need these too
[sbcl/lichteblau.git] / src / runtime / purify.c
blob4d7e1eea3cff94cb38f895072de9b1f646526031
1 /*
2 * C-level stuff to implement Lisp-level PURIFY
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
16 #include <stdio.h>
17 #include <sys/types.h>
18 #include <stdlib.h>
20 #include "runtime.h"
21 #include "os.h"
22 #include "sbcl.h"
23 #include "globals.h"
24 #include "validate.h"
25 #include "interrupt.h"
26 #include "purify.h"
27 #include "interr.h"
28 #ifdef GENCGC
29 #include "gencgc.h"
30 #endif
32 #define PRINTNOISE
34 #if defined(__i386__)
35 /* again, what's so special about the x86 that this is differently
36 * visible there than on other platforms? -dan 20010125
38 static lispobj *dynamic_space_free_pointer;
39 #endif
41 #define gc_abort() \
42 lose("GC invariant lost, file \"%s\", line %d", __FILE__, __LINE__)
44 #if 1
45 #define gc_assert(ex) do { \
46 if (!(ex)) gc_abort(); \
47 } while (0)
48 #else
49 #define gc_assert(ex)
50 #endif
53 /* These hold the original end of the read_only and static spaces so
54 * we can tell what are forwarding pointers. */
56 static lispobj *read_only_end, *static_end;
58 static lispobj *read_only_free, *static_free;
60 static lispobj *pscav(lispobj *addr, int nwords, boolean constant);
62 #define LATERBLOCKSIZE 1020
63 #define LATERMAXCOUNT 10
65 static struct
66 later {
67 struct later *next;
68 union {
69 lispobj *ptr;
70 int count;
71 } u[LATERBLOCKSIZE];
72 } *later_blocks = NULL;
73 static int later_count = 0;
75 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
76 #define NWORDS(x,y) (CEILING((x),(y)) / (y))
78 /* FIXME: (1) Shouldn't this be defined in sbcl.h? */
79 #ifdef sparc
80 #define FUN_RAW_ADDR_OFFSET 0
81 #else
82 #define FUN_RAW_ADDR_OFFSET (6*sizeof(lispobj) - FUN_POINTER_LOWTAG)
83 #endif
85 static boolean
86 forwarding_pointer_p(lispobj obj)
88 lispobj *ptr;
90 ptr = (lispobj *)obj;
92 return ((static_end <= ptr && ptr <= static_free) ||
93 (read_only_end <= ptr && ptr <= read_only_free));
96 static boolean
97 dynamic_pointer_p(lispobj ptr)
99 #ifndef __i386__
100 return (ptr >= (lispobj)current_dynamic_space
102 ptr < (lispobj)dynamic_space_free_pointer);
103 #else
104 /* Be more conservative, and remember, this is a maybe. */
105 return (ptr >= (lispobj)DYNAMIC_SPACE_START
107 ptr < (lispobj)dynamic_space_free_pointer);
108 #endif
112 #ifdef __i386__
114 #ifdef GENCGC
116 * enhanced x86/GENCGC stack scavenging by Douglas Crosher
118 * Scavenging the stack on the i386 is problematic due to conservative
119 * roots and raw return addresses. Here it is handled in two passes:
120 * the first pass runs before any objects are moved and tries to
121 * identify valid pointers and return address on the stack, the second
122 * pass scavenges these.
125 static unsigned pointer_filter_verbose = 0;
127 /* FIXME: This is substantially the same code as in gencgc.c. (There
128 * are some differences, at least (1) the gencgc.c code needs to worry
129 * about return addresses on the stack pinning code objects, (2) the
130 * gencgc.c code needs to worry about the GC maybe happening in an
131 * interrupt service routine when the main thread of control was
132 * interrupted just as it had allocated memory and before it
133 * initialized it, while PURIFY needn't worry about that, and (3) the
134 * gencgc.c code has mutated more under maintenance since the fork
135 * from CMU CL than the code here has.) The two versions should be
136 * made to explicitly share common code, instead of just two different
137 * cut-and-pasted versions. */
138 static int
139 valid_dynamic_space_pointer(lispobj *pointer, lispobj *start_addr)
141 /* If it's not a return address then it needs to be a valid Lisp
142 * pointer. */
143 if (!is_lisp_pointer((lispobj)pointer))
144 return 0;
146 /* Check that the object pointed to is consistent with the pointer
147 * low tag. */
148 switch (lowtag_of((lispobj)pointer)) {
149 case FUN_POINTER_LOWTAG:
150 /* Start_addr should be the enclosing code object, or a closure
151 * header. */
152 switch (widetag_of(*start_addr)) {
153 case CODE_HEADER_WIDETAG:
154 /* This case is probably caught above. */
155 break;
156 case CLOSURE_HEADER_WIDETAG:
157 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
158 if ((int)pointer != ((int)start_addr+FUN_POINTER_LOWTAG)) {
159 if (pointer_filter_verbose) {
160 fprintf(stderr,"*Wf2: %x %x %x\n", (unsigned int) pointer,
161 (unsigned int) start_addr, *start_addr);
163 return 0;
165 break;
166 default:
167 if (pointer_filter_verbose) {
168 fprintf(stderr,"*Wf3: %x %x %x\n", (unsigned int) pointer,
169 (unsigned int) start_addr, *start_addr);
171 return 0;
173 break;
174 case LIST_POINTER_LOWTAG:
175 if ((int)pointer != ((int)start_addr+LIST_POINTER_LOWTAG)) {
176 if (pointer_filter_verbose)
177 fprintf(stderr,"*Wl1: %x %x %x\n", (unsigned int) pointer,
178 (unsigned int) start_addr, *start_addr);
179 return 0;
181 /* Is it plausible cons? */
182 if ((is_lisp_pointer(start_addr[0])
183 || ((start_addr[0] & 3) == 0) /* fixnum */
184 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
185 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
186 && (is_lisp_pointer(start_addr[1])
187 || ((start_addr[1] & 3) == 0) /* fixnum */
188 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
189 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG))) {
190 break;
191 } else {
192 if (pointer_filter_verbose) {
193 fprintf(stderr,"*Wl2: %x %x %x\n", (unsigned int) pointer,
194 (unsigned int) start_addr, *start_addr);
196 return 0;
198 case INSTANCE_POINTER_LOWTAG:
199 if ((int)pointer != ((int)start_addr+INSTANCE_POINTER_LOWTAG)) {
200 if (pointer_filter_verbose) {
201 fprintf(stderr,"*Wi1: %x %x %x\n", (unsigned int) pointer,
202 (unsigned int) start_addr, *start_addr);
204 return 0;
206 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
207 if (pointer_filter_verbose) {
208 fprintf(stderr,"*Wi2: %x %x %x\n", (unsigned int) pointer,
209 (unsigned int) start_addr, *start_addr);
211 return 0;
213 break;
214 case OTHER_POINTER_LOWTAG:
215 if ((int)pointer != ((int)start_addr+OTHER_POINTER_LOWTAG)) {
216 if (pointer_filter_verbose) {
217 fprintf(stderr,"*Wo1: %x %x %x\n", (unsigned int) pointer,
218 (unsigned int) start_addr, *start_addr);
220 return 0;
222 /* Is it plausible? Not a cons. XXX should check the headers. */
223 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
224 if (pointer_filter_verbose) {
225 fprintf(stderr,"*Wo2: %x %x %x\n", (unsigned int) pointer,
226 (unsigned int) start_addr, *start_addr);
228 return 0;
230 switch (widetag_of(start_addr[0])) {
231 case UNBOUND_MARKER_WIDETAG:
232 case BASE_CHAR_WIDETAG:
233 if (pointer_filter_verbose) {
234 fprintf(stderr,"*Wo3: %x %x %x\n", (unsigned int) pointer,
235 (unsigned int) start_addr, *start_addr);
237 return 0;
239 /* only pointed to by function pointers? */
240 case CLOSURE_HEADER_WIDETAG:
241 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
242 if (pointer_filter_verbose) {
243 fprintf(stderr,"*Wo4: %x %x %x\n", (unsigned int) pointer,
244 (unsigned int) start_addr, *start_addr);
246 return 0;
248 case INSTANCE_HEADER_WIDETAG:
249 if (pointer_filter_verbose) {
250 fprintf(stderr,"*Wo5: %x %x %x\n", (unsigned int) pointer,
251 (unsigned int) start_addr, *start_addr);
253 return 0;
255 /* the valid other immediate pointer objects */
256 case SIMPLE_VECTOR_WIDETAG:
257 case RATIO_WIDETAG:
258 case COMPLEX_WIDETAG:
259 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
260 case COMPLEX_SINGLE_FLOAT_WIDETAG:
261 #endif
262 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
263 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
264 #endif
265 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
266 case COMPLEX_LONG_FLOAT_WIDETAG:
267 #endif
268 case SIMPLE_ARRAY_WIDETAG:
269 case COMPLEX_STRING_WIDETAG:
270 case COMPLEX_BIT_VECTOR_WIDETAG:
271 case COMPLEX_VECTOR_WIDETAG:
272 case COMPLEX_ARRAY_WIDETAG:
273 case VALUE_CELL_HEADER_WIDETAG:
274 case SYMBOL_HEADER_WIDETAG:
275 case FDEFN_WIDETAG:
276 case CODE_HEADER_WIDETAG:
277 case BIGNUM_WIDETAG:
278 case SINGLE_FLOAT_WIDETAG:
279 case DOUBLE_FLOAT_WIDETAG:
280 #ifdef LONG_FLOAT_WIDETAG
281 case LONG_FLOAT_WIDETAG:
282 #endif
283 case SIMPLE_STRING_WIDETAG:
284 case SIMPLE_BIT_VECTOR_WIDETAG:
285 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
286 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
287 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
288 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
289 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
290 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
291 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
292 #endif
293 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
294 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
295 #endif
296 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
297 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
298 #endif
299 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
300 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
301 #endif
302 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
303 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
304 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
305 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
306 #endif
307 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
308 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
309 #endif
310 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
311 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
312 #endif
313 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
314 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
315 #endif
316 case SAP_WIDETAG:
317 case WEAK_POINTER_WIDETAG:
318 break;
320 default:
321 if (pointer_filter_verbose) {
322 fprintf(stderr,"*Wo6: %x %x %x\n", (unsigned int) pointer,
323 (unsigned int) start_addr, *start_addr);
325 return 0;
327 break;
328 default:
329 if (pointer_filter_verbose) {
330 fprintf(stderr,"*W?: %x %x %x\n", (unsigned int) pointer,
331 (unsigned int) start_addr, *start_addr);
333 return 0;
336 /* looks good */
337 return 1;
340 #define MAX_STACK_POINTERS 256
341 lispobj *valid_stack_locations[MAX_STACK_POINTERS];
342 unsigned int num_valid_stack_locations;
344 #define MAX_STACK_RETURN_ADDRESSES 128
345 lispobj *valid_stack_ra_locations[MAX_STACK_RETURN_ADDRESSES];
346 lispobj *valid_stack_ra_code_objects[MAX_STACK_RETURN_ADDRESSES];
347 unsigned int num_valid_stack_ra_locations;
349 /* Identify valid stack slots. */
350 static void
351 setup_i386_stack_scav(lispobj *lowaddr, lispobj *base)
353 lispobj *sp = lowaddr;
354 num_valid_stack_locations = 0;
355 num_valid_stack_ra_locations = 0;
356 for (sp = lowaddr; sp < base; sp++) {
357 lispobj thing = *sp;
358 /* Find the object start address */
359 lispobj *start_addr = search_dynamic_space((void *)thing);
360 if (start_addr) {
361 /* We need to allow raw pointers into Code objects for
362 * return addresses. This will also pick up pointers to
363 * functions in code objects. */
364 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
365 gc_assert(num_valid_stack_ra_locations <
366 MAX_STACK_RETURN_ADDRESSES);
367 valid_stack_ra_locations[num_valid_stack_ra_locations] = sp;
368 valid_stack_ra_code_objects[num_valid_stack_ra_locations++] =
369 (lispobj *)((int)start_addr + OTHER_POINTER_LOWTAG);
370 } else {
371 if (valid_dynamic_space_pointer((void *)thing, start_addr)) {
372 gc_assert(num_valid_stack_locations < MAX_STACK_POINTERS);
373 valid_stack_locations[num_valid_stack_locations++] = sp;
378 if (pointer_filter_verbose) {
379 fprintf(stderr, "number of valid stack pointers = %d\n",
380 num_valid_stack_locations);
381 fprintf(stderr, "number of stack return addresses = %d\n",
382 num_valid_stack_ra_locations);
386 static void
387 pscav_i386_stack(void)
389 int i;
391 for (i = 0; i < num_valid_stack_locations; i++)
392 pscav(valid_stack_locations[i], 1, 0);
394 for (i = 0; i < num_valid_stack_ra_locations; i++) {
395 lispobj code_obj = (lispobj)valid_stack_ra_code_objects[i];
396 pscav(&code_obj, 1, 0);
397 if (pointer_filter_verbose) {
398 fprintf(stderr,"*C moved RA %x to %x; for code object %x to %x\n",
399 *valid_stack_ra_locations[i],
400 (int)(*valid_stack_ra_locations[i])
401 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj),
402 (unsigned int) valid_stack_ra_code_objects[i], code_obj);
404 *valid_stack_ra_locations[i] =
405 ((int)(*valid_stack_ra_locations[i])
406 - ((int)valid_stack_ra_code_objects[i] - (int)code_obj));
409 #endif
410 #endif
413 static void
414 pscav_later(lispobj *where, int count)
416 struct later *new;
418 if (count > LATERMAXCOUNT) {
419 while (count > LATERMAXCOUNT) {
420 pscav_later(where, LATERMAXCOUNT);
421 count -= LATERMAXCOUNT;
422 where += LATERMAXCOUNT;
425 else {
426 if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
427 (later_count == LATERBLOCKSIZE-1 && count > 1)) {
428 new = (struct later *)malloc(sizeof(struct later));
429 new->next = later_blocks;
430 if (later_blocks && later_count < LATERBLOCKSIZE)
431 later_blocks->u[later_count].ptr = NULL;
432 later_blocks = new;
433 later_count = 0;
436 if (count != 1)
437 later_blocks->u[later_count++].count = count;
438 later_blocks->u[later_count++].ptr = where;
442 static lispobj
443 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
445 int nwords;
446 lispobj result, *new, *old;
448 nwords = 1 + HeaderValue(header);
450 /* Allocate it */
451 old = (lispobj *)native_pointer(thing);
452 if (constant) {
453 new = read_only_free;
454 read_only_free += CEILING(nwords, 2);
456 else {
457 new = static_free;
458 static_free += CEILING(nwords, 2);
461 /* Copy it. */
462 bcopy(old, new, nwords * sizeof(lispobj));
464 /* Deposit forwarding pointer. */
465 result = (lispobj)new | lowtag_of(thing);
466 *old = result;
468 /* Scavenge it. */
469 pscav(new, nwords, constant);
471 return result;
474 /* We need to look at the layout to see whether it is a pure structure
475 * class, and only then can we transport as constant. If it is pure,
476 * we can ALWAYS transport as a constant. */
477 static lispobj
478 ptrans_instance(lispobj thing, lispobj header, boolean constant)
480 lispobj layout = ((struct instance *)native_pointer(thing))->slots[0];
481 lispobj pure = ((struct instance *)native_pointer(layout))->slots[15];
483 switch (pure) {
484 case T:
485 return (ptrans_boxed(thing, header, 1));
486 case NIL:
487 return (ptrans_boxed(thing, header, 0));
488 case 0:
490 /* Substructure: special case for the COMPACT-INFO-ENVs,
491 * where the instance may have a point to the dynamic
492 * space placed into it (e.g. the cache-name slot), but
493 * the lists and arrays at the time of a purify can be
494 * moved to the RO space. */
495 int nwords;
496 lispobj result, *new, *old;
498 nwords = 1 + HeaderValue(header);
500 /* Allocate it */
501 old = (lispobj *)native_pointer(thing);
502 new = static_free;
503 static_free += CEILING(nwords, 2);
505 /* Copy it. */
506 bcopy(old, new, nwords * sizeof(lispobj));
508 /* Deposit forwarding pointer. */
509 result = (lispobj)new | lowtag_of(thing);
510 *old = result;
512 /* Scavenge it. */
513 pscav(new, nwords, 1);
515 return result;
517 default:
518 gc_abort();
519 return NIL; /* dummy value: return something ... */
523 static lispobj
524 ptrans_fdefn(lispobj thing, lispobj header)
526 int nwords;
527 lispobj result, *new, *old, oldfn;
528 struct fdefn *fdefn;
530 nwords = 1 + HeaderValue(header);
532 /* Allocate it */
533 old = (lispobj *)native_pointer(thing);
534 new = static_free;
535 static_free += CEILING(nwords, 2);
537 /* Copy it. */
538 bcopy(old, new, nwords * sizeof(lispobj));
540 /* Deposit forwarding pointer. */
541 result = (lispobj)new | lowtag_of(thing);
542 *old = result;
544 /* Scavenge the function. */
545 fdefn = (struct fdefn *)new;
546 oldfn = fdefn->fun;
547 pscav(&fdefn->fun, 1, 0);
548 if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
549 fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
551 return result;
554 static lispobj
555 ptrans_unboxed(lispobj thing, lispobj header)
557 int nwords;
558 lispobj result, *new, *old;
560 nwords = 1 + HeaderValue(header);
562 /* Allocate it */
563 old = (lispobj *)native_pointer(thing);
564 new = read_only_free;
565 read_only_free += CEILING(nwords, 2);
567 /* Copy it. */
568 bcopy(old, new, nwords * sizeof(lispobj));
570 /* Deposit forwarding pointer. */
571 result = (lispobj)new | lowtag_of(thing);
572 *old = result;
574 return result;
577 static lispobj
578 ptrans_vector(lispobj thing, int bits, int extra,
579 boolean boxed, boolean constant)
581 struct vector *vector;
582 int nwords;
583 lispobj result, *new;
585 vector = (struct vector *)native_pointer(thing);
586 nwords = 2 + (CEILING((fixnum_value(vector->length)+extra)*bits,32)>>5);
588 if (boxed && !constant) {
589 new = static_free;
590 static_free += CEILING(nwords, 2);
592 else {
593 new = read_only_free;
594 read_only_free += CEILING(nwords, 2);
597 bcopy(vector, new, nwords * sizeof(lispobj));
599 result = (lispobj)new | lowtag_of(thing);
600 vector->header = result;
602 if (boxed)
603 pscav(new, nwords, constant);
605 return result;
608 #ifdef __i386__
609 static void
610 apply_code_fixups_during_purify(struct code *old_code, struct code *new_code)
612 int nheader_words, ncode_words, nwords;
613 void *constants_start_addr, *constants_end_addr;
614 void *code_start_addr, *code_end_addr;
615 lispobj fixups = NIL;
616 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
617 struct vector *fixups_vector;
619 ncode_words = fixnum_value(new_code->code_size);
620 nheader_words = HeaderValue(*(lispobj *)new_code);
621 nwords = ncode_words + nheader_words;
623 constants_start_addr = (void *)new_code + 5*4;
624 constants_end_addr = (void *)new_code + nheader_words*4;
625 code_start_addr = (void *)new_code + nheader_words*4;
626 code_end_addr = (void *)new_code + nwords*4;
628 /* The first constant should be a pointer to the fixups for this
629 * code objects. Check. */
630 fixups = new_code->constants[0];
632 /* It will be 0 or the unbound-marker if there are no fixups, and
633 * will be an other-pointer to a vector if it is valid. */
634 if ((fixups==0) ||
635 (fixups==UNBOUND_MARKER_WIDETAG) ||
636 !is_lisp_pointer(fixups)) {
637 #ifdef GENCGC
638 /* Check for a possible errors. */
639 sniff_code_object(new_code,displacement);
640 #endif
641 return;
644 fixups_vector = (struct vector *)native_pointer(fixups);
646 /* Could be pointing to a forwarding pointer. */
647 if (is_lisp_pointer(fixups) && (dynamic_pointer_p(fixups))
648 && forwarding_pointer_p(*(lispobj *)fixups_vector)) {
649 /* If so then follow it. */
650 fixups_vector =
651 (struct vector *)native_pointer(*(lispobj *)fixups_vector);
654 if (widetag_of(fixups_vector->header) ==
655 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
656 /* We got the fixups for the code block. Now work through the
657 * vector, and apply a fixup at each address. */
658 int length = fixnum_value(fixups_vector->length);
659 int i;
660 for (i=0; i<length; i++) {
661 unsigned offset = fixups_vector->data[i];
662 /* Now check the current value of offset. */
663 unsigned old_value =
664 *(unsigned *)((unsigned)code_start_addr + offset);
666 /* If it's within the old_code object then it must be an
667 * absolute fixup (relative ones are not saved) */
668 if ((old_value>=(unsigned)old_code)
669 && (old_value<((unsigned)old_code + nwords*4)))
670 /* So add the dispacement. */
671 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
672 + displacement;
673 else
674 /* It is outside the old code object so it must be a relative
675 * fixup (absolute fixups are not saved). So subtract the
676 * displacement. */
677 *(unsigned *)((unsigned)code_start_addr + offset) = old_value
678 - displacement;
682 /* No longer need the fixups. */
683 new_code->constants[0] = 0;
685 #ifdef GENCGC
686 /* Check for possible errors. */
687 sniff_code_object(new_code,displacement);
688 #endif
690 #endif
692 static lispobj
693 ptrans_code(lispobj thing)
695 struct code *code, *new;
696 int nwords;
697 lispobj func, result;
699 code = (struct code *)native_pointer(thing);
700 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
702 new = (struct code *)read_only_free;
703 read_only_free += CEILING(nwords, 2);
705 bcopy(code, new, nwords * sizeof(lispobj));
707 #ifdef __i386__
708 apply_code_fixups_during_purify(code,new);
709 #endif
711 result = (lispobj)new | OTHER_POINTER_LOWTAG;
713 /* Stick in a forwarding pointer for the code object. */
714 *(lispobj *)code = result;
716 /* Put in forwarding pointers for all the functions. */
717 for (func = code->entry_points;
718 func != NIL;
719 func = ((struct simple_fun *)native_pointer(func))->next) {
721 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
723 *(lispobj *)native_pointer(func) = result + (func - thing);
726 /* Arrange to scavenge the debug info later. */
727 pscav_later(&new->debug_info, 1);
729 if (new->trace_table_offset & 0x3)
730 #if 0
731 pscav(&new->trace_table_offset, 1, 0);
732 #else
733 new->trace_table_offset = NIL; /* limit lifetime */
734 #endif
736 /* Scavenge the constants. */
737 pscav(new->constants, HeaderValue(new->header)-5, 1);
739 /* Scavenge all the functions. */
740 pscav(&new->entry_points, 1, 1);
741 for (func = new->entry_points;
742 func != NIL;
743 func = ((struct simple_fun *)native_pointer(func))->next) {
744 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
745 gc_assert(!dynamic_pointer_p(func));
747 #ifdef __i386__
748 /* Temporarly convert the self pointer to a real function pointer. */
749 ((struct simple_fun *)native_pointer(func))->self
750 -= FUN_RAW_ADDR_OFFSET;
751 #endif
752 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
753 #ifdef __i386__
754 ((struct simple_fun *)native_pointer(func))->self
755 += FUN_RAW_ADDR_OFFSET;
756 #endif
757 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
760 return result;
763 static lispobj
764 ptrans_func(lispobj thing, lispobj header)
766 int nwords;
767 lispobj code, *new, *old, result;
768 struct simple_fun *function;
770 /* Thing can either be a function header, a closure function
771 * header, a closure, or a funcallable-instance. If it's a closure
772 * or a funcallable-instance, we do the same as ptrans_boxed.
773 * Otherwise we have to do something strange, 'cause it is buried
774 * inside a code object. */
776 if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG ||
777 widetag_of(header) == CLOSURE_FUN_HEADER_WIDETAG) {
779 /* We can only end up here if the code object has not been
780 * scavenged, because if it had been scavenged, forwarding pointers
781 * would have been left behind for all the entry points. */
783 function = (struct simple_fun *)native_pointer(thing);
784 code =
785 (native_pointer(thing) -
786 (HeaderValue(function->header)*sizeof(lispobj))) |
787 OTHER_POINTER_LOWTAG;
789 /* This will cause the function's header to be replaced with a
790 * forwarding pointer. */
791 ptrans_code(code);
793 /* So we can just return that. */
794 return function->header;
796 else {
797 /* It's some kind of closure-like thing. */
798 nwords = 1 + HeaderValue(header);
799 old = (lispobj *)native_pointer(thing);
801 /* Allocate the new one. */
802 if (widetag_of(header) == FUNCALLABLE_INSTANCE_HEADER_WIDETAG) {
803 /* FINs *must* not go in read_only space. */
804 new = static_free;
805 static_free += CEILING(nwords, 2);
807 else {
808 /* Closures can always go in read-only space, 'cause they
809 * never change. */
811 new = read_only_free;
812 read_only_free += CEILING(nwords, 2);
814 /* Copy it. */
815 bcopy(old, new, nwords * sizeof(lispobj));
817 /* Deposit forwarding pointer. */
818 result = (lispobj)new | lowtag_of(thing);
819 *old = result;
821 /* Scavenge it. */
822 pscav(new, nwords, 0);
824 return result;
828 static lispobj
829 ptrans_returnpc(lispobj thing, lispobj header)
831 lispobj code, new;
833 /* Find the corresponding code object. */
834 code = thing - HeaderValue(header)*sizeof(lispobj);
836 /* Make sure it's been transported. */
837 new = *(lispobj *)native_pointer(code);
838 if (!forwarding_pointer_p(new))
839 new = ptrans_code(code);
841 /* Maintain the offset: */
842 return new + (thing - code);
845 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
847 static lispobj
848 ptrans_list(lispobj thing, boolean constant)
850 struct cons *old, *new, *orig;
851 int length;
853 if (constant)
854 orig = (struct cons *)read_only_free;
855 else
856 orig = (struct cons *)static_free;
857 length = 0;
859 do {
860 /* Allocate a new cons cell. */
861 old = (struct cons *)native_pointer(thing);
862 if (constant) {
863 new = (struct cons *)read_only_free;
864 read_only_free += WORDS_PER_CONS;
866 else {
867 new = (struct cons *)static_free;
868 static_free += WORDS_PER_CONS;
871 /* Copy the cons cell and keep a pointer to the cdr. */
872 new->car = old->car;
873 thing = new->cdr = old->cdr;
875 /* Set up the forwarding pointer. */
876 *(lispobj *)old = ((lispobj)new) | LIST_POINTER_LOWTAG;
878 /* And count this cell. */
879 length++;
880 } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
881 dynamic_pointer_p(thing) &&
882 !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
884 /* Scavenge the list we just copied. */
885 pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
887 return ((lispobj)orig) | LIST_POINTER_LOWTAG;
890 static lispobj
891 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
893 switch (widetag_of(header)) {
894 case BIGNUM_WIDETAG:
895 case SINGLE_FLOAT_WIDETAG:
896 case DOUBLE_FLOAT_WIDETAG:
897 #ifdef LONG_FLOAT_WIDETAG
898 case LONG_FLOAT_WIDETAG:
899 #endif
900 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
901 case COMPLEX_SINGLE_FLOAT_WIDETAG:
902 #endif
903 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
904 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
905 #endif
906 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
907 case COMPLEX_LONG_FLOAT_WIDETAG:
908 #endif
909 case SAP_WIDETAG:
910 return ptrans_unboxed(thing, header);
912 case RATIO_WIDETAG:
913 case COMPLEX_WIDETAG:
914 case SIMPLE_ARRAY_WIDETAG:
915 case COMPLEX_STRING_WIDETAG:
916 case COMPLEX_VECTOR_WIDETAG:
917 case COMPLEX_ARRAY_WIDETAG:
918 return ptrans_boxed(thing, header, constant);
920 case VALUE_CELL_HEADER_WIDETAG:
921 case WEAK_POINTER_WIDETAG:
922 return ptrans_boxed(thing, header, 0);
924 case SYMBOL_HEADER_WIDETAG:
925 return ptrans_boxed(thing, header, 0);
927 case SIMPLE_STRING_WIDETAG:
928 return ptrans_vector(thing, 8, 1, 0, constant);
930 case SIMPLE_BIT_VECTOR_WIDETAG:
931 return ptrans_vector(thing, 1, 0, 0, constant);
933 case SIMPLE_VECTOR_WIDETAG:
934 return ptrans_vector(thing, 32, 0, 1, constant);
936 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
937 return ptrans_vector(thing, 2, 0, 0, constant);
939 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
940 return ptrans_vector(thing, 4, 0, 0, constant);
942 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
943 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
944 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
945 #endif
946 return ptrans_vector(thing, 8, 0, 0, constant);
948 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
949 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
950 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
951 #endif
952 return ptrans_vector(thing, 16, 0, 0, constant);
954 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
955 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
956 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
957 #endif
958 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
959 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
960 #endif
961 return ptrans_vector(thing, 32, 0, 0, constant);
963 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
964 return ptrans_vector(thing, 32, 0, 0, constant);
966 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
967 return ptrans_vector(thing, 64, 0, 0, constant);
969 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
970 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
971 #ifdef __i386__
972 return ptrans_vector(thing, 96, 0, 0, constant);
973 #endif
974 #ifdef sparc
975 return ptrans_vector(thing, 128, 0, 0, constant);
976 #endif
977 #endif
979 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
980 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
981 return ptrans_vector(thing, 64, 0, 0, constant);
982 #endif
984 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
985 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
986 return ptrans_vector(thing, 128, 0, 0, constant);
987 #endif
989 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
990 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
991 #ifdef __i386__
992 return ptrans_vector(thing, 192, 0, 0, constant);
993 #endif
994 #ifdef sparc
995 return ptrans_vector(thing, 256, 0, 0, constant);
996 #endif
997 #endif
999 case CODE_HEADER_WIDETAG:
1000 return ptrans_code(thing);
1002 case RETURN_PC_HEADER_WIDETAG:
1003 return ptrans_returnpc(thing, header);
1005 case FDEFN_WIDETAG:
1006 return ptrans_fdefn(thing, header);
1008 default:
1009 /* Should only come across other pointers to the above stuff. */
1010 gc_abort();
1011 return NIL;
1015 static int
1016 pscav_fdefn(struct fdefn *fdefn)
1018 boolean fix_func;
1020 fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
1021 pscav(&fdefn->name, 1, 1);
1022 pscav(&fdefn->fun, 1, 0);
1023 if (fix_func)
1024 fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
1025 return sizeof(struct fdefn) / sizeof(lispobj);
1028 #ifdef __i386__
1029 /* now putting code objects in static space */
1030 static int
1031 pscav_code(struct code*code)
1033 int nwords;
1034 lispobj func;
1035 nwords = HeaderValue(code->header) + fixnum_value(code->code_size);
1037 /* Arrange to scavenge the debug info later. */
1038 pscav_later(&code->debug_info, 1);
1040 /* Scavenge the constants. */
1041 pscav(code->constants, HeaderValue(code->header)-5, 1);
1043 /* Scavenge all the functions. */
1044 pscav(&code->entry_points, 1, 1);
1045 for (func = code->entry_points;
1046 func != NIL;
1047 func = ((struct simple_fun *)native_pointer(func))->next) {
1048 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
1049 gc_assert(!dynamic_pointer_p(func));
1051 #ifdef __i386__
1052 /* Temporarly convert the self pointer to a real function
1053 * pointer. */
1054 ((struct simple_fun *)native_pointer(func))->self
1055 -= FUN_RAW_ADDR_OFFSET;
1056 #endif
1057 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
1058 #ifdef __i386__
1059 ((struct simple_fun *)native_pointer(func))->self
1060 += FUN_RAW_ADDR_OFFSET;
1061 #endif
1062 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 3);
1065 return CEILING(nwords,2);
1067 #endif
1069 static lispobj *
1070 pscav(lispobj *addr, int nwords, boolean constant)
1072 lispobj thing, *thingp, header;
1073 int count = 0; /* (0 = dummy init value to stop GCC warning) */
1074 struct vector *vector;
1076 while (nwords > 0) {
1077 thing = *addr;
1078 if (is_lisp_pointer(thing)) {
1079 /* It's a pointer. Is it something we might have to move? */
1080 if (dynamic_pointer_p(thing)) {
1081 /* Maybe. Have we already moved it? */
1082 thingp = (lispobj *)native_pointer(thing);
1083 header = *thingp;
1084 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
1085 /* Yep, so just copy the forwarding pointer. */
1086 thing = header;
1087 else {
1088 /* Nope, copy the object. */
1089 switch (lowtag_of(thing)) {
1090 case FUN_POINTER_LOWTAG:
1091 thing = ptrans_func(thing, header);
1092 break;
1094 case LIST_POINTER_LOWTAG:
1095 thing = ptrans_list(thing, constant);
1096 break;
1098 case INSTANCE_POINTER_LOWTAG:
1099 thing = ptrans_instance(thing, header, constant);
1100 break;
1102 case OTHER_POINTER_LOWTAG:
1103 thing = ptrans_otherptr(thing, header, constant);
1104 break;
1106 default:
1107 /* It was a pointer, but not one of them? */
1108 gc_abort();
1111 *addr = thing;
1113 count = 1;
1115 else if (thing & 3) {
1116 /* It's an other immediate. Maybe the header for an unboxed */
1117 /* object. */
1118 switch (widetag_of(thing)) {
1119 case BIGNUM_WIDETAG:
1120 case SINGLE_FLOAT_WIDETAG:
1121 case DOUBLE_FLOAT_WIDETAG:
1122 #ifdef LONG_FLOAT_WIDETAG
1123 case LONG_FLOAT_WIDETAG:
1124 #endif
1125 case SAP_WIDETAG:
1126 /* It's an unboxed simple object. */
1127 count = HeaderValue(thing)+1;
1128 break;
1130 case SIMPLE_VECTOR_WIDETAG:
1131 if (HeaderValue(thing) == subtype_VectorValidHashing) {
1132 *addr = (subtype_VectorMustRehash << N_WIDETAG_BITS) |
1133 SIMPLE_VECTOR_WIDETAG;
1135 count = 1;
1136 break;
1138 case SIMPLE_STRING_WIDETAG:
1139 vector = (struct vector *)addr;
1140 count = CEILING(NWORDS(fixnum_value(vector->length)+1,4)+2,2);
1141 break;
1143 case SIMPLE_BIT_VECTOR_WIDETAG:
1144 vector = (struct vector *)addr;
1145 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
1146 break;
1148 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
1149 vector = (struct vector *)addr;
1150 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
1151 break;
1153 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
1154 vector = (struct vector *)addr;
1155 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
1156 break;
1158 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
1159 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
1160 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
1161 #endif
1162 vector = (struct vector *)addr;
1163 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
1164 break;
1166 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
1167 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
1168 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
1169 #endif
1170 vector = (struct vector *)addr;
1171 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
1172 break;
1174 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
1175 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
1176 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
1177 #endif
1178 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
1179 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
1180 #endif
1181 vector = (struct vector *)addr;
1182 count = CEILING(fixnum_value(vector->length)+2,2);
1183 break;
1185 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
1186 vector = (struct vector *)addr;
1187 count = CEILING(fixnum_value(vector->length)+2,2);
1188 break;
1190 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
1191 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
1192 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
1193 #endif
1194 vector = (struct vector *)addr;
1195 count = fixnum_value(vector->length)*2+2;
1196 break;
1198 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
1199 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
1200 vector = (struct vector *)addr;
1201 #ifdef __i386__
1202 count = fixnum_value(vector->length)*3+2;
1203 #endif
1204 #ifdef sparc
1205 count = fixnum_value(vector->length)*4+2;
1206 #endif
1207 break;
1208 #endif
1210 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
1211 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
1212 vector = (struct vector *)addr;
1213 count = fixnum_value(vector->length)*4+2;
1214 break;
1215 #endif
1217 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
1218 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
1219 vector = (struct vector *)addr;
1220 #ifdef __i386__
1221 count = fixnum_value(vector->length)*6+2;
1222 #endif
1223 #ifdef sparc
1224 count = fixnum_value(vector->length)*8+2;
1225 #endif
1226 break;
1227 #endif
1229 case CODE_HEADER_WIDETAG:
1230 #ifndef __i386__
1231 gc_abort(); /* no code headers in static space */
1232 #else
1233 count = pscav_code((struct code*)addr);
1234 #endif
1235 break;
1237 case SIMPLE_FUN_HEADER_WIDETAG:
1238 case CLOSURE_FUN_HEADER_WIDETAG:
1239 case RETURN_PC_HEADER_WIDETAG:
1240 /* We should never hit any of these, 'cause they occur
1241 * buried in the middle of code objects. */
1242 gc_abort();
1243 break;
1245 #ifdef __i386__
1246 case CLOSURE_HEADER_WIDETAG:
1247 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
1248 /* The function self pointer needs special care on the
1249 * x86 because it is the real entry point. */
1251 lispobj fun = ((struct closure *)addr)->fun
1252 - FUN_RAW_ADDR_OFFSET;
1253 pscav(&fun, 1, constant);
1254 ((struct closure *)addr)->fun = fun + FUN_RAW_ADDR_OFFSET;
1256 count = 2;
1257 break;
1258 #endif
1260 case WEAK_POINTER_WIDETAG:
1261 /* Weak pointers get preserved during purify, 'cause I
1262 * don't feel like figuring out how to break them. */
1263 pscav(addr+1, 2, constant);
1264 count = 4;
1265 break;
1267 case FDEFN_WIDETAG:
1268 /* We have to handle fdefn objects specially, so we
1269 * can fix up the raw function address. */
1270 count = pscav_fdefn((struct fdefn *)addr);
1271 break;
1273 default:
1274 count = 1;
1275 break;
1278 else {
1279 /* It's a fixnum. */
1280 count = 1;
1283 addr += count;
1284 nwords -= count;
1287 return addr;
1291 purify(lispobj static_roots, lispobj read_only_roots)
1293 lispobj *clean;
1294 int count, i;
1295 struct later *laters, *next;
1297 #ifdef PRINTNOISE
1298 printf("[doing purification:");
1299 fflush(stdout);
1300 #endif
1302 if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX)) != 0) {
1303 /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
1304 * its error simply by a. printing a string b. to stdout instead
1305 * of stderr. */
1306 printf(" Ack! Can't purify interrupt contexts. ");
1307 fflush(stdout);
1308 return 0;
1311 #if defined(__i386__)
1312 dynamic_space_free_pointer =
1313 (lispobj*)SymbolValue(ALLOCATION_POINTER);
1314 #endif
1316 read_only_end = read_only_free =
1317 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER);
1318 static_end = static_free =
1319 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER);
1321 #ifdef PRINTNOISE
1322 printf(" roots");
1323 fflush(stdout);
1324 #endif
1326 #ifdef GENCGC
1327 gc_assert((lispobj *)CONTROL_STACK_END > ((&read_only_roots)+1));
1328 setup_i386_stack_scav(((&static_roots)-2), (lispobj *)CONTROL_STACK_END);
1329 #endif
1331 pscav(&static_roots, 1, 0);
1332 pscav(&read_only_roots, 1, 1);
1334 #ifdef PRINTNOISE
1335 printf(" handlers");
1336 fflush(stdout);
1337 #endif
1338 pscav((lispobj *) interrupt_handlers,
1339 sizeof(interrupt_handlers) / sizeof(lispobj),
1342 #ifdef PRINTNOISE
1343 printf(" stack");
1344 fflush(stdout);
1345 #endif
1346 #ifndef __i386__
1347 pscav((lispobj *)CONTROL_STACK_START,
1348 current_control_stack_pointer - (lispobj *)CONTROL_STACK_START,
1350 #else
1351 #ifdef GENCGC
1352 pscav_i386_stack();
1353 #endif
1354 #endif
1356 #ifdef PRINTNOISE
1357 printf(" bindings");
1358 fflush(stdout);
1359 #endif
1360 #if !defined(__i386__)
1361 pscav( (lispobj *)BINDING_STACK_START,
1362 (lispobj *)current_binding_stack_pointer - (lispobj *)BINDING_STACK_START,
1364 #else
1365 pscav( (lispobj *)BINDING_STACK_START,
1366 (lispobj *)SymbolValue(BINDING_STACK_POINTER) -
1367 (lispobj *)BINDING_STACK_START,
1369 #endif
1371 /* The original CMU CL code had scavenge-read-only-space code
1372 * controlled by the Lisp-level variable
1373 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
1374 * wasn't documented under what circumstances it was useful or
1375 * safe to turn it on, so it's been turned off in SBCL. If you
1376 * want/need this functionality, and can test and document it,
1377 * please submit a patch. */
1378 #if 0
1379 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
1380 && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
1381 unsigned read_only_space_size =
1382 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
1383 (lispobj *)READ_ONLY_SPACE_START;
1384 fprintf(stderr,
1385 "scavenging read only space: %d bytes\n",
1386 read_only_space_size * sizeof(lispobj));
1387 pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
1389 #endif
1391 #ifdef PRINTNOISE
1392 printf(" static");
1393 fflush(stdout);
1394 #endif
1395 clean = (lispobj *)STATIC_SPACE_START;
1396 do {
1397 while (clean != static_free)
1398 clean = pscav(clean, static_free - clean, 0);
1399 laters = later_blocks;
1400 count = later_count;
1401 later_blocks = NULL;
1402 later_count = 0;
1403 while (laters != NULL) {
1404 for (i = 0; i < count; i++) {
1405 if (laters->u[i].count == 0) {
1407 } else if (laters->u[i].count <= LATERMAXCOUNT) {
1408 pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
1409 i++;
1410 } else {
1411 pscav(laters->u[i].ptr, 1, 1);
1414 next = laters->next;
1415 free(laters);
1416 laters = next;
1417 count = LATERBLOCKSIZE;
1419 } while (clean != static_free || later_blocks != NULL);
1421 #ifdef PRINTNOISE
1422 printf(" cleanup");
1423 fflush(stdout);
1424 #endif
1426 os_zero((os_vm_address_t) current_dynamic_space,
1427 (os_vm_size_t) DYNAMIC_SPACE_SIZE);
1429 /* Zero the stack. Note that the stack is also zeroed by SUB-GC
1430 * calling SCRUB-CONTROL-STACK - this zeros the stack on the x86. */
1431 #ifndef __i386__
1432 os_zero((os_vm_address_t) current_control_stack_pointer,
1433 (os_vm_size_t) (CONTROL_STACK_SIZE -
1434 ((current_control_stack_pointer -
1435 (lispobj *)CONTROL_STACK_START) *
1436 sizeof(lispobj))));
1437 #endif
1439 /* It helps to update the heap free pointers so that free_heap can
1440 * verify after it's done. */
1441 SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free);
1442 SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free);
1444 #if !defined(__i386__)
1445 dynamic_space_free_pointer = current_dynamic_space;
1446 #else
1447 #if defined GENCGC
1448 gc_free_heap();
1449 #else
1450 #error unsupported case /* in CMU CL, was "ibmrt using GC" */
1451 #endif
1452 #endif
1454 #ifdef PRINTNOISE
1455 printf(" done]\n");
1456 fflush(stdout);
1457 #endif
1459 return 0;