1 ;;;; implementation-dependent transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;; We need to define these predicates, since the TYPEP source
15 ;;; transform picks whichever predicate was defined last when there
16 ;;; are multiple predicates for equivalent types.
17 (define-source-transform short-float-p
(x) `(single-float-p ,x
))
19 (define-source-transform long-float-p
(x) `(double-float-p ,x
))
21 (define-source-transform compiled-function-p
(x)
24 (define-source-transform char-int
(x)
27 (deftransform abs
((x) (rational))
28 '(if (< x
0) (- x
) x
))
30 ;;; The layout is stored in slot 0.
31 (define-source-transform %instance-layout
(x)
32 `(truly-the layout
(%instance-ref
,x
0)))
33 (define-source-transform %set-instance-layout
(x val
)
34 `(%instance-set
,x
0 (the layout
,val
)))
36 ;;;; character support
38 ;;; In our implementation there are really only BASE-CHARs.
39 (define-source-transform characterp
(obj)
42 ;;;; simplifying HAIRY-DATA-VECTOR-REF and HAIRY-DATA-VECTOR-SET
44 (deftransform hairy-data-vector-ref
((string index
) (simple-string t
))
45 (let ((ctype (lvar-type string
)))
46 (if (array-type-p ctype
)
47 ;; the other transform will kick in, so that's OK
48 (give-up-ir1-transform)
50 ((simple-array character
(*)) (data-vector-ref string index
))
51 ((simple-array nil
(*)) (data-vector-ref string index
))))))
53 (deftransform hairy-data-vector-ref
((array index
) (array t
) * :important t
)
54 "avoid runtime dispatch on array element type"
55 (let ((element-ctype (extract-upgraded-element-type array
))
56 (declared-element-ctype (extract-declared-element-type array
)))
57 (declare (type ctype element-ctype
))
58 (when (eq *wild-type
* element-ctype
)
59 (give-up-ir1-transform
60 "Upgraded element type of array is not known at compile time."))
61 ;; (The expansion here is basically a degenerate case of
62 ;; WITH-ARRAY-DATA. Since WITH-ARRAY-DATA is implemented as a
63 ;; macro, and macros aren't expanded in transform output, we have
64 ;; to hand-expand it ourselves.)
65 (let ((element-type-specifier (type-specifier element-ctype
)))
66 `(multiple-value-bind (array index
)
67 (%data-vector-and-index array index
)
68 (declare (type (simple-array ,element-type-specifier
1) array
))
69 ,(let ((bare-form '(data-vector-ref array index
)))
70 (if (type= element-ctype declared-element-ctype
)
72 `(the ,(type-specifier declared-element-ctype
)
75 (deftransform data-vector-ref
((array index
)
77 (let ((array-type (lvar-type array
)))
78 (unless (array-type-p array-type
)
79 (give-up-ir1-transform))
80 (let ((dims (array-type-dimensions array-type
)))
81 (when (or (atom dims
) (= (length dims
) 1))
82 (give-up-ir1-transform))
83 (let ((el-type (array-type-specialized-element-type array-type
))
84 (total-size (if (member '* dims
)
87 `(data-vector-ref (truly-the (simple-array ,(type-specifier el-type
)
89 (%array-data-vector array
))
92 (deftransform hairy-data-vector-set
((string index new-value
)
94 (let ((ctype (lvar-type string
)))
95 (if (array-type-p ctype
)
96 ;; the other transform will kick in, so that's OK
97 (give-up-ir1-transform)
99 ((simple-array character
(*))
100 (data-vector-set string index new-value
))
101 ((simple-array nil
(*))
102 (data-vector-set string index new-value
))))))
104 (deftransform hairy-data-vector-set
((array index new-value
)
108 "avoid runtime dispatch on array element type"
109 (let ((element-ctype (extract-upgraded-element-type array
))
110 (declared-element-ctype (extract-declared-element-type array
)))
111 (declare (type ctype element-ctype
))
112 (when (eq *wild-type
* element-ctype
)
113 (give-up-ir1-transform
114 "Upgraded element type of array is not known at compile time."))
115 (let ((element-type-specifier (type-specifier element-ctype
)))
116 `(multiple-value-bind (array index
)
117 (%data-vector-and-index array index
)
118 (declare (type (simple-array ,element-type-specifier
1) array
)
119 (type ,element-type-specifier new-value
))
120 ,(if (type= element-ctype declared-element-ctype
)
121 '(data-vector-set array index new-value
)
122 `(truly-the ,(type-specifier declared-element-ctype
)
123 (data-vector-set array index
124 (the ,(type-specifier declared-element-ctype
)
127 (deftransform data-vector-set
((array index new-value
)
129 (let ((array-type (lvar-type array
)))
130 (unless (array-type-p array-type
)
131 (give-up-ir1-transform))
132 (let ((dims (array-type-dimensions array-type
)))
133 (when (or (atom dims
) (= (length dims
) 1))
134 (give-up-ir1-transform))
135 (let ((el-type (array-type-specialized-element-type array-type
))
136 (total-size (if (member '* dims
)
139 `(data-vector-set (truly-the (simple-array ,(type-specifier el-type
)
141 (%array-data-vector array
))
145 (defoptimizer (%data-vector-and-index derive-type
) ((array index
))
146 (let ((atype (lvar-type array
)))
147 (when (array-type-p atype
)
148 (values-specifier-type
149 `(values (simple-array ,(type-specifier
150 (array-type-specialized-element-type atype
))
154 (deftransform %data-vector-and-index
((%array %index
)
158 ;; KLUDGE: why the percent signs? Well, ARRAY and INDEX are
159 ;; respectively exported from the CL and SB!INT packages, which
160 ;; means that they're visible to all sorts of things. If the
161 ;; compiler can prove that the call to ARRAY-HEADER-P, below, either
162 ;; returns T or NIL, it will delete the irrelevant branch. However,
163 ;; user code might have got here with a variable named CL:ARRAY, and
164 ;; quite often compiler code with a variable named SB!INT:INDEX, so
165 ;; this can generate code deletion notes for innocuous user code:
166 ;; (DEFUN F (ARRAY I) (DECLARE (SIMPLE-VECTOR ARRAY)) (AREF ARRAY I))
167 ;; -- CSR, 2003-04-01
169 ;; We do this solely for the -OR-GIVE-UP side effect, since we want
170 ;; to know that the type can be figured out in the end before we
171 ;; proceed, but we don't care yet what the type will turn out to be.
172 (upgraded-element-type-specifier-or-give-up %array
)
174 '(if (array-header-p %array
)
175 (values (%array-data-vector %array
) %index
)
176 (values %array %index
)))
178 ;;; transforms for getting at simple arrays of (UNSIGNED-BYTE N) when (< N 8)
180 ;;; FIXME: In CMU CL, these were commented out with #+NIL. Why? Should
181 ;;; we fix them or should we delete them? (Perhaps these definitions
182 ;;; predate the various DATA-VECTOR-REF-FOO VOPs which have
183 ;;; (:TRANSLATE DATA-VECTOR-REF), and are redundant now?)
187 (let ((elements-per-word (truncate sb
!vm
:n-word-bits bits
)))
189 (deftransform data-vector-ref
((vector index
)
191 `(multiple-value-bind (word bit
)
192 (floor index
,',elements-per-word
)
193 (ldb ,(ecase sb
!vm
:target-byte-order
194 (:little-endian
'(byte ,bits
(* bit
,bits
)))
195 (:big-endian
'(byte ,bits
(- sb
!vm
:n-word-bits
196 (* (1+ bit
) ,bits
)))))
197 (%raw-bits vector
(+ word sb
!vm
:vector-data-offset
)))))
198 (deftransform data-vector-set
((vector index new-value
)
200 `(multiple-value-bind (word bit
)
201 (floor index
,',elements-per-word
)
202 (setf (ldb ,(ecase sb
!vm
:target-byte-order
203 (:little-endian
'(byte ,bits
(* bit
,bits
)))
205 '(byte ,bits
(- sb
!vm
:n-word-bits
206 (* (1+ bit
) ,bits
)))))
207 (%raw-bits vector
(+ word sb
!vm
:vector-data-offset
)))
209 (frob simple-bit-vector
1)
210 (frob (simple-array (unsigned-byte 2) (*)) 2)
211 (frob (simple-array (unsigned-byte 4) (*)) 4))
213 ;;;; BIT-VECTOR hackery
215 ;;; SIMPLE-BIT-VECTOR bit-array operations are transformed to a word
216 ;;; loop that does 32 bits at a time.
218 ;;; FIXME: This is a lot of repeatedly macroexpanded code. It should
219 ;;; be a function call instead.
220 (macrolet ((def (bitfun wordfun
)
221 `(deftransform ,bitfun
((bit-array-1 bit-array-2 result-bit-array
)
226 :node node
:policy
(>= speed space
))
228 ,@(unless (policy node
(zerop safety
))
229 '((unless (= (length bit-array-1
)
231 (length result-bit-array
))
232 (error "Argument and/or result bit arrays are not the same length:~
237 (let ((length (length result-bit-array
)))
239 ;; We avoid doing anything to 0-length
240 ;; bit-vectors, or rather, the memory that
241 ;; follows them. Other divisible-by-32 cases
242 ;; are handled by the (1- length), below.
245 (do ((index sb
!vm
:vector-data-offset
(1+ index
))
246 (end-1 (+ sb
!vm
:vector-data-offset
247 ;; bit-vectors of length 1-32
248 ;; need precisely one (SETF
249 ;; %RAW-BITS), done here in the
250 ;; epilogue. - CSR, 2002-04-24
251 (truncate (truly-the index
(1- length
))
252 sb
!vm
:n-word-bits
))))
254 (setf (%raw-bits result-bit-array index
)
255 (,',wordfun
(%raw-bits bit-array-1 index
)
256 (%raw-bits bit-array-2 index
)))
258 (declare (optimize (speed 3) (safety 0))
259 (type index index end-1
))
260 (setf (%raw-bits result-bit-array index
)
261 (,',wordfun
(%raw-bits bit-array-1 index
)
262 (%raw-bits bit-array-2 index
))))))))))
263 (def bit-and
32bit-logical-and
)
264 (def bit-ior
32bit-logical-or
)
265 (def bit-xor
32bit-logical-xor
)
266 (def bit-eqv
32bit-logical-eqv
)
267 (def bit-nand
32bit-logical-nand
)
268 (def bit-nor
32bit-logical-nor
)
269 (def bit-andc1
32bit-logical-andc1
)
270 (def bit-andc2
32bit-logical-andc2
)
271 (def bit-orc1
32bit-logical-orc1
)
272 (def bit-orc2
32bit-logical-orc2
))
274 (deftransform bit-not
275 ((bit-array result-bit-array
)
276 (simple-bit-vector simple-bit-vector
) *
277 :node node
:policy
(>= speed space
))
279 ,@(unless (policy node
(zerop safety
))
280 '((unless (= (length bit-array
)
281 (length result-bit-array
))
282 (error "Argument and result bit arrays are not the same length:~
284 bit-array result-bit-array
))))
285 (let ((length (length result-bit-array
)))
287 ;; We avoid doing anything to 0-length bit-vectors, or
288 ;; rather, the memory that follows them. Other
289 ;; divisible-by-32 cases are handled by the (1- length),
290 ;; below. CSR, 2002-04-24
292 (do ((index sb
!vm
:vector-data-offset
(1+ index
))
293 (end-1 (+ sb
!vm
:vector-data-offset
294 ;; bit-vectors of length 1-32 need precisely
295 ;; one (SETF %RAW-BITS), done here in the
296 ;; epilogue. - CSR, 2002-04-24
297 (truncate (truly-the index
(1- length
))
298 sb
!vm
:n-word-bits
))))
300 (setf (%raw-bits result-bit-array index
)
301 (32bit-logical-not (%raw-bits bit-array index
)))
303 (declare (optimize (speed 3) (safety 0))
304 (type index index end-1
))
305 (setf (%raw-bits result-bit-array index
)
306 (32bit-logical-not (%raw-bits bit-array index
))))))))
308 (deftransform bit-vector-
= ((x y
) (simple-bit-vector simple-bit-vector
))
309 `(and (= (length x
) (length y
))
310 (let ((length (length x
)))
312 (do* ((i sb
!vm
:vector-data-offset
(+ i
1))
313 (end-1 (+ sb
!vm
:vector-data-offset
314 (floor (1- length
) sb
!vm
:n-word-bits
))))
316 (let* ((extra (mod length sb
!vm
:n-word-bits
))
317 (mask (1- (ash 1 extra
)))
321 ,(ecase sb
!c
:*backend-byte-order
*
324 '(- sb
!vm
:n-word-bits extra
))))
329 ,(ecase sb
!c
:*backend-byte-order
*
332 '(- sb
!vm
:n-word-bits extra
))))
334 (declare (type (integer 0 31) extra
)
335 (type (unsigned-byte 32) mask numx numy
))
337 (declare (type index i end-1
))
338 (let ((numx (%raw-bits x i
))
339 (numy (%raw-bits y i
)))
340 (declare (type (unsigned-byte 32) numx numy
))
341 (unless (= numx numy
)
344 (deftransform fill
((sequence item
) (simple-bit-vector bit
) *
345 :policy
(>= speed space
))
346 (let ((value (if (constant-lvar-p item
)
347 (if (= (lvar-value item
) 0)
350 `(if (= item
0) 0 #.
(1- (ash 1 32))))))
351 `(let ((length (length sequence
))
355 (do ((index sb
!vm
:vector-data-offset
(1+ index
))
356 (end-1 (+ sb
!vm
:vector-data-offset
357 ;; bit-vectors of length 1-32 need precisely
358 ;; one (SETF %RAW-BITS), done here in the
359 ;; epilogue. - CSR, 2002-04-24
360 (truncate (truly-the index
(1- length
))
361 sb
!vm
:n-word-bits
))))
363 (setf (%raw-bits sequence index
) value
)
365 (declare (optimize (speed 3) (safety 0))
366 (type index index end-1
))
367 (setf (%raw-bits sequence index
) value
))))))
369 (deftransform fill
((sequence item
) (simple-base-string base-char
) *
370 :policy
(>= speed space
))
371 (let ((value (if (constant-lvar-p item
)
372 (let* ((char (lvar-value item
))
373 (code (sb!xc
:char-code char
)))
374 (logior code
(ash code
8) (ash code
16) (ash code
24)))
375 `(let ((code (sb!xc
:char-code item
)))
376 (logior code
(ash code
8) (ash code
16) (ash code
24))))))
377 `(let ((length (length sequence
))
379 (multiple-value-bind (times rem
)
381 (do ((index sb
!vm
:vector-data-offset
(1+ index
))
382 (end (+ times sb
!vm
:vector-data-offset
)))
384 (let ((place (* times
4)))
385 (declare (fixnum place
))
386 (dotimes (j rem sequence
)
388 (setf (schar sequence
(the index
(+ place j
))) item
))))
389 (declare (optimize (speed 3) (safety 0))
391 (setf (%raw-bits sequence index
) value
))))))
395 ;;; FIXME: The old CMU CL code used various COPY-TO/FROM-SYSTEM-AREA
396 ;;; stuff (with all the associated bit-index cruft and overflow
397 ;;; issues) even for byte moves. In SBCL, we're converting to byte
398 ;;; moves as problems are discovered with the old code, and this is
399 ;;; currently (ca. sbcl-0.6.12.30) the main interface for code in
400 ;;; SB!KERNEL and SB!SYS (e.g. i/o code). It's not clear that it's the
401 ;;; ideal interface, though, and it probably deserves some thought.
402 (deftransform %byte-blt
((src src-start dst dst-start dst-end
)
403 ((or (simple-unboxed-array (*)) system-area-pointer
)
405 (or (simple-unboxed-array (*)) system-area-pointer
)
408 ;; FIXME: CMU CL had a hairier implementation of this (back when it
409 ;; was still called (%PRIMITIVE BYTE-BLT). It had the small problem
410 ;; that it didn't work for large (>16M) values of SRC-START or
411 ;; DST-START. However, it might have been more efficient. In
412 ;; particular, I don't really know how much the foreign function
413 ;; call costs us here. My guess is that if the overhead is
414 ;; acceptable for SQRT and COS, it's acceptable here, but this
415 ;; should probably be checked. -- WHN
416 '(flet ((sapify (thing)
418 (system-area-pointer thing
)
419 ;; FIXME: The code here rather relies on the simple
420 ;; unboxed array here having byte-sized entries. That
421 ;; should be asserted explicitly, I just haven't found
422 ;; a concise way of doing it. (It would be nice to
423 ;; declare it in the DEFKNOWN too.)
424 ((simple-unboxed-array (*)) (vector-sap thing
)))))
425 (declare (inline sapify
))
427 (memmove (sap+ (sapify dst
) dst-start
)
428 (sap+ (sapify src
) src-start
)
429 (- dst-end dst-start
)))
432 ;;;; transforms for EQL of floating point values
434 (deftransform eql
((x y
) (single-float single-float
))
435 '(= (single-float-bits x
) (single-float-bits y
)))
437 (deftransform eql
((x y
) (double-float double-float
))
438 '(and (= (double-float-low-bits x
) (double-float-low-bits y
))
439 (= (double-float-high-bits x
) (double-float-high-bits y
))))
442 ;;;; 32-bit operations
443 (define-good-modular-fun logand
)
444 (define-good-modular-fun logior
)
445 ;;; FIXME: XOR? ANDC1, ANDC2? -- CSR, 2003-09-16
447 ;;; There are two different ways the multiplier can be recoded. The
448 ;;; more obvious is to shift X by the correct amount for each bit set
449 ;;; in Y and to sum the results. But if there is a string of bits that
450 ;;; are all set, you can add X shifted by one more then the bit
451 ;;; position of the first set bit and subtract X shifted by the bit
452 ;;; position of the last set bit. We can't use this second method when
453 ;;; the high order bit is bit 31 because shifting by 32 doesn't work
455 (defun ub32-strength-reduce-constant-multiply (arg num
)
456 (declare (type (unsigned-byte 32) num
))
457 (let ((adds 0) (shifts 0)
458 (result nil
) first-one
)
459 (labels ((tub32 (x) `(logand ,x
#xffffffff
)) ; uses modular arithmetic
464 (progn (incf adds
) `(+ ,result
,(tub32 next-factor
)))
466 (declare (inline add
))
469 (when (not (logbitp bitpos num
))
470 (add (if (= (1+ first-one
) bitpos
)
471 ;; There is only a single bit in the string.
472 (progn (incf shifts
) `(ash ,arg
,first-one
))
473 ;; There are at least two.
477 `(- ,(tub32 `(ash ,arg
,bitpos
))
478 ,(tub32 `(ash ,arg
,first-one
))))))
479 (setf first-one nil
))
480 (when (logbitp bitpos num
)
481 (setf first-one bitpos
))))
483 (cond ((= first-one
31))
484 ((= first-one
30) (incf shifts
) (add `(ash ,arg
30)))
488 (add `(- ,(tub32 `(ash ,arg
31))
489 ,(tub32 `(ash ,arg
,first-one
))))))
491 (add `(ash ,arg
31))))
492 (values result adds shifts
)))