1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
18 (define-source-transform not
(x) `(if ,x nil t
))
19 (define-source-transform null
(x) `(if ,x nil t
))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp
(x) `(null (the list
,x
)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
29 (define-source-transform identity
(x) `(prog1 ,x
))
30 (define-source-transform values
(x) `(prog1 ,x
))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly
(value)
34 (with-unique-names (rest n-value
)
35 `(let ((,n-value
,value
))
37 (declare (ignore ,rest
))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement
((fun) * * :node node
)
46 (multiple-value-bind (min max
)
47 (fun-type-nargs (lvar-type fun
))
49 ((and min
(eql min max
))
50 (let ((dums (make-gensym-list min
)))
51 `#'(lambda ,dums
(not (funcall fun
,@dums
)))))
52 ((awhen (node-lvar node
)
53 (let ((dest (lvar-dest it
)))
54 (and (combination-p dest
)
55 (eq (combination-fun dest
) it
))))
56 '#'(lambda (&rest args
)
57 (not (apply fun args
))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form
) 2)
68 (let ((name (symbol-name (car form
))))
69 (do ((i (- (length name
) 2) (1- i
))
71 `(,(ecase (char name i
)
77 ;;; Make source transforms to turn CxR forms into combinations of CAR
78 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
80 (/show0
"about to set CxR source transforms")
81 (loop for i of-type index from
2 upto
4 do
82 ;; Iterate over BUF = all names CxR where x = an I-element
83 ;; string of #\A or #\D characters.
84 (let ((buf (make-string (+ 2 i
))))
85 (setf (aref buf
0) #\C
86 (aref buf
(1+ i
)) #\R
)
87 (dotimes (j (ash 2 i
))
88 (declare (type index j
))
90 (declare (type index k
))
91 (setf (aref buf
(1+ k
))
92 (if (logbitp k j
) #\A
#\D
)))
93 (setf (info :function
:source-transform
(intern buf
))
94 #'source-transform-cxr
))))
95 (/show0
"done setting CxR source transforms")
97 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
98 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
99 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
101 (define-source-transform first
(x) `(car ,x
))
102 (define-source-transform rest
(x) `(cdr ,x
))
103 (define-source-transform second
(x) `(cadr ,x
))
104 (define-source-transform third
(x) `(caddr ,x
))
105 (define-source-transform fourth
(x) `(cadddr ,x
))
106 (define-source-transform fifth
(x) `(nth 4 ,x
))
107 (define-source-transform sixth
(x) `(nth 5 ,x
))
108 (define-source-transform seventh
(x) `(nth 6 ,x
))
109 (define-source-transform eighth
(x) `(nth 7 ,x
))
110 (define-source-transform ninth
(x) `(nth 8 ,x
))
111 (define-source-transform tenth
(x) `(nth 9 ,x
))
113 ;;; Translate RPLACx to LET and SETF.
114 (define-source-transform rplaca
(x y
)
119 (define-source-transform rplacd
(x y
)
125 (define-source-transform nth
(n l
) `(car (nthcdr ,n
,l
)))
127 (defvar *default-nthcdr-open-code-limit
* 6)
128 (defvar *extreme-nthcdr-open-code-limit
* 20)
130 (deftransform nthcdr
((n l
) (unsigned-byte t
) * :node node
)
131 "convert NTHCDR to CAxxR"
132 (unless (constant-lvar-p n
)
133 (give-up-ir1-transform))
134 (let ((n (lvar-value n
)))
136 (if (policy node
(and (= speed
3) (= space
0)))
137 *extreme-nthcdr-open-code-limit
*
138 *default-nthcdr-open-code-limit
*))
139 (give-up-ir1-transform))
144 `(cdr ,(frob (1- n
))))))
147 ;;;; arithmetic and numerology
149 (define-source-transform plusp
(x) `(> ,x
0))
150 (define-source-transform minusp
(x) `(< ,x
0))
151 (define-source-transform zerop
(x) `(= ,x
0))
153 (define-source-transform 1+ (x) `(+ ,x
1))
154 (define-source-transform 1-
(x) `(- ,x
1))
156 (define-source-transform oddp
(x) `(not (zerop (logand ,x
1))))
157 (define-source-transform evenp
(x) `(zerop (logand ,x
1)))
159 ;;; Note that all the integer division functions are available for
160 ;;; inline expansion.
162 (macrolet ((deffrob (fun)
163 `(define-source-transform ,fun
(x &optional
(y nil y-p
))
170 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
172 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
175 (define-source-transform logtest
(x y
) `(not (zerop (logand ,x
,y
))))
177 (deftransform logbitp
178 ((index integer
) (unsigned-byte (or (signed-byte #.sb
!vm
:n-word-bits
)
179 (unsigned-byte #.sb
!vm
:n-word-bits
))))
180 `(if (>= index
#.sb
!vm
:n-word-bits
)
182 (not (zerop (logand integer
(ash 1 index
))))))
184 (define-source-transform byte
(size position
)
185 `(cons ,size
,position
))
186 (define-source-transform byte-size
(spec) `(car ,spec
))
187 (define-source-transform byte-position
(spec) `(cdr ,spec
))
188 (define-source-transform ldb-test
(bytespec integer
)
189 `(not (zerop (mask-field ,bytespec
,integer
))))
191 ;;; With the ratio and complex accessors, we pick off the "identity"
192 ;;; case, and use a primitive to handle the cell access case.
193 (define-source-transform numerator
(num)
194 (once-only ((n-num `(the rational
,num
)))
198 (define-source-transform denominator
(num)
199 (once-only ((n-num `(the rational
,num
)))
201 (%denominator
,n-num
)
204 ;;;; interval arithmetic for computing bounds
206 ;;;; This is a set of routines for operating on intervals. It
207 ;;;; implements a simple interval arithmetic package. Although SBCL
208 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
209 ;;;; for two reasons:
211 ;;;; 1. This package is simpler than NUMERIC-TYPE.
213 ;;;; 2. It makes debugging much easier because you can just strip
214 ;;;; out these routines and test them independently of SBCL. (This is a
217 ;;;; One disadvantage is a probable increase in consing because we
218 ;;;; have to create these new interval structures even though
219 ;;;; numeric-type has everything we want to know. Reason 2 wins for
222 ;;; Support operations that mimic real arithmetic comparison
223 ;;; operators, but imposing a total order on the floating points such
224 ;;; that negative zeros are strictly less than positive zeros.
225 (macrolet ((def (name op
)
228 (if (and (floatp x
) (floatp y
) (zerop x
) (zerop y
))
229 (,op
(float-sign x
) (float-sign y
))
231 (def signed-zero-
>= >=)
232 (def signed-zero-
> >)
233 (def signed-zero-
= =)
234 (def signed-zero-
< <)
235 (def signed-zero-
<= <=))
237 ;;; The basic interval type. It can handle open and closed intervals.
238 ;;; A bound is open if it is a list containing a number, just like
239 ;;; Lisp says. NIL means unbounded.
240 (defstruct (interval (:constructor %make-interval
)
244 (defun make-interval (&key low high
)
245 (labels ((normalize-bound (val)
248 (float-infinity-p val
))
249 ;; Handle infinities.
253 ;; Handle any closed bounds.
256 ;; We have an open bound. Normalize the numeric
257 ;; bound. If the normalized bound is still a number
258 ;; (not nil), keep the bound open. Otherwise, the
259 ;; bound is really unbounded, so drop the openness.
260 (let ((new-val (normalize-bound (first val
))))
262 ;; The bound exists, so keep it open still.
265 (error "unknown bound type in MAKE-INTERVAL")))))
266 (%make-interval
:low
(normalize-bound low
)
267 :high
(normalize-bound high
))))
269 ;;; Given a number X, create a form suitable as a bound for an
270 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
271 #!-sb-fluid
(declaim (inline set-bound
))
272 (defun set-bound (x open-p
)
273 (if (and x open-p
) (list x
) x
))
275 ;;; Apply the function F to a bound X. If X is an open bound, then
276 ;;; the result will be open. IF X is NIL, the result is NIL.
277 (defun bound-func (f x
)
278 (declare (type function f
))
280 (with-float-traps-masked (:underflow
:overflow
:inexact
:divide-by-zero
)
281 ;; With these traps masked, we might get things like infinity
282 ;; or negative infinity returned. Check for this and return
283 ;; NIL to indicate unbounded.
284 (let ((y (funcall f
(type-bound-number x
))))
286 (float-infinity-p y
))
288 (set-bound (funcall f
(type-bound-number x
)) (consp x
)))))))
290 ;;; Apply a binary operator OP to two bounds X and Y. The result is
291 ;;; NIL if either is NIL. Otherwise bound is computed and the result
292 ;;; is open if either X or Y is open.
294 ;;; FIXME: only used in this file, not needed in target runtime
295 (defmacro bound-binop
(op x y
)
297 (with-float-traps-masked (:underflow
:overflow
:inexact
:divide-by-zero
)
298 (set-bound (,op
(type-bound-number ,x
)
299 (type-bound-number ,y
))
300 (or (consp ,x
) (consp ,y
))))))
302 ;;; Convert a numeric-type object to an interval object.
303 (defun numeric-type->interval
(x)
304 (declare (type numeric-type x
))
305 (make-interval :low
(numeric-type-low x
)
306 :high
(numeric-type-high x
)))
308 (defun type-approximate-interval (type)
309 (declare (type ctype type
))
310 (let ((types (prepare-arg-for-derive-type type
))
313 (let ((type (if (member-type-p type
)
314 (convert-member-type type
)
316 (unless (numeric-type-p type
)
317 (return-from type-approximate-interval nil
))
318 (let ((interval (numeric-type->interval type
)))
321 (interval-approximate-union result interval
)
325 (defun copy-interval-limit (limit)
330 (defun copy-interval (x)
331 (declare (type interval x
))
332 (make-interval :low
(copy-interval-limit (interval-low x
))
333 :high
(copy-interval-limit (interval-high x
))))
335 ;;; Given a point P contained in the interval X, split X into two
336 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
337 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
338 ;;; contains P. You can specify both to be T or NIL.
339 (defun interval-split (p x
&optional close-lower close-upper
)
340 (declare (type number p
)
342 (list (make-interval :low
(copy-interval-limit (interval-low x
))
343 :high
(if close-lower p
(list p
)))
344 (make-interval :low
(if close-upper
(list p
) p
)
345 :high
(copy-interval-limit (interval-high x
)))))
347 ;;; Return the closure of the interval. That is, convert open bounds
348 ;;; to closed bounds.
349 (defun interval-closure (x)
350 (declare (type interval x
))
351 (make-interval :low
(type-bound-number (interval-low x
))
352 :high
(type-bound-number (interval-high x
))))
354 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
355 ;;; '-. Otherwise return NIL.
356 (defun interval-range-info (x &optional
(point 0))
357 (declare (type interval x
))
358 (let ((lo (interval-low x
))
359 (hi (interval-high x
)))
360 (cond ((and lo
(signed-zero->= (type-bound-number lo
) point
))
362 ((and hi
(signed-zero->= point
(type-bound-number hi
)))
367 ;;; Test to see whether the interval X is bounded. HOW determines the
368 ;;; test, and should be either ABOVE, BELOW, or BOTH.
369 (defun interval-bounded-p (x how
)
370 (declare (type interval x
))
377 (and (interval-low x
) (interval-high x
)))))
379 ;;; See whether the interval X contains the number P, taking into
380 ;;; account that the interval might not be closed.
381 (defun interval-contains-p (p x
)
382 (declare (type number p
)
384 ;; Does the interval X contain the number P? This would be a lot
385 ;; easier if all intervals were closed!
386 (let ((lo (interval-low x
))
387 (hi (interval-high x
)))
389 ;; The interval is bounded
390 (if (and (signed-zero-<= (type-bound-number lo
) p
)
391 (signed-zero-<= p
(type-bound-number hi
)))
392 ;; P is definitely in the closure of the interval.
393 ;; We just need to check the end points now.
394 (cond ((signed-zero-= p
(type-bound-number lo
))
396 ((signed-zero-= p
(type-bound-number hi
))
401 ;; Interval with upper bound
402 (if (signed-zero-< p
(type-bound-number hi
))
404 (and (numberp hi
) (signed-zero-= p hi
))))
406 ;; Interval with lower bound
407 (if (signed-zero-> p
(type-bound-number lo
))
409 (and (numberp lo
) (signed-zero-= p lo
))))
411 ;; Interval with no bounds
414 ;;; Determine whether two intervals X and Y intersect. Return T if so.
415 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
416 ;;; were closed. Otherwise the intervals are treated as they are.
418 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
419 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
420 ;;; is T, then they do intersect because we use the closure of X = [0,
421 ;;; 1] and Y = [1, 2] to determine intersection.
422 (defun interval-intersect-p (x y
&optional closed-intervals-p
)
423 (declare (type interval x y
))
424 (multiple-value-bind (intersect diff
)
425 (interval-intersection/difference
(if closed-intervals-p
428 (if closed-intervals-p
431 (declare (ignore diff
))
434 ;;; Are the two intervals adjacent? That is, is there a number
435 ;;; between the two intervals that is not an element of either
436 ;;; interval? If so, they are not adjacent. For example [0, 1) and
437 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
438 ;;; between both intervals.
439 (defun interval-adjacent-p (x y
)
440 (declare (type interval x y
))
441 (flet ((adjacent (lo hi
)
442 ;; Check to see whether lo and hi are adjacent. If either is
443 ;; nil, they can't be adjacent.
444 (when (and lo hi
(= (type-bound-number lo
) (type-bound-number hi
)))
445 ;; The bounds are equal. They are adjacent if one of
446 ;; them is closed (a number). If both are open (consp),
447 ;; then there is a number that lies between them.
448 (or (numberp lo
) (numberp hi
)))))
449 (or (adjacent (interval-low y
) (interval-high x
))
450 (adjacent (interval-low x
) (interval-high y
)))))
452 ;;; Compute the intersection and difference between two intervals.
453 ;;; Two values are returned: the intersection and the difference.
455 ;;; Let the two intervals be X and Y, and let I and D be the two
456 ;;; values returned by this function. Then I = X intersect Y. If I
457 ;;; is NIL (the empty set), then D is X union Y, represented as the
458 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
459 ;;; - I, which is a list of two intervals.
461 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
462 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
463 (defun interval-intersection/difference
(x y
)
464 (declare (type interval x y
))
465 (let ((x-lo (interval-low x
))
466 (x-hi (interval-high x
))
467 (y-lo (interval-low y
))
468 (y-hi (interval-high y
)))
471 ;; If p is an open bound, make it closed. If p is a closed
472 ;; bound, make it open.
477 ;; Test whether P is in the interval.
478 (when (interval-contains-p (type-bound-number p
)
479 (interval-closure int
))
480 (let ((lo (interval-low int
))
481 (hi (interval-high int
)))
482 ;; Check for endpoints.
483 (cond ((and lo
(= (type-bound-number p
) (type-bound-number lo
)))
484 (not (and (consp p
) (numberp lo
))))
485 ((and hi
(= (type-bound-number p
) (type-bound-number hi
)))
486 (not (and (numberp p
) (consp hi
))))
488 (test-lower-bound (p int
)
489 ;; P is a lower bound of an interval.
492 (not (interval-bounded-p int
'below
))))
493 (test-upper-bound (p int
)
494 ;; P is an upper bound of an interval.
497 (not (interval-bounded-p int
'above
)))))
498 (let ((x-lo-in-y (test-lower-bound x-lo y
))
499 (x-hi-in-y (test-upper-bound x-hi y
))
500 (y-lo-in-x (test-lower-bound y-lo x
))
501 (y-hi-in-x (test-upper-bound y-hi x
)))
502 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x
)
503 ;; Intervals intersect. Let's compute the intersection
504 ;; and the difference.
505 (multiple-value-bind (lo left-lo left-hi
)
506 (cond (x-lo-in-y (values x-lo y-lo
(opposite-bound x-lo
)))
507 (y-lo-in-x (values y-lo x-lo
(opposite-bound y-lo
))))
508 (multiple-value-bind (hi right-lo right-hi
)
510 (values x-hi
(opposite-bound x-hi
) y-hi
))
512 (values y-hi
(opposite-bound y-hi
) x-hi
)))
513 (values (make-interval :low lo
:high hi
)
514 (list (make-interval :low left-lo
516 (make-interval :low right-lo
519 (values nil
(list x y
))))))))
521 ;;; If intervals X and Y intersect, return a new interval that is the
522 ;;; union of the two. If they do not intersect, return NIL.
523 (defun interval-merge-pair (x y
)
524 (declare (type interval x y
))
525 ;; If x and y intersect or are adjacent, create the union.
526 ;; Otherwise return nil
527 (when (or (interval-intersect-p x y
)
528 (interval-adjacent-p x y
))
529 (flet ((select-bound (x1 x2 min-op max-op
)
530 (let ((x1-val (type-bound-number x1
))
531 (x2-val (type-bound-number x2
)))
533 ;; Both bounds are finite. Select the right one.
534 (cond ((funcall min-op x1-val x2-val
)
535 ;; x1 is definitely better.
537 ((funcall max-op x1-val x2-val
)
538 ;; x2 is definitely better.
541 ;; Bounds are equal. Select either
542 ;; value and make it open only if
544 (set-bound x1-val
(and (consp x1
) (consp x2
))))))
546 ;; At least one bound is not finite. The
547 ;; non-finite bound always wins.
549 (let* ((x-lo (copy-interval-limit (interval-low x
)))
550 (x-hi (copy-interval-limit (interval-high x
)))
551 (y-lo (copy-interval-limit (interval-low y
)))
552 (y-hi (copy-interval-limit (interval-high y
))))
553 (make-interval :low
(select-bound x-lo y-lo
#'< #'>)
554 :high
(select-bound x-hi y-hi
#'> #'<))))))
556 ;;; return the minimal interval, containing X and Y
557 (defun interval-approximate-union (x y
)
558 (cond ((interval-merge-pair x y
))
560 (make-interval :low
(copy-interval-limit (interval-low x
))
561 :high
(copy-interval-limit (interval-high y
))))
563 (make-interval :low
(copy-interval-limit (interval-low y
))
564 :high
(copy-interval-limit (interval-high x
))))))
566 ;;; basic arithmetic operations on intervals. We probably should do
567 ;;; true interval arithmetic here, but it's complicated because we
568 ;;; have float and integer types and bounds can be open or closed.
570 ;;; the negative of an interval
571 (defun interval-neg (x)
572 (declare (type interval x
))
573 (make-interval :low
(bound-func #'-
(interval-high x
))
574 :high
(bound-func #'-
(interval-low x
))))
576 ;;; Add two intervals.
577 (defun interval-add (x y
)
578 (declare (type interval x y
))
579 (make-interval :low
(bound-binop + (interval-low x
) (interval-low y
))
580 :high
(bound-binop + (interval-high x
) (interval-high y
))))
582 ;;; Subtract two intervals.
583 (defun interval-sub (x y
)
584 (declare (type interval x y
))
585 (make-interval :low
(bound-binop -
(interval-low x
) (interval-high y
))
586 :high
(bound-binop -
(interval-high x
) (interval-low y
))))
588 ;;; Multiply two intervals.
589 (defun interval-mul (x y
)
590 (declare (type interval x y
))
591 (flet ((bound-mul (x y
)
592 (cond ((or (null x
) (null y
))
593 ;; Multiply by infinity is infinity
595 ((or (and (numberp x
) (zerop x
))
596 (and (numberp y
) (zerop y
)))
597 ;; Multiply by closed zero is special. The result
598 ;; is always a closed bound. But don't replace this
599 ;; with zero; we want the multiplication to produce
600 ;; the correct signed zero, if needed.
601 (* (type-bound-number x
) (type-bound-number y
)))
602 ((or (and (floatp x
) (float-infinity-p x
))
603 (and (floatp y
) (float-infinity-p y
)))
604 ;; Infinity times anything is infinity
607 ;; General multiply. The result is open if either is open.
608 (bound-binop * x y
)))))
609 (let ((x-range (interval-range-info x
))
610 (y-range (interval-range-info y
)))
611 (cond ((null x-range
)
612 ;; Split x into two and multiply each separately
613 (destructuring-bind (x- x
+) (interval-split 0 x t t
)
614 (interval-merge-pair (interval-mul x- y
)
615 (interval-mul x
+ y
))))
617 ;; Split y into two and multiply each separately
618 (destructuring-bind (y- y
+) (interval-split 0 y t t
)
619 (interval-merge-pair (interval-mul x y-
)
620 (interval-mul x y
+))))
622 (interval-neg (interval-mul (interval-neg x
) y
)))
624 (interval-neg (interval-mul x
(interval-neg y
))))
625 ((and (eq x-range
'+) (eq y-range
'+))
626 ;; If we are here, X and Y are both positive.
628 :low
(bound-mul (interval-low x
) (interval-low y
))
629 :high
(bound-mul (interval-high x
) (interval-high y
))))
631 (bug "excluded case in INTERVAL-MUL"))))))
633 ;;; Divide two intervals.
634 (defun interval-div (top bot
)
635 (declare (type interval top bot
))
636 (flet ((bound-div (x y y-low-p
)
639 ;; Divide by infinity means result is 0. However,
640 ;; we need to watch out for the sign of the result,
641 ;; to correctly handle signed zeros. We also need
642 ;; to watch out for positive or negative infinity.
643 (if (floatp (type-bound-number x
))
645 (- (float-sign (type-bound-number x
) 0.0))
646 (float-sign (type-bound-number x
) 0.0))
648 ((zerop (type-bound-number y
))
649 ;; Divide by zero means result is infinity
651 ((and (numberp x
) (zerop x
))
652 ;; Zero divided by anything is zero.
655 (bound-binop / x y
)))))
656 (let ((top-range (interval-range-info top
))
657 (bot-range (interval-range-info bot
)))
658 (cond ((null bot-range
)
659 ;; The denominator contains zero, so anything goes!
660 (make-interval :low nil
:high nil
))
662 ;; Denominator is negative so flip the sign, compute the
663 ;; result, and flip it back.
664 (interval-neg (interval-div top
(interval-neg bot
))))
666 ;; Split top into two positive and negative parts, and
667 ;; divide each separately
668 (destructuring-bind (top- top
+) (interval-split 0 top t t
)
669 (interval-merge-pair (interval-div top- bot
)
670 (interval-div top
+ bot
))))
672 ;; Top is negative so flip the sign, divide, and flip the
673 ;; sign of the result.
674 (interval-neg (interval-div (interval-neg top
) bot
)))
675 ((and (eq top-range
'+) (eq bot-range
'+))
678 :low
(bound-div (interval-low top
) (interval-high bot
) t
)
679 :high
(bound-div (interval-high top
) (interval-low bot
) nil
)))
681 (bug "excluded case in INTERVAL-DIV"))))))
683 ;;; Apply the function F to the interval X. If X = [a, b], then the
684 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
685 ;;; result makes sense. It will if F is monotonic increasing (or
687 (defun interval-func (f x
)
688 (declare (type function f
)
690 (let ((lo (bound-func f
(interval-low x
)))
691 (hi (bound-func f
(interval-high x
))))
692 (make-interval :low lo
:high hi
)))
694 ;;; Return T if X < Y. That is every number in the interval X is
695 ;;; always less than any number in the interval Y.
696 (defun interval-< (x y
)
697 (declare (type interval x y
))
698 ;; X < Y only if X is bounded above, Y is bounded below, and they
700 (when (and (interval-bounded-p x
'above
)
701 (interval-bounded-p y
'below
))
702 ;; Intervals are bounded in the appropriate way. Make sure they
704 (let ((left (interval-high x
))
705 (right (interval-low y
)))
706 (cond ((> (type-bound-number left
)
707 (type-bound-number right
))
708 ;; The intervals definitely overlap, so result is NIL.
710 ((< (type-bound-number left
)
711 (type-bound-number right
))
712 ;; The intervals definitely don't touch, so result is T.
715 ;; Limits are equal. Check for open or closed bounds.
716 ;; Don't overlap if one or the other are open.
717 (or (consp left
) (consp right
)))))))
719 ;;; Return T if X >= Y. That is, every number in the interval X is
720 ;;; always greater than any number in the interval Y.
721 (defun interval->= (x y
)
722 (declare (type interval x y
))
723 ;; X >= Y if lower bound of X >= upper bound of Y
724 (when (and (interval-bounded-p x
'below
)
725 (interval-bounded-p y
'above
))
726 (>= (type-bound-number (interval-low x
))
727 (type-bound-number (interval-high y
)))))
729 ;;; Return an interval that is the absolute value of X. Thus, if
730 ;;; X = [-1 10], the result is [0, 10].
731 (defun interval-abs (x)
732 (declare (type interval x
))
733 (case (interval-range-info x
)
739 (destructuring-bind (x- x
+) (interval-split 0 x t t
)
740 (interval-merge-pair (interval-neg x-
) x
+)))))
742 ;;; Compute the square of an interval.
743 (defun interval-sqr (x)
744 (declare (type interval x
))
745 (interval-func (lambda (x) (* x x
))
748 ;;;; numeric DERIVE-TYPE methods
750 ;;; a utility for defining derive-type methods of integer operations. If
751 ;;; the types of both X and Y are integer types, then we compute a new
752 ;;; integer type with bounds determined Fun when applied to X and Y.
753 ;;; Otherwise, we use NUMERIC-CONTAGION.
754 (defun derive-integer-type-aux (x y fun
)
755 (declare (type function fun
))
756 (if (and (numeric-type-p x
) (numeric-type-p y
)
757 (eq (numeric-type-class x
) 'integer
)
758 (eq (numeric-type-class y
) 'integer
)
759 (eq (numeric-type-complexp x
) :real
)
760 (eq (numeric-type-complexp y
) :real
))
761 (multiple-value-bind (low high
) (funcall fun x y
)
762 (make-numeric-type :class
'integer
766 (numeric-contagion x y
)))
768 (defun derive-integer-type (x y fun
)
769 (declare (type lvar x y
) (type function fun
))
770 (let ((x (lvar-type x
))
772 (derive-integer-type-aux x y fun
)))
774 ;;; simple utility to flatten a list
775 (defun flatten-list (x)
776 (labels ((flatten-and-append (tree list
)
777 (cond ((null tree
) list
)
778 ((atom tree
) (cons tree list
))
779 (t (flatten-and-append
780 (car tree
) (flatten-and-append (cdr tree
) list
))))))
781 (flatten-and-append x nil
)))
783 ;;; Take some type of lvar and massage it so that we get a list of the
784 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
786 (defun prepare-arg-for-derive-type (arg)
787 (flet ((listify (arg)
792 (union-type-types arg
))
795 (unless (eq arg
*empty-type
*)
796 ;; Make sure all args are some type of numeric-type. For member
797 ;; types, convert the list of members into a union of equivalent
798 ;; single-element member-type's.
799 (let ((new-args nil
))
800 (dolist (arg (listify arg
))
801 (if (member-type-p arg
)
802 ;; Run down the list of members and convert to a list of
804 (dolist (member (member-type-members arg
))
805 (push (if (numberp member
)
806 (make-member-type :members
(list member
))
809 (push arg new-args
)))
810 (unless (member *empty-type
* new-args
)
813 ;;; Convert from the standard type convention for which -0.0 and 0.0
814 ;;; are equal to an intermediate convention for which they are
815 ;;; considered different which is more natural for some of the
817 (defun convert-numeric-type (type)
818 (declare (type numeric-type type
))
819 ;;; Only convert real float interval delimiters types.
820 (if (eq (numeric-type-complexp type
) :real
)
821 (let* ((lo (numeric-type-low type
))
822 (lo-val (type-bound-number lo
))
823 (lo-float-zero-p (and lo
(floatp lo-val
) (= lo-val
0.0)))
824 (hi (numeric-type-high type
))
825 (hi-val (type-bound-number hi
))
826 (hi-float-zero-p (and hi
(floatp hi-val
) (= hi-val
0.0))))
827 (if (or lo-float-zero-p hi-float-zero-p
)
829 :class
(numeric-type-class type
)
830 :format
(numeric-type-format type
)
832 :low
(if lo-float-zero-p
834 (list (float 0.0 lo-val
))
835 (float (load-time-value (make-unportable-float :single-float-negative-zero
)) lo-val
))
837 :high
(if hi-float-zero-p
839 (list (float (load-time-value (make-unportable-float :single-float-negative-zero
)) hi-val
))
846 ;;; Convert back from the intermediate convention for which -0.0 and
847 ;;; 0.0 are considered different to the standard type convention for
849 (defun convert-back-numeric-type (type)
850 (declare (type numeric-type type
))
851 ;;; Only convert real float interval delimiters types.
852 (if (eq (numeric-type-complexp type
) :real
)
853 (let* ((lo (numeric-type-low type
))
854 (lo-val (type-bound-number lo
))
856 (and lo
(floatp lo-val
) (= lo-val
0.0)
857 (float-sign lo-val
)))
858 (hi (numeric-type-high type
))
859 (hi-val (type-bound-number hi
))
861 (and hi
(floatp hi-val
) (= hi-val
0.0)
862 (float-sign hi-val
))))
864 ;; (float +0.0 +0.0) => (member 0.0)
865 ;; (float -0.0 -0.0) => (member -0.0)
866 ((and lo-float-zero-p hi-float-zero-p
)
867 ;; shouldn't have exclusive bounds here..
868 (aver (and (not (consp lo
)) (not (consp hi
))))
869 (if (= lo-float-zero-p hi-float-zero-p
)
870 ;; (float +0.0 +0.0) => (member 0.0)
871 ;; (float -0.0 -0.0) => (member -0.0)
872 (specifier-type `(member ,lo-val
))
873 ;; (float -0.0 +0.0) => (float 0.0 0.0)
874 ;; (float +0.0 -0.0) => (float 0.0 0.0)
875 (make-numeric-type :class
(numeric-type-class type
)
876 :format
(numeric-type-format type
)
882 ;; (float -0.0 x) => (float 0.0 x)
883 ((and (not (consp lo
)) (minusp lo-float-zero-p
))
884 (make-numeric-type :class
(numeric-type-class type
)
885 :format
(numeric-type-format type
)
887 :low
(float 0.0 lo-val
)
889 ;; (float (+0.0) x) => (float (0.0) x)
890 ((and (consp lo
) (plusp lo-float-zero-p
))
891 (make-numeric-type :class
(numeric-type-class type
)
892 :format
(numeric-type-format type
)
894 :low
(list (float 0.0 lo-val
))
897 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
898 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
899 (list (make-member-type :members
(list (float 0.0 lo-val
)))
900 (make-numeric-type :class
(numeric-type-class type
)
901 :format
(numeric-type-format type
)
903 :low
(list (float 0.0 lo-val
))
907 ;; (float x +0.0) => (float x 0.0)
908 ((and (not (consp hi
)) (plusp hi-float-zero-p
))
909 (make-numeric-type :class
(numeric-type-class type
)
910 :format
(numeric-type-format type
)
913 :high
(float 0.0 hi-val
)))
914 ;; (float x (-0.0)) => (float x (0.0))
915 ((and (consp hi
) (minusp hi-float-zero-p
))
916 (make-numeric-type :class
(numeric-type-class type
)
917 :format
(numeric-type-format type
)
920 :high
(list (float 0.0 hi-val
))))
922 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
923 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
924 (list (make-member-type :members
(list (float -
0.0 hi-val
)))
925 (make-numeric-type :class
(numeric-type-class type
)
926 :format
(numeric-type-format type
)
929 :high
(list (float 0.0 hi-val
)))))))
935 ;;; Convert back a possible list of numeric types.
936 (defun convert-back-numeric-type-list (type-list)
940 (dolist (type type-list
)
941 (if (numeric-type-p type
)
942 (let ((result (convert-back-numeric-type type
)))
944 (setf results
(append results result
))
945 (push result results
)))
946 (push type results
)))
949 (convert-back-numeric-type type-list
))
951 (convert-back-numeric-type-list (union-type-types type-list
)))
955 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
956 ;;; belong in the kernel's type logic, invoked always, instead of in
957 ;;; the compiler, invoked only during some type optimizations. (In
958 ;;; fact, as of 0.pre8.100 or so they probably are, under
959 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
961 ;;; Take a list of types and return a canonical type specifier,
962 ;;; combining any MEMBER types together. If both positive and negative
963 ;;; MEMBER types are present they are converted to a float type.
964 ;;; XXX This would be far simpler if the type-union methods could handle
965 ;;; member/number unions.
966 (defun make-canonical-union-type (type-list)
969 (dolist (type type-list
)
970 (if (member-type-p type
)
971 (setf members
(union members
(member-type-members type
)))
972 (push type misc-types
)))
974 (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero
)) 0.0l0) members
))
975 (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types
)
976 (setf members
(set-difference members
`(,(load-time-value (make-unportable-float :long-float-negative-zero
)) 0.0l0))))
977 (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero
)) 0.0d0
) members
))
978 (push (specifier-type '(double-float 0.0d0
0.0d0
)) misc-types
)
979 (setf members
(set-difference members
`(,(load-time-value (make-unportable-float :double-float-negative-zero
)) 0.0d0
))))
980 (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero
)) 0.0f0
) members
))
981 (push (specifier-type '(single-float 0.0f0
0.0f0
)) misc-types
)
982 (setf members
(set-difference members
`(,(load-time-value (make-unportable-float :single-float-negative-zero
)) 0.0f0
))))
984 (apply #'type-union
(make-member-type :members members
) misc-types
)
985 (apply #'type-union misc-types
))))
987 ;;; Convert a member type with a single member to a numeric type.
988 (defun convert-member-type (arg)
989 (let* ((members (member-type-members arg
))
990 (member (first members
))
991 (member-type (type-of member
)))
992 (aver (not (rest members
)))
993 (specifier-type (cond ((typep member
'integer
)
994 `(integer ,member
,member
))
995 ((memq member-type
'(short-float single-float
996 double-float long-float
))
997 `(,member-type
,member
,member
))
1001 ;;; This is used in defoptimizers for computing the resulting type of
1004 ;;; Given the lvar ARG, derive the resulting type using the
1005 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1006 ;;; "atomic" lvar type like numeric-type or member-type (containing
1007 ;;; just one element). It should return the resulting type, which can
1008 ;;; be a list of types.
1010 ;;; For the case of member types, if a MEMBER-FUN is given it is
1011 ;;; called to compute the result otherwise the member type is first
1012 ;;; converted to a numeric type and the DERIVE-FUN is called.
1013 (defun one-arg-derive-type (arg derive-fun member-fun
1014 &optional
(convert-type t
))
1015 (declare (type function derive-fun
)
1016 (type (or null function
) member-fun
))
1017 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg
))))
1023 (with-float-traps-masked
1024 (:underflow
:overflow
:divide-by-zero
)
1026 `(eql ,(funcall member-fun
1027 (first (member-type-members x
))))))
1028 ;; Otherwise convert to a numeric type.
1029 (let ((result-type-list
1030 (funcall derive-fun
(convert-member-type x
))))
1032 (convert-back-numeric-type-list result-type-list
)
1033 result-type-list
))))
1036 (convert-back-numeric-type-list
1037 (funcall derive-fun
(convert-numeric-type x
)))
1038 (funcall derive-fun x
)))
1040 *universal-type
*))))
1041 ;; Run down the list of args and derive the type of each one,
1042 ;; saving all of the results in a list.
1043 (let ((results nil
))
1044 (dolist (arg arg-list
)
1045 (let ((result (deriver arg
)))
1047 (setf results
(append results result
))
1048 (push result results
))))
1050 (make-canonical-union-type results
)
1051 (first results
)))))))
1053 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1054 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1055 ;;; original args and a third which is T to indicate if the two args
1056 ;;; really represent the same lvar. This is useful for deriving the
1057 ;;; type of things like (* x x), which should always be positive. If
1058 ;;; we didn't do this, we wouldn't be able to tell.
1059 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1060 &optional
(convert-type t
))
1061 (declare (type function derive-fun fun
))
1062 (flet ((deriver (x y same-arg
)
1063 (cond ((and (member-type-p x
) (member-type-p y
))
1064 (let* ((x (first (member-type-members x
)))
1065 (y (first (member-type-members y
)))
1066 (result (ignore-errors
1067 (with-float-traps-masked
1068 (:underflow
:overflow
:divide-by-zero
1070 (funcall fun x y
)))))
1071 (cond ((null result
) *empty-type
*)
1072 ((and (floatp result
) (float-nan-p result
))
1073 (make-numeric-type :class
'float
1074 :format
(type-of result
)
1077 (specifier-type `(eql ,result
))))))
1078 ((and (member-type-p x
) (numeric-type-p y
))
1079 (let* ((x (convert-member-type x
))
1080 (y (if convert-type
(convert-numeric-type y
) y
))
1081 (result (funcall derive-fun x y same-arg
)))
1083 (convert-back-numeric-type-list result
)
1085 ((and (numeric-type-p x
) (member-type-p y
))
1086 (let* ((x (if convert-type
(convert-numeric-type x
) x
))
1087 (y (convert-member-type y
))
1088 (result (funcall derive-fun x y same-arg
)))
1090 (convert-back-numeric-type-list result
)
1092 ((and (numeric-type-p x
) (numeric-type-p y
))
1093 (let* ((x (if convert-type
(convert-numeric-type x
) x
))
1094 (y (if convert-type
(convert-numeric-type y
) y
))
1095 (result (funcall derive-fun x y same-arg
)))
1097 (convert-back-numeric-type-list result
)
1100 *universal-type
*))))
1101 (let ((same-arg (same-leaf-ref-p arg1 arg2
))
1102 (a1 (prepare-arg-for-derive-type (lvar-type arg1
)))
1103 (a2 (prepare-arg-for-derive-type (lvar-type arg2
))))
1105 (let ((results nil
))
1107 ;; Since the args are the same LVARs, just run down the
1110 (let ((result (deriver x x same-arg
)))
1112 (setf results
(append results result
))
1113 (push result results
))))
1114 ;; Try all pairwise combinations.
1117 (let ((result (or (deriver x y same-arg
)
1118 (numeric-contagion x y
))))
1120 (setf results
(append results result
))
1121 (push result results
))))))
1123 (make-canonical-union-type results
)
1124 (first results
)))))))
1126 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1128 (defoptimizer (+ derive-type
) ((x y
))
1129 (derive-integer-type
1136 (values (frob (numeric-type-low x
) (numeric-type-low y
))
1137 (frob (numeric-type-high x
) (numeric-type-high y
)))))))
1139 (defoptimizer (- derive-type
) ((x y
))
1140 (derive-integer-type
1147 (values (frob (numeric-type-low x
) (numeric-type-high y
))
1148 (frob (numeric-type-high x
) (numeric-type-low y
)))))))
1150 (defoptimizer (* derive-type
) ((x y
))
1151 (derive-integer-type
1154 (let ((x-low (numeric-type-low x
))
1155 (x-high (numeric-type-high x
))
1156 (y-low (numeric-type-low y
))
1157 (y-high (numeric-type-high y
)))
1158 (cond ((not (and x-low y-low
))
1160 ((or (minusp x-low
) (minusp y-low
))
1161 (if (and x-high y-high
)
1162 (let ((max (* (max (abs x-low
) (abs x-high
))
1163 (max (abs y-low
) (abs y-high
)))))
1164 (values (- max
) max
))
1167 (values (* x-low y-low
)
1168 (if (and x-high y-high
)
1172 (defoptimizer (/ derive-type
) ((x y
))
1173 (numeric-contagion (lvar-type x
) (lvar-type y
)))
1177 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1179 (defun +-derive-type-aux
(x y same-arg
)
1180 (if (and (numeric-type-real-p x
)
1181 (numeric-type-real-p y
))
1184 (let ((x-int (numeric-type->interval x
)))
1185 (interval-add x-int x-int
))
1186 (interval-add (numeric-type->interval x
)
1187 (numeric-type->interval y
))))
1188 (result-type (numeric-contagion x y
)))
1189 ;; If the result type is a float, we need to be sure to coerce
1190 ;; the bounds into the correct type.
1191 (when (eq (numeric-type-class result-type
) 'float
)
1192 (setf result
(interval-func
1194 (coerce x
(or (numeric-type-format result-type
)
1198 :class
(if (and (eq (numeric-type-class x
) 'integer
)
1199 (eq (numeric-type-class y
) 'integer
))
1200 ;; The sum of integers is always an integer.
1202 (numeric-type-class result-type
))
1203 :format
(numeric-type-format result-type
)
1204 :low
(interval-low result
)
1205 :high
(interval-high result
)))
1206 ;; general contagion
1207 (numeric-contagion x y
)))
1209 (defoptimizer (+ derive-type
) ((x y
))
1210 (two-arg-derive-type x y
#'+-derive-type-aux
#'+))
1212 (defun --derive-type-aux (x y same-arg
)
1213 (if (and (numeric-type-real-p x
)
1214 (numeric-type-real-p y
))
1216 ;; (- X X) is always 0.
1218 (make-interval :low
0 :high
0)
1219 (interval-sub (numeric-type->interval x
)
1220 (numeric-type->interval y
))))
1221 (result-type (numeric-contagion x y
)))
1222 ;; If the result type is a float, we need to be sure to coerce
1223 ;; the bounds into the correct type.
1224 (when (eq (numeric-type-class result-type
) 'float
)
1225 (setf result
(interval-func
1227 (coerce x
(or (numeric-type-format result-type
)
1231 :class
(if (and (eq (numeric-type-class x
) 'integer
)
1232 (eq (numeric-type-class y
) 'integer
))
1233 ;; The difference of integers is always an integer.
1235 (numeric-type-class result-type
))
1236 :format
(numeric-type-format result-type
)
1237 :low
(interval-low result
)
1238 :high
(interval-high result
)))
1239 ;; general contagion
1240 (numeric-contagion x y
)))
1242 (defoptimizer (- derive-type
) ((x y
))
1243 (two-arg-derive-type x y
#'--derive-type-aux
#'-
))
1245 (defun *-derive-type-aux
(x y same-arg
)
1246 (if (and (numeric-type-real-p x
)
1247 (numeric-type-real-p y
))
1249 ;; (* X X) is always positive, so take care to do it right.
1251 (interval-sqr (numeric-type->interval x
))
1252 (interval-mul (numeric-type->interval x
)
1253 (numeric-type->interval y
))))
1254 (result-type (numeric-contagion x y
)))
1255 ;; If the result type is a float, we need to be sure to coerce
1256 ;; the bounds into the correct type.
1257 (when (eq (numeric-type-class result-type
) 'float
)
1258 (setf result
(interval-func
1260 (coerce x
(or (numeric-type-format result-type
)
1264 :class
(if (and (eq (numeric-type-class x
) 'integer
)
1265 (eq (numeric-type-class y
) 'integer
))
1266 ;; The product of integers is always an integer.
1268 (numeric-type-class result-type
))
1269 :format
(numeric-type-format result-type
)
1270 :low
(interval-low result
)
1271 :high
(interval-high result
)))
1272 (numeric-contagion x y
)))
1274 (defoptimizer (* derive-type
) ((x y
))
1275 (two-arg-derive-type x y
#'*-derive-type-aux
#'*))
1277 (defun /-derive-type-aux
(x y same-arg
)
1278 (if (and (numeric-type-real-p x
)
1279 (numeric-type-real-p y
))
1281 ;; (/ X X) is always 1, except if X can contain 0. In
1282 ;; that case, we shouldn't optimize the division away
1283 ;; because we want 0/0 to signal an error.
1285 (not (interval-contains-p
1286 0 (interval-closure (numeric-type->interval y
)))))
1287 (make-interval :low
1 :high
1)
1288 (interval-div (numeric-type->interval x
)
1289 (numeric-type->interval y
))))
1290 (result-type (numeric-contagion x y
)))
1291 ;; If the result type is a float, we need to be sure to coerce
1292 ;; the bounds into the correct type.
1293 (when (eq (numeric-type-class result-type
) 'float
)
1294 (setf result
(interval-func
1296 (coerce x
(or (numeric-type-format result-type
)
1299 (make-numeric-type :class
(numeric-type-class result-type
)
1300 :format
(numeric-type-format result-type
)
1301 :low
(interval-low result
)
1302 :high
(interval-high result
)))
1303 (numeric-contagion x y
)))
1305 (defoptimizer (/ derive-type
) ((x y
))
1306 (two-arg-derive-type x y
#'/-derive-type-aux
#'/))
1310 (defun ash-derive-type-aux (n-type shift same-arg
)
1311 (declare (ignore same-arg
))
1312 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1313 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1314 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1315 ;; two bignums yielding zero) and it's hard to avoid that
1316 ;; calculation in here.
1317 #+(and cmu sb-xc-host
)
1318 (when (and (or (typep (numeric-type-low n-type
) 'bignum
)
1319 (typep (numeric-type-high n-type
) 'bignum
))
1320 (or (typep (numeric-type-low shift
) 'bignum
)
1321 (typep (numeric-type-high shift
) 'bignum
)))
1322 (return-from ash-derive-type-aux
*universal-type
*))
1323 (flet ((ash-outer (n s
)
1324 (when (and (fixnump s
)
1326 (> s sb
!xc
:most-negative-fixnum
))
1328 ;; KLUDGE: The bare 64's here should be related to
1329 ;; symbolic machine word size values somehow.
1332 (if (and (fixnump s
)
1333 (> s sb
!xc
:most-negative-fixnum
))
1335 (if (minusp n
) -
1 0))))
1336 (or (and (csubtypep n-type
(specifier-type 'integer
))
1337 (csubtypep shift
(specifier-type 'integer
))
1338 (let ((n-low (numeric-type-low n-type
))
1339 (n-high (numeric-type-high n-type
))
1340 (s-low (numeric-type-low shift
))
1341 (s-high (numeric-type-high shift
)))
1342 (make-numeric-type :class
'integer
:complexp
:real
1345 (ash-outer n-low s-high
)
1346 (ash-inner n-low s-low
)))
1349 (ash-inner n-high s-low
)
1350 (ash-outer n-high s-high
))))))
1353 (defoptimizer (ash derive-type
) ((n shift
))
1354 (two-arg-derive-type n shift
#'ash-derive-type-aux
#'ash
))
1356 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1357 (macrolet ((frob (fun)
1358 `#'(lambda (type type2
)
1359 (declare (ignore type2
))
1360 (let ((lo (numeric-type-low type
))
1361 (hi (numeric-type-high type
)))
1362 (values (if hi
(,fun hi
) nil
) (if lo
(,fun lo
) nil
))))))
1364 (defoptimizer (%negate derive-type
) ((num))
1365 (derive-integer-type num num
(frob -
))))
1367 (defun lognot-derive-type-aux (int)
1368 (derive-integer-type-aux int int
1369 (lambda (type type2
)
1370 (declare (ignore type2
))
1371 (let ((lo (numeric-type-low type
))
1372 (hi (numeric-type-high type
)))
1373 (values (if hi
(lognot hi
) nil
)
1374 (if lo
(lognot lo
) nil
)
1375 (numeric-type-class type
)
1376 (numeric-type-format type
))))))
1378 (defoptimizer (lognot derive-type
) ((int))
1379 (lognot-derive-type-aux (lvar-type int
)))
1381 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1382 (defoptimizer (%negate derive-type
) ((num))
1383 (flet ((negate-bound (b)
1385 (set-bound (- (type-bound-number b
))
1387 (one-arg-derive-type num
1389 (modified-numeric-type
1391 :low
(negate-bound (numeric-type-high type
))
1392 :high
(negate-bound (numeric-type-low type
))))
1395 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1396 (defoptimizer (abs derive-type
) ((num))
1397 (let ((type (lvar-type num
)))
1398 (if (and (numeric-type-p type
)
1399 (eq (numeric-type-class type
) 'integer
)
1400 (eq (numeric-type-complexp type
) :real
))
1401 (let ((lo (numeric-type-low type
))
1402 (hi (numeric-type-high type
)))
1403 (make-numeric-type :class
'integer
:complexp
:real
1404 :low
(cond ((and hi
(minusp hi
))
1410 :high
(if (and hi lo
)
1411 (max (abs hi
) (abs lo
))
1413 (numeric-contagion type type
))))
1415 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1416 (defun abs-derive-type-aux (type)
1417 (cond ((eq (numeric-type-complexp type
) :complex
)
1418 ;; The absolute value of a complex number is always a
1419 ;; non-negative float.
1420 (let* ((format (case (numeric-type-class type
)
1421 ((integer rational
) 'single-float
)
1422 (t (numeric-type-format type
))))
1423 (bound-format (or format
'float
)))
1424 (make-numeric-type :class
'float
1427 :low
(coerce 0 bound-format
)
1430 ;; The absolute value of a real number is a non-negative real
1431 ;; of the same type.
1432 (let* ((abs-bnd (interval-abs (numeric-type->interval type
)))
1433 (class (numeric-type-class type
))
1434 (format (numeric-type-format type
))
1435 (bound-type (or format class
'real
)))
1440 :low
(coerce-numeric-bound (interval-low abs-bnd
) bound-type
)
1441 :high
(coerce-numeric-bound
1442 (interval-high abs-bnd
) bound-type
))))))
1444 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1445 (defoptimizer (abs derive-type
) ((num))
1446 (one-arg-derive-type num
#'abs-derive-type-aux
#'abs
))
1448 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1449 (defoptimizer (truncate derive-type
) ((number divisor
))
1450 (let ((number-type (lvar-type number
))
1451 (divisor-type (lvar-type divisor
))
1452 (integer-type (specifier-type 'integer
)))
1453 (if (and (numeric-type-p number-type
)
1454 (csubtypep number-type integer-type
)
1455 (numeric-type-p divisor-type
)
1456 (csubtypep divisor-type integer-type
))
1457 (let ((number-low (numeric-type-low number-type
))
1458 (number-high (numeric-type-high number-type
))
1459 (divisor-low (numeric-type-low divisor-type
))
1460 (divisor-high (numeric-type-high divisor-type
)))
1461 (values-specifier-type
1462 `(values ,(integer-truncate-derive-type number-low number-high
1463 divisor-low divisor-high
)
1464 ,(integer-rem-derive-type number-low number-high
1465 divisor-low divisor-high
))))
1468 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1471 (defun rem-result-type (number-type divisor-type
)
1472 ;; Figure out what the remainder type is. The remainder is an
1473 ;; integer if both args are integers; a rational if both args are
1474 ;; rational; and a float otherwise.
1475 (cond ((and (csubtypep number-type
(specifier-type 'integer
))
1476 (csubtypep divisor-type
(specifier-type 'integer
)))
1478 ((and (csubtypep number-type
(specifier-type 'rational
))
1479 (csubtypep divisor-type
(specifier-type 'rational
)))
1481 ((and (csubtypep number-type
(specifier-type 'float
))
1482 (csubtypep divisor-type
(specifier-type 'float
)))
1483 ;; Both are floats so the result is also a float, of
1484 ;; the largest type.
1485 (or (float-format-max (numeric-type-format number-type
)
1486 (numeric-type-format divisor-type
))
1488 ((and (csubtypep number-type
(specifier-type 'float
))
1489 (csubtypep divisor-type
(specifier-type 'rational
)))
1490 ;; One of the arguments is a float and the other is a
1491 ;; rational. The remainder is a float of the same
1493 (or (numeric-type-format number-type
) 'float
))
1494 ((and (csubtypep divisor-type
(specifier-type 'float
))
1495 (csubtypep number-type
(specifier-type 'rational
)))
1496 ;; One of the arguments is a float and the other is a
1497 ;; rational. The remainder is a float of the same
1499 (or (numeric-type-format divisor-type
) 'float
))
1501 ;; Some unhandled combination. This usually means both args
1502 ;; are REAL so the result is a REAL.
1505 (defun truncate-derive-type-quot (number-type divisor-type
)
1506 (let* ((rem-type (rem-result-type number-type divisor-type
))
1507 (number-interval (numeric-type->interval number-type
))
1508 (divisor-interval (numeric-type->interval divisor-type
)))
1509 ;;(declare (type (member '(integer rational float)) rem-type))
1510 ;; We have real numbers now.
1511 (cond ((eq rem-type
'integer
)
1512 ;; Since the remainder type is INTEGER, both args are
1514 (let* ((res (integer-truncate-derive-type
1515 (interval-low number-interval
)
1516 (interval-high number-interval
)
1517 (interval-low divisor-interval
)
1518 (interval-high divisor-interval
))))
1519 (specifier-type (if (listp res
) res
'integer
))))
1521 (let ((quot (truncate-quotient-bound
1522 (interval-div number-interval
1523 divisor-interval
))))
1524 (specifier-type `(integer ,(or (interval-low quot
) '*)
1525 ,(or (interval-high quot
) '*))))))))
1527 (defun truncate-derive-type-rem (number-type divisor-type
)
1528 (let* ((rem-type (rem-result-type number-type divisor-type
))
1529 (number-interval (numeric-type->interval number-type
))
1530 (divisor-interval (numeric-type->interval divisor-type
))
1531 (rem (truncate-rem-bound number-interval divisor-interval
)))
1532 ;;(declare (type (member '(integer rational float)) rem-type))
1533 ;; We have real numbers now.
1534 (cond ((eq rem-type
'integer
)
1535 ;; Since the remainder type is INTEGER, both args are
1537 (specifier-type `(,rem-type
,(or (interval-low rem
) '*)
1538 ,(or (interval-high rem
) '*))))
1540 (multiple-value-bind (class format
)
1543 (values 'integer nil
))
1545 (values 'rational nil
))
1546 ((or single-float double-float
#!+long-float long-float
)
1547 (values 'float rem-type
))
1549 (values 'float nil
))
1552 (when (member rem-type
'(float single-float double-float
1553 #!+long-float long-float
))
1554 (setf rem
(interval-func #'(lambda (x)
1555 (coerce x rem-type
))
1557 (make-numeric-type :class class
1559 :low
(interval-low rem
)
1560 :high
(interval-high rem
)))))))
1562 (defun truncate-derive-type-quot-aux (num div same-arg
)
1563 (declare (ignore same-arg
))
1564 (if (and (numeric-type-real-p num
)
1565 (numeric-type-real-p div
))
1566 (truncate-derive-type-quot num div
)
1569 (defun truncate-derive-type-rem-aux (num div same-arg
)
1570 (declare (ignore same-arg
))
1571 (if (and (numeric-type-real-p num
)
1572 (numeric-type-real-p div
))
1573 (truncate-derive-type-rem num div
)
1576 (defoptimizer (truncate derive-type
) ((number divisor
))
1577 (let ((quot (two-arg-derive-type number divisor
1578 #'truncate-derive-type-quot-aux
#'truncate
))
1579 (rem (two-arg-derive-type number divisor
1580 #'truncate-derive-type-rem-aux
#'rem
)))
1581 (when (and quot rem
)
1582 (make-values-type :required
(list quot rem
)))))
1584 (defun ftruncate-derive-type-quot (number-type divisor-type
)
1585 ;; The bounds are the same as for truncate. However, the first
1586 ;; result is a float of some type. We need to determine what that
1587 ;; type is. Basically it's the more contagious of the two types.
1588 (let ((q-type (truncate-derive-type-quot number-type divisor-type
))
1589 (res-type (numeric-contagion number-type divisor-type
)))
1590 (make-numeric-type :class
'float
1591 :format
(numeric-type-format res-type
)
1592 :low
(numeric-type-low q-type
)
1593 :high
(numeric-type-high q-type
))))
1595 (defun ftruncate-derive-type-quot-aux (n d same-arg
)
1596 (declare (ignore same-arg
))
1597 (if (and (numeric-type-real-p n
)
1598 (numeric-type-real-p d
))
1599 (ftruncate-derive-type-quot n d
)
1602 (defoptimizer (ftruncate derive-type
) ((number divisor
))
1604 (two-arg-derive-type number divisor
1605 #'ftruncate-derive-type-quot-aux
#'ftruncate
))
1606 (rem (two-arg-derive-type number divisor
1607 #'truncate-derive-type-rem-aux
#'rem
)))
1608 (when (and quot rem
)
1609 (make-values-type :required
(list quot rem
)))))
1611 (defun %unary-truncate-derive-type-aux
(number)
1612 (truncate-derive-type-quot number
(specifier-type '(integer 1 1))))
1614 (defoptimizer (%unary-truncate derive-type
) ((number))
1615 (one-arg-derive-type number
1616 #'%unary-truncate-derive-type-aux
1619 ;;; Define optimizers for FLOOR and CEILING.
1621 ((def (name q-name r-name
)
1622 (let ((q-aux (symbolicate q-name
"-AUX"))
1623 (r-aux (symbolicate r-name
"-AUX")))
1625 ;; Compute type of quotient (first) result.
1626 (defun ,q-aux
(number-type divisor-type
)
1627 (let* ((number-interval
1628 (numeric-type->interval number-type
))
1630 (numeric-type->interval divisor-type
))
1631 (quot (,q-name
(interval-div number-interval
1632 divisor-interval
))))
1633 (specifier-type `(integer ,(or (interval-low quot
) '*)
1634 ,(or (interval-high quot
) '*)))))
1635 ;; Compute type of remainder.
1636 (defun ,r-aux
(number-type divisor-type
)
1637 (let* ((divisor-interval
1638 (numeric-type->interval divisor-type
))
1639 (rem (,r-name divisor-interval
))
1640 (result-type (rem-result-type number-type divisor-type
)))
1641 (multiple-value-bind (class format
)
1644 (values 'integer nil
))
1646 (values 'rational nil
))
1647 ((or single-float double-float
#!+long-float long-float
)
1648 (values 'float result-type
))
1650 (values 'float nil
))
1653 (when (member result-type
'(float single-float double-float
1654 #!+long-float long-float
))
1655 ;; Make sure that the limits on the interval have
1657 (setf rem
(interval-func (lambda (x)
1658 (coerce x result-type
))
1660 (make-numeric-type :class class
1662 :low
(interval-low rem
)
1663 :high
(interval-high rem
)))))
1664 ;; the optimizer itself
1665 (defoptimizer (,name derive-type
) ((number divisor
))
1666 (flet ((derive-q (n d same-arg
)
1667 (declare (ignore same-arg
))
1668 (if (and (numeric-type-real-p n
)
1669 (numeric-type-real-p d
))
1672 (derive-r (n d same-arg
)
1673 (declare (ignore same-arg
))
1674 (if (and (numeric-type-real-p n
)
1675 (numeric-type-real-p d
))
1678 (let ((quot (two-arg-derive-type
1679 number divisor
#'derive-q
#',name
))
1680 (rem (two-arg-derive-type
1681 number divisor
#'derive-r
#'mod
)))
1682 (when (and quot rem
)
1683 (make-values-type :required
(list quot rem
))))))))))
1685 (def floor floor-quotient-bound floor-rem-bound
)
1686 (def ceiling ceiling-quotient-bound ceiling-rem-bound
))
1688 ;;; Define optimizers for FFLOOR and FCEILING
1689 (macrolet ((def (name q-name r-name
)
1690 (let ((q-aux (symbolicate "F" q-name
"-AUX"))
1691 (r-aux (symbolicate r-name
"-AUX")))
1693 ;; Compute type of quotient (first) result.
1694 (defun ,q-aux
(number-type divisor-type
)
1695 (let* ((number-interval
1696 (numeric-type->interval number-type
))
1698 (numeric-type->interval divisor-type
))
1699 (quot (,q-name
(interval-div number-interval
1701 (res-type (numeric-contagion number-type
1704 :class
(numeric-type-class res-type
)
1705 :format
(numeric-type-format res-type
)
1706 :low
(interval-low quot
)
1707 :high
(interval-high quot
))))
1709 (defoptimizer (,name derive-type
) ((number divisor
))
1710 (flet ((derive-q (n d same-arg
)
1711 (declare (ignore same-arg
))
1712 (if (and (numeric-type-real-p n
)
1713 (numeric-type-real-p d
))
1716 (derive-r (n d same-arg
)
1717 (declare (ignore same-arg
))
1718 (if (and (numeric-type-real-p n
)
1719 (numeric-type-real-p d
))
1722 (let ((quot (two-arg-derive-type
1723 number divisor
#'derive-q
#',name
))
1724 (rem (two-arg-derive-type
1725 number divisor
#'derive-r
#'mod
)))
1726 (when (and quot rem
)
1727 (make-values-type :required
(list quot rem
))))))))))
1729 (def ffloor floor-quotient-bound floor-rem-bound
)
1730 (def fceiling ceiling-quotient-bound ceiling-rem-bound
))
1732 ;;; functions to compute the bounds on the quotient and remainder for
1733 ;;; the FLOOR function
1734 (defun floor-quotient-bound (quot)
1735 ;; Take the floor of the quotient and then massage it into what we
1737 (let ((lo (interval-low quot
))
1738 (hi (interval-high quot
)))
1739 ;; Take the floor of the lower bound. The result is always a
1740 ;; closed lower bound.
1742 (floor (type-bound-number lo
))
1744 ;; For the upper bound, we need to be careful.
1747 ;; An open bound. We need to be careful here because
1748 ;; the floor of '(10.0) is 9, but the floor of
1750 (multiple-value-bind (q r
) (floor (first hi
))
1755 ;; A closed bound, so the answer is obvious.
1759 (make-interval :low lo
:high hi
)))
1760 (defun floor-rem-bound (div)
1761 ;; The remainder depends only on the divisor. Try to get the
1762 ;; correct sign for the remainder if we can.
1763 (case (interval-range-info div
)
1765 ;; The divisor is always positive.
1766 (let ((rem (interval-abs div
)))
1767 (setf (interval-low rem
) 0)
1768 (when (and (numberp (interval-high rem
))
1769 (not (zerop (interval-high rem
))))
1770 ;; The remainder never contains the upper bound. However,
1771 ;; watch out for the case where the high limit is zero!
1772 (setf (interval-high rem
) (list (interval-high rem
))))
1775 ;; The divisor is always negative.
1776 (let ((rem (interval-neg (interval-abs div
))))
1777 (setf (interval-high rem
) 0)
1778 (when (numberp (interval-low rem
))
1779 ;; The remainder never contains the lower bound.
1780 (setf (interval-low rem
) (list (interval-low rem
))))
1783 ;; The divisor can be positive or negative. All bets off. The
1784 ;; magnitude of remainder is the maximum value of the divisor.
1785 (let ((limit (type-bound-number (interval-high (interval-abs div
)))))
1786 ;; The bound never reaches the limit, so make the interval open.
1787 (make-interval :low
(if limit
1790 :high
(list limit
))))))
1792 (floor-quotient-bound (make-interval :low
0.3 :high
10.3))
1793 => #S
(INTERVAL :LOW
0 :HIGH
10)
1794 (floor-quotient-bound (make-interval :low
0.3 :high
'(10.3
)))
1795 => #S
(INTERVAL :LOW
0 :HIGH
10)
1796 (floor-quotient-bound (make-interval :low
0.3 :high
10))
1797 => #S
(INTERVAL :LOW
0 :HIGH
10)
1798 (floor-quotient-bound (make-interval :low
0.3 :high
'(10)))
1799 => #S
(INTERVAL :LOW
0 :HIGH
9)
1800 (floor-quotient-bound (make-interval :low
'(0.3
) :high
10.3))
1801 => #S
(INTERVAL :LOW
0 :HIGH
10)
1802 (floor-quotient-bound (make-interval :low
'(0.0
) :high
10.3))
1803 => #S
(INTERVAL :LOW
0 :HIGH
10)
1804 (floor-quotient-bound (make-interval :low
'(-1.3
) :high
10.3))
1805 => #S
(INTERVAL :LOW -
2 :HIGH
10)
1806 (floor-quotient-bound (make-interval :low
'(-1.0
) :high
10.3))
1807 => #S
(INTERVAL :LOW -
1 :HIGH
10)
1808 (floor-quotient-bound (make-interval :low -
1.0 :high
10.3))
1809 => #S
(INTERVAL :LOW -
1 :HIGH
10)
1811 (floor-rem-bound (make-interval :low
0.3 :high
10.3))
1812 => #S
(INTERVAL :LOW
0 :HIGH
'(10.3
))
1813 (floor-rem-bound (make-interval :low
0.3 :high
'(10.3
)))
1814 => #S
(INTERVAL :LOW
0 :HIGH
'(10.3
))
1815 (floor-rem-bound (make-interval :low -
10 :high -
2.3))
1816 #S
(INTERVAL :LOW
(-10) :HIGH
0)
1817 (floor-rem-bound (make-interval :low
0.3 :high
10))
1818 => #S
(INTERVAL :LOW
0 :HIGH
'(10))
1819 (floor-rem-bound (make-interval :low
'(-1.3
) :high
10.3))
1820 => #S
(INTERVAL :LOW
'(-10.3
) :HIGH
'(10.3
))
1821 (floor-rem-bound (make-interval :low
'(-20.3
) :high
10.3))
1822 => #S
(INTERVAL :LOW
(-20.3
) :HIGH
(20.3
))
1825 ;;; same functions for CEILING
1826 (defun ceiling-quotient-bound (quot)
1827 ;; Take the ceiling of the quotient and then massage it into what we
1829 (let ((lo (interval-low quot
))
1830 (hi (interval-high quot
)))
1831 ;; Take the ceiling of the upper bound. The result is always a
1832 ;; closed upper bound.
1834 (ceiling (type-bound-number hi
))
1836 ;; For the lower bound, we need to be careful.
1839 ;; An open bound. We need to be careful here because
1840 ;; the ceiling of '(10.0) is 11, but the ceiling of
1842 (multiple-value-bind (q r
) (ceiling (first lo
))
1847 ;; A closed bound, so the answer is obvious.
1851 (make-interval :low lo
:high hi
)))
1852 (defun ceiling-rem-bound (div)
1853 ;; The remainder depends only on the divisor. Try to get the
1854 ;; correct sign for the remainder if we can.
1855 (case (interval-range-info div
)
1857 ;; Divisor is always positive. The remainder is negative.
1858 (let ((rem (interval-neg (interval-abs div
))))
1859 (setf (interval-high rem
) 0)
1860 (when (and (numberp (interval-low rem
))
1861 (not (zerop (interval-low rem
))))
1862 ;; The remainder never contains the upper bound. However,
1863 ;; watch out for the case when the upper bound is zero!
1864 (setf (interval-low rem
) (list (interval-low rem
))))
1867 ;; Divisor is always negative. The remainder is positive
1868 (let ((rem (interval-abs div
)))
1869 (setf (interval-low rem
) 0)
1870 (when (numberp (interval-high rem
))
1871 ;; The remainder never contains the lower bound.
1872 (setf (interval-high rem
) (list (interval-high rem
))))
1875 ;; The divisor can be positive or negative. All bets off. The
1876 ;; magnitude of remainder is the maximum value of the divisor.
1877 (let ((limit (type-bound-number (interval-high (interval-abs div
)))))
1878 ;; The bound never reaches the limit, so make the interval open.
1879 (make-interval :low
(if limit
1882 :high
(list limit
))))))
1885 (ceiling-quotient-bound (make-interval :low
0.3 :high
10.3))
1886 => #S
(INTERVAL :LOW
1 :HIGH
11)
1887 (ceiling-quotient-bound (make-interval :low
0.3 :high
'(10.3
)))
1888 => #S
(INTERVAL :LOW
1 :HIGH
11)
1889 (ceiling-quotient-bound (make-interval :low
0.3 :high
10))
1890 => #S
(INTERVAL :LOW
1 :HIGH
10)
1891 (ceiling-quotient-bound (make-interval :low
0.3 :high
'(10)))
1892 => #S
(INTERVAL :LOW
1 :HIGH
10)
1893 (ceiling-quotient-bound (make-interval :low
'(0.3
) :high
10.3))
1894 => #S
(INTERVAL :LOW
1 :HIGH
11)
1895 (ceiling-quotient-bound (make-interval :low
'(0.0
) :high
10.3))
1896 => #S
(INTERVAL :LOW
1 :HIGH
11)
1897 (ceiling-quotient-bound (make-interval :low
'(-1.3
) :high
10.3))
1898 => #S
(INTERVAL :LOW -
1 :HIGH
11)
1899 (ceiling-quotient-bound (make-interval :low
'(-1.0
) :high
10.3))
1900 => #S
(INTERVAL :LOW
0 :HIGH
11)
1901 (ceiling-quotient-bound (make-interval :low -
1.0 :high
10.3))
1902 => #S
(INTERVAL :LOW -
1 :HIGH
11)
1904 (ceiling-rem-bound (make-interval :low
0.3 :high
10.3))
1905 => #S
(INTERVAL :LOW
(-10.3
) :HIGH
0)
1906 (ceiling-rem-bound (make-interval :low
0.3 :high
'(10.3
)))
1907 => #S
(INTERVAL :LOW
0 :HIGH
'(10.3
))
1908 (ceiling-rem-bound (make-interval :low -
10 :high -
2.3))
1909 => #S
(INTERVAL :LOW
0 :HIGH
(10))
1910 (ceiling-rem-bound (make-interval :low
0.3 :high
10))
1911 => #S
(INTERVAL :LOW
(-10) :HIGH
0)
1912 (ceiling-rem-bound (make-interval :low
'(-1.3
) :high
10.3))
1913 => #S
(INTERVAL :LOW
(-10.3
) :HIGH
(10.3
))
1914 (ceiling-rem-bound (make-interval :low
'(-20.3
) :high
10.3))
1915 => #S
(INTERVAL :LOW
(-20.3
) :HIGH
(20.3
))
1918 (defun truncate-quotient-bound (quot)
1919 ;; For positive quotients, truncate is exactly like floor. For
1920 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
1921 ;; it's the union of the two pieces.
1922 (case (interval-range-info quot
)
1925 (floor-quotient-bound quot
))
1927 ;; just like CEILING
1928 (ceiling-quotient-bound quot
))
1930 ;; Split the interval into positive and negative pieces, compute
1931 ;; the result for each piece and put them back together.
1932 (destructuring-bind (neg pos
) (interval-split 0 quot t t
)
1933 (interval-merge-pair (ceiling-quotient-bound neg
)
1934 (floor-quotient-bound pos
))))))
1936 (defun truncate-rem-bound (num div
)
1937 ;; This is significantly more complicated than FLOOR or CEILING. We
1938 ;; need both the number and the divisor to determine the range. The
1939 ;; basic idea is to split the ranges of NUM and DEN into positive
1940 ;; and negative pieces and deal with each of the four possibilities
1942 (case (interval-range-info num
)
1944 (case (interval-range-info div
)
1946 (floor-rem-bound div
))
1948 (ceiling-rem-bound div
))
1950 (destructuring-bind (neg pos
) (interval-split 0 div t t
)
1951 (interval-merge-pair (truncate-rem-bound num neg
)
1952 (truncate-rem-bound num pos
))))))
1954 (case (interval-range-info div
)
1956 (ceiling-rem-bound div
))
1958 (floor-rem-bound div
))
1960 (destructuring-bind (neg pos
) (interval-split 0 div t t
)
1961 (interval-merge-pair (truncate-rem-bound num neg
)
1962 (truncate-rem-bound num pos
))))))
1964 (destructuring-bind (neg pos
) (interval-split 0 num t t
)
1965 (interval-merge-pair (truncate-rem-bound neg div
)
1966 (truncate-rem-bound pos div
))))))
1969 ;;; Derive useful information about the range. Returns three values:
1970 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
1971 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
1972 ;;; - The abs of the maximal value if there is one, or nil if it is
1974 (defun numeric-range-info (low high
)
1975 (cond ((and low
(not (minusp low
)))
1976 (values '+ low high
))
1977 ((and high
(not (plusp high
)))
1978 (values '-
(- high
) (if low
(- low
) nil
)))
1980 (values nil
0 (and low high
(max (- low
) high
))))))
1982 (defun integer-truncate-derive-type
1983 (number-low number-high divisor-low divisor-high
)
1984 ;; The result cannot be larger in magnitude than the number, but the
1985 ;; sign might change. If we can determine the sign of either the
1986 ;; number or the divisor, we can eliminate some of the cases.
1987 (multiple-value-bind (number-sign number-min number-max
)
1988 (numeric-range-info number-low number-high
)
1989 (multiple-value-bind (divisor-sign divisor-min divisor-max
)
1990 (numeric-range-info divisor-low divisor-high
)
1991 (when (and divisor-max
(zerop divisor-max
))
1992 ;; We've got a problem: guaranteed division by zero.
1993 (return-from integer-truncate-derive-type t
))
1994 (when (zerop divisor-min
)
1995 ;; We'll assume that they aren't going to divide by zero.
1997 (cond ((and number-sign divisor-sign
)
1998 ;; We know the sign of both.
1999 (if (eq number-sign divisor-sign
)
2000 ;; Same sign, so the result will be positive.
2001 `(integer ,(if divisor-max
2002 (truncate number-min divisor-max
)
2005 (truncate number-max divisor-min
)
2007 ;; Different signs, the result will be negative.
2008 `(integer ,(if number-max
2009 (- (truncate number-max divisor-min
))
2012 (- (truncate number-min divisor-max
))
2014 ((eq divisor-sign
'+)
2015 ;; The divisor is positive. Therefore, the number will just
2016 ;; become closer to zero.
2017 `(integer ,(if number-low
2018 (truncate number-low divisor-min
)
2021 (truncate number-high divisor-min
)
2023 ((eq divisor-sign
'-
)
2024 ;; The divisor is negative. Therefore, the absolute value of
2025 ;; the number will become closer to zero, but the sign will also
2027 `(integer ,(if number-high
2028 (- (truncate number-high divisor-min
))
2031 (- (truncate number-low divisor-min
))
2033 ;; The divisor could be either positive or negative.
2035 ;; The number we are dividing has a bound. Divide that by the
2036 ;; smallest posible divisor.
2037 (let ((bound (truncate number-max divisor-min
)))
2038 `(integer ,(- bound
) ,bound
)))
2040 ;; The number we are dividing is unbounded, so we can't tell
2041 ;; anything about the result.
2044 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2045 (defun integer-rem-derive-type
2046 (number-low number-high divisor-low divisor-high
)
2047 (if (and divisor-low divisor-high
)
2048 ;; We know the range of the divisor, and the remainder must be
2049 ;; smaller than the divisor. We can tell the sign of the
2050 ;; remainer if we know the sign of the number.
2051 (let ((divisor-max (1- (max (abs divisor-low
) (abs divisor-high
)))))
2052 `(integer ,(if (or (null number-low
)
2053 (minusp number-low
))
2056 ,(if (or (null number-high
)
2057 (plusp number-high
))
2060 ;; The divisor is potentially either very positive or very
2061 ;; negative. Therefore, the remainer is unbounded, but we might
2062 ;; be able to tell something about the sign from the number.
2063 `(integer ,(if (and number-low
(not (minusp number-low
)))
2064 ;; The number we are dividing is positive.
2065 ;; Therefore, the remainder must be positive.
2068 ,(if (and number-high
(not (plusp number-high
)))
2069 ;; The number we are dividing is negative.
2070 ;; Therefore, the remainder must be negative.
2074 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2075 (defoptimizer (random derive-type
) ((bound &optional state
))
2076 (let ((type (lvar-type bound
)))
2077 (when (numeric-type-p type
)
2078 (let ((class (numeric-type-class type
))
2079 (high (numeric-type-high type
))
2080 (format (numeric-type-format type
)))
2084 :low
(coerce 0 (or format class
'real
))
2085 :high
(cond ((not high
) nil
)
2086 ((eq class
'integer
) (max (1- high
) 0))
2087 ((or (consp high
) (zerop high
)) high
)
2090 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2091 (defun random-derive-type-aux (type)
2092 (let ((class (numeric-type-class type
))
2093 (high (numeric-type-high type
))
2094 (format (numeric-type-format type
)))
2098 :low
(coerce 0 (or format class
'real
))
2099 :high
(cond ((not high
) nil
)
2100 ((eq class
'integer
) (max (1- high
) 0))
2101 ((or (consp high
) (zerop high
)) high
)
2104 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2105 (defoptimizer (random derive-type
) ((bound &optional state
))
2106 (one-arg-derive-type bound
#'random-derive-type-aux nil
))
2108 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2110 ;;; Return the maximum number of bits an integer of the supplied type
2111 ;;; can take up, or NIL if it is unbounded. The second (third) value
2112 ;;; is T if the integer can be positive (negative) and NIL if not.
2113 ;;; Zero counts as positive.
2114 (defun integer-type-length (type)
2115 (if (numeric-type-p type
)
2116 (let ((min (numeric-type-low type
))
2117 (max (numeric-type-high type
)))
2118 (values (and min max
(max (integer-length min
) (integer-length max
)))
2119 (or (null max
) (not (minusp max
)))
2120 (or (null min
) (minusp min
))))
2123 (defun logand-derive-type-aux (x y
&optional same-leaf
)
2124 (declare (ignore same-leaf
))
2125 (multiple-value-bind (x-len x-pos x-neg
) (integer-type-length x
)
2126 (declare (ignore x-pos
))
2127 (multiple-value-bind (y-len y-pos y-neg
) (integer-type-length y
)
2128 (declare (ignore y-pos
))
2130 ;; X must be positive.
2132 ;; They must both be positive.
2133 (cond ((or (null x-len
) (null y-len
))
2134 (specifier-type 'unsigned-byte
))
2136 (specifier-type `(unsigned-byte* ,(min x-len y-len
)))))
2137 ;; X is positive, but Y might be negative.
2139 (specifier-type 'unsigned-byte
))
2141 (specifier-type `(unsigned-byte* ,x-len
)))))
2142 ;; X might be negative.
2144 ;; Y must be positive.
2146 (specifier-type 'unsigned-byte
))
2147 (t (specifier-type `(unsigned-byte* ,y-len
))))
2148 ;; Either might be negative.
2149 (if (and x-len y-len
)
2150 ;; The result is bounded.
2151 (specifier-type `(signed-byte ,(1+ (max x-len y-len
))))
2152 ;; We can't tell squat about the result.
2153 (specifier-type 'integer
)))))))
2155 (defun logior-derive-type-aux (x y
&optional same-leaf
)
2156 (declare (ignore same-leaf
))
2157 (multiple-value-bind (x-len x-pos x-neg
) (integer-type-length x
)
2158 (multiple-value-bind (y-len y-pos y-neg
) (integer-type-length y
)
2160 ((and (not x-neg
) (not y-neg
))
2161 ;; Both are positive.
2162 (specifier-type `(unsigned-byte* ,(if (and x-len y-len
)
2166 ;; X must be negative.
2168 ;; Both are negative. The result is going to be negative
2169 ;; and be the same length or shorter than the smaller.
2170 (if (and x-len y-len
)
2172 (specifier-type `(integer ,(ash -
1 (min x-len y-len
)) -
1))
2174 (specifier-type '(integer * -
1)))
2175 ;; X is negative, but we don't know about Y. The result
2176 ;; will be negative, but no more negative than X.
2178 `(integer ,(or (numeric-type-low x
) '*)
2181 ;; X might be either positive or negative.
2183 ;; But Y is negative. The result will be negative.
2185 `(integer ,(or (numeric-type-low y
) '*)
2187 ;; We don't know squat about either. It won't get any bigger.
2188 (if (and x-len y-len
)
2190 (specifier-type `(signed-byte ,(1+ (max x-len y-len
))))
2192 (specifier-type 'integer
))))))))
2194 (defun logxor-derive-type-aux (x y
&optional same-leaf
)
2195 (declare (ignore same-leaf
))
2196 (multiple-value-bind (x-len x-pos x-neg
) (integer-type-length x
)
2197 (multiple-value-bind (y-len y-pos y-neg
) (integer-type-length y
)
2199 ((or (and (not x-neg
) (not y-neg
))
2200 (and (not x-pos
) (not y-pos
)))
2201 ;; Either both are negative or both are positive. The result
2202 ;; will be positive, and as long as the longer.
2203 (specifier-type `(unsigned-byte* ,(if (and x-len y-len
)
2206 ((or (and (not x-pos
) (not y-neg
))
2207 (and (not y-neg
) (not y-pos
)))
2208 ;; Either X is negative and Y is positive or vice-versa. The
2209 ;; result will be negative.
2210 (specifier-type `(integer ,(if (and x-len y-len
)
2211 (ash -
1 (max x-len y-len
))
2214 ;; We can't tell what the sign of the result is going to be.
2215 ;; All we know is that we don't create new bits.
2217 (specifier-type `(signed-byte ,(1+ (max x-len y-len
)))))
2219 (specifier-type 'integer
))))))
2221 (macrolet ((deffrob (logfun)
2222 (let ((fun-aux (symbolicate logfun
"-DERIVE-TYPE-AUX")))
2223 `(defoptimizer (,logfun derive-type
) ((x y
))
2224 (two-arg-derive-type x y
#',fun-aux
#',logfun
)))))
2229 ;;; FIXME: could actually do stuff with SAME-LEAF
2230 (defoptimizer (logeqv derive-type
) ((x y
))
2231 (two-arg-derive-type x y
(lambda (x y same-leaf
)
2232 (lognot-derive-type-aux
2233 (logxor-derive-type-aux x y same-leaf
)))
2235 (defoptimizer (lognand derive-type
) ((x y
))
2236 (two-arg-derive-type x y
(lambda (x y same-leaf
)
2237 (lognot-derive-type-aux
2238 (logand-derive-type-aux x y same-leaf
)))
2240 (defoptimizer (lognor derive-type
) ((x y
))
2241 (two-arg-derive-type x y
(lambda (x y same-leaf
)
2242 (lognot-derive-type-aux
2243 (logior-derive-type-aux x y same-leaf
)))
2245 (defoptimizer (logandc1 derive-type
) ((x y
))
2246 (two-arg-derive-type x y
(lambda (x y same-leaf
)
2247 (logand-derive-type-aux
2248 (lognot-derive-type-aux x
) y nil
))
2250 (defoptimizer (logandc2 derive-type
) ((x y
))
2251 (two-arg-derive-type x y
(lambda (x y same-leaf
)
2252 (logand-derive-type-aux
2253 x
(lognot-derive-type-aux y
) nil
))
2255 (defoptimizer (logorc1 derive-type
) ((x y
))
2256 (two-arg-derive-type x y
(lambda (x y same-leaf
)
2257 (logior-derive-type-aux
2258 (lognot-derive-type-aux x
) y nil
))
2260 (defoptimizer (logorc2 derive-type
) ((x y
))
2261 (two-arg-derive-type x y
(lambda (x y same-leaf
)
2262 (logior-derive-type-aux
2263 x
(lognot-derive-type-aux y
) nil
))
2266 ;;;; miscellaneous derive-type methods
2268 (defoptimizer (integer-length derive-type
) ((x))
2269 (let ((x-type (lvar-type x
)))
2270 (when (numeric-type-p x-type
)
2271 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2272 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2273 ;; careful about LO or HI being NIL, though. Also, if 0 is
2274 ;; contained in X, the lower bound is obviously 0.
2275 (flet ((null-or-min (a b
)
2276 (and a b
(min (integer-length a
)
2277 (integer-length b
))))
2279 (and a b
(max (integer-length a
)
2280 (integer-length b
)))))
2281 (let* ((min (numeric-type-low x-type
))
2282 (max (numeric-type-high x-type
))
2283 (min-len (null-or-min min max
))
2284 (max-len (null-or-max min max
)))
2285 (when (ctypep 0 x-type
)
2287 (specifier-type `(integer ,(or min-len
'*) ,(or max-len
'*))))))))
2289 (defoptimizer (isqrt derive-type
) ((x))
2290 (let ((x-type (lvar-type x
)))
2291 (when (numeric-type-p x-type
)
2292 (let* ((lo (numeric-type-low x-type
))
2293 (hi (numeric-type-high x-type
))
2294 (lo-res (if lo
(isqrt lo
) '*))
2295 (hi-res (if hi
(isqrt hi
) '*)))
2296 (specifier-type `(integer ,lo-res
,hi-res
))))))
2298 (defoptimizer (code-char derive-type
) ((code))
2299 (specifier-type 'base-char
))
2301 (defoptimizer (values derive-type
) ((&rest values
))
2302 (make-values-type :required
(mapcar #'lvar-type values
)))
2304 (defun signum-derive-type-aux (type)
2305 (if (eq (numeric-type-complexp type
) :complex
)
2306 (let* ((format (case (numeric-type-class type
)
2307 ((integer rational
) 'single-float
)
2308 (t (numeric-type-format type
))))
2309 (bound-format (or format
'float
)))
2310 (make-numeric-type :class
'float
2313 :low
(coerce -
1 bound-format
)
2314 :high
(coerce 1 bound-format
)))
2315 (let* ((interval (numeric-type->interval type
))
2316 (range-info (interval-range-info interval
))
2317 (contains-0-p (interval-contains-p 0 interval
))
2318 (class (numeric-type-class type
))
2319 (format (numeric-type-format type
))
2320 (one (coerce 1 (or format class
'real
)))
2321 (zero (coerce 0 (or format class
'real
)))
2322 (minus-one (coerce -
1 (or format class
'real
)))
2323 (plus (make-numeric-type :class class
:format format
2324 :low one
:high one
))
2325 (minus (make-numeric-type :class class
:format format
2326 :low minus-one
:high minus-one
))
2327 ;; KLUDGE: here we have a fairly horrible hack to deal
2328 ;; with the schizophrenia in the type derivation engine.
2329 ;; The problem is that the type derivers reinterpret
2330 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2331 ;; 0d0) within the derivation mechanism doesn't include
2332 ;; -0d0. Ugh. So force it in here, instead.
2333 (zero (make-numeric-type :class class
:format format
2334 :low
(- zero
) :high zero
)))
2336 (+ (if contains-0-p
(type-union plus zero
) plus
))
2337 (- (if contains-0-p
(type-union minus zero
) minus
))
2338 (t (type-union minus zero plus
))))))
2340 (defoptimizer (signum derive-type
) ((num))
2341 (one-arg-derive-type num
#'signum-derive-type-aux nil
))
2343 ;;;; byte operations
2345 ;;;; We try to turn byte operations into simple logical operations.
2346 ;;;; First, we convert byte specifiers into separate size and position
2347 ;;;; arguments passed to internal %FOO functions. We then attempt to
2348 ;;;; transform the %FOO functions into boolean operations when the
2349 ;;;; size and position are constant and the operands are fixnums.
2351 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2352 ;; expressions that evaluate to the SIZE and POSITION of
2353 ;; the byte-specifier form SPEC. We may wrap a let around
2354 ;; the result of the body to bind some variables.
2356 ;; If the spec is a BYTE form, then bind the vars to the
2357 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2358 ;; and BYTE-POSITION. The goal of this transformation is to
2359 ;; avoid consing up byte specifiers and then immediately
2360 ;; throwing them away.
2361 (with-byte-specifier ((size-var pos-var spec
) &body body
)
2362 (once-only ((spec `(macroexpand ,spec
))
2364 `(if (and (consp ,spec
)
2365 (eq (car ,spec
) 'byte
)
2366 (= (length ,spec
) 3))
2367 (let ((,size-var
(second ,spec
))
2368 (,pos-var
(third ,spec
)))
2370 (let ((,size-var
`(byte-size ,,temp
))
2371 (,pos-var
`(byte-position ,,temp
)))
2372 `(let ((,,temp
,,spec
))
2375 (define-source-transform ldb
(spec int
)
2376 (with-byte-specifier (size pos spec
)
2377 `(%ldb
,size
,pos
,int
)))
2379 (define-source-transform dpb
(newbyte spec int
)
2380 (with-byte-specifier (size pos spec
)
2381 `(%dpb
,newbyte
,size
,pos
,int
)))
2383 (define-source-transform mask-field
(spec int
)
2384 (with-byte-specifier (size pos spec
)
2385 `(%mask-field
,size
,pos
,int
)))
2387 (define-source-transform deposit-field
(newbyte spec int
)
2388 (with-byte-specifier (size pos spec
)
2389 `(%deposit-field
,newbyte
,size
,pos
,int
))))
2391 (defoptimizer (%ldb derive-type
) ((size posn num
))
2392 (let ((size (lvar-type size
)))
2393 (if (and (numeric-type-p size
)
2394 (csubtypep size
(specifier-type 'integer
)))
2395 (let ((size-high (numeric-type-high size
)))
2396 (if (and size-high
(<= size-high sb
!vm
:n-word-bits
))
2397 (specifier-type `(unsigned-byte* ,size-high
))
2398 (specifier-type 'unsigned-byte
)))
2401 (defoptimizer (%mask-field derive-type
) ((size posn num
))
2402 (let ((size (lvar-type size
))
2403 (posn (lvar-type posn
)))
2404 (if (and (numeric-type-p size
)
2405 (csubtypep size
(specifier-type 'integer
))
2406 (numeric-type-p posn
)
2407 (csubtypep posn
(specifier-type 'integer
)))
2408 (let ((size-high (numeric-type-high size
))
2409 (posn-high (numeric-type-high posn
)))
2410 (if (and size-high posn-high
2411 (<= (+ size-high posn-high
) sb
!vm
:n-word-bits
))
2412 (specifier-type `(unsigned-byte* ,(+ size-high posn-high
)))
2413 (specifier-type 'unsigned-byte
)))
2416 (defun %deposit-field-derive-type-aux
(size posn int
)
2417 (let ((size (lvar-type size
))
2418 (posn (lvar-type posn
))
2419 (int (lvar-type int
)))
2420 (when (and (numeric-type-p size
)
2421 (numeric-type-p posn
)
2422 (numeric-type-p int
))
2423 (let ((size-high (numeric-type-high size
))
2424 (posn-high (numeric-type-high posn
))
2425 (high (numeric-type-high int
))
2426 (low (numeric-type-low int
)))
2427 (when (and size-high posn-high high low
2428 ;; KLUDGE: we need this cutoff here, otherwise we
2429 ;; will merrily derive the type of %DPB as
2430 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2431 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2432 ;; 1073741822))), with hilarious consequences. We
2433 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2434 ;; over a reasonable amount of shifting, even on
2435 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2436 ;; machine integers are 64-bits. -- CSR,
2438 (<= (+ size-high posn-high
) (* 4 sb
!vm
:n-word-bits
)))
2439 (let ((raw-bit-count (max (integer-length high
)
2440 (integer-length low
)
2441 (+ size-high posn-high
))))
2444 `(signed-byte ,(1+ raw-bit-count
))
2445 `(unsigned-byte* ,raw-bit-count
)))))))))
2447 (defoptimizer (%dpb derive-type
) ((newbyte size posn int
))
2448 (%deposit-field-derive-type-aux size posn int
))
2450 (defoptimizer (%deposit-field derive-type
) ((newbyte size posn int
))
2451 (%deposit-field-derive-type-aux size posn int
))
2453 (deftransform %ldb
((size posn int
)
2454 (fixnum fixnum integer
)
2455 (unsigned-byte #.sb
!vm
:n-word-bits
))
2456 "convert to inline logical operations"
2457 `(logand (ash int
(- posn
))
2458 (ash ,(1- (ash 1 sb
!vm
:n-word-bits
))
2459 (- size
,sb
!vm
:n-word-bits
))))
2461 (deftransform %mask-field
((size posn int
)
2462 (fixnum fixnum integer
)
2463 (unsigned-byte #.sb
!vm
:n-word-bits
))
2464 "convert to inline logical operations"
2466 (ash (ash ,(1- (ash 1 sb
!vm
:n-word-bits
))
2467 (- size
,sb
!vm
:n-word-bits
))
2470 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2471 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2472 ;;; as the result type, as that would allow result types that cover
2473 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2474 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2476 (deftransform %dpb
((new size posn int
)
2478 (unsigned-byte #.sb
!vm
:n-word-bits
))
2479 "convert to inline logical operations"
2480 `(let ((mask (ldb (byte size
0) -
1)))
2481 (logior (ash (logand new mask
) posn
)
2482 (logand int
(lognot (ash mask posn
))))))
2484 (deftransform %dpb
((new size posn int
)
2486 (signed-byte #.sb
!vm
:n-word-bits
))
2487 "convert to inline logical operations"
2488 `(let ((mask (ldb (byte size
0) -
1)))
2489 (logior (ash (logand new mask
) posn
)
2490 (logand int
(lognot (ash mask posn
))))))
2492 (deftransform %deposit-field
((new size posn int
)
2494 (unsigned-byte #.sb
!vm
:n-word-bits
))
2495 "convert to inline logical operations"
2496 `(let ((mask (ash (ldb (byte size
0) -
1) posn
)))
2497 (logior (logand new mask
)
2498 (logand int
(lognot mask
)))))
2500 (deftransform %deposit-field
((new size posn int
)
2502 (signed-byte #.sb
!vm
:n-word-bits
))
2503 "convert to inline logical operations"
2504 `(let ((mask (ash (ldb (byte size
0) -
1) posn
)))
2505 (logior (logand new mask
)
2506 (logand int
(lognot mask
)))))
2508 ;;; Modular functions
2510 ;;; (ldb (byte s 0) (foo x y ...)) =
2511 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2513 ;;; and similar for other arguments.
2515 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2517 ;;; For good functions, we just recursively cut arguments; their
2518 ;;; "goodness" means that the result will not increase (in the
2519 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2520 ;;; replaced with the version, cutting its result to WIDTH or more
2521 ;;; bits. If we have changed anything, we need to flush old derived
2522 ;;; types, because they have nothing in common with the new code.
2523 (defun cut-to-width (lvar width
)
2524 (declare (type lvar lvar
) (type (integer 0) width
))
2525 (labels ((reoptimize-node (node name
)
2526 (setf (node-derived-type node
)
2528 (info :function
:type name
)))
2529 (setf (lvar-%derived-type
(node-lvar node
)) nil
)
2530 (setf (node-reoptimize node
) t
)
2531 (setf (block-reoptimize (node-block node
)) t
)
2532 (setf (component-reoptimize (node-component node
)) t
))
2533 (cut-node (node &aux did-something
)
2534 (when (and (not (block-delete-p (node-block node
)))
2535 (combination-p node
)
2536 (fun-info-p (basic-combination-kind node
)))
2537 (let* ((fun-ref (lvar-use (combination-fun node
)))
2538 (fun-name (leaf-source-name (ref-leaf fun-ref
)))
2539 (modular-fun (find-modular-version fun-name width
))
2540 (name (and (modular-fun-info-p modular-fun
)
2541 (modular-fun-info-name modular-fun
))))
2544 (not (and (eq name
'logand
)
2546 (single-value-type (node-derived-type node
))
2547 (specifier-type `(unsigned-byte ,width
))))))
2548 (unless (eq modular-fun
:good
)
2549 (setq did-something t
)
2552 (find-free-fun name
"in a strange place"))
2553 (setf (combination-kind node
) :full
))
2554 (dolist (arg (basic-combination-args node
))
2555 (when (cut-lvar arg
)
2556 (setq did-something t
)))
2558 (reoptimize-node node fun-name
))
2560 ;; FIXME: This clause is a workaround for a fairly
2561 ;; critical bug. Prior to this, strength reduction
2562 ;; of constant (unsigned-byte 32) multiplication
2563 ;; achieved modular arithmetic by lying to the
2564 ;; compiler with TRULY-THE. Since we now have an
2565 ;; understanding of modular arithmetic, we can stop
2566 ;; lying to the compiler, at the cost of
2567 ;; uglification of this code. Probably we want to
2568 ;; generalize the modular arithmetic mechanism to
2569 ;; be able to deal with more complex operands (ASH,
2570 ;; EXPT, ...?) -- CSR, 2003-10-09
2573 ;; FIXME: only constants for now, but this
2574 ;; complicates implementation of the out of line
2575 ;; version of modular ASH. -- CSR, 2003-10-09
2576 (constant-lvar-p (second (basic-combination-args node
)))
2577 (> (lvar-value (second (basic-combination-args node
))) 0))
2578 (setq did-something t
)
2582 #!-alpha
'sb
!vm
::ash-left-constant-mod32
2583 #!+alpha
'sb
!vm
::ash-left-constant-mod64
2584 "in a strange place"))
2585 (setf (combination-kind node
) :full
)
2586 (cut-lvar (first (basic-combination-args node
)))
2587 (reoptimize-node node
'ash
))))))
2588 (cut-lvar (lvar &aux did-something
)
2589 (do-uses (node lvar
)
2590 (when (cut-node node
)
2591 (setq did-something t
)))
2595 (defoptimizer (logand optimizer
) ((x y
) node
)
2596 (let ((result-type (single-value-type (node-derived-type node
))))
2597 (when (numeric-type-p result-type
)
2598 (let ((low (numeric-type-low result-type
))
2599 (high (numeric-type-high result-type
)))
2600 (when (and (numberp low
)
2603 (let ((width (integer-length high
)))
2604 (when (some (lambda (x) (<= width x
))
2605 *modular-funs-widths
*)
2606 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2607 (cut-to-width x width
)
2608 (cut-to-width y width
)
2609 nil
; After fixing above, replace with T.
2612 ;;; miscellanous numeric transforms
2614 ;;; If a constant appears as the first arg, swap the args.
2615 (deftransform commutative-arg-swap
((x y
) * * :defun-only t
:node node
)
2616 (if (and (constant-lvar-p x
)
2617 (not (constant-lvar-p y
)))
2618 `(,(lvar-fun-name (basic-combination-fun node
))
2621 (give-up-ir1-transform)))
2623 (dolist (x '(= char
= + * logior logand logxor
))
2624 (%deftransform x
'(function * *) #'commutative-arg-swap
2625 "place constant arg last"))
2627 ;;; Handle the case of a constant BOOLE-CODE.
2628 (deftransform boole
((op x y
) * *)
2629 "convert to inline logical operations"
2630 (unless (constant-lvar-p op
)
2631 (give-up-ir1-transform "BOOLE code is not a constant."))
2632 (let ((control (lvar-value op
)))
2638 (#.boole-c1
'(lognot x
))
2639 (#.boole-c2
'(lognot y
))
2640 (#.boole-and
'(logand x y
))
2641 (#.boole-ior
'(logior x y
))
2642 (#.boole-xor
'(logxor x y
))
2643 (#.boole-eqv
'(logeqv x y
))
2644 (#.boole-nand
'(lognand x y
))
2645 (#.boole-nor
'(lognor x y
))
2646 (#.boole-andc1
'(logandc1 x y
))
2647 (#.boole-andc2
'(logandc2 x y
))
2648 (#.boole-orc1
'(logorc1 x y
))
2649 (#.boole-orc2
'(logorc2 x y
))
2651 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
2654 ;;;; converting special case multiply/divide to shifts
2656 ;;; If arg is a constant power of two, turn * into a shift.
2657 (deftransform * ((x y
) (integer integer
) *)
2658 "convert x*2^k to shift"
2659 (unless (constant-lvar-p y
)
2660 (give-up-ir1-transform))
2661 (let* ((y (lvar-value y
))
2663 (len (1- (integer-length y-abs
))))
2664 (unless (= y-abs
(ash 1 len
))
2665 (give-up-ir1-transform))
2670 ;;; If arg is a constant power of two, turn FLOOR into a shift and
2671 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
2673 (flet ((frob (y ceil-p
)
2674 (unless (constant-lvar-p y
)
2675 (give-up-ir1-transform))
2676 (let* ((y (lvar-value y
))
2678 (len (1- (integer-length y-abs
))))
2679 (unless (= y-abs
(ash 1 len
))
2680 (give-up-ir1-transform))
2681 (let ((shift (- len
))
2683 (delta (if ceil-p
(* (signum y
) (1- y-abs
)) 0)))
2684 `(let ((x (+ x
,delta
)))
2686 `(values (ash (- x
) ,shift
)
2687 (- (- (logand (- x
) ,mask
)) ,delta
))
2688 `(values (ash x
,shift
)
2689 (- (logand x
,mask
) ,delta
))))))))
2690 (deftransform floor
((x y
) (integer integer
) *)
2691 "convert division by 2^k to shift"
2693 (deftransform ceiling
((x y
) (integer integer
) *)
2694 "convert division by 2^k to shift"
2697 ;;; Do the same for MOD.
2698 (deftransform mod
((x y
) (integer integer
) *)
2699 "convert remainder mod 2^k to LOGAND"
2700 (unless (constant-lvar-p y
)
2701 (give-up-ir1-transform))
2702 (let* ((y (lvar-value y
))
2704 (len (1- (integer-length y-abs
))))
2705 (unless (= y-abs
(ash 1 len
))
2706 (give-up-ir1-transform))
2707 (let ((mask (1- y-abs
)))
2709 `(- (logand (- x
) ,mask
))
2710 `(logand x
,mask
)))))
2712 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
2713 (deftransform truncate
((x y
) (integer integer
))
2714 "convert division by 2^k to shift"
2715 (unless (constant-lvar-p y
)
2716 (give-up-ir1-transform))
2717 (let* ((y (lvar-value y
))
2719 (len (1- (integer-length y-abs
))))
2720 (unless (= y-abs
(ash 1 len
))
2721 (give-up-ir1-transform))
2722 (let* ((shift (- len
))
2725 (values ,(if (minusp y
)
2727 `(- (ash (- x
) ,shift
)))
2728 (- (logand (- x
) ,mask
)))
2729 (values ,(if (minusp y
)
2730 `(ash (- ,mask x
) ,shift
)
2732 (logand x
,mask
))))))
2734 ;;; And the same for REM.
2735 (deftransform rem
((x y
) (integer integer
) *)
2736 "convert remainder mod 2^k to LOGAND"
2737 (unless (constant-lvar-p y
)
2738 (give-up-ir1-transform))
2739 (let* ((y (lvar-value y
))
2741 (len (1- (integer-length y-abs
))))
2742 (unless (= y-abs
(ash 1 len
))
2743 (give-up-ir1-transform))
2744 (let ((mask (1- y-abs
)))
2746 (- (logand (- x
) ,mask
))
2747 (logand x
,mask
)))))
2749 ;;;; arithmetic and logical identity operation elimination
2751 ;;; Flush calls to various arith functions that convert to the
2752 ;;; identity function or a constant.
2753 (macrolet ((def (name identity result
)
2754 `(deftransform ,name
((x y
) (* (constant-arg (member ,identity
))) *)
2755 "fold identity operations"
2762 (def logxor -
1 (lognot x
))
2765 (deftransform logand
((x y
) (* (constant-arg t
)) *)
2766 "fold identity operation"
2767 (let ((y (lvar-value y
)))
2768 (unless (and (plusp y
)
2769 (= y
(1- (ash 1 (integer-length y
)))))
2770 (give-up-ir1-transform))
2771 (unless (csubtypep (lvar-type x
)
2772 (specifier-type `(integer 0 ,y
)))
2773 (give-up-ir1-transform))
2776 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
2777 ;;; (* 0 -4.0) is -0.0.
2778 (deftransform -
((x y
) ((constant-arg (member 0)) rational
) *)
2779 "convert (- 0 x) to negate"
2781 (deftransform * ((x y
) (rational (constant-arg (member 0))) *)
2782 "convert (* x 0) to 0"
2785 ;;; Return T if in an arithmetic op including lvars X and Y, the
2786 ;;; result type is not affected by the type of X. That is, Y is at
2787 ;;; least as contagious as X.
2789 (defun not-more-contagious (x y
)
2790 (declare (type continuation x y
))
2791 (let ((x (lvar-type x
))
2793 (values (type= (numeric-contagion x y
)
2794 (numeric-contagion y y
)))))
2795 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
2796 ;;; XXX needs more work as valid transforms are missed; some cases are
2797 ;;; specific to particular transform functions so the use of this
2798 ;;; function may need a re-think.
2799 (defun not-more-contagious (x y
)
2800 (declare (type lvar x y
))
2801 (flet ((simple-numeric-type (num)
2802 (and (numeric-type-p num
)
2803 ;; Return non-NIL if NUM is integer, rational, or a float
2804 ;; of some type (but not FLOAT)
2805 (case (numeric-type-class num
)
2809 (numeric-type-format num
))
2812 (let ((x (lvar-type x
))
2814 (if (and (simple-numeric-type x
)
2815 (simple-numeric-type y
))
2816 (values (type= (numeric-contagion x y
)
2817 (numeric-contagion y y
)))))))
2821 ;;; If y is not constant, not zerop, or is contagious, or a positive
2822 ;;; float +0.0 then give up.
2823 (deftransform + ((x y
) (t (constant-arg t
)) *)
2825 (let ((val (lvar-value y
)))
2826 (unless (and (zerop val
)
2827 (not (and (floatp val
) (plusp (float-sign val
))))
2828 (not-more-contagious y x
))
2829 (give-up-ir1-transform)))
2834 ;;; If y is not constant, not zerop, or is contagious, or a negative
2835 ;;; float -0.0 then give up.
2836 (deftransform -
((x y
) (t (constant-arg t
)) *)
2838 (let ((val (lvar-value y
)))
2839 (unless (and (zerop val
)
2840 (not (and (floatp val
) (minusp (float-sign val
))))
2841 (not-more-contagious y x
))
2842 (give-up-ir1-transform)))
2845 ;;; Fold (OP x +/-1)
2846 (macrolet ((def (name result minus-result
)
2847 `(deftransform ,name
((x y
) (t (constant-arg real
)) *)
2848 "fold identity operations"
2849 (let ((val (lvar-value y
)))
2850 (unless (and (= (abs val
) 1)
2851 (not-more-contagious y x
))
2852 (give-up-ir1-transform))
2853 (if (minusp val
) ',minus-result
',result
)))))
2854 (def * x
(%negate x
))
2855 (def / x
(%negate x
))
2856 (def expt x
(/ 1 x
)))
2858 ;;; Fold (expt x n) into multiplications for small integral values of
2859 ;;; N; convert (expt x 1/2) to sqrt.
2860 (deftransform expt
((x y
) (t (constant-arg real
)) *)
2861 "recode as multiplication or sqrt"
2862 (let ((val (lvar-value y
)))
2863 ;; If Y would cause the result to be promoted to the same type as
2864 ;; Y, we give up. If not, then the result will be the same type
2865 ;; as X, so we can replace the exponentiation with simple
2866 ;; multiplication and division for small integral powers.
2867 (unless (not-more-contagious y x
)
2868 (give-up-ir1-transform))
2870 (let ((x-type (lvar-type x
)))
2871 (cond ((csubtypep x-type
(specifier-type '(or rational
2872 (complex rational
))))
2874 ((csubtypep x-type
(specifier-type 'real
))
2878 ((csubtypep x-type
(specifier-type 'complex
))
2879 ;; both parts are float
2881 (t (give-up-ir1-transform)))))
2882 ((= val
2) '(* x x
))
2883 ((= val -
2) '(/ (* x x
)))
2884 ((= val
3) '(* x x x
))
2885 ((= val -
3) '(/ (* x x x
)))
2886 ((= val
1/2) '(sqrt x
))
2887 ((= val -
1/2) '(/ (sqrt x
)))
2888 (t (give-up-ir1-transform)))))
2890 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
2891 ;;; transformations?
2892 ;;; Perhaps we should have to prove that the denominator is nonzero before
2893 ;;; doing them? -- WHN 19990917
2894 (macrolet ((def (name)
2895 `(deftransform ,name
((x y
) ((constant-arg (integer 0 0)) integer
)
2902 (macrolet ((def (name)
2903 `(deftransform ,name
((x y
) ((constant-arg (integer 0 0)) integer
)
2912 ;;;; character operations
2914 (deftransform char-equal
((a b
) (base-char base-char
))
2916 '(let* ((ac (char-code a
))
2918 (sum (logxor ac bc
)))
2920 (when (eql sum
#x20
)
2921 (let ((sum (+ ac bc
)))
2922 (and (> sum
161) (< sum
213)))))))
2924 (deftransform char-upcase
((x) (base-char))
2926 '(let ((n-code (char-code x
)))
2927 (if (and (> n-code
#o140
) ; Octal 141 is #\a.
2928 (< n-code
#o173
)) ; Octal 172 is #\z.
2929 (code-char (logxor #x20 n-code
))
2932 (deftransform char-downcase
((x) (base-char))
2934 '(let ((n-code (char-code x
)))
2935 (if (and (> n-code
64) ; 65 is #\A.
2936 (< n-code
91)) ; 90 is #\Z.
2937 (code-char (logxor #x20 n-code
))
2940 ;;;; equality predicate transforms
2942 ;;; Return true if X and Y are lvars whose only use is a
2943 ;;; reference to the same leaf, and the value of the leaf cannot
2945 (defun same-leaf-ref-p (x y
)
2946 (declare (type lvar x y
))
2947 (let ((x-use (principal-lvar-use x
))
2948 (y-use (principal-lvar-use y
)))
2951 (eq (ref-leaf x-use
) (ref-leaf y-use
))
2952 (constant-reference-p x-use
))))
2954 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
2955 ;;; if there is no intersection between the types of the arguments,
2956 ;;; then the result is definitely false.
2957 (deftransform simple-equality-transform
((x y
) * *
2959 (cond ((same-leaf-ref-p x y
)
2961 ((not (types-equal-or-intersect (lvar-type x
)
2965 (give-up-ir1-transform))))
2968 `(%deftransform
',x
'(function * *) #'simple-equality-transform
)))
2973 ;;; This is similar to SIMPLE-EQUALITY-PREDICATE, except that we also
2974 ;;; try to convert to a type-specific predicate or EQ:
2975 ;;; -- If both args are characters, convert to CHAR=. This is better than
2976 ;;; just converting to EQ, since CHAR= may have special compilation
2977 ;;; strategies for non-standard representations, etc.
2978 ;;; -- If either arg is definitely not a number, then we can compare
2980 ;;; -- Otherwise, we try to put the arg we know more about second. If X
2981 ;;; is constant then we put it second. If X is a subtype of Y, we put
2982 ;;; it second. These rules make it easier for the back end to match
2983 ;;; these interesting cases.
2984 ;;; -- If Y is a fixnum, then we quietly pass because the back end can
2985 ;;; handle that case, otherwise give an efficiency note.
2986 (deftransform eql
((x y
) * *)
2987 "convert to simpler equality predicate"
2988 (let ((x-type (lvar-type x
))
2989 (y-type (lvar-type y
))
2990 (char-type (specifier-type 'character
))
2991 (number-type (specifier-type 'number
)))
2992 (cond ((same-leaf-ref-p x y
)
2994 ((not (types-equal-or-intersect x-type y-type
))
2996 ((and (csubtypep x-type char-type
)
2997 (csubtypep y-type char-type
))
2999 ((or (not (types-equal-or-intersect x-type number-type
))
3000 (not (types-equal-or-intersect y-type number-type
)))
3002 ((and (not (constant-lvar-p y
))
3003 (or (constant-lvar-p x
)
3004 (and (csubtypep x-type y-type
)
3005 (not (csubtypep y-type x-type
)))))
3008 (give-up-ir1-transform)))))
3010 ;;; Convert to EQL if both args are rational and complexp is specified
3011 ;;; and the same for both.
3012 (deftransform = ((x y
) * *)
3014 (let ((x-type (lvar-type x
))
3015 (y-type (lvar-type y
)))
3016 (if (and (csubtypep x-type
(specifier-type 'number
))
3017 (csubtypep y-type
(specifier-type 'number
)))
3018 (cond ((or (and (csubtypep x-type
(specifier-type 'float
))
3019 (csubtypep y-type
(specifier-type 'float
)))
3020 (and (csubtypep x-type
(specifier-type '(complex float
)))
3021 (csubtypep y-type
(specifier-type '(complex float
)))))
3022 ;; They are both floats. Leave as = so that -0.0 is
3023 ;; handled correctly.
3024 (give-up-ir1-transform))
3025 ((or (and (csubtypep x-type
(specifier-type 'rational
))
3026 (csubtypep y-type
(specifier-type 'rational
)))
3027 (and (csubtypep x-type
3028 (specifier-type '(complex rational
)))
3030 (specifier-type '(complex rational
)))))
3031 ;; They are both rationals and complexp is the same.
3035 (give-up-ir1-transform
3036 "The operands might not be the same type.")))
3037 (give-up-ir1-transform
3038 "The operands might not be the same type."))))
3040 ;;; If LVAR's type is a numeric type, then return the type, otherwise
3041 ;;; GIVE-UP-IR1-TRANSFORM.
3042 (defun numeric-type-or-lose (lvar)
3043 (declare (type lvar lvar
))
3044 (let ((res (lvar-type lvar
)))
3045 (unless (numeric-type-p res
) (give-up-ir1-transform))
3048 ;;; See whether we can statically determine (< X Y) using type
3049 ;;; information. If X's high bound is < Y's low, then X < Y.
3050 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3051 ;;; NIL). If not, at least make sure any constant arg is second.
3052 (macrolet ((def (name inverse reflexive-p surely-true surely-false
)
3053 `(deftransform ,name
((x y
))
3054 (if (same-leaf-ref-p x y
)
3056 (let ((ix (or (type-approximate-interval (lvar-type x
))
3057 (give-up-ir1-transform)))
3058 (iy (or (type-approximate-interval (lvar-type y
))
3059 (give-up-ir1-transform))))
3064 ((and (constant-lvar-p x
)
3065 (not (constant-lvar-p y
)))
3068 (give-up-ir1-transform))))))))
3069 (def < > nil
(interval-< ix iy
) (interval->= ix iy
))
3070 (def > < nil
(interval-< iy ix
) (interval->= iy ix
))
3071 (def <= >= t
(interval->= iy ix
) (interval-< iy ix
))
3072 (def >= <= t
(interval->= ix iy
) (interval-< ix iy
)))
3074 (defun ir1-transform-char< (x y first second inverse
)
3076 ((same-leaf-ref-p x y
) nil
)
3077 ;; If we had interval representation of character types, as we
3078 ;; might eventually have to to support 2^21 characters, then here
3079 ;; we could do some compile-time computation as in transforms for
3080 ;; < above. -- CSR, 2003-07-01
3081 ((and (constant-lvar-p first
)
3082 (not (constant-lvar-p second
)))
3084 (t (give-up-ir1-transform))))
3086 (deftransform char
< ((x y
) (character character
) *)
3087 (ir1-transform-char< x y x y
'char
>))
3089 (deftransform char
> ((x y
) (character character
) *)
3090 (ir1-transform-char< y x x y
'char
<))
3092 ;;;; converting N-arg comparisons
3094 ;;;; We convert calls to N-arg comparison functions such as < into
3095 ;;;; two-arg calls. This transformation is enabled for all such
3096 ;;;; comparisons in this file. If any of these predicates are not
3097 ;;;; open-coded, then the transformation should be removed at some
3098 ;;;; point to avoid pessimization.
3100 ;;; This function is used for source transformation of N-arg
3101 ;;; comparison functions other than inequality. We deal both with
3102 ;;; converting to two-arg calls and inverting the sense of the test,
3103 ;;; if necessary. If the call has two args, then we pass or return a
3104 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3105 ;;; then we transform to code that returns true. Otherwise, we bind
3106 ;;; all the arguments and expand into a bunch of IFs.
3107 (declaim (ftype (function (symbol list boolean t
) *) multi-compare
))
3108 (defun multi-compare (predicate args not-p type
)
3109 (let ((nargs (length args
)))
3110 (cond ((< nargs
1) (values nil t
))
3111 ((= nargs
1) `(progn (the ,type
,@args
) t
))
3114 `(if (,predicate
,(first args
) ,(second args
)) nil t
)
3117 (do* ((i (1- nargs
) (1- i
))
3119 (current (gensym) (gensym))
3120 (vars (list current
) (cons current vars
))
3122 `(if (,predicate
,current
,last
)
3124 `(if (,predicate
,current
,last
)
3127 `((lambda ,vars
(declare (type ,type
,@vars
)) ,result
)
3130 (define-source-transform = (&rest args
) (multi-compare '= args nil
'number
))
3131 (define-source-transform < (&rest args
) (multi-compare '< args nil
'real
))
3132 (define-source-transform > (&rest args
) (multi-compare '> args nil
'real
))
3133 (define-source-transform <= (&rest args
) (multi-compare '> args t
'real
))
3134 (define-source-transform >= (&rest args
) (multi-compare '< args t
'real
))
3136 (define-source-transform char
= (&rest args
) (multi-compare 'char
= args nil
3138 (define-source-transform char
< (&rest args
) (multi-compare 'char
< args nil
3140 (define-source-transform char
> (&rest args
) (multi-compare 'char
> args nil
3142 (define-source-transform char
<= (&rest args
) (multi-compare 'char
> args t
3144 (define-source-transform char
>= (&rest args
) (multi-compare 'char
< args t
3147 (define-source-transform char-equal
(&rest args
)
3148 (multi-compare 'char-equal args nil
'character
))
3149 (define-source-transform char-lessp
(&rest args
)
3150 (multi-compare 'char-lessp args nil
'character
))
3151 (define-source-transform char-greaterp
(&rest args
)
3152 (multi-compare 'char-greaterp args nil
'character
))
3153 (define-source-transform char-not-greaterp
(&rest args
)
3154 (multi-compare 'char-greaterp args t
'character
))
3155 (define-source-transform char-not-lessp
(&rest args
)
3156 (multi-compare 'char-lessp args t
'character
))
3158 ;;; This function does source transformation of N-arg inequality
3159 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3160 ;;; arg cases. If there are more than two args, then we expand into
3161 ;;; the appropriate n^2 comparisons only when speed is important.
3162 (declaim (ftype (function (symbol list t
) *) multi-not-equal
))
3163 (defun multi-not-equal (predicate args type
)
3164 (let ((nargs (length args
)))
3165 (cond ((< nargs
1) (values nil t
))
3166 ((= nargs
1) `(progn (the ,type
,@args
) t
))
3168 `(if (,predicate
,(first args
) ,(second args
)) nil t
))
3169 ((not (policy *lexenv
*
3170 (and (>= speed space
)
3171 (>= speed compilation-speed
))))
3174 (let ((vars (make-gensym-list nargs
)))
3175 (do ((var vars next
)
3176 (next (cdr vars
) (cdr next
))
3179 `((lambda ,vars
(declare (type ,type
,@vars
)) ,result
)
3181 (let ((v1 (first var
)))
3183 (setq result
`(if (,predicate
,v1
,v2
) nil
,result
))))))))))
3185 (define-source-transform /= (&rest args
)
3186 (multi-not-equal '= args
'number
))
3187 (define-source-transform char
/= (&rest args
)
3188 (multi-not-equal 'char
= args
'character
))
3189 (define-source-transform char-not-equal
(&rest args
)
3190 (multi-not-equal 'char-equal args
'character
))
3192 ;;; Expand MAX and MIN into the obvious comparisons.
3193 (define-source-transform max
(arg0 &rest rest
)
3194 (once-only ((arg0 arg0
))
3196 `(values (the real
,arg0
))
3197 `(let ((maxrest (max ,@rest
)))
3198 (if (> ,arg0 maxrest
) ,arg0 maxrest
)))))
3199 (define-source-transform min
(arg0 &rest rest
)
3200 (once-only ((arg0 arg0
))
3202 `(values (the real
,arg0
))
3203 `(let ((minrest (min ,@rest
)))
3204 (if (< ,arg0 minrest
) ,arg0 minrest
)))))
3206 ;;;; converting N-arg arithmetic functions
3208 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3209 ;;;; versions, and degenerate cases are flushed.
3211 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3212 (declaim (ftype (function (symbol t list
) list
) associate-args
))
3213 (defun associate-args (function first-arg more-args
)
3214 (let ((next (rest more-args
))
3215 (arg (first more-args
)))
3217 `(,function
,first-arg
,arg
)
3218 (associate-args function
`(,function
,first-arg
,arg
) next
))))
3220 ;;; Do source transformations for transitive functions such as +.
3221 ;;; One-arg cases are replaced with the arg and zero arg cases with
3222 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3223 ;;; ensure (with THE) that the argument in one-argument calls is.
3224 (defun source-transform-transitive (fun args identity
3225 &optional one-arg-result-type
)
3226 (declare (symbol fun
) (list args
))
3229 (1 (if one-arg-result-type
3230 `(values (the ,one-arg-result-type
,(first args
)))
3231 `(values ,(first args
))))
3234 (associate-args fun
(first args
) (rest args
)))))
3236 (define-source-transform + (&rest args
)
3237 (source-transform-transitive '+ args
0 'number
))
3238 (define-source-transform * (&rest args
)
3239 (source-transform-transitive '* args
1 'number
))
3240 (define-source-transform logior
(&rest args
)
3241 (source-transform-transitive 'logior args
0 'integer
))
3242 (define-source-transform logxor
(&rest args
)
3243 (source-transform-transitive 'logxor args
0 'integer
))
3244 (define-source-transform logand
(&rest args
)
3245 (source-transform-transitive 'logand args -
1 'integer
))
3246 (define-source-transform logeqv
(&rest args
)
3247 (source-transform-transitive 'logeqv args -
1 'integer
))
3249 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3250 ;;; because when they are given one argument, they return its absolute
3253 (define-source-transform gcd
(&rest args
)
3256 (1 `(abs (the integer
,(first args
))))
3258 (t (associate-args 'gcd
(first args
) (rest args
)))))
3260 (define-source-transform lcm
(&rest args
)
3263 (1 `(abs (the integer
,(first args
))))
3265 (t (associate-args 'lcm
(first args
) (rest args
)))))
3267 ;;; Do source transformations for intransitive n-arg functions such as
3268 ;;; /. With one arg, we form the inverse. With two args we pass.
3269 ;;; Otherwise we associate into two-arg calls.
3270 (declaim (ftype (function (symbol list t
)
3271 (values list
&optional
(member nil t
)))
3272 source-transform-intransitive
))
3273 (defun source-transform-intransitive (function args inverse
)
3275 ((0 2) (values nil t
))
3276 (1 `(,@inverse
,(first args
)))
3277 (t (associate-args function
(first args
) (rest args
)))))
3279 (define-source-transform -
(&rest args
)
3280 (source-transform-intransitive '- args
'(%negate
)))
3281 (define-source-transform / (&rest args
)
3282 (source-transform-intransitive '/ args
'(/ 1)))
3284 ;;;; transforming APPLY
3286 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3287 ;;; only needs to understand one kind of variable-argument call. It is
3288 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3289 (define-source-transform apply
(fun arg
&rest more-args
)
3290 (let ((args (cons arg more-args
)))
3291 `(multiple-value-call ,fun
3292 ,@(mapcar (lambda (x)
3295 (values-list ,(car (last args
))))))
3297 ;;;; transforming FORMAT
3299 ;;;; If the control string is a compile-time constant, then replace it
3300 ;;;; with a use of the FORMATTER macro so that the control string is
3301 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3302 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3303 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3305 ;;; for compile-time argument count checking.
3307 ;;; FIXME I: this is currently called from DEFTRANSFORMs, the vast
3308 ;;; majority of which are not going to transform the code, but instead
3309 ;;; are going to GIVE-UP-IR1-TRANSFORM unconditionally. It would be
3310 ;;; nice to make this explicit, maybe by implementing a new
3311 ;;; "optimizer" (say, DEFOPTIMIZER CONSISTENCY-CHECK).
3313 ;;; FIXME II: In some cases, type information could be correlated; for
3314 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3315 ;;; of a corresponding argument is known and does not intersect the
3316 ;;; list type, a warning could be signalled.
3317 (defun check-format-args (string args fun
)
3318 (declare (type string string
))
3319 (unless (typep string
'simple-string
)
3320 (setq string
(coerce string
'simple-string
)))
3321 (multiple-value-bind (min max
)
3322 (handler-case (sb!format
:%compiler-walk-format-string string args
)
3323 (sb!format
:format-error
(c)
3324 (compiler-warn "~A" c
)))
3326 (let ((nargs (length args
)))
3329 (compiler-warn "Too few arguments (~D) to ~S ~S: ~
3330 requires at least ~D."
3331 nargs fun string min
))
3333 (;; to get warned about probably bogus code at
3334 ;; cross-compile time.
3335 #+sb-xc-host compiler-warn
3336 ;; ANSI saith that too many arguments doesn't cause a
3338 #-sb-xc-host compiler-style-warn
3339 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3340 nargs fun string max
)))))))
3342 (defoptimizer (format optimizer
) ((dest control
&rest args
))
3343 (when (constant-lvar-p control
)
3344 (let ((x (lvar-value control
)))
3346 (check-format-args x args
'format
)))))
3348 (deftransform format
((dest control
&rest args
) (t simple-string
&rest t
) *
3349 :policy
(> speed space
))
3350 (unless (constant-lvar-p control
)
3351 (give-up-ir1-transform "The control string is not a constant."))
3352 (let ((arg-names (make-gensym-list (length args
))))
3353 `(lambda (dest control
,@arg-names
)
3354 (declare (ignore control
))
3355 (format dest
(formatter ,(lvar-value control
)) ,@arg-names
))))
3357 (deftransform format
((stream control
&rest args
) (stream function
&rest t
) *
3358 :policy
(> speed space
))
3359 (let ((arg-names (make-gensym-list (length args
))))
3360 `(lambda (stream control
,@arg-names
)
3361 (funcall control stream
,@arg-names
)
3364 (deftransform format
((tee control
&rest args
) ((member t
) function
&rest t
) *
3365 :policy
(> speed space
))
3366 (let ((arg-names (make-gensym-list (length args
))))
3367 `(lambda (tee control
,@arg-names
)
3368 (declare (ignore tee
))
3369 (funcall control
*standard-output
* ,@arg-names
)
3374 `(defoptimizer (,name optimizer
) ((control &rest args
))
3375 (when (constant-lvar-p control
)
3376 (let ((x (lvar-value control
)))
3378 (check-format-args x args
',name
)))))))
3381 #+sb-xc-host
; Only we should be using these
3384 (def compiler-abort
)
3385 (def compiler-error
)
3387 (def compiler-style-warn
)
3388 (def compiler-notify
)
3389 (def maybe-compiler-notify
)
3392 (defoptimizer (cerror optimizer
) ((report control
&rest args
))
3393 (when (and (constant-lvar-p control
)
3394 (constant-lvar-p report
))
3395 (let ((x (lvar-value control
))
3396 (y (lvar-value report
)))
3397 (when (and (stringp x
) (stringp y
))
3398 (multiple-value-bind (min1 max1
)
3400 (sb!format
:%compiler-walk-format-string x args
)
3401 (sb!format
:format-error
(c)
3402 (compiler-warn "~A" c
)))
3404 (multiple-value-bind (min2 max2
)
3406 (sb!format
:%compiler-walk-format-string y args
)
3407 (sb!format
:format-error
(c)
3408 (compiler-warn "~A" c
)))
3410 (let ((nargs (length args
)))
3412 ((< nargs
(min min1 min2
))
3413 (compiler-warn "Too few arguments (~D) to ~S ~S ~S: ~
3414 requires at least ~D."
3415 nargs
'cerror y x
(min min1 min2
)))
3416 ((> nargs
(max max1 max2
))
3417 (;; to get warned about probably bogus code at
3418 ;; cross-compile time.
3419 #+sb-xc-host compiler-warn
3420 ;; ANSI saith that too many arguments doesn't cause a
3422 #-sb-xc-host compiler-style-warn
3423 "Too many arguments (~D) to ~S ~S ~S: uses at most ~D."
3424 nargs
'cerror y x
(max max1 max2
)))))))))))))
3426 (defoptimizer (coerce derive-type
) ((value type
))
3428 ((constant-lvar-p type
)
3429 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3430 ;; but dealing with the niggle that complex canonicalization gets
3431 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3433 (let* ((specifier (lvar-value type
))
3434 (result-typeoid (careful-specifier-type specifier
)))
3436 ((null result-typeoid
) nil
)
3437 ((csubtypep result-typeoid
(specifier-type 'number
))
3438 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3439 ;; Rule of Canonical Representation for Complex Rationals,
3440 ;; which is a truly nasty delivery to field.
3442 ((csubtypep result-typeoid
(specifier-type 'real
))
3443 ;; cleverness required here: it would be nice to deduce
3444 ;; that something of type (INTEGER 2 3) coerced to type
3445 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3446 ;; FLOAT gets its own clause because it's implemented as
3447 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3450 ((and (numeric-type-p result-typeoid
)
3451 (eq (numeric-type-complexp result-typeoid
) :real
))
3452 ;; FIXME: is this clause (a) necessary or (b) useful?
3454 ((or (csubtypep result-typeoid
3455 (specifier-type '(complex single-float
)))
3456 (csubtypep result-typeoid
3457 (specifier-type '(complex double-float
)))
3459 (csubtypep result-typeoid
3460 (specifier-type '(complex long-float
))))
3461 ;; float complex types are never canonicalized.
3464 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3465 ;; probably just a COMPLEX or equivalent. So, in that
3466 ;; case, we will return a complex or an object of the
3467 ;; provided type if it's rational:
3468 (type-union result-typeoid
3469 (type-intersection (lvar-type value
)
3470 (specifier-type 'rational
))))))
3471 (t result-typeoid
))))
3473 ;; OK, the result-type argument isn't constant. However, there
3474 ;; are common uses where we can still do better than just
3475 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3476 ;; where Y is of a known type. See messages on cmucl-imp
3477 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3478 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3479 ;; the basis that it's unlikely that other uses are both
3480 ;; time-critical and get to this branch of the COND (non-constant
3481 ;; second argument to COERCE). -- CSR, 2002-12-16
3482 (let ((value-type (lvar-type value
))
3483 (type-type (lvar-type type
)))
3485 ((good-cons-type-p (cons-type)
3486 ;; Make sure the cons-type we're looking at is something
3487 ;; we're prepared to handle which is basically something
3488 ;; that array-element-type can return.
3489 (or (and (member-type-p cons-type
)
3490 (null (rest (member-type-members cons-type
)))
3491 (null (first (member-type-members cons-type
))))
3492 (let ((car-type (cons-type-car-type cons-type
)))
3493 (and (member-type-p car-type
)
3494 (null (rest (member-type-members car-type
)))
3495 (or (symbolp (first (member-type-members car-type
)))
3496 (numberp (first (member-type-members car-type
)))
3497 (and (listp (first (member-type-members
3499 (numberp (first (first (member-type-members
3501 (good-cons-type-p (cons-type-cdr-type cons-type
))))))
3502 (unconsify-type (good-cons-type)
3503 ;; Convert the "printed" respresentation of a cons
3504 ;; specifier into a type specifier. That is, the
3505 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
3506 ;; NULL)) is converted to (SIGNED-BYTE 16).
3507 (cond ((or (null good-cons-type
)
3508 (eq good-cons-type
'null
))
3510 ((and (eq (first good-cons-type
) 'cons
)
3511 (eq (first (second good-cons-type
)) 'member
))
3512 `(,(second (second good-cons-type
))
3513 ,@(unconsify-type (caddr good-cons-type
))))))
3514 (coerceable-p (c-type)
3515 ;; Can the value be coerced to the given type? Coerce is
3516 ;; complicated, so we don't handle every possible case
3517 ;; here---just the most common and easiest cases:
3519 ;; * Any REAL can be coerced to a FLOAT type.
3520 ;; * Any NUMBER can be coerced to a (COMPLEX
3521 ;; SINGLE/DOUBLE-FLOAT).
3523 ;; FIXME I: we should also be able to deal with characters
3526 ;; FIXME II: I'm not sure that anything is necessary
3527 ;; here, at least while COMPLEX is not a specialized
3528 ;; array element type in the system. Reasoning: if
3529 ;; something cannot be coerced to the requested type, an
3530 ;; error will be raised (and so any downstream compiled
3531 ;; code on the assumption of the returned type is
3532 ;; unreachable). If something can, then it will be of
3533 ;; the requested type, because (by assumption) COMPLEX
3534 ;; (and other difficult types like (COMPLEX INTEGER)
3535 ;; aren't specialized types.
3536 (let ((coerced-type c-type
))
3537 (or (and (subtypep coerced-type
'float
)
3538 (csubtypep value-type
(specifier-type 'real
)))
3539 (and (subtypep coerced-type
3540 '(or (complex single-float
)
3541 (complex double-float
)))
3542 (csubtypep value-type
(specifier-type 'number
))))))
3543 (process-types (type)
3544 ;; FIXME: This needs some work because we should be able
3545 ;; to derive the resulting type better than just the
3546 ;; type arg of coerce. That is, if X is (INTEGER 10
3547 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
3548 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
3550 (cond ((member-type-p type
)
3551 (let ((members (member-type-members type
)))
3552 (if (every #'coerceable-p members
)
3553 (specifier-type `(or ,@members
))
3555 ((and (cons-type-p type
)
3556 (good-cons-type-p type
))
3557 (let ((c-type (unconsify-type (type-specifier type
))))
3558 (if (coerceable-p c-type
)
3559 (specifier-type c-type
)
3562 *universal-type
*))))
3563 (cond ((union-type-p type-type
)
3564 (apply #'type-union
(mapcar #'process-types
3565 (union-type-types type-type
))))
3566 ((or (member-type-p type-type
)
3567 (cons-type-p type-type
))
3568 (process-types type-type
))
3570 *universal-type
*)))))))
3572 (defoptimizer (compile derive-type
) ((nameoid function
))
3573 (when (csubtypep (lvar-type nameoid
)
3574 (specifier-type 'null
))
3575 (values-specifier-type '(values function boolean boolean
))))
3577 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
3578 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
3579 ;;; optimizer, above).
3580 (defoptimizer (array-element-type derive-type
) ((array))
3581 (let ((array-type (lvar-type array
)))
3582 (labels ((consify (list)
3585 `(cons (eql ,(car list
)) ,(consify (rest list
)))))
3586 (get-element-type (a)
3588 (type-specifier (array-type-specialized-element-type a
))))
3589 (cond ((eq element-type
'*)
3590 (specifier-type 'type-specifier
))
3591 ((symbolp element-type
)
3592 (make-member-type :members
(list element-type
)))
3593 ((consp element-type
)
3594 (specifier-type (consify element-type
)))
3596 (error "can't understand type ~S~%" element-type
))))))
3597 (cond ((array-type-p array-type
)
3598 (get-element-type array-type
))
3599 ((union-type-p array-type
)
3601 (mapcar #'get-element-type
(union-type-types array-type
))))
3603 *universal-type
*)))))
3605 (define-source-transform sb
!impl
::sort-vector
(vector start end predicate key
)
3606 `(macrolet ((%index
(x) `(truly-the index
,x
))
3607 (%parent
(i) `(ash ,i -
1))
3608 (%left
(i) `(%index
(ash ,i
1)))
3609 (%right
(i) `(%index
(1+ (ash ,i
1))))
3612 (left (%left i
) (%left i
)))
3613 ((> left current-heap-size
))
3614 (declare (type index i left
))
3615 (let* ((i-elt (%elt i
))
3616 (i-key (funcall keyfun i-elt
))
3617 (left-elt (%elt left
))
3618 (left-key (funcall keyfun left-elt
)))
3619 (multiple-value-bind (large large-elt large-key
)
3620 (if (funcall ,',predicate i-key left-key
)
3621 (values left left-elt left-key
)
3622 (values i i-elt i-key
))
3623 (let ((right (%right i
)))
3624 (multiple-value-bind (largest largest-elt
)
3625 (if (> right current-heap-size
)
3626 (values large large-elt
)
3627 (let* ((right-elt (%elt right
))
3628 (right-key (funcall keyfun right-elt
)))
3629 (if (funcall ,',predicate large-key right-key
)
3630 (values right right-elt
)
3631 (values large large-elt
))))
3632 (cond ((= largest i
)
3635 (setf (%elt i
) largest-elt
3636 (%elt largest
) i-elt
3638 (%sort-vector
(keyfun &optional
(vtype 'vector
))
3639 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had trouble getting
3640 ;; type inference to propagate all the way
3641 ;; through this tangled mess of
3642 ;; inlining. The TRULY-THE here works
3643 ;; around that. -- WHN
3645 `(aref (truly-the ,',vtype
,',',vector
)
3646 (%index
(+ (%index
,i
) start-1
)))))
3647 (let ((start-1 (1- ,',start
)) ; Heaps prefer 1-based addressing.
3648 (current-heap-size (- ,',end
,',start
))
3650 (declare (type (integer -
1 #.
(1- most-positive-fixnum
))
3652 (declare (type index current-heap-size
))
3653 (declare (type function keyfun
))
3654 (loop for i of-type index
3655 from
(ash current-heap-size -
1) downto
1 do
3658 (when (< current-heap-size
2)
3660 (rotatef (%elt
1) (%elt current-heap-size
))
3661 (decf current-heap-size
)
3663 (if (typep ,vector
'simple-vector
)
3664 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
3665 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
3667 ;; Special-casing the KEY=NIL case lets us avoid some
3669 (%sort-vector
#'identity simple-vector
)
3670 (%sort-vector
,key simple-vector
))
3671 ;; It's hard to anticipate many speed-critical applications for
3672 ;; sorting vector types other than (VECTOR T), so we just lump
3673 ;; them all together in one slow dynamically typed mess.
3675 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
3676 (%sort-vector
(or ,key
#'identity
))))))
3678 ;;;; debuggers' little helpers
3680 ;;; for debugging when transforms are behaving mysteriously,
3681 ;;; e.g. when debugging a problem with an ASH transform
3682 ;;; (defun foo (&optional s)
3683 ;;; (sb-c::/report-lvar s "S outside WHEN")
3684 ;;; (when (and (integerp s) (> s 3))
3685 ;;; (sb-c::/report-lvar s "S inside WHEN")
3686 ;;; (let ((bound (ash 1 (1- s))))
3687 ;;; (sb-c::/report-lvar bound "BOUND")
3688 ;;; (let ((x (- bound))
3690 ;;; (sb-c::/report-lvar x "X")
3691 ;;; (sb-c::/report-lvar x "Y"))
3692 ;;; `(integer ,(- bound) ,(1- bound)))))
3693 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
3694 ;;; and the function doesn't do anything at all.)
3697 (defknown /report-lvar
(t t
) null
)
3698 (deftransform /report-lvar
((x message
) (t t
))
3699 (format t
"~%/in /REPORT-LVAR~%")
3700 (format t
"/(LVAR-TYPE X)=~S~%" (lvar-type x
))
3701 (when (constant-lvar-p x
)
3702 (format t
"/(LVAR-VALUE X)=~S~%" (lvar-value x
)))
3703 (format t
"/MESSAGE=~S~%" (lvar-value message
))
3704 (give-up-ir1-transform "not a real transform"))
3705 (defun /report-lvar
(x message
)
3706 (declare (ignore x message
))))