.
493 (defvar *loop-when-it-var*)
495 ;;; Sometimes we decide we need to fold together parts of the loop,
496 ;;; but some part of the generated iteration code is different for the
497 ;;; first and remaining iterations. This variable will be the
498 ;;; temporary which is the flag used in the loop to tell whether we
499 ;;; are in the first or remaining iterations.
500 (defvar *loop-never-stepped-var*)
502 ;;; list of all the value-accumulation descriptor structures in the
503 ;;; loop. See LOOP-GET-COLLECTION-INFO.
504 (defvar *loop-collection-cruft*) ; for multiple COLLECTs (etc.)
506 ;;;; code analysis stuff
508 (defun loop-constant-fold-if-possible (form &optional expected-type)
509 (let ((new-form form) (constantp nil) (constant-value nil))
510 (when (setq constantp (constantp new-form))
511 (setq constant-value (eval new-form)))
512 (when (and constantp expected-type)
513 (unless (sb!xc:typep constant-value expected-type)
514 (loop-warn "The form ~S evaluated to ~S, which was not of the anticipated type ~S."
515 form constant-value expected-type)
516 (setq constantp nil constant-value nil)))
517 (values new-form constantp constant-value)))
519 (defun loop-constantp (form)
520 (constantp form))
522 ;;;; LOOP iteration optimization
524 (defvar *loop-duplicate-code*
525 nil)
527 (defvar *loop-iteration-flag-var*
528 (make-symbol "LOOP-NOT-FIRST-TIME"))
530 (defun loop-code-duplication-threshold (env)
531 (declare (ignore env))
532 (let (;; If we could read optimization declaration information (as
533 ;; with the DECLARATION-INFORMATION function (present in
534 ;; CLTL2, removed from ANSI standard) we could set these
535 ;; values flexibly. Without DECLARATION-INFORMATION, we have
536 ;; to set them to constants.
537 (speed 1)
538 (space 1))
539 (+ 40 (* (- speed space) 10))))
541 (sb!int:defmacro-mundanely loop-body (&environment env
542 prologue
543 before-loop
544 main-body
545 after-loop
546 epilogue
547 &aux rbefore rafter flagvar)
548 (unless (= (length before-loop) (length after-loop))
549 (error "LOOP-BODY called with non-synched before- and after-loop lists"))
550 ;;All our work is done from these copies, working backwards from the end:
551 (setq rbefore (reverse before-loop) rafter (reverse after-loop))
552 (labels ((psimp (l)
553 (let ((ans nil))
554 (dolist (x l)
555 (when x
556 (push x ans)
557 (when (and (consp x)
558 (member (car x) '(go return return-from)))
559 (return nil))))
560 (nreverse ans)))
561 (pify (l) (if (null (cdr l)) (car l) `(progn ,@l)))
562 (makebody ()
563 (let ((form `(tagbody
564 ,@(psimp (append prologue (nreverse rbefore)))
565 next-loop
566 ,@(psimp (append main-body
567 (nreconc rafter
568 `((go next-loop)))))
569 end-loop
570 ,@(psimp epilogue))))
571 (if flagvar `(let ((,flagvar nil)) ,form) form))))
572 (when (or *loop-duplicate-code* (not rbefore))
573 (return-from loop-body (makebody)))
574 ;; This outer loop iterates once for each not-first-time flag test
575 ;; generated plus once more for the forms that don't need a flag test.
576 (do ((threshold (loop-code-duplication-threshold env))) (nil)
577 (declare (fixnum threshold))
578 ;; Go backwards from the ends of before-loop and after-loop
579 ;; merging all the equivalent forms into the body.
580 (do () ((or (null rbefore) (not (equal (car rbefore) (car rafter)))))
581 (push (pop rbefore) main-body)
582 (pop rafter))
583 (unless rbefore (return (makebody)))
584 ;; The first forms in RBEFORE & RAFTER (which are the
585 ;; chronologically last forms in the list) differ, therefore
586 ;; they cannot be moved into the main body. If everything that
587 ;; chronologically precedes them either differs or is equal but
588 ;; is okay to duplicate, we can just put all of rbefore in the
589 ;; prologue and all of rafter after the body. Otherwise, there
590 ;; is something that is not okay to duplicate, so it and
591 ;; everything chronologically after it in rbefore and rafter
592 ;; must go into the body, with a flag test to distinguish the
593 ;; first time around the loop from later times. What
594 ;; chronologically precedes the non-duplicatable form will be
595 ;; handled the next time around the outer loop.
596 (do ((bb rbefore (cdr bb))
597 (aa rafter (cdr aa))
598 (lastdiff nil)
599 (count 0)
600 (inc nil))
601 ((null bb) (return-from loop-body (makebody))) ; Did it.
602 (cond ((not (equal (car bb) (car aa))) (setq lastdiff bb count 0))
603 ((or (not (setq inc (estimate-code-size (car bb) env)))
604 (> (incf count inc) threshold))
605 ;; Ok, we have found a non-duplicatable piece of code.
606 ;; Everything chronologically after it must be in the
607 ;; central body. Everything chronologically at and
608 ;; after LASTDIFF goes into the central body under a
609 ;; flag test.
610 (let ((then nil) (else nil))
611 (do () (nil)
612 (push (pop rbefore) else)
613 (push (pop rafter) then)
614 (when (eq rbefore (cdr lastdiff)) (return)))
615 (unless flagvar
616 (push `(setq ,(setq flagvar *loop-iteration-flag-var*)
618 else))
619 (push `(if ,flagvar ,(pify (psimp then)) ,(pify (psimp else)))
620 main-body))
621 ;; Everything chronologically before lastdiff until the
622 ;; non-duplicatable form (CAR BB) is the same in
623 ;; RBEFORE and RAFTER, so just copy it into the body.
624 (do () (nil)
625 (pop rafter)
626 (push (pop rbefore) main-body)
627 (when (eq rbefore (cdr bb)) (return)))
628 (return)))))))
630 (defun duplicatable-code-p (expr env)
631 (if (null expr) 0
632 (let ((ans (estimate-code-size expr env)))
633 (declare (fixnum ans))
634 ;; @@@@ Use (DECLARATION-INFORMATION 'OPTIMIZE ENV) here to
635 ;; get an alist of optimize quantities back to help quantify
636 ;; how much code we are willing to duplicate.
637 ans)))
639 (defvar *special-code-sizes*
640 '((return 0) (progn 0)
641 (null 1) (not 1) (eq 1) (car 1) (cdr 1)
642 (when 1) (unless 1) (if 1)
643 (caar 2) (cadr 2) (cdar 2) (cddr 2)
644 (caaar 3) (caadr 3) (cadar 3) (caddr 3)
645 (cdaar 3) (cdadr 3) (cddar 3) (cdddr 3)
646 (caaaar 4) (caaadr 4) (caadar 4) (caaddr 4)
647 (cadaar 4) (cadadr 4) (caddar 4) (cadddr 4)
648 (cdaaar 4) (cdaadr 4) (cdadar 4) (cdaddr 4)
649 (cddaar 4) (cddadr 4) (cdddar 4) (cddddr 4)))
651 (defvar *estimate-code-size-punt*
652 '(block
653 do do* dolist
654 flet
655 labels lambda let let* locally
656 macrolet multiple-value-bind
657 prog prog*
658 symbol-macrolet
659 tagbody
660 unwind-protect
661 with-open-file))
663 (defun destructuring-size (x)
664 (do ((x x (cdr x)) (n 0 (+ (destructuring-size (car x)) n)))
665 ((atom x) (+ n (if (null x) 0 1)))))
667 (defun estimate-code-size (x env)
668 (catch 'estimate-code-size
669 (estimate-code-size-1 x env)))
671 (defun estimate-code-size-1 (x env)
672 (flet ((list-size (l)
673 (let ((n 0))
674 (declare (fixnum n))
675 (dolist (x l n) (incf n (estimate-code-size-1 x env))))))
676 ;;@@@@ ???? (declare (function list-size (list) fixnum))
677 (cond ((constantp x) 1)
678 ((symbolp x) (multiple-value-bind (new-form expanded-p)
679 (sb!xc:macroexpand-1 x env)
680 (if expanded-p
681 (estimate-code-size-1 new-form env)
682 1)))
683 ((atom x) 1) ;; ??? self-evaluating???
684 ((symbolp (car x))
685 (let ((fn (car x)) (tem nil) (n 0))
686 (declare (symbol fn) (fixnum n))
687 (macrolet ((f (overhead &optional (args nil args-p))
688 `(the fixnum (+ (the fixnum ,overhead)
689 (the fixnum
690 (list-size ,(if args-p
691 args
692 '(cdr x))))))))
693 (cond ((setq tem (get fn 'estimate-code-size))
694 (typecase tem
695 (fixnum (f tem))
696 (t (funcall tem x env))))
697 ((setq tem (assoc fn *special-code-sizes*))
698 (f (second tem)))
699 ((eq fn 'cond)
700 (dolist (clause (cdr x) n)
701 (incf n (list-size clause)) (incf n)))
702 ((eq fn 'desetq)
703 (do ((l (cdr x) (cdr l))) ((null l) n)
704 (setq n (+ n
705 (destructuring-size (car l))
706 (estimate-code-size-1 (cadr l) env)))))
707 ((member fn '(setq psetq))
708 (do ((l (cdr x) (cdr l))) ((null l) n)
709 (setq n (+ n (estimate-code-size-1 (cadr l) env) 1))))
710 ((eq fn 'go) 1)
711 ((eq fn 'function)
712 ;; This skirts the issue of implementationally-defined
713 ;; lambda macros by recognizing CL function names and
714 ;; nothing else.
715 (if (or (symbolp (cadr x))
716 (and (consp (cadr x)) (eq (caadr x) 'setf)))
718 (throw 'duplicatable-code-p nil)))
719 ((eq fn 'multiple-value-setq)
720 (f (length (second x)) (cddr x)))
721 ((eq fn 'return-from)
722 (1+ (estimate-code-size-1 (third x) env)))
723 ((or (special-operator-p fn)
724 (member fn *estimate-code-size-punt*))
725 (throw 'estimate-code-size nil))
726 (t (multiple-value-bind (new-form expanded-p)
727 (sb!xc:macroexpand-1 x env)
728 (if expanded-p
729 (estimate-code-size-1 new-form env)
730 (f 3))))))))
731 (t (throw 'estimate-code-size nil)))))
733 ;;;; loop errors
735 (defun loop-context ()
736 (do ((l *loop-source-context* (cdr l)) (new nil (cons (car l) new)))
737 ((eq l (cdr *loop-source-code*)) (nreverse new))))
739 (defun loop-error (format-string &rest format-args)
740 (error 'sb!int:simple-program-error
741 :format-control "~?~%current LOOP context:~{ ~S~}."
742 :format-arguments (list format-string format-args (loop-context))))
744 (defun loop-warn (format-string &rest format-args)
745 (warn "~?~%current LOOP context:~{ ~S~}."
746 format-string
747 format-args
748 (loop-context)))
750 (defun loop-check-data-type (specified-type required-type
751 &optional (default-type required-type))
752 (if (null specified-type)
753 default-type
754 (multiple-value-bind (a b) (sb!xc:subtypep specified-type required-type)
755 (cond ((not b)
756 (loop-warn "LOOP couldn't verify that ~S is a subtype of the required type ~S."
757 specified-type required-type))
758 ((not a)
759 (loop-error "The specified data type ~S is not a subtype of ~S."
760 specified-type required-type)))
761 specified-type)))
763 (defun loop-build-destructuring-bindings (crocks forms)
764 (if crocks
765 `((destructuring-bind ,(car crocks) ,(cadr crocks)
766 ,@(loop-build-destructuring-bindings (cddr crocks) forms)))
767 forms))
769 (defun loop-translate (*loop-source-code*
770 *loop-macro-environment*
771 *loop-universe*)
772 (let ((*loop-original-source-code* *loop-source-code*)
773 (*loop-source-context* nil)
774 (*loop-iteration-vars* nil)
775 (*loop-vars* nil)
776 (*loop-named-vars* nil)
777 (*loop-declarations* nil)
778 (*loop-desetq-crocks* nil)
779 (*loop-bind-stack* nil)
780 (*loop-prologue* nil)
781 (*loop-wrappers* nil)
782 (*loop-before-loop* nil)
783 (*loop-body* nil)
784 (*loop-emitted-body* nil)
785 (*loop-after-body* nil)
786 (*loop-epilogue* nil)
787 (*loop-after-epilogue* nil)
788 (*loop-final-value-culprit* nil)
789 (*loop-inside-conditional* nil)
790 (*loop-when-it-var* nil)
791 (*loop-never-stepped-var* nil)
792 (*loop-names* nil)
793 (*loop-collection-cruft* nil))
794 (loop-iteration-driver)
795 (loop-bind-block)
796 (let ((answer `(loop-body
797 ,(nreverse *loop-prologue*)
798 ,(nreverse *loop-before-loop*)
799 ,(nreverse *loop-body*)
800 ,(nreverse *loop-after-body*)
801 ,(nreconc *loop-epilogue*
802 (nreverse *loop-after-epilogue*)))))
803 (do () (nil)
804 (setq answer `(block ,(pop *loop-names*) ,answer))
805 (unless *loop-names* (return nil)))
806 (dolist (entry *loop-bind-stack*)
807 (let ((vars (first entry))
808 (dcls (second entry))
809 (crocks (third entry))
810 (wrappers (fourth entry)))
811 (dolist (w wrappers)
812 (setq answer (append w (list answer))))
813 (when (or vars dcls crocks)
814 (let ((forms (list answer)))
815 ;;(when crocks (push crocks forms))
816 (when dcls (push `(declare ,@dcls) forms))
817 (setq answer `(,(if vars 'let 'locally)
818 ,vars
819 ,@(loop-build-destructuring-bindings crocks
820 forms)))))))
821 answer)))
823 (defun loop-iteration-driver ()
824 (do () ((null *loop-source-code*))
825 (let ((keyword (car *loop-source-code*)) (tem nil))
826 (cond ((not (symbolp keyword))
827 (loop-error "~S found where LOOP keyword expected" keyword))
828 (t (setq *loop-source-context* *loop-source-code*)
829 (loop-pop-source)
830 (cond ((setq tem
831 (loop-lookup-keyword keyword
832 (loop-universe-keywords
833 *loop-universe*)))
834 ;; It's a "miscellaneous" toplevel LOOP keyword (DO,
835 ;; COLLECT, NAMED, etc.)
836 (apply (symbol-function (first tem)) (rest tem)))
837 ((setq tem
838 (loop-lookup-keyword keyword
839 (loop-universe-iteration-keywords *loop-universe*)))
840 (loop-hack-iteration tem))
841 ((loop-tmember keyword '(and else))
842 ;; The alternative is to ignore it, i.e. let it go
843 ;; around to the next keyword...
844 (loop-error "secondary clause misplaced at top level in LOOP macro: ~S ~S ~S ..."
845 keyword
846 (car *loop-source-code*)
847 (cadr *loop-source-code*)))
848 (t (loop-error "unknown LOOP keyword: ~S" keyword))))))))
850 (defun loop-pop-source ()
851 (if *loop-source-code*
852 (pop *loop-source-code*)
853 (loop-error "LOOP source code ran out when another token was expected.")))
855 (defun loop-get-form ()
856 (if *loop-source-code*
857 (loop-pop-source)
858 (loop-error "LOOP code ran out where a form was expected.")))
860 (defun loop-get-compound-form ()
861 (let ((form (loop-get-form)))
862 (unless (consp form)
863 (loop-error "A compound form was expected, but ~S found." form))
864 form))
866 (defun loop-get-progn ()
867 (do ((forms (list (loop-get-compound-form))
868 (cons (loop-get-compound-form) forms))
869 (nextform (car *loop-source-code*)
870 (car *loop-source-code*)))
871 ((atom nextform)
872 (if (null (cdr forms)) (car forms) (cons 'progn (nreverse forms))))))
874 (defun loop-construct-return (form)
875 `(return-from ,(car *loop-names*) ,form))
877 (defun loop-pseudo-body (form)
878 (cond ((or *loop-emitted-body* *loop-inside-conditional*)
879 (push form *loop-body*))
880 (t (push form *loop-before-loop*) (push form *loop-after-body*))))
882 (defun loop-emit-body (form)
883 (setq *loop-emitted-body* t)
884 (loop-pseudo-body form))
886 (defun loop-emit-final-value (form)
887 (push (loop-construct-return form) *loop-after-epilogue*)
888 (when *loop-final-value-culprit*
889 (loop-warn "The LOOP clause is providing a value for the iteration,~@
890 however one was already established by a ~S clause."
891 *loop-final-value-culprit*))
892 (setq *loop-final-value-culprit* (car *loop-source-context*)))
894 (defun loop-disallow-conditional (&optional kwd)
895 (when *loop-inside-conditional*
896 (loop-error "~:[This LOOP~;The LOOP ~:*~S~] clause is not permitted inside a conditional." kwd)))
898 ;;;; loop types
900 (defun loop-typed-init (data-type)
901 (when (and data-type (sb!xc:subtypep data-type 'number))
902 (if (or (sb!xc:subtypep data-type 'float)
903 (sb!xc:subtypep data-type '(complex float)))
904 (coerce 0 data-type)
905 0)))
907 (defun loop-optional-type (&optional variable)
908 ;; No variable specified implies that no destructuring is permissible.
909 (and *loop-source-code* ; Don't get confused by NILs..
910 (let ((z (car *loop-source-code*)))
911 (cond ((loop-tequal z 'of-type)
912 ;; This is the syntactically unambigous form in that
913 ;; the form of the type specifier does not matter.
914 ;; Also, it is assumed that the type specifier is
915 ;; unambiguously, and without need of translation, a
916 ;; common lisp type specifier or pattern (matching the
917 ;; variable) thereof.
918 (loop-pop-source)
919 (loop-pop-source))
921 ((symbolp z)
922 ;; This is the (sort of) "old" syntax, even though we
923 ;; didn't used to support all of these type symbols.
924 (let ((type-spec (or (gethash z
925 (loop-universe-type-symbols
926 *loop-universe*))
927 (gethash (symbol-name z)
928 (loop-universe-type-keywords
929 *loop-universe*)))))
930 (when type-spec
931 (loop-pop-source)
932 type-spec)))
934 ;; This is our sort-of old syntax. But this is only
935 ;; valid for when we are destructuring, so we will be
936 ;; compulsive (should we really be?) and require that
937 ;; we in fact be doing variable destructuring here. We
938 ;; must translate the old keyword pattern typespec
939 ;; into a fully-specified pattern of real type
940 ;; specifiers here.
941 (if (consp variable)
942 (unless (consp z)
943 (loop-error
944 "~S found where a LOOP keyword, LOOP type keyword, or LOOP type pattern expected"
946 (loop-error "~S found where a LOOP keyword or LOOP type keyword expected" z))
947 (loop-pop-source)
948 (labels ((translate (k v)
949 (cond ((null k) nil)
950 ((atom k)
951 (replicate
952 (or (gethash k
953 (loop-universe-type-symbols
954 *loop-universe*))
955 (gethash (symbol-name k)
956 (loop-universe-type-keywords
957 *loop-universe*))
958 (loop-error
959 "The destructuring type pattern ~S contains the unrecognized type keyword ~S."
960 z k))
962 ((atom v)
963 (loop-error
964 "The destructuring type pattern ~S doesn't match the variable pattern ~S."
965 z variable))
966 (t (cons (translate (car k) (car v))
967 (translate (cdr k) (cdr v))))))
968 (replicate (typ v)
969 (if (atom v)
971 (cons (replicate typ (car v))
972 (replicate typ (cdr v))))))
973 (translate z variable)))))))
975 ;;;; loop variables
977 (defun loop-bind-block ()
978 (when (or *loop-vars* *loop-declarations* *loop-wrappers*)
979 (push (list (nreverse *loop-vars*)
980 *loop-declarations*
981 *loop-desetq-crocks*
982 *loop-wrappers*)
983 *loop-bind-stack*)
984 (setq *loop-vars* nil
985 *loop-declarations* nil
986 *loop-desetq-crocks* nil
987 *loop-wrappers* nil)))
989 (defun loop-make-var (name initialization dtype &optional iteration-var-p)
990 (cond ((null name)
991 (cond ((not (null initialization))
992 (push (list (setq name (gensym "LOOP-IGNORE-"))
993 initialization)
994 *loop-vars*)
995 (push `(ignore ,name) *loop-declarations*))))
996 ((atom name)
997 (cond (iteration-var-p
998 (if (member name *loop-iteration-vars*)
999 (loop-error "duplicated LOOP iteration variable ~S" name)
1000 (push name *loop-iteration-vars*)))
1001 ((assoc name *loop-vars*)
1002 (loop-error "duplicated variable ~S in LOOP parallel binding"
1003 name)))
1004 (unless (symbolp name)
1005 (loop-error "bad variable ~S somewhere in LOOP" name))
1006 (loop-declare-var name dtype)
1007 ;; We use ASSOC on this list to check for duplications (above),
1008 ;; so don't optimize out this list:
1009 (push (list name (or initialization (loop-typed-init dtype)))
1010 *loop-vars*))
1011 (initialization
1012 (let ((newvar (gensym "LOOP-DESTRUCTURE-")))
1013 (loop-declare-var name dtype)
1014 (push (list newvar initialization) *loop-vars*)
1015 ;; *LOOP-DESETQ-CROCKS* gathered in reverse order.
1016 (setq *loop-desetq-crocks*
1017 (list* name newvar *loop-desetq-crocks*))))
1018 (t (let ((tcar nil) (tcdr nil))
1019 (if (atom dtype) (setq tcar (setq tcdr dtype))
1020 (setq tcar (car dtype) tcdr (cdr dtype)))
1021 (loop-make-var (car name) nil tcar iteration-var-p)
1022 (loop-make-var (cdr name) nil tcdr iteration-var-p))))
1023 name)
1025 (defun loop-make-iteration-var (name initialization dtype)
1026 (loop-make-var name initialization dtype t))
1028 (defun loop-declare-var (name dtype)
1029 (cond ((or (null name) (null dtype) (eq dtype t)) nil)
1030 ((symbolp name)
1031 (unless (sb!xc:subtypep t dtype)
1032 (let ((dtype (let ((init (loop-typed-init dtype)))
1033 (if (sb!xc:typep init dtype)
1034 dtype
1035 `(or (member ,init) ,dtype)))))
1036 (push `(type ,dtype ,name) *loop-declarations*))))
1037 ((consp name)
1038 (cond ((consp dtype)
1039 (loop-declare-var (car name) (car dtype))
1040 (loop-declare-var (cdr name) (cdr dtype)))
1041 (t (loop-declare-var (car name) dtype)
1042 (loop-declare-var (cdr name) dtype))))
1043 (t (error "invalid LOOP variable passed in: ~S" name))))
1045 (defun loop-maybe-bind-form (form data-type)
1046 (if (loop-constantp form)
1047 form
1048 (loop-make-var (gensym "LOOP-BIND-") form data-type)))
1050 (defun loop-do-if (for negatep)
1051 (let ((form (loop-get-form)) (*loop-inside-conditional* t) (it-p nil))
1052 (flet ((get-clause (for)
1053 (do ((body nil)) (nil)
1054 (let ((key (car *loop-source-code*)) (*loop-body* nil) data)
1055 (cond ((not (symbolp key))
1056 (loop-error
1057 "~S found where keyword expected getting LOOP clause after ~S"
1058 key for))
1059 (t (setq *loop-source-context* *loop-source-code*)
1060 (loop-pop-source)
1061 (when (loop-tequal (car *loop-source-code*) 'it)
1062 (setq *loop-source-code*
1063 (cons (or it-p
1064 (setq it-p
1065 (loop-when-it-var)))
1066 (cdr *loop-source-code*))))
1067 (cond ((or (not (setq data (loop-lookup-keyword
1068 key (loop-universe-keywords *loop-universe*))))
1069 (progn (apply (symbol-function (car data))
1070 (cdr data))
1071 (null *loop-body*)))
1072 (loop-error
1073 "~S does not introduce a LOOP clause that can follow ~S."
1074 key for))
1075 (t (setq body (nreconc *loop-body* body)))))))
1076 (if (loop-tequal (car *loop-source-code*) :and)
1077 (loop-pop-source)
1078 (return (if (cdr body)
1079 `(progn ,@(nreverse body))
1080 (car body)))))))
1081 (let ((then (get-clause for))
1082 (else (when (loop-tequal (car *loop-source-code*) :else)
1083 (loop-pop-source)
1084 (list (get-clause :else)))))
1085 (when (loop-tequal (car *loop-source-code*) :end)
1086 (loop-pop-source))
1087 (when it-p (setq form `(setq ,it-p ,form)))
1088 (loop-pseudo-body
1089 `(if ,(if negatep `(not ,form) form)
1090 ,then
1091 ,@else))))))
1093 (defun loop-do-initially ()
1094 (loop-disallow-conditional :initially)
1095 (push (loop-get-progn) *loop-prologue*))
1097 (defun loop-do-finally ()
1098 (loop-disallow-conditional :finally)
1099 (push (loop-get-progn) *loop-epilogue*))
1101 (defun loop-do-do ()
1102 (loop-emit-body (loop-get-progn)))
1104 (defun loop-do-named ()
1105 (let ((name (loop-pop-source)))
1106 (unless (symbolp name)
1107 (loop-error "~S is an invalid name for your LOOP" name))
1108 (when (or *loop-before-loop* *loop-body* *loop-after-epilogue* *loop-inside-conditional*)
1109 (loop-error "The NAMED ~S clause occurs too late." name))
1110 (when *loop-names*
1111 (loop-error "You may only use one NAMED clause in your loop: NAMED ~S ... NAMED ~S."
1112 (car *loop-names*) name))
1113 (setq *loop-names* (list name nil))))
1115 (defun loop-do-return ()
1116 (loop-pseudo-body (loop-construct-return (loop-get-form))))
1118 ;;;; value accumulation: LIST
1120 (defstruct (loop-collector
1121 (:copier nil)
1122 (:predicate nil))
1123 name
1124 class
1125 (history nil)
1126 (tempvars nil)
1127 dtype
1128 (data nil)) ;collector-specific data
1130 (defun loop-get-collection-info (collector class default-type)
1131 (let ((form (loop-get-form))
1132 (dtype (and (not (loop-universe-ansi *loop-universe*)) (loop-optional-type)))
1133 (name (when (loop-tequal (car *loop-source-code*) 'into)
1134 (loop-pop-source)
1135 (loop-pop-source))))
1136 (when (not (symbolp name))
1137 (loop-error "The value accumulation recipient name, ~S, is not a symbol." name))
1138 (unless dtype
1139 (setq dtype (or (loop-optional-type) default-type)))
1140 (let ((cruft (find (the symbol name) *loop-collection-cruft*
1141 :key #'loop-collector-name)))
1142 (cond ((not cruft)
1143 (push (setq cruft (make-loop-collector
1144 :name name :class class
1145 :history (list collector) :dtype dtype))
1146 *loop-collection-cruft*))
1147 (t (unless (eq (loop-collector-class cruft) class)
1148 (loop-error
1149 "incompatible kinds of LOOP value accumulation specified for collecting~@
1150 ~:[as the value of the LOOP~;~:*INTO ~S~]: ~S and ~S"
1151 name (car (loop-collector-history cruft)) collector))
1152 (unless (equal dtype (loop-collector-dtype cruft))
1153 (loop-warn
1154 "unequal datatypes specified in different LOOP value accumulations~@
1155 into ~S: ~S and ~S"
1156 name dtype (loop-collector-dtype cruft))
1157 (when (eq (loop-collector-dtype cruft) t)
1158 (setf (loop-collector-dtype cruft) dtype)))
1159 (push collector (loop-collector-history cruft))))
1160 (values cruft form))))
1162 (defun loop-list-collection (specifically) ; NCONC, LIST, or APPEND
1163 (multiple-value-bind (lc form)
1164 (loop-get-collection-info specifically 'list 'list)
1165 (let ((tempvars (loop-collector-tempvars lc)))
1166 (unless tempvars
1167 (setf (loop-collector-tempvars lc)
1168 (setq tempvars (list* (gensym "LOOP-LIST-HEAD-")
1169 (gensym "LOOP-LIST-TAIL-")
1170 (and (loop-collector-name lc)
1171 (list (loop-collector-name lc))))))
1172 (push `(with-loop-list-collection-head ,tempvars) *loop-wrappers*)
1173 (unless (loop-collector-name lc)
1174 (loop-emit-final-value `(loop-collect-answer ,(car tempvars)
1175 ,@(cddr tempvars)))))
1176 (ecase specifically
1177 (list (setq form `(list ,form)))
1178 (nconc nil)
1179 (append (unless (and (consp form) (eq (car form) 'list))
1180 (setq form `(copy-list ,form)))))
1181 (loop-emit-body `(loop-collect-rplacd ,tempvars ,form)))))
1183 ;;;; value accumulation: MAX, MIN, SUM, COUNT
1185 (defun loop-sum-collection (specifically required-type default-type);SUM, COUNT
1186 (multiple-value-bind (lc form)
1187 (loop-get-collection-info specifically 'sum default-type)
1188 (loop-check-data-type (loop-collector-dtype lc) required-type)
1189 (let ((tempvars (loop-collector-tempvars lc)))
1190 (unless tempvars
1191 (setf (loop-collector-tempvars lc)
1192 (setq tempvars (list (loop-make-var
1193 (or (loop-collector-name lc)
1194 (gensym "LOOP-SUM-"))
1195 nil (loop-collector-dtype lc)))))
1196 (unless (loop-collector-name lc)
1197 (loop-emit-final-value (car (loop-collector-tempvars lc)))))
1198 (loop-emit-body
1199 (if (eq specifically 'count)
1200 `(when ,form
1201 (setq ,(car tempvars)
1202 (1+ ,(car tempvars))))
1203 `(setq ,(car tempvars)
1204 (+ ,(car tempvars)
1205 ,form)))))))
1207 (defun loop-maxmin-collection (specifically)
1208 (multiple-value-bind (lc form)
1209 (loop-get-collection-info specifically 'maxmin 'real)
1210 (loop-check-data-type (loop-collector-dtype lc) 'real)
1211 (let ((data (loop-collector-data lc)))
1212 (unless data
1213 (setf (loop-collector-data lc)
1214 (setq data (make-loop-minimax
1215 (or (loop-collector-name lc)
1216 (gensym "LOOP-MAXMIN-"))
1217 (loop-collector-dtype lc))))
1218 (unless (loop-collector-name lc)
1219 (loop-emit-final-value (loop-minimax-answer-variable data))))
1220 (loop-note-minimax-operation specifically data)
1221 (push `(with-minimax-value ,data) *loop-wrappers*)
1222 (loop-emit-body `(loop-accumulate-minimax-value ,data
1223 ,specifically
1224 ,form)))))
1226 ;;;; value accumulation: aggregate booleans
1228 ;;; handling the ALWAYS and NEVER loop keywords
1230 ;;; Under ANSI these are not permitted to appear under conditionalization.
1231 (defun loop-do-always (restrictive negate)
1232 (let ((form (loop-get-form)))
1233 (when restrictive (loop-disallow-conditional))
1234 (loop-emit-body `(,(if negate 'when 'unless) ,form
1235 ,(loop-construct-return nil)))
1236 (loop-emit-final-value t)))
1238 ;;; handling the THEREIS loop keyword
1240 ;;; Under ANSI this is not permitted to appear under conditionalization.
1241 (defun loop-do-thereis (restrictive)
1242 (when restrictive (loop-disallow-conditional))
1243 (loop-emit-body `(when (setq ,(loop-when-it-var) ,(loop-get-form))
1244 ,(loop-construct-return *loop-when-it-var*))))
1246 (defun loop-do-while (negate kwd &aux (form (loop-get-form)))
1247 (loop-disallow-conditional kwd)
1248 (loop-pseudo-body `(,(if negate 'when 'unless) ,form (go end-loop))))
1250 (defun loop-do-with ()
1251 (loop-disallow-conditional :with)
1252 (do ((var) (val) (dtype)) (nil)
1253 (setq var (loop-pop-source)
1254 dtype (loop-optional-type var)
1255 val (cond ((loop-tequal (car *loop-source-code*) :=)
1256 (loop-pop-source)
1257 (loop-get-form))
1258 (t nil)))
1259 (loop-make-var var val dtype)
1260 (if (loop-tequal (car *loop-source-code*) :and)
1261 (loop-pop-source)
1262 (return (loop-bind-block)))))
1264 ;;;; the iteration driver
1266 (defun loop-hack-iteration (entry)
1267 (flet ((make-endtest (list-of-forms)
1268 (cond ((null list-of-forms) nil)
1269 ((member t list-of-forms) '(go end-loop))
1270 (t `(when ,(if (null (cdr (setq list-of-forms
1271 (nreverse list-of-forms))))
1272 (car list-of-forms)
1273 (cons 'or list-of-forms))
1274 (go end-loop))))))
1275 (do ((pre-step-tests nil)
1276 (steps nil)
1277 (post-step-tests nil)
1278 (pseudo-steps nil)
1279 (pre-loop-pre-step-tests nil)
1280 (pre-loop-steps nil)
1281 (pre-loop-post-step-tests nil)
1282 (pre-loop-pseudo-steps nil)
1283 (tem) (data))
1284 (nil)
1285 ;; Note that we collect endtests in reverse order, but steps in correct
1286 ;; order. MAKE-ENDTEST does the nreverse for us.
1287 (setq tem (setq data
1288 (apply (symbol-function (first entry)) (rest entry))))
1289 (and (car tem) (push (car tem) pre-step-tests))
1290 (setq steps (nconc steps (copy-list (car (setq tem (cdr tem))))))
1291 (and (car (setq tem (cdr tem))) (push (car tem) post-step-tests))
1292 (setq pseudo-steps
1293 (nconc pseudo-steps (copy-list (car (setq tem (cdr tem))))))
1294 (setq tem (cdr tem))
1295 (when *loop-emitted-body*
1296 (loop-error "iteration in LOOP follows body code"))
1297 (unless tem (setq tem data))
1298 (when (car tem) (push (car tem) pre-loop-pre-step-tests))
1299 ;; FIXME: This (SETF FOO (NCONC FOO BAR)) idiom appears often enough
1300 ;; that it might be worth making it into an NCONCF macro.
1301 (setq pre-loop-steps
1302 (nconc pre-loop-steps (copy-list (car (setq tem (cdr tem))))))
1303 (when (car (setq tem (cdr tem)))
1304 (push (car tem) pre-loop-post-step-tests))
1305 (setq pre-loop-pseudo-steps
1306 (nconc pre-loop-pseudo-steps (copy-list (cadr tem))))
1307 (unless (loop-tequal (car *loop-source-code*) :and)
1308 (setq *loop-before-loop*
1309 (list* (loop-make-desetq pre-loop-pseudo-steps)
1310 (make-endtest pre-loop-post-step-tests)
1311 (loop-make-psetq pre-loop-steps)
1312 (make-endtest pre-loop-pre-step-tests)
1313 *loop-before-loop*))
1314 (setq *loop-after-body*
1315 (list* (loop-make-desetq pseudo-steps)
1316 (make-endtest post-step-tests)
1317 (loop-make-psetq steps)
1318 (make-endtest pre-step-tests)
1319 *loop-after-body*))
1320 (loop-bind-block)
1321 (return nil))
1322 (loop-pop-source) ; Flush the "AND".
1323 (when (and (not (loop-universe-implicit-for-required *loop-universe*))
1324 (setq tem
1325 (loop-lookup-keyword
1326 (car *loop-source-code*)
1327 (loop-universe-iteration-keywords *loop-universe*))))
1328 ;; The latest ANSI clarification is that the FOR/AS after the AND must
1329 ;; NOT be supplied.
1330 (loop-pop-source)
1331 (setq entry tem)))))
1333 ;;;; main iteration drivers
1335 ;;; FOR variable keyword ..args..
1336 (defun loop-do-for ()
1337 (let* ((var (loop-pop-source))
1338 (data-type (loop-optional-type var))
1339 (keyword (loop-pop-source))
1340 (first-arg nil)
1341 (tem nil))
1342 (setq first-arg (loop-get-form))
1343 (unless (and (symbolp keyword)
1344 (setq tem (loop-lookup-keyword
1345 keyword
1346 (loop-universe-for-keywords *loop-universe*))))
1347 (loop-error "~S is an unknown keyword in FOR or AS clause in LOOP."
1348 keyword))
1349 (apply (car tem) var first-arg data-type (cdr tem))))
1351 (defun loop-do-repeat ()
1352 (let ((form (loop-get-form))
1353 (type (loop-check-data-type (loop-optional-type)
1354 'real)))
1355 (when (and (consp form)
1356 (eq (car form) 'the)
1357 (sb!xc:subtypep (second form) type))
1358 (setq type (second form)))
1359 (multiple-value-bind (number constantp value)
1360 (loop-constant-fold-if-possible form type)
1361 (cond ((and constantp (<= value 1)) `(t () () () ,(<= value 0) () () ()))
1362 (t (let ((var (loop-make-var (gensym "LOOP-REPEAT-") number type)))
1363 (if constantp
1364 `((not (plusp (setq ,var (1- ,var))))
1365 () () () () () () ())
1366 `((minusp (setq ,var (1- ,var)))
1367 () () ()))))))))
1369 (defun loop-when-it-var ()
1370 (or *loop-when-it-var*
1371 (setq *loop-when-it-var*
1372 (loop-make-var (gensym "LOOP-IT-") nil nil))))
1374 ;;;; various FOR/AS subdispatches
1376 ;;; ANSI "FOR x = y [THEN z]" is sort of like the old Genera one when
1377 ;;; the THEN is omitted (other than being more stringent in its
1378 ;;; placement), and like the old "FOR x FIRST y THEN z" when the THEN
1379 ;;; is present. I.e., the first initialization occurs in the loop body
1380 ;;; (first-step), not in the variable binding phase.
1381 (defun loop-ansi-for-equals (var val data-type)
1382 (loop-make-iteration-var var nil data-type)
1383 (cond ((loop-tequal (car *loop-source-code*) :then)
1384 ;; Then we are the same as "FOR x FIRST y THEN z".
1385 (loop-pop-source)
1386 `(() (,var ,(loop-get-form)) () ()
1387 () (,var ,val) () ()))
1388 (t ;; We are the same as "FOR x = y".
1389 `(() (,var ,val) () ()))))
1391 (defun loop-for-across (var val data-type)
1392 (loop-make-iteration-var var nil data-type)
1393 (let ((vector-var (gensym "LOOP-ACROSS-VECTOR-"))
1394 (index-var (gensym "LOOP-ACROSS-INDEX-")))
1395 (multiple-value-bind (vector-form constantp vector-value)
1396 (loop-constant-fold-if-possible val 'vector)
1397 (loop-make-var
1398 vector-var vector-form
1399 (if (and (consp vector-form) (eq (car vector-form) 'the))
1400 (cadr vector-form)
1401 'vector))
1402 (loop-make-var index-var 0 'fixnum)
1403 (let* ((length 0)
1404 (length-form (cond ((not constantp)
1405 (let ((v (gensym "LOOP-ACROSS-LIMIT-")))
1406 (push `(setq ,v (length ,vector-var))
1407 *loop-prologue*)
1408 (loop-make-var v 0 'fixnum)))
1409 (t (setq length (length vector-value)))))
1410 (first-test `(>= ,index-var ,length-form))
1411 (other-test first-test)
1412 (step `(,var (aref ,vector-var ,index-var)))
1413 (pstep `(,index-var (1+ ,index-var))))
1414 (declare (fixnum length))
1415 (when constantp
1416 (setq first-test (= length 0))
1417 (when (<= length 1)
1418 (setq other-test t)))
1419 `(,other-test ,step () ,pstep
1420 ,@(and (not (eq first-test other-test))
1421 `(,first-test ,step () ,pstep)))))))
1423 ;;;; list iteration
1425 (defun loop-list-step (listvar)
1426 ;; We are not equipped to analyze whether 'FOO is the same as #'FOO
1427 ;; here in any sensible fashion, so let's give an obnoxious warning
1428 ;; whenever 'FOO is used as the stepping function.
1430 ;; While a Discerning Compiler may deal intelligently with
1431 ;; (FUNCALL 'FOO ...), not recognizing FOO may defeat some LOOP
1432 ;; optimizations.
1433 (let ((stepper (cond ((loop-tequal (car *loop-source-code*) :by)
1434 (loop-pop-source)
1435 (loop-get-form))
1436 (t '(function cdr)))))
1437 (cond ((and (consp stepper) (eq (car stepper) 'quote))
1438 (loop-warn "Use of QUOTE around stepping function in LOOP will be left verbatim.")
1439 `(funcall ,stepper ,listvar))
1440 ((and (consp stepper) (eq (car stepper) 'function))
1441 (list (cadr stepper) listvar))
1443 `(funcall ,(loop-make-var (gensym "LOOP-FN-") stepper 'function)
1444 ,listvar)))))
1446 (defun loop-for-on (var val data-type)
1447 (multiple-value-bind (list constantp list-value)
1448 (loop-constant-fold-if-possible val)
1449 (let ((listvar var))
1450 (cond ((and var (symbolp var))
1451 (loop-make-iteration-var var list data-type))
1452 (t (loop-make-var (setq listvar (gensym)) list 'list)
1453 (loop-make-iteration-var var nil data-type)))
1454 (let ((list-step (loop-list-step listvar)))
1455 (let* ((first-endtest
1456 ;; mysterious comment from original CMU CL sources:
1457 ;; the following should use `atom' instead of `endp',
1458 ;; per [bug2428]
1459 `(atom ,listvar))
1460 (other-endtest first-endtest))
1461 (when (and constantp (listp list-value))
1462 (setq first-endtest (null list-value)))
1463 (cond ((eq var listvar)
1464 ;; The contour of the loop is different because we
1465 ;; use the user's variable...
1466 `(() (,listvar ,list-step)
1467 ,other-endtest () () () ,first-endtest ()))
1468 (t (let ((step `(,var ,listvar))
1469 (pseudo `(,listvar ,list-step)))
1470 `(,other-endtest ,step () ,pseudo
1471 ,@(and (not (eq first-endtest other-endtest))
1472 `(,first-endtest ,step () ,pseudo)))))))))))
1474 (defun loop-for-in (var val data-type)
1475 (multiple-value-bind (list constantp list-value)
1476 (loop-constant-fold-if-possible val)
1477 (let ((listvar (gensym "LOOP-LIST-")))
1478 (loop-make-iteration-var var nil data-type)
1479 (loop-make-var listvar list 'list)
1480 (let ((list-step (loop-list-step listvar)))
1481 (let* ((first-endtest `(endp ,listvar))
1482 (other-endtest first-endtest)
1483 (step `(,var (car ,listvar)))
1484 (pseudo-step `(,listvar ,list-step)))
1485 (when (and constantp (listp list-value))
1486 (setq first-endtest (null list-value)))
1487 `(,other-endtest ,step () ,pseudo-step
1488 ,@(and (not (eq first-endtest other-endtest))
1489 `(,first-endtest ,step () ,pseudo-step))))))))
1491 ;;;; iteration paths
1493 (defstruct (loop-path
1494 (:copier nil)
1495 (:predicate nil))
1496 names
1497 preposition-groups
1498 inclusive-permitted
1499 function
1500 user-data)
1502 (defun add-loop-path (names function universe
1503 &key preposition-groups inclusive-permitted user-data)
1504 (declare (type loop-universe universe))
1505 (unless (listp names)
1506 (setq names (list names)))
1507 (let ((ht (loop-universe-path-keywords universe))
1508 (lp (make-loop-path
1509 :names (mapcar #'symbol-name names)
1510 :function function
1511 :user-data user-data
1512 :preposition-groups (mapcar (lambda (x)
1513 (if (listp x) x (list x)))
1514 preposition-groups)
1515 :inclusive-permitted inclusive-permitted)))
1516 (dolist (name names)
1517 (setf (gethash (symbol-name name) ht) lp))
1518 lp))
1520 ;;; Note: Path functions are allowed to use LOOP-MAKE-VAR, hack
1521 ;;; the prologue, etc.
1522 (defun loop-for-being (var val data-type)
1523 ;; FOR var BEING each/the pathname prep-phrases using-stuff... each/the =
1524 ;; EACH or THE. Not clear if it is optional, so I guess we'll warn.
1525 (let ((path nil)
1526 (data nil)
1527 (inclusive nil)
1528 (stuff nil)
1529 (initial-prepositions nil))
1530 (cond ((loop-tmember val '(:each :the)) (setq path (loop-pop-source)))
1531 ((loop-tequal (car *loop-source-code*) :and)
1532 (loop-pop-source)
1533 (setq inclusive t)
1534 (unless (loop-tmember (car *loop-source-code*)
1535 '(:its :each :his :her))
1536 (loop-error "~S was found where ITS or EACH expected in LOOP iteration path syntax."
1537 (car *loop-source-code*)))
1538 (loop-pop-source)
1539 (setq path (loop-pop-source))
1540 (setq initial-prepositions `((:in ,val))))
1541 (t (loop-error "unrecognizable LOOP iteration path syntax: missing EACH or THE?")))
1542 (cond ((not (symbolp path))
1543 (loop-error
1544 "~S was found where a LOOP iteration path name was expected."
1545 path))
1546 ((not (setq data (loop-lookup-keyword path (loop-universe-path-keywords *loop-universe*))))
1547 (loop-error "~S is not the name of a LOOP iteration path." path))
1548 ((and inclusive (not (loop-path-inclusive-permitted data)))
1549 (loop-error "\"Inclusive\" iteration is not possible with the ~S LOOP iteration path." path)))
1550 (let ((fun (loop-path-function data))
1551 (preps (nconc initial-prepositions
1552 (loop-collect-prepositional-phrases
1553 (loop-path-preposition-groups data)
1554 t)))
1555 (user-data (loop-path-user-data data)))
1556 (when (symbolp fun) (setq fun (symbol-function fun)))
1557 (setq stuff (if inclusive
1558 (apply fun var data-type preps :inclusive t user-data)
1559 (apply fun var data-type preps user-data))))
1560 (when *loop-named-vars*
1561 (loop-error "Unused USING vars: ~S." *loop-named-vars*))
1562 ;; STUFF is now (bindings prologue-forms . stuff-to-pass-back).
1563 ;; Protect the system from the user and the user from himself.
1564 (unless (member (length stuff) '(6 10))
1565 (loop-error "Value passed back by LOOP iteration path function for path ~S has invalid length."
1566 path))
1567 (do ((l (car stuff) (cdr l)) (x)) ((null l))
1568 (if (atom (setq x (car l)))
1569 (loop-make-iteration-var x nil nil)
1570 (loop-make-iteration-var (car x) (cadr x) (caddr x))))
1571 (setq *loop-prologue* (nconc (reverse (cadr stuff)) *loop-prologue*))
1572 (cddr stuff)))
1574 (defun loop-named-var (name)
1575 (let ((tem (loop-tassoc name *loop-named-vars*)))
1576 (declare (list tem))
1577 (cond ((null tem) (values (gensym) nil))
1578 (t (setq *loop-named-vars* (delete tem *loop-named-vars*))
1579 (values (cdr tem) t)))))
1581 (defun loop-collect-prepositional-phrases (preposition-groups
1582 &optional
1583 using-allowed
1584 initial-phrases)
1585 (flet ((in-group-p (x group) (car (loop-tmember x group))))
1586 (do ((token nil)
1587 (prepositional-phrases initial-phrases)
1588 (this-group nil nil)
1589 (this-prep nil nil)
1590 (disallowed-prepositions
1591 (mapcan (lambda (x)
1592 (copy-list
1593 (find (car x) preposition-groups :test #'in-group-p)))
1594 initial-phrases))
1595 (used-prepositions (mapcar #'car initial-phrases)))
1596 ((null *loop-source-code*) (nreverse prepositional-phrases))
1597 (declare (symbol this-prep))
1598 (setq token (car *loop-source-code*))
1599 (dolist (group preposition-groups)
1600 (when (setq this-prep (in-group-p token group))
1601 (return (setq this-group group))))
1602 (cond (this-group
1603 (when (member this-prep disallowed-prepositions)
1604 (loop-error
1605 (if (member this-prep used-prepositions)
1606 "A ~S prepositional phrase occurs multiply for some LOOP clause."
1607 "Preposition ~S was used when some other preposition has subsumed it.")
1608 token))
1609 (setq used-prepositions (if (listp this-group)
1610 (append this-group used-prepositions)
1611 (cons this-group used-prepositions)))
1612 (loop-pop-source)
1613 (push (list this-prep (loop-get-form)) prepositional-phrases))
1614 ((and using-allowed (loop-tequal token 'using))
1615 (loop-pop-source)
1616 (do ((z (loop-pop-source) (loop-pop-source)) (tem)) (nil)
1617 (when (cadr z)
1618 (if (setq tem (loop-tassoc (car z) *loop-named-vars*))
1619 (loop-error
1620 "The variable substitution for ~S occurs twice in a USING phrase,~@
1621 with ~S and ~S."
1622 (car z) (cadr z) (cadr tem))
1623 (push (cons (car z) (cadr z)) *loop-named-vars*)))
1624 (when (or (null *loop-source-code*)
1625 (symbolp (car *loop-source-code*)))
1626 (return nil))))
1627 (t (return (nreverse prepositional-phrases)))))))
1629 ;;;; master sequencer function
1631 (defun loop-sequencer (indexv indexv-type
1632 variable variable-type
1633 sequence-variable sequence-type
1634 step-hack default-top
1635 prep-phrases)
1636 (let ((endform nil) ; form (constant or variable) with limit value
1637 (sequencep nil) ; T if sequence arg has been provided
1638 (testfn nil) ; endtest function
1639 (test nil) ; endtest form
1640 (stepby (1+ (or (loop-typed-init indexv-type) 0))) ; our increment
1641 (stepby-constantp t)
1642 (step nil) ; step form
1643 (dir nil) ; direction of stepping: NIL, :UP, :DOWN
1644 (inclusive-iteration nil) ; T if include last index
1645 (start-given nil) ; T when prep phrase has specified start
1646 (start-value nil)
1647 (start-constantp nil)
1648 (limit-given nil) ; T when prep phrase has specified end
1649 (limit-constantp nil)
1650 (limit-value nil)
1652 (when variable (loop-make-iteration-var variable nil variable-type))
1653 (do ((l prep-phrases (cdr l)) (prep) (form) (odir)) ((null l))
1654 (setq prep (caar l) form (cadar l))
1655 (case prep
1656 ((:of :in)
1657 (setq sequencep t)
1658 (loop-make-var sequence-variable form sequence-type))
1659 ((:from :downfrom :upfrom)
1660 (setq start-given t)
1661 (cond ((eq prep :downfrom) (setq dir ':down))
1662 ((eq prep :upfrom) (setq dir ':up)))
1663 (multiple-value-setq (form start-constantp start-value)
1664 (loop-constant-fold-if-possible form indexv-type))
1665 (loop-make-iteration-var indexv form indexv-type))
1666 ((:upto :to :downto :above :below)
1667 (cond ((loop-tequal prep :upto) (setq inclusive-iteration
1668 (setq dir ':up)))
1669 ((loop-tequal prep :to) (setq inclusive-iteration t))
1670 ((loop-tequal prep :downto) (setq inclusive-iteration
1671 (setq dir ':down)))
1672 ((loop-tequal prep :above) (setq dir ':down))
1673 ((loop-tequal prep :below) (setq dir ':up)))
1674 (setq limit-given t)
1675 (multiple-value-setq (form limit-constantp limit-value)
1676 (loop-constant-fold-if-possible form indexv-type))
1677 (setq endform (if limit-constantp
1678 `',limit-value
1679 (loop-make-var
1680 (gensym "LOOP-LIMIT-") form indexv-type))))
1681 (:by
1682 (multiple-value-setq (form stepby-constantp stepby)
1683 (loop-constant-fold-if-possible form indexv-type))
1684 (unless stepby-constantp
1685 (loop-make-var (setq stepby (gensym "LOOP-STEP-BY-"))
1686 form
1687 indexv-type)))
1688 (t (loop-error
1689 "~S invalid preposition in sequencing or sequence path;~@
1690 maybe invalid prepositions were specified in iteration path descriptor?"
1691 prep)))
1692 (when (and odir dir (not (eq dir odir)))
1693 (loop-error "conflicting stepping directions in LOOP sequencing path"))
1694 (setq odir dir))
1695 (when (and sequence-variable (not sequencep))
1696 (loop-error "missing OF or IN phrase in sequence path"))
1697 ;; Now fill in the defaults.
1698 (unless start-given
1699 (loop-make-iteration-var
1700 indexv
1701 (setq start-constantp t
1702 start-value (or (loop-typed-init indexv-type) 0))
1703 indexv-type))
1704 (cond ((member dir '(nil :up))
1705 (when (or limit-given default-top)
1706 (unless limit-given
1707 (loop-make-var (setq endform (gensym "LOOP-SEQ-LIMIT-"))
1709 indexv-type)
1710 (push `(setq ,endform ,default-top) *loop-prologue*))
1711 (setq testfn (if inclusive-iteration '> '>=)))
1712 (setq step (if (eql stepby 1) `(1+ ,indexv) `(+ ,indexv ,stepby))))
1713 (t (unless start-given
1714 (unless default-top
1715 (loop-error "don't know where to start stepping"))
1716 (push `(setq ,indexv (1- ,default-top)) *loop-prologue*))
1717 (when (and default-top (not endform))
1718 (setq endform (loop-typed-init indexv-type)
1719 inclusive-iteration t))
1720 (when endform (setq testfn (if inclusive-iteration '< '<=)))
1721 (setq step
1722 (if (eql stepby 1) `(1- ,indexv) `(- ,indexv ,stepby)))))
1723 (when testfn
1724 (setq test
1725 `(,testfn ,indexv ,endform)))
1726 (when step-hack
1727 (setq step-hack
1728 `(,variable ,step-hack)))
1729 (let ((first-test test) (remaining-tests test))
1730 (when (and stepby-constantp start-constantp limit-constantp)
1731 (when (setq first-test
1732 (funcall (symbol-function testfn)
1733 start-value
1734 limit-value))
1735 (setq remaining-tests t)))
1736 `(() (,indexv ,step)
1737 ,remaining-tests ,step-hack () () ,first-test ,step-hack))))
1739 ;;;; interfaces to the master sequencer
1741 (defun loop-for-arithmetic (var val data-type kwd)
1742 (loop-sequencer
1743 var (loop-check-data-type data-type 'real)
1744 nil nil nil nil nil nil
1745 (loop-collect-prepositional-phrases
1746 '((:from :upfrom :downfrom) (:to :upto :downto :above :below) (:by))
1747 nil (list (list kwd val)))))
1749 (defun loop-sequence-elements-path (variable data-type prep-phrases
1750 &key
1751 fetch-function
1752 size-function
1753 sequence-type
1754 element-type)
1755 (multiple-value-bind (indexv) (loop-named-var 'index)
1756 (let ((sequencev (loop-named-var 'sequence)))
1757 (list* nil nil ; dummy bindings and prologue
1758 (loop-sequencer
1759 indexv 'fixnum
1760 variable (or data-type element-type)
1761 sequencev sequence-type
1762 `(,fetch-function ,sequencev ,indexv)
1763 `(,size-function ,sequencev)
1764 prep-phrases)))))
1766 ;;;; builtin LOOP iteration paths
1769 (loop for v being the hash-values of ht do (print v))
1770 (loop for k being the hash-keys of ht do (print k))
1771 (loop for v being the hash-values of ht using (hash-key k) do (print (list k v)))
1772 (loop for k being the hash-keys of ht using (hash-value v) do (print (list k v)))
1775 (defun loop-hash-table-iteration-path (variable data-type prep-phrases
1776 &key (which (sb!int:missing-arg)))
1777 (declare (type (member :hash-key :hash-value) which))
1778 (cond ((or (cdr prep-phrases) (not (member (caar prep-phrases) '(:in :of))))
1779 (loop-error "too many prepositions!"))
1780 ((null prep-phrases)
1781 (loop-error "missing OF or IN in ~S iteration path")))
1782 (let ((ht-var (gensym "LOOP-HASHTAB-"))
1783 (next-fn (gensym "LOOP-HASHTAB-NEXT-"))
1784 (dummy-predicate-var nil)
1785 (post-steps nil))
1786 (multiple-value-bind (other-var other-p)
1787 (loop-named-var (ecase which
1788 (:hash-key 'hash-value)
1789 (:hash-value 'hash-key)))
1790 ;; @@@@ LOOP-NAMED-VAR returns a second value of T if the name
1791 ;; was actually specified, so clever code can throw away the
1792 ;; GENSYM'ed-up variable if it isn't really needed. The
1793 ;; following is for those implementations in which we cannot put
1794 ;; dummy NILs into MULTIPLE-VALUE-SETQ variable lists.
1795 (setq other-p t
1796 dummy-predicate-var (loop-when-it-var))
1797 (let* ((key-var nil)
1798 (val-var nil)
1799 (variable (or variable (gensym "LOOP-HASH-VAR-TEMP-")))
1800 (bindings `((,variable nil ,data-type)
1801 (,ht-var ,(cadar prep-phrases))
1802 ,@(and other-p other-var `((,other-var nil))))))
1803 (ecase which
1804 (:hash-key (setq key-var variable
1805 val-var (and other-p other-var)))
1806 (:hash-value (setq key-var (and other-p other-var)
1807 val-var variable)))
1808 (push `(with-hash-table-iterator (,next-fn ,ht-var)) *loop-wrappers*)
1809 (when (consp key-var)
1810 (setq post-steps
1811 `(,key-var ,(setq key-var (gensym "LOOP-HASH-KEY-TEMP-"))
1812 ,@post-steps))
1813 (push `(,key-var nil) bindings))
1814 (when (consp val-var)
1815 (setq post-steps
1816 `(,val-var ,(setq val-var (gensym "LOOP-HASH-VAL-TEMP-"))
1817 ,@post-steps))
1818 (push `(,val-var nil) bindings))
1819 `(,bindings ;bindings
1820 () ;prologue
1821 () ;pre-test
1822 () ;parallel steps
1823 (not (multiple-value-setq (,dummy-predicate-var ,key-var ,val-var)
1824 (,next-fn))) ;post-test
1825 ,post-steps)))))
1827 (defun loop-package-symbols-iteration-path (variable data-type prep-phrases
1828 &key symbol-types)
1829 (cond ((and prep-phrases (cdr prep-phrases))
1830 (loop-error "Too many prepositions!"))
1831 ((and prep-phrases (not (member (caar prep-phrases) '(:in :of))))
1832 (sb!int:bug "Unknown preposition ~S." (caar prep-phrases))))
1833 (unless (symbolp variable)
1834 (loop-error "Destructuring is not valid for package symbol iteration."))
1835 (let ((pkg-var (gensym "LOOP-PKGSYM-"))
1836 (next-fn (gensym "LOOP-PKGSYM-NEXT-"))
1837 (variable (or variable (gensym "LOOP-PKGSYM-VAR-")))
1838 (package (or (cadar prep-phrases) '*package*)))
1839 (push `(with-package-iterator (,next-fn ,pkg-var ,@symbol-types))
1840 *loop-wrappers*)
1841 `(((,variable nil ,data-type) (,pkg-var ,package))
1845 (not (multiple-value-setq (,(loop-when-it-var)
1846 ,variable)
1847 (,next-fn)))
1848 ())))
1850 ;;;; ANSI LOOP
1852 (defun make-ansi-loop-universe (extended-p)
1853 (let ((w (make-standard-loop-universe
1854 :keywords '((named (loop-do-named))
1855 (initially (loop-do-initially))
1856 (finally (loop-do-finally))
1857 (do (loop-do-do))
1858 (doing (loop-do-do))
1859 (return (loop-do-return))
1860 (collect (loop-list-collection list))
1861 (collecting (loop-list-collection list))
1862 (append (loop-list-collection append))
1863 (appending (loop-list-collection append))
1864 (nconc (loop-list-collection nconc))
1865 (nconcing (loop-list-collection nconc))
1866 (count (loop-sum-collection count
1867 real
1868 fixnum))
1869 (counting (loop-sum-collection count
1870 real
1871 fixnum))
1872 (sum (loop-sum-collection sum number number))
1873 (summing (loop-sum-collection sum number number))
1874 (maximize (loop-maxmin-collection max))
1875 (minimize (loop-maxmin-collection min))
1876 (maximizing (loop-maxmin-collection max))
1877 (minimizing (loop-maxmin-collection min))
1878 (always (loop-do-always t nil)) ; Normal, do always
1879 (never (loop-do-always t t)) ; Negate test on always.
1880 (thereis (loop-do-thereis t))
1881 (while (loop-do-while nil :while)) ; Normal, do while
1882 (until (loop-do-while t :until)) ;Negate test on while
1883 (when (loop-do-if when nil)) ; Normal, do when
1884 (if (loop-do-if if nil)) ; synonymous
1885 (unless (loop-do-if unless t)) ; Negate test on when
1886 (with (loop-do-with)))
1887 :for-keywords '((= (loop-ansi-for-equals))
1888 (across (loop-for-across))
1889 (in (loop-for-in))
1890 (on (loop-for-on))
1891 (from (loop-for-arithmetic :from))
1892 (downfrom (loop-for-arithmetic :downfrom))
1893 (upfrom (loop-for-arithmetic :upfrom))
1894 (below (loop-for-arithmetic :below))
1895 (above (loop-for-arithmetic :above))
1896 (to (loop-for-arithmetic :to))
1897 (upto (loop-for-arithmetic :upto))
1898 (downto (loop-for-arithmetic :downto))
1899 (by (loop-for-arithmetic :by))
1900 (being (loop-for-being)))
1901 :iteration-keywords '((for (loop-do-for))
1902 (as (loop-do-for))
1903 (repeat (loop-do-repeat)))
1904 :type-symbols '(array atom bignum bit bit-vector character
1905 compiled-function complex cons double-float
1906 fixnum float function hash-table integer
1907 keyword list long-float nil null number
1908 package pathname random-state ratio rational
1909 readtable sequence short-float simple-array
1910 simple-bit-vector simple-string simple-vector
1911 single-float standard-char stream string
1912 base-char symbol t vector)
1913 :type-keywords nil
1914 :ansi (if extended-p :extended t))))
1915 (add-loop-path '(hash-key hash-keys) 'loop-hash-table-iteration-path w
1916 :preposition-groups '((:of :in))
1917 :inclusive-permitted nil
1918 :user-data '(:which :hash-key))
1919 (add-loop-path '(hash-value hash-values) 'loop-hash-table-iteration-path w
1920 :preposition-groups '((:of :in))
1921 :inclusive-permitted nil
1922 :user-data '(:which :hash-value))
1923 (add-loop-path '(symbol symbols) 'loop-package-symbols-iteration-path w
1924 :preposition-groups '((:of :in))
1925 :inclusive-permitted nil
1926 :user-data '(:symbol-types (:internal
1927 :external
1928 :inherited)))
1929 (add-loop-path '(external-symbol external-symbols)
1930 'loop-package-symbols-iteration-path w
1931 :preposition-groups '((:of :in))
1932 :inclusive-permitted nil
1933 :user-data '(:symbol-types (:external)))
1934 (add-loop-path '(present-symbol present-symbols)
1935 'loop-package-symbols-iteration-path w
1936 :preposition-groups '((:of :in))
1937 :inclusive-permitted nil
1938 :user-data '(:symbol-types (:internal
1939 :external)))
1942 (defparameter *loop-ansi-universe*
1943 (make-ansi-loop-universe nil))
1945 (defun loop-standard-expansion (keywords-and-forms environment universe)
1946 (if (and keywords-and-forms (symbolp (car keywords-and-forms)))
1947 (loop-translate keywords-and-forms environment universe)
1948 (let ((tag (gensym)))
1949 `(block nil (tagbody ,tag (progn ,@keywords-and-forms) (go ,tag))))))
1951 (sb!int:defmacro-mundanely loop (&environment env &rest keywords-and-forms)
1952 (loop-standard-expansion keywords-and-forms env *loop-ansi-universe*))
1954 (sb!int:defmacro-mundanely loop-finish ()
1955 #!+sb-doc
1956 "Cause the iteration to terminate \"normally\", the same as implicit
1957 termination by an iteration driving clause, or by use of WHILE or
1958 UNTIL -- the epilogue code (if any) will be run, and any implicitly
1959 collected result will be returned as the value of the LOOP."
1960 '(go end-loop))