0.8.3.87
[sbcl/lichteblau.git] / src / runtime / gencgc.c
blob4061ae6dc425d21e89c04a56d5f8b7dd3e3f090f
1 /*
2 * GENerational Conservative Garbage Collector for SBCL x86
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdio.h>
28 #include <signal.h>
29 #include <errno.h>
30 #include "runtime.h"
31 #include "sbcl.h"
32 #include "os.h"
33 #include "interr.h"
34 #include "globals.h"
35 #include "interrupt.h"
36 #include "validate.h"
37 #include "lispregs.h"
38 #include "arch.h"
39 #include "gc.h"
40 #include "gc-internal.h"
41 #include "thread.h"
42 #include "genesis/vector.h"
43 #include "genesis/weak-pointer.h"
44 #include "genesis/simple-fun.h"
46 #ifdef LISP_FEATURE_SB_THREAD
47 #include <sys/ptrace.h>
48 #include <linux/user.h> /* threading is presently linux-only */
49 #endif
51 /* assembly language stub that executes trap_PendingInterrupt */
52 void do_pending_interrupt(void);
54 /* forward declarations */
55 int gc_find_freeish_pages(int *restart_page_ptr, int nbytes, int unboxed, struct alloc_region *alloc_region);
56 void gc_set_region_empty(struct alloc_region *region);
57 void gc_alloc_update_all_page_tables(void);
58 static void gencgc_pickup_dynamic(void);
59 boolean interrupt_maybe_gc_int(int, siginfo_t *, void *);
63 * GC parameters
66 /* the number of actual generations. (The number of 'struct
67 * generation' objects is one more than this, because one object
68 * serves as scratch when GC'ing.) */
69 #define NUM_GENERATIONS 6
71 /* Should we use page protection to help avoid the scavenging of pages
72 * that don't have pointers to younger generations? */
73 boolean enable_page_protection = 1;
75 /* Should we unmap a page and re-mmap it to have it zero filled? */
76 #if defined(__FreeBSD__) || defined(__OpenBSD__)
77 /* comment from cmucl-2.4.8: This can waste a lot of swap on FreeBSD
78 * so don't unmap there.
80 * The CMU CL comment didn't specify a version, but was probably an
81 * old version of FreeBSD (pre-4.0), so this might no longer be true.
82 * OTOH, if it is true, this behavior might exist on OpenBSD too, so
83 * for now we don't unmap there either. -- WHN 2001-04-07 */
84 boolean gencgc_unmap_zero = 0;
85 #else
86 boolean gencgc_unmap_zero = 1;
87 #endif
89 /* the minimum size (in bytes) for a large object*/
90 unsigned large_object_size = 4 * 4096;
93 * debugging
98 /* the verbosity level. All non-error messages are disabled at level 0;
99 * and only a few rare messages are printed at level 1. */
100 unsigned gencgc_verbose = (QSHOW ? 1 : 0);
102 /* FIXME: At some point enable the various error-checking things below
103 * and see what they say. */
105 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
106 * Set verify_gens to NUM_GENERATIONS to disable this kind of check. */
107 int verify_gens = NUM_GENERATIONS;
109 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
110 boolean pre_verify_gen_0 = 0;
112 /* Should we check for bad pointers after gc_free_heap is called
113 * from Lisp PURIFY? */
114 boolean verify_after_free_heap = 0;
116 /* Should we print a note when code objects are found in the dynamic space
117 * during a heap verify? */
118 boolean verify_dynamic_code_check = 0;
120 /* Should we check code objects for fixup errors after they are transported? */
121 boolean check_code_fixups = 0;
123 /* Should we check that newly allocated regions are zero filled? */
124 boolean gencgc_zero_check = 0;
126 /* Should we check that the free space is zero filled? */
127 boolean gencgc_enable_verify_zero_fill = 0;
129 /* Should we check that free pages are zero filled during gc_free_heap
130 * called after Lisp PURIFY? */
131 boolean gencgc_zero_check_during_free_heap = 0;
134 * GC structures and variables
137 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
138 unsigned long bytes_allocated = 0;
139 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
140 unsigned long auto_gc_trigger = 0;
142 /* the source and destination generations. These are set before a GC starts
143 * scavenging. */
144 int from_space;
145 int new_space;
148 /* FIXME: It would be nice to use this symbolic constant instead of
149 * bare 4096 almost everywhere. We could also use an assertion that
150 * it's equal to getpagesize(). */
152 #define PAGE_BYTES 4096
154 /* An array of page structures is statically allocated.
155 * This helps quickly map between an address its page structure.
156 * NUM_PAGES is set from the size of the dynamic space. */
157 struct page page_table[NUM_PAGES];
159 /* To map addresses to page structures the address of the first page
160 * is needed. */
161 static void *heap_base = NULL;
164 /* Calculate the start address for the given page number. */
165 inline void *
166 page_address(int page_num)
168 return (heap_base + (page_num * 4096));
171 /* Find the page index within the page_table for the given
172 * address. Return -1 on failure. */
173 inline int
174 find_page_index(void *addr)
176 int index = addr-heap_base;
178 if (index >= 0) {
179 index = ((unsigned int)index)/4096;
180 if (index < NUM_PAGES)
181 return (index);
184 return (-1);
187 /* a structure to hold the state of a generation */
188 struct generation {
190 /* the first page that gc_alloc() checks on its next call */
191 int alloc_start_page;
193 /* the first page that gc_alloc_unboxed() checks on its next call */
194 int alloc_unboxed_start_page;
196 /* the first page that gc_alloc_large (boxed) considers on its next
197 * call. (Although it always allocates after the boxed_region.) */
198 int alloc_large_start_page;
200 /* the first page that gc_alloc_large (unboxed) considers on its
201 * next call. (Although it always allocates after the
202 * current_unboxed_region.) */
203 int alloc_large_unboxed_start_page;
205 /* the bytes allocated to this generation */
206 int bytes_allocated;
208 /* the number of bytes at which to trigger a GC */
209 int gc_trigger;
211 /* to calculate a new level for gc_trigger */
212 int bytes_consed_between_gc;
214 /* the number of GCs since the last raise */
215 int num_gc;
217 /* the average age after which a GC will raise objects to the
218 * next generation */
219 int trigger_age;
221 /* the cumulative sum of the bytes allocated to this generation. It is
222 * cleared after a GC on this generations, and update before new
223 * objects are added from a GC of a younger generation. Dividing by
224 * the bytes_allocated will give the average age of the memory in
225 * this generation since its last GC. */
226 int cum_sum_bytes_allocated;
228 /* a minimum average memory age before a GC will occur helps
229 * prevent a GC when a large number of new live objects have been
230 * added, in which case a GC could be a waste of time */
231 double min_av_mem_age;
233 /* the number of actual generations. (The number of 'struct
234 * generation' objects is one more than this, because one object
235 * serves as scratch when GC'ing.) */
236 #define NUM_GENERATIONS 6
238 /* an array of generation structures. There needs to be one more
239 * generation structure than actual generations as the oldest
240 * generation is temporarily raised then lowered. */
241 struct generation generations[NUM_GENERATIONS+1];
243 /* the oldest generation that is will currently be GCed by default.
244 * Valid values are: 0, 1, ... (NUM_GENERATIONS-1)
246 * The default of (NUM_GENERATIONS-1) enables GC on all generations.
248 * Setting this to 0 effectively disables the generational nature of
249 * the GC. In some applications generational GC may not be useful
250 * because there are no long-lived objects.
252 * An intermediate value could be handy after moving long-lived data
253 * into an older generation so an unnecessary GC of this long-lived
254 * data can be avoided. */
255 unsigned int gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;
257 /* The maximum free page in the heap is maintained and used to update
258 * ALLOCATION_POINTER which is used by the room function to limit its
259 * search of the heap. XX Gencgc obviously needs to be better
260 * integrated with the Lisp code. */
261 static int last_free_page;
263 /* This lock is to prevent multiple threads from simultaneously
264 * allocating new regions which overlap each other. Note that the
265 * majority of GC is single-threaded, but alloc() may be called from
266 * >1 thread at a time and must be thread-safe. This lock must be
267 * seized before all accesses to generations[] or to parts of
268 * page_table[] that other threads may want to see */
270 static lispobj free_pages_lock=0;
274 * miscellaneous heap functions
277 /* Count the number of pages which are write-protected within the
278 * given generation. */
279 static int
280 count_write_protect_generation_pages(int generation)
282 int i;
283 int count = 0;
285 for (i = 0; i < last_free_page; i++)
286 if ((page_table[i].allocated != FREE_PAGE)
287 && (page_table[i].gen == generation)
288 && (page_table[i].write_protected == 1))
289 count++;
290 return count;
293 /* Count the number of pages within the given generation. */
294 static int
295 count_generation_pages(int generation)
297 int i;
298 int count = 0;
300 for (i = 0; i < last_free_page; i++)
301 if ((page_table[i].allocated != 0)
302 && (page_table[i].gen == generation))
303 count++;
304 return count;
307 /* Count the number of dont_move pages. */
308 static int
309 count_dont_move_pages(void)
311 int i;
312 int count = 0;
313 for (i = 0; i < last_free_page; i++) {
314 if ((page_table[i].allocated != 0) && (page_table[i].dont_move != 0)) {
315 ++count;
318 return count;
321 /* Work through the pages and add up the number of bytes used for the
322 * given generation. */
323 static int
324 count_generation_bytes_allocated (int gen)
326 int i;
327 int result = 0;
328 for (i = 0; i < last_free_page; i++) {
329 if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
330 result += page_table[i].bytes_used;
332 return result;
335 /* Return the average age of the memory in a generation. */
336 static double
337 gen_av_mem_age(int gen)
339 if (generations[gen].bytes_allocated == 0)
340 return 0.0;
342 return
343 ((double)generations[gen].cum_sum_bytes_allocated)
344 / ((double)generations[gen].bytes_allocated);
347 void fpu_save(int *); /* defined in x86-assem.S */
348 void fpu_restore(int *); /* defined in x86-assem.S */
349 /* The verbose argument controls how much to print: 0 for normal
350 * level of detail; 1 for debugging. */
351 static void
352 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
354 int i, gens;
355 int fpu_state[27];
357 /* This code uses the FP instructions which may be set up for Lisp
358 * so they need to be saved and reset for C. */
359 fpu_save(fpu_state);
361 /* number of generations to print */
362 if (verbose)
363 gens = NUM_GENERATIONS+1;
364 else
365 gens = NUM_GENERATIONS;
367 /* Print the heap stats. */
368 fprintf(stderr,
369 " Generation Boxed Unboxed LB LUB Alloc Waste Trig WP GCs Mem-age\n");
371 for (i = 0; i < gens; i++) {
372 int j;
373 int boxed_cnt = 0;
374 int unboxed_cnt = 0;
375 int large_boxed_cnt = 0;
376 int large_unboxed_cnt = 0;
378 for (j = 0; j < last_free_page; j++)
379 if (page_table[j].gen == i) {
381 /* Count the number of boxed pages within the given
382 * generation. */
383 if (page_table[j].allocated & BOXED_PAGE) {
384 if (page_table[j].large_object)
385 large_boxed_cnt++;
386 else
387 boxed_cnt++;
390 /* Count the number of unboxed pages within the given
391 * generation. */
392 if (page_table[j].allocated & UNBOXED_PAGE) {
393 if (page_table[j].large_object)
394 large_unboxed_cnt++;
395 else
396 unboxed_cnt++;
400 gc_assert(generations[i].bytes_allocated
401 == count_generation_bytes_allocated(i));
402 fprintf(stderr,
403 " %8d: %5d %5d %5d %5d %8d %5d %8d %4d %3d %7.4f\n",
405 boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
406 generations[i].bytes_allocated,
407 (count_generation_pages(i)*4096
408 - generations[i].bytes_allocated),
409 generations[i].gc_trigger,
410 count_write_protect_generation_pages(i),
411 generations[i].num_gc,
412 gen_av_mem_age(i));
414 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
416 fpu_restore(fpu_state);
420 * allocation routines
424 * To support quick and inline allocation, regions of memory can be
425 * allocated and then allocated from with just a free pointer and a
426 * check against an end address.
428 * Since objects can be allocated to spaces with different properties
429 * e.g. boxed/unboxed, generation, ages; there may need to be many
430 * allocation regions.
432 * Each allocation region may be start within a partly used page. Many
433 * features of memory use are noted on a page wise basis, e.g. the
434 * generation; so if a region starts within an existing allocated page
435 * it must be consistent with this page.
437 * During the scavenging of the newspace, objects will be transported
438 * into an allocation region, and pointers updated to point to this
439 * allocation region. It is possible that these pointers will be
440 * scavenged again before the allocation region is closed, e.g. due to
441 * trans_list which jumps all over the place to cleanup the list. It
442 * is important to be able to determine properties of all objects
443 * pointed to when scavenging, e.g to detect pointers to the oldspace.
444 * Thus it's important that the allocation regions have the correct
445 * properties set when allocated, and not just set when closed. The
446 * region allocation routines return regions with the specified
447 * properties, and grab all the pages, setting their properties
448 * appropriately, except that the amount used is not known.
450 * These regions are used to support quicker allocation using just a
451 * free pointer. The actual space used by the region is not reflected
452 * in the pages tables until it is closed. It can't be scavenged until
453 * closed.
455 * When finished with the region it should be closed, which will
456 * update the page tables for the actual space used returning unused
457 * space. Further it may be noted in the new regions which is
458 * necessary when scavenging the newspace.
460 * Large objects may be allocated directly without an allocation
461 * region, the page tables are updated immediately.
463 * Unboxed objects don't contain pointers to other objects and so
464 * don't need scavenging. Further they can't contain pointers to
465 * younger generations so WP is not needed. By allocating pages to
466 * unboxed objects the whole page never needs scavenging or
467 * write-protecting. */
469 /* We are only using two regions at present. Both are for the current
470 * newspace generation. */
471 struct alloc_region boxed_region;
472 struct alloc_region unboxed_region;
474 /* The generation currently being allocated to. */
475 static int gc_alloc_generation;
477 /* Find a new region with room for at least the given number of bytes.
479 * It starts looking at the current generation's alloc_start_page. So
480 * may pick up from the previous region if there is enough space. This
481 * keeps the allocation contiguous when scavenging the newspace.
483 * The alloc_region should have been closed by a call to
484 * gc_alloc_update_page_tables(), and will thus be in an empty state.
486 * To assist the scavenging functions write-protected pages are not
487 * used. Free pages should not be write-protected.
489 * It is critical to the conservative GC that the start of regions be
490 * known. To help achieve this only small regions are allocated at a
491 * time.
493 * During scavenging, pointers may be found to within the current
494 * region and the page generation must be set so that pointers to the
495 * from space can be recognized. Therefore the generation of pages in
496 * the region are set to gc_alloc_generation. To prevent another
497 * allocation call using the same pages, all the pages in the region
498 * are allocated, although they will initially be empty.
500 static void
501 gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
503 int first_page;
504 int last_page;
505 int bytes_found;
506 int i;
509 FSHOW((stderr,
510 "/alloc_new_region for %d bytes from gen %d\n",
511 nbytes, gc_alloc_generation));
514 /* Check that the region is in a reset state. */
515 gc_assert((alloc_region->first_page == 0)
516 && (alloc_region->last_page == -1)
517 && (alloc_region->free_pointer == alloc_region->end_addr));
518 get_spinlock(&free_pages_lock,(int) alloc_region);
519 if (unboxed) {
520 first_page =
521 generations[gc_alloc_generation].alloc_unboxed_start_page;
522 } else {
523 first_page =
524 generations[gc_alloc_generation].alloc_start_page;
526 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed,alloc_region);
527 bytes_found=(4096 - page_table[first_page].bytes_used)
528 + 4096*(last_page-first_page);
530 /* Set up the alloc_region. */
531 alloc_region->first_page = first_page;
532 alloc_region->last_page = last_page;
533 alloc_region->start_addr = page_table[first_page].bytes_used
534 + page_address(first_page);
535 alloc_region->free_pointer = alloc_region->start_addr;
536 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
538 /* Set up the pages. */
540 /* The first page may have already been in use. */
541 if (page_table[first_page].bytes_used == 0) {
542 if (unboxed)
543 page_table[first_page].allocated = UNBOXED_PAGE;
544 else
545 page_table[first_page].allocated = BOXED_PAGE;
546 page_table[first_page].gen = gc_alloc_generation;
547 page_table[first_page].large_object = 0;
548 page_table[first_page].first_object_offset = 0;
551 if (unboxed)
552 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
553 else
554 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
555 page_table[first_page].allocated |= OPEN_REGION_PAGE;
557 gc_assert(page_table[first_page].gen == gc_alloc_generation);
558 gc_assert(page_table[first_page].large_object == 0);
560 for (i = first_page+1; i <= last_page; i++) {
561 if (unboxed)
562 page_table[i].allocated = UNBOXED_PAGE;
563 else
564 page_table[i].allocated = BOXED_PAGE;
565 page_table[i].gen = gc_alloc_generation;
566 page_table[i].large_object = 0;
567 /* This may not be necessary for unboxed regions (think it was
568 * broken before!) */
569 page_table[i].first_object_offset =
570 alloc_region->start_addr - page_address(i);
571 page_table[i].allocated |= OPEN_REGION_PAGE ;
573 /* Bump up last_free_page. */
574 if (last_page+1 > last_free_page) {
575 last_free_page = last_page+1;
576 SetSymbolValue(ALLOCATION_POINTER,
577 (lispobj)(((char *)heap_base) + last_free_page*4096),
580 release_spinlock(&free_pages_lock);
582 /* we can do this after releasing free_pages_lock */
583 if (gencgc_zero_check) {
584 int *p;
585 for (p = (int *)alloc_region->start_addr;
586 p < (int *)alloc_region->end_addr; p++) {
587 if (*p != 0) {
588 /* KLUDGE: It would be nice to use %lx and explicit casts
589 * (long) in code like this, so that it is less likely to
590 * break randomly when running on a machine with different
591 * word sizes. -- WHN 19991129 */
592 lose("The new region at %x is not zero.", p);
599 /* If the record_new_objects flag is 2 then all new regions created
600 * are recorded.
602 * If it's 1 then then it is only recorded if the first page of the
603 * current region is <= new_areas_ignore_page. This helps avoid
604 * unnecessary recording when doing full scavenge pass.
606 * The new_object structure holds the page, byte offset, and size of
607 * new regions of objects. Each new area is placed in the array of
608 * these structures pointer to by new_areas. new_areas_index holds the
609 * offset into new_areas.
611 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
612 * later code must detect this and handle it, probably by doing a full
613 * scavenge of a generation. */
614 #define NUM_NEW_AREAS 512
615 static int record_new_objects = 0;
616 static int new_areas_ignore_page;
617 struct new_area {
618 int page;
619 int offset;
620 int size;
622 static struct new_area (*new_areas)[];
623 static int new_areas_index;
624 int max_new_areas;
626 /* Add a new area to new_areas. */
627 static void
628 add_new_area(int first_page, int offset, int size)
630 unsigned new_area_start,c;
631 int i;
633 /* Ignore if full. */
634 if (new_areas_index >= NUM_NEW_AREAS)
635 return;
637 switch (record_new_objects) {
638 case 0:
639 return;
640 case 1:
641 if (first_page > new_areas_ignore_page)
642 return;
643 break;
644 case 2:
645 break;
646 default:
647 gc_abort();
650 new_area_start = 4096*first_page + offset;
652 /* Search backwards for a prior area that this follows from. If
653 found this will save adding a new area. */
654 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
655 unsigned area_end =
656 4096*((*new_areas)[i].page)
657 + (*new_areas)[i].offset
658 + (*new_areas)[i].size;
659 /*FSHOW((stderr,
660 "/add_new_area S1 %d %d %d %d\n",
661 i, c, new_area_start, area_end));*/
662 if (new_area_start == area_end) {
663 /*FSHOW((stderr,
664 "/adding to [%d] %d %d %d with %d %d %d:\n",
666 (*new_areas)[i].page,
667 (*new_areas)[i].offset,
668 (*new_areas)[i].size,
669 first_page,
670 offset,
671 size);*/
672 (*new_areas)[i].size += size;
673 return;
677 (*new_areas)[new_areas_index].page = first_page;
678 (*new_areas)[new_areas_index].offset = offset;
679 (*new_areas)[new_areas_index].size = size;
680 /*FSHOW((stderr,
681 "/new_area %d page %d offset %d size %d\n",
682 new_areas_index, first_page, offset, size));*/
683 new_areas_index++;
685 /* Note the max new_areas used. */
686 if (new_areas_index > max_new_areas)
687 max_new_areas = new_areas_index;
690 /* Update the tables for the alloc_region. The region maybe added to
691 * the new_areas.
693 * When done the alloc_region is set up so that the next quick alloc
694 * will fail safely and thus a new region will be allocated. Further
695 * it is safe to try to re-update the page table of this reset
696 * alloc_region. */
697 void
698 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
700 int more;
701 int first_page;
702 int next_page;
703 int bytes_used;
704 int orig_first_page_bytes_used;
705 int region_size;
706 int byte_cnt;
709 FSHOW((stderr,
710 "/gc_alloc_update_page_tables() to gen %d:\n",
711 gc_alloc_generation));
714 first_page = alloc_region->first_page;
716 /* Catch an unused alloc_region. */
717 if ((first_page == 0) && (alloc_region->last_page == -1))
718 return;
720 next_page = first_page+1;
722 get_spinlock(&free_pages_lock,(int) alloc_region);
723 if (alloc_region->free_pointer != alloc_region->start_addr) {
724 /* some bytes were allocated in the region */
725 orig_first_page_bytes_used = page_table[first_page].bytes_used;
727 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
729 /* All the pages used need to be updated */
731 /* Update the first page. */
733 /* If the page was free then set up the gen, and
734 * first_object_offset. */
735 if (page_table[first_page].bytes_used == 0)
736 gc_assert(page_table[first_page].first_object_offset == 0);
737 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE);
739 if (unboxed)
740 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
741 else
742 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
743 gc_assert(page_table[first_page].gen == gc_alloc_generation);
744 gc_assert(page_table[first_page].large_object == 0);
746 byte_cnt = 0;
748 /* Calculate the number of bytes used in this page. This is not
749 * always the number of new bytes, unless it was free. */
750 more = 0;
751 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>4096) {
752 bytes_used = 4096;
753 more = 1;
755 page_table[first_page].bytes_used = bytes_used;
756 byte_cnt += bytes_used;
759 /* All the rest of the pages should be free. We need to set their
760 * first_object_offset pointer to the start of the region, and set
761 * the bytes_used. */
762 while (more) {
763 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE);
764 if (unboxed)
765 gc_assert(page_table[next_page].allocated == UNBOXED_PAGE);
766 else
767 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
768 gc_assert(page_table[next_page].bytes_used == 0);
769 gc_assert(page_table[next_page].gen == gc_alloc_generation);
770 gc_assert(page_table[next_page].large_object == 0);
772 gc_assert(page_table[next_page].first_object_offset ==
773 alloc_region->start_addr - page_address(next_page));
775 /* Calculate the number of bytes used in this page. */
776 more = 0;
777 if ((bytes_used = (alloc_region->free_pointer
778 - page_address(next_page)))>4096) {
779 bytes_used = 4096;
780 more = 1;
782 page_table[next_page].bytes_used = bytes_used;
783 byte_cnt += bytes_used;
785 next_page++;
788 region_size = alloc_region->free_pointer - alloc_region->start_addr;
789 bytes_allocated += region_size;
790 generations[gc_alloc_generation].bytes_allocated += region_size;
792 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
794 /* Set the generations alloc restart page to the last page of
795 * the region. */
796 if (unboxed)
797 generations[gc_alloc_generation].alloc_unboxed_start_page =
798 next_page-1;
799 else
800 generations[gc_alloc_generation].alloc_start_page = next_page-1;
802 /* Add the region to the new_areas if requested. */
803 if (!unboxed)
804 add_new_area(first_page,orig_first_page_bytes_used, region_size);
807 FSHOW((stderr,
808 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
809 region_size,
810 gc_alloc_generation));
812 } else {
813 /* There are no bytes allocated. Unallocate the first_page if
814 * there are 0 bytes_used. */
815 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE);
816 if (page_table[first_page].bytes_used == 0)
817 page_table[first_page].allocated = FREE_PAGE;
820 /* Unallocate any unused pages. */
821 while (next_page <= alloc_region->last_page) {
822 gc_assert(page_table[next_page].bytes_used == 0);
823 page_table[next_page].allocated = FREE_PAGE;
824 next_page++;
826 release_spinlock(&free_pages_lock);
827 /* alloc_region is per-thread, we're ok to do this unlocked */
828 gc_set_region_empty(alloc_region);
831 static inline void *gc_quick_alloc(int nbytes);
833 /* Allocate a possibly large object. */
834 void *
835 gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
837 int first_page;
838 int last_page;
839 int orig_first_page_bytes_used;
840 int byte_cnt;
841 int more;
842 int bytes_used;
843 int next_page;
844 int large = (nbytes >= large_object_size);
847 if (nbytes > 200000)
848 FSHOW((stderr, "/alloc_large %d\n", nbytes));
852 FSHOW((stderr,
853 "/gc_alloc_large() for %d bytes from gen %d\n",
854 nbytes, gc_alloc_generation));
857 /* If the object is small, and there is room in the current region
858 then allocate it in the current region. */
859 if (!large
860 && ((alloc_region->end_addr-alloc_region->free_pointer) >= nbytes))
861 return gc_quick_alloc(nbytes);
863 /* To allow the allocation of small objects without the danger of
864 using a page in the current boxed region, the search starts after
865 the current boxed free region. XX could probably keep a page
866 index ahead of the current region and bumped up here to save a
867 lot of re-scanning. */
869 get_spinlock(&free_pages_lock,(int) alloc_region);
871 if (unboxed) {
872 first_page =
873 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
874 } else {
875 first_page = generations[gc_alloc_generation].alloc_large_start_page;
877 if (first_page <= alloc_region->last_page) {
878 first_page = alloc_region->last_page+1;
881 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed,0);
883 gc_assert(first_page > alloc_region->last_page);
884 if (unboxed)
885 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
886 last_page;
887 else
888 generations[gc_alloc_generation].alloc_large_start_page = last_page;
890 /* Set up the pages. */
891 orig_first_page_bytes_used = page_table[first_page].bytes_used;
893 /* If the first page was free then set up the gen, and
894 * first_object_offset. */
895 if (page_table[first_page].bytes_used == 0) {
896 if (unboxed)
897 page_table[first_page].allocated = UNBOXED_PAGE;
898 else
899 page_table[first_page].allocated = BOXED_PAGE;
900 page_table[first_page].gen = gc_alloc_generation;
901 page_table[first_page].first_object_offset = 0;
902 page_table[first_page].large_object = large;
905 if (unboxed)
906 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
907 else
908 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
909 gc_assert(page_table[first_page].gen == gc_alloc_generation);
910 gc_assert(page_table[first_page].large_object == large);
912 byte_cnt = 0;
914 /* Calc. the number of bytes used in this page. This is not
915 * always the number of new bytes, unless it was free. */
916 more = 0;
917 if ((bytes_used = nbytes+orig_first_page_bytes_used) > 4096) {
918 bytes_used = 4096;
919 more = 1;
921 page_table[first_page].bytes_used = bytes_used;
922 byte_cnt += bytes_used;
924 next_page = first_page+1;
926 /* All the rest of the pages should be free. We need to set their
927 * first_object_offset pointer to the start of the region, and
928 * set the bytes_used. */
929 while (more) {
930 gc_assert(page_table[next_page].allocated == FREE_PAGE);
931 gc_assert(page_table[next_page].bytes_used == 0);
932 if (unboxed)
933 page_table[next_page].allocated = UNBOXED_PAGE;
934 else
935 page_table[next_page].allocated = BOXED_PAGE;
936 page_table[next_page].gen = gc_alloc_generation;
937 page_table[next_page].large_object = large;
939 page_table[next_page].first_object_offset =
940 orig_first_page_bytes_used - 4096*(next_page-first_page);
942 /* Calculate the number of bytes used in this page. */
943 more = 0;
944 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > 4096) {
945 bytes_used = 4096;
946 more = 1;
948 page_table[next_page].bytes_used = bytes_used;
949 byte_cnt += bytes_used;
951 next_page++;
954 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
956 bytes_allocated += nbytes;
957 generations[gc_alloc_generation].bytes_allocated += nbytes;
959 /* Add the region to the new_areas if requested. */
960 if (!unboxed)
961 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
963 /* Bump up last_free_page */
964 if (last_page+1 > last_free_page) {
965 last_free_page = last_page+1;
966 SetSymbolValue(ALLOCATION_POINTER,
967 (lispobj)(((char *)heap_base) + last_free_page*4096),0);
969 release_spinlock(&free_pages_lock);
971 return((void *)(page_address(first_page)+orig_first_page_bytes_used));
975 gc_find_freeish_pages(int *restart_page_ptr, int nbytes, int unboxed, struct alloc_region *alloc_region)
977 /* if alloc_region is 0, we assume this is for a potentially large
978 object */
979 int first_page;
980 int last_page;
981 int region_size;
982 int restart_page=*restart_page_ptr;
983 int bytes_found;
984 int num_pages;
985 int large = !alloc_region && (nbytes >= large_object_size);
987 gc_assert(free_pages_lock);
988 /* Search for a contiguous free space of at least nbytes. If it's a
989 large object then align it on a page boundary by searching for a
990 free page. */
992 /* To allow the allocation of small objects without the danger of
993 using a page in the current boxed region, the search starts after
994 the current boxed free region. XX could probably keep a page
995 index ahead of the current region and bumped up here to save a
996 lot of re-scanning. */
998 do {
999 first_page = restart_page;
1000 if (large)
1001 while ((first_page < NUM_PAGES)
1002 && (page_table[first_page].allocated != FREE_PAGE))
1003 first_page++;
1004 else
1005 while (first_page < NUM_PAGES) {
1006 if(page_table[first_page].allocated == FREE_PAGE)
1007 break;
1008 /* I don't know why we need the gen=0 test, but it
1009 * breaks randomly if that's omitted -dan 2003.02.26
1011 if((page_table[first_page].allocated ==
1012 (unboxed ? UNBOXED_PAGE : BOXED_PAGE)) &&
1013 (page_table[first_page].large_object == 0) &&
1014 (gc_alloc_generation == 0) &&
1015 (page_table[first_page].gen == gc_alloc_generation) &&
1016 (page_table[first_page].bytes_used < (4096-32)) &&
1017 (page_table[first_page].write_protected == 0) &&
1018 (page_table[first_page].dont_move == 0))
1019 break;
1020 first_page++;
1023 if (first_page >= NUM_PAGES) {
1024 fprintf(stderr,
1025 "Argh! gc_find_free_space failed (first_page), nbytes=%d.\n",
1026 nbytes);
1027 print_generation_stats(1);
1028 lose(NULL);
1031 gc_assert(page_table[first_page].write_protected == 0);
1033 last_page = first_page;
1034 bytes_found = 4096 - page_table[first_page].bytes_used;
1035 num_pages = 1;
1036 while (((bytes_found < nbytes)
1037 || (alloc_region && (num_pages < 2)))
1038 && (last_page < (NUM_PAGES-1))
1039 && (page_table[last_page+1].allocated == FREE_PAGE)) {
1040 last_page++;
1041 num_pages++;
1042 bytes_found += 4096;
1043 gc_assert(page_table[last_page].write_protected == 0);
1046 region_size = (4096 - page_table[first_page].bytes_used)
1047 + 4096*(last_page-first_page);
1049 gc_assert(bytes_found == region_size);
1050 restart_page = last_page + 1;
1051 } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
1053 /* Check for a failure */
1054 if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
1055 fprintf(stderr,
1056 "Argh! gc_find_freeish_pages failed (restart_page), nbytes=%d.\n",
1057 nbytes);
1058 print_generation_stats(1);
1059 lose(NULL);
1061 *restart_page_ptr=first_page;
1062 return last_page;
1065 /* Allocate bytes. All the rest of the special-purpose allocation
1066 * functions will eventually call this (instead of just duplicating
1067 * parts of its code) */
1069 void *
1070 gc_alloc_with_region(int nbytes,int unboxed_p, struct alloc_region *my_region,
1071 int quick_p)
1073 void *new_free_pointer;
1075 /* FSHOW((stderr, "/gc_alloc %d\n", nbytes)); */
1077 /* Check whether there is room in the current alloc region. */
1078 new_free_pointer = my_region->free_pointer + nbytes;
1080 if (new_free_pointer <= my_region->end_addr) {
1081 /* If so then allocate from the current alloc region. */
1082 void *new_obj = my_region->free_pointer;
1083 my_region->free_pointer = new_free_pointer;
1085 /* Unless a `quick' alloc was requested, check whether the
1086 alloc region is almost empty. */
1087 if (!quick_p &&
1088 (my_region->end_addr - my_region->free_pointer) <= 32) {
1089 /* If so, finished with the current region. */
1090 gc_alloc_update_page_tables(unboxed_p, my_region);
1091 /* Set up a new region. */
1092 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1095 return((void *)new_obj);
1098 /* Else not enough free space in the current region. */
1100 /* If there some room left in the current region, enough to be worth
1101 * saving, then allocate a large object. */
1102 /* FIXME: "32" should be a named parameter. */
1103 if ((my_region->end_addr-my_region->free_pointer) > 32)
1104 return gc_alloc_large(nbytes, unboxed_p, my_region);
1106 /* Else find a new region. */
1108 /* Finished with the current region. */
1109 gc_alloc_update_page_tables(unboxed_p, my_region);
1111 /* Set up a new region. */
1112 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1114 /* Should now be enough room. */
1116 /* Check whether there is room in the current region. */
1117 new_free_pointer = my_region->free_pointer + nbytes;
1119 if (new_free_pointer <= my_region->end_addr) {
1120 /* If so then allocate from the current region. */
1121 void *new_obj = my_region->free_pointer;
1122 my_region->free_pointer = new_free_pointer;
1123 /* Check whether the current region is almost empty. */
1124 if ((my_region->end_addr - my_region->free_pointer) <= 32) {
1125 /* If so find, finished with the current region. */
1126 gc_alloc_update_page_tables(unboxed_p, my_region);
1128 /* Set up a new region. */
1129 gc_alloc_new_region(32, unboxed_p, my_region);
1132 return((void *)new_obj);
1135 /* shouldn't happen */
1136 gc_assert(0);
1137 return((void *) NIL); /* dummy value: return something ... */
1140 void *
1141 gc_general_alloc(int nbytes,int unboxed_p,int quick_p)
1143 struct alloc_region *my_region =
1144 unboxed_p ? &unboxed_region : &boxed_region;
1145 return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
1150 static void *
1151 gc_alloc(int nbytes,int unboxed_p)
1153 /* this is the only function that the external interface to
1154 * allocation presently knows how to call: Lisp code will never
1155 * allocate large objects, or to unboxed space, or `quick'ly.
1156 * Any of that stuff will only ever happen inside of GC */
1157 return gc_general_alloc(nbytes,unboxed_p,0);
1160 /* Allocate space from the boxed_region. If there is not enough free
1161 * space then call gc_alloc to do the job. A pointer to the start of
1162 * the object is returned. */
1163 static inline void *
1164 gc_quick_alloc(int nbytes)
1166 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1169 /* Allocate space for the possibly large boxed object. If it is a
1170 * large object then do a large alloc else use gc_quick_alloc. Note
1171 * that gc_quick_alloc will eventually fall through to
1172 * gc_general_alloc which may allocate the object in a large way
1173 * anyway, but based on decisions about the free space in the current
1174 * region, not the object size itself */
1176 static inline void *
1177 gc_quick_alloc_large(int nbytes)
1179 if (nbytes >= large_object_size)
1180 return gc_alloc_large(nbytes, ALLOC_BOXED, &boxed_region);
1181 else
1182 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1185 static inline void *
1186 gc_alloc_unboxed(int nbytes)
1188 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1191 static inline void *
1192 gc_quick_alloc_unboxed(int nbytes)
1194 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1197 /* Allocate space for the object. If it is a large object then do a
1198 * large alloc else allocate from the current region. If there is not
1199 * enough free space then call general gc_alloc_unboxed() to do the job.
1201 * A pointer to the start of the object is returned. */
1202 static inline void *
1203 gc_quick_alloc_large_unboxed(int nbytes)
1205 if (nbytes >= large_object_size)
1206 return gc_alloc_large(nbytes,ALLOC_UNBOXED,&unboxed_region);
1207 else
1208 return gc_quick_alloc_unboxed(nbytes);
1212 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1215 extern int (*scavtab[256])(lispobj *where, lispobj object);
1216 extern lispobj (*transother[256])(lispobj object);
1217 extern int (*sizetab[256])(lispobj *where);
1219 /* Copy a large boxed object. If the object is in a large object
1220 * region then it is simply promoted, else it is copied. If it's large
1221 * enough then it's copied to a large object region.
1223 * Vectors may have shrunk. If the object is not copied the space
1224 * needs to be reclaimed, and the page_tables corrected. */
1225 lispobj
1226 copy_large_object(lispobj object, int nwords)
1228 int tag;
1229 lispobj *new;
1230 lispobj *source, *dest;
1231 int first_page;
1233 gc_assert(is_lisp_pointer(object));
1234 gc_assert(from_space_p(object));
1235 gc_assert((nwords & 0x01) == 0);
1238 /* Check whether it's a large object. */
1239 first_page = find_page_index((void *)object);
1240 gc_assert(first_page >= 0);
1242 if (page_table[first_page].large_object) {
1244 /* Promote the object. */
1246 int remaining_bytes;
1247 int next_page;
1248 int bytes_freed;
1249 int old_bytes_used;
1251 /* Note: Any page write-protection must be removed, else a
1252 * later scavenge_newspace may incorrectly not scavenge these
1253 * pages. This would not be necessary if they are added to the
1254 * new areas, but let's do it for them all (they'll probably
1255 * be written anyway?). */
1257 gc_assert(page_table[first_page].first_object_offset == 0);
1259 next_page = first_page;
1260 remaining_bytes = nwords*4;
1261 while (remaining_bytes > 4096) {
1262 gc_assert(page_table[next_page].gen == from_space);
1263 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
1264 gc_assert(page_table[next_page].large_object);
1265 gc_assert(page_table[next_page].first_object_offset==
1266 -4096*(next_page-first_page));
1267 gc_assert(page_table[next_page].bytes_used == 4096);
1269 page_table[next_page].gen = new_space;
1271 /* Remove any write-protection. We should be able to rely
1272 * on the write-protect flag to avoid redundant calls. */
1273 if (page_table[next_page].write_protected) {
1274 os_protect(page_address(next_page), 4096, OS_VM_PROT_ALL);
1275 page_table[next_page].write_protected = 0;
1277 remaining_bytes -= 4096;
1278 next_page++;
1281 /* Now only one page remains, but the object may have shrunk
1282 * so there may be more unused pages which will be freed. */
1284 /* The object may have shrunk but shouldn't have grown. */
1285 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1287 page_table[next_page].gen = new_space;
1288 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
1290 /* Adjust the bytes_used. */
1291 old_bytes_used = page_table[next_page].bytes_used;
1292 page_table[next_page].bytes_used = remaining_bytes;
1294 bytes_freed = old_bytes_used - remaining_bytes;
1296 /* Free any remaining pages; needs care. */
1297 next_page++;
1298 while ((old_bytes_used == 4096) &&
1299 (page_table[next_page].gen == from_space) &&
1300 (page_table[next_page].allocated == BOXED_PAGE) &&
1301 page_table[next_page].large_object &&
1302 (page_table[next_page].first_object_offset ==
1303 -(next_page - first_page)*4096)) {
1304 /* Checks out OK, free the page. Don't need to bother zeroing
1305 * pages as this should have been done before shrinking the
1306 * object. These pages shouldn't be write-protected as they
1307 * should be zero filled. */
1308 gc_assert(page_table[next_page].write_protected == 0);
1310 old_bytes_used = page_table[next_page].bytes_used;
1311 page_table[next_page].allocated = FREE_PAGE;
1312 page_table[next_page].bytes_used = 0;
1313 bytes_freed += old_bytes_used;
1314 next_page++;
1317 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1318 generations[new_space].bytes_allocated += 4*nwords;
1319 bytes_allocated -= bytes_freed;
1321 /* Add the region to the new_areas if requested. */
1322 add_new_area(first_page,0,nwords*4);
1324 return(object);
1325 } else {
1326 /* Get tag of object. */
1327 tag = lowtag_of(object);
1329 /* Allocate space. */
1330 new = gc_quick_alloc_large(nwords*4);
1332 dest = new;
1333 source = (lispobj *) native_pointer(object);
1335 /* Copy the object. */
1336 while (nwords > 0) {
1337 dest[0] = source[0];
1338 dest[1] = source[1];
1339 dest += 2;
1340 source += 2;
1341 nwords -= 2;
1344 /* Return Lisp pointer of new object. */
1345 return ((lispobj) new) | tag;
1349 /* to copy unboxed objects */
1350 lispobj
1351 copy_unboxed_object(lispobj object, int nwords)
1353 int tag;
1354 lispobj *new;
1355 lispobj *source, *dest;
1357 gc_assert(is_lisp_pointer(object));
1358 gc_assert(from_space_p(object));
1359 gc_assert((nwords & 0x01) == 0);
1361 /* Get tag of object. */
1362 tag = lowtag_of(object);
1364 /* Allocate space. */
1365 new = gc_quick_alloc_unboxed(nwords*4);
1367 dest = new;
1368 source = (lispobj *) native_pointer(object);
1370 /* Copy the object. */
1371 while (nwords > 0) {
1372 dest[0] = source[0];
1373 dest[1] = source[1];
1374 dest += 2;
1375 source += 2;
1376 nwords -= 2;
1379 /* Return Lisp pointer of new object. */
1380 return ((lispobj) new) | tag;
1383 /* to copy large unboxed objects
1385 * If the object is in a large object region then it is simply
1386 * promoted, else it is copied. If it's large enough then it's copied
1387 * to a large object region.
1389 * Bignums and vectors may have shrunk. If the object is not copied
1390 * the space needs to be reclaimed, and the page_tables corrected.
1392 * KLUDGE: There's a lot of cut-and-paste duplication between this
1393 * function and copy_large_object(..). -- WHN 20000619 */
1394 lispobj
1395 copy_large_unboxed_object(lispobj object, int nwords)
1397 int tag;
1398 lispobj *new;
1399 lispobj *source, *dest;
1400 int first_page;
1402 gc_assert(is_lisp_pointer(object));
1403 gc_assert(from_space_p(object));
1404 gc_assert((nwords & 0x01) == 0);
1406 if ((nwords > 1024*1024) && gencgc_verbose)
1407 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*4));
1409 /* Check whether it's a large object. */
1410 first_page = find_page_index((void *)object);
1411 gc_assert(first_page >= 0);
1413 if (page_table[first_page].large_object) {
1414 /* Promote the object. Note: Unboxed objects may have been
1415 * allocated to a BOXED region so it may be necessary to
1416 * change the region to UNBOXED. */
1417 int remaining_bytes;
1418 int next_page;
1419 int bytes_freed;
1420 int old_bytes_used;
1422 gc_assert(page_table[first_page].first_object_offset == 0);
1424 next_page = first_page;
1425 remaining_bytes = nwords*4;
1426 while (remaining_bytes > 4096) {
1427 gc_assert(page_table[next_page].gen == from_space);
1428 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE)
1429 || (page_table[next_page].allocated == BOXED_PAGE));
1430 gc_assert(page_table[next_page].large_object);
1431 gc_assert(page_table[next_page].first_object_offset==
1432 -4096*(next_page-first_page));
1433 gc_assert(page_table[next_page].bytes_used == 4096);
1435 page_table[next_page].gen = new_space;
1436 page_table[next_page].allocated = UNBOXED_PAGE;
1437 remaining_bytes -= 4096;
1438 next_page++;
1441 /* Now only one page remains, but the object may have shrunk so
1442 * there may be more unused pages which will be freed. */
1444 /* Object may have shrunk but shouldn't have grown - check. */
1445 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1447 page_table[next_page].gen = new_space;
1448 page_table[next_page].allocated = UNBOXED_PAGE;
1450 /* Adjust the bytes_used. */
1451 old_bytes_used = page_table[next_page].bytes_used;
1452 page_table[next_page].bytes_used = remaining_bytes;
1454 bytes_freed = old_bytes_used - remaining_bytes;
1456 /* Free any remaining pages; needs care. */
1457 next_page++;
1458 while ((old_bytes_used == 4096) &&
1459 (page_table[next_page].gen == from_space) &&
1460 ((page_table[next_page].allocated == UNBOXED_PAGE)
1461 || (page_table[next_page].allocated == BOXED_PAGE)) &&
1462 page_table[next_page].large_object &&
1463 (page_table[next_page].first_object_offset ==
1464 -(next_page - first_page)*4096)) {
1465 /* Checks out OK, free the page. Don't need to both zeroing
1466 * pages as this should have been done before shrinking the
1467 * object. These pages shouldn't be write-protected, even if
1468 * boxed they should be zero filled. */
1469 gc_assert(page_table[next_page].write_protected == 0);
1471 old_bytes_used = page_table[next_page].bytes_used;
1472 page_table[next_page].allocated = FREE_PAGE;
1473 page_table[next_page].bytes_used = 0;
1474 bytes_freed += old_bytes_used;
1475 next_page++;
1478 if ((bytes_freed > 0) && gencgc_verbose)
1479 FSHOW((stderr,
1480 "/copy_large_unboxed bytes_freed=%d\n",
1481 bytes_freed));
1483 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1484 generations[new_space].bytes_allocated += 4*nwords;
1485 bytes_allocated -= bytes_freed;
1487 return(object);
1489 else {
1490 /* Get tag of object. */
1491 tag = lowtag_of(object);
1493 /* Allocate space. */
1494 new = gc_quick_alloc_large_unboxed(nwords*4);
1496 dest = new;
1497 source = (lispobj *) native_pointer(object);
1499 /* Copy the object. */
1500 while (nwords > 0) {
1501 dest[0] = source[0];
1502 dest[1] = source[1];
1503 dest += 2;
1504 source += 2;
1505 nwords -= 2;
1508 /* Return Lisp pointer of new object. */
1509 return ((lispobj) new) | tag;
1518 * code and code-related objects
1521 static lispobj trans_fun_header(lispobj object);
1522 static lispobj trans_boxed(lispobj object);
1525 /* Scan a x86 compiled code object, looking for possible fixups that
1526 * have been missed after a move.
1528 * Two types of fixups are needed:
1529 * 1. Absolute fixups to within the code object.
1530 * 2. Relative fixups to outside the code object.
1532 * Currently only absolute fixups to the constant vector, or to the
1533 * code area are checked. */
1534 void
1535 sniff_code_object(struct code *code, unsigned displacement)
1537 int nheader_words, ncode_words, nwords;
1538 void *p;
1539 void *constants_start_addr, *constants_end_addr;
1540 void *code_start_addr, *code_end_addr;
1541 int fixup_found = 0;
1543 if (!check_code_fixups)
1544 return;
1546 ncode_words = fixnum_value(code->code_size);
1547 nheader_words = HeaderValue(*(lispobj *)code);
1548 nwords = ncode_words + nheader_words;
1550 constants_start_addr = (void *)code + 5*4;
1551 constants_end_addr = (void *)code + nheader_words*4;
1552 code_start_addr = (void *)code + nheader_words*4;
1553 code_end_addr = (void *)code + nwords*4;
1555 /* Work through the unboxed code. */
1556 for (p = code_start_addr; p < code_end_addr; p++) {
1557 void *data = *(void **)p;
1558 unsigned d1 = *((unsigned char *)p - 1);
1559 unsigned d2 = *((unsigned char *)p - 2);
1560 unsigned d3 = *((unsigned char *)p - 3);
1561 unsigned d4 = *((unsigned char *)p - 4);
1562 #if QSHOW
1563 unsigned d5 = *((unsigned char *)p - 5);
1564 unsigned d6 = *((unsigned char *)p - 6);
1565 #endif
1567 /* Check for code references. */
1568 /* Check for a 32 bit word that looks like an absolute
1569 reference to within the code adea of the code object. */
1570 if ((data >= (code_start_addr-displacement))
1571 && (data < (code_end_addr-displacement))) {
1572 /* function header */
1573 if ((d4 == 0x5e)
1574 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1575 /* Skip the function header */
1576 p += 6*4 - 4 - 1;
1577 continue;
1579 /* the case of PUSH imm32 */
1580 if (d1 == 0x68) {
1581 fixup_found = 1;
1582 FSHOW((stderr,
1583 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1584 p, d6, d5, d4, d3, d2, d1, data));
1585 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1587 /* the case of MOV [reg-8],imm32 */
1588 if ((d3 == 0xc7)
1589 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1590 || d2==0x45 || d2==0x46 || d2==0x47)
1591 && (d1 == 0xf8)) {
1592 fixup_found = 1;
1593 FSHOW((stderr,
1594 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1595 p, d6, d5, d4, d3, d2, d1, data));
1596 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1598 /* the case of LEA reg,[disp32] */
1599 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1600 fixup_found = 1;
1601 FSHOW((stderr,
1602 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1603 p, d6, d5, d4, d3, d2, d1, data));
1604 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1608 /* Check for constant references. */
1609 /* Check for a 32 bit word that looks like an absolute
1610 reference to within the constant vector. Constant references
1611 will be aligned. */
1612 if ((data >= (constants_start_addr-displacement))
1613 && (data < (constants_end_addr-displacement))
1614 && (((unsigned)data & 0x3) == 0)) {
1615 /* Mov eax,m32 */
1616 if (d1 == 0xa1) {
1617 fixup_found = 1;
1618 FSHOW((stderr,
1619 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1620 p, d6, d5, d4, d3, d2, d1, data));
1621 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1624 /* the case of MOV m32,EAX */
1625 if (d1 == 0xa3) {
1626 fixup_found = 1;
1627 FSHOW((stderr,
1628 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1629 p, d6, d5, d4, d3, d2, d1, data));
1630 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1633 /* the case of CMP m32,imm32 */
1634 if ((d1 == 0x3d) && (d2 == 0x81)) {
1635 fixup_found = 1;
1636 FSHOW((stderr,
1637 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1638 p, d6, d5, d4, d3, d2, d1, data));
1639 /* XX Check this */
1640 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1643 /* Check for a mod=00, r/m=101 byte. */
1644 if ((d1 & 0xc7) == 5) {
1645 /* Cmp m32,reg */
1646 if (d2 == 0x39) {
1647 fixup_found = 1;
1648 FSHOW((stderr,
1649 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1650 p, d6, d5, d4, d3, d2, d1, data));
1651 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1653 /* the case of CMP reg32,m32 */
1654 if (d2 == 0x3b) {
1655 fixup_found = 1;
1656 FSHOW((stderr,
1657 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1658 p, d6, d5, d4, d3, d2, d1, data));
1659 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1661 /* the case of MOV m32,reg32 */
1662 if (d2 == 0x89) {
1663 fixup_found = 1;
1664 FSHOW((stderr,
1665 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1666 p, d6, d5, d4, d3, d2, d1, data));
1667 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1669 /* the case of MOV reg32,m32 */
1670 if (d2 == 0x8b) {
1671 fixup_found = 1;
1672 FSHOW((stderr,
1673 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1674 p, d6, d5, d4, d3, d2, d1, data));
1675 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1677 /* the case of LEA reg32,m32 */
1678 if (d2 == 0x8d) {
1679 fixup_found = 1;
1680 FSHOW((stderr,
1681 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1682 p, d6, d5, d4, d3, d2, d1, data));
1683 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1689 /* If anything was found, print some information on the code
1690 * object. */
1691 if (fixup_found) {
1692 FSHOW((stderr,
1693 "/compiled code object at %x: header words = %d, code words = %d\n",
1694 code, nheader_words, ncode_words));
1695 FSHOW((stderr,
1696 "/const start = %x, end = %x\n",
1697 constants_start_addr, constants_end_addr));
1698 FSHOW((stderr,
1699 "/code start = %x, end = %x\n",
1700 code_start_addr, code_end_addr));
1704 void
1705 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1707 int nheader_words, ncode_words, nwords;
1708 void *constants_start_addr, *constants_end_addr;
1709 void *code_start_addr, *code_end_addr;
1710 lispobj fixups = NIL;
1711 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
1712 struct vector *fixups_vector;
1714 ncode_words = fixnum_value(new_code->code_size);
1715 nheader_words = HeaderValue(*(lispobj *)new_code);
1716 nwords = ncode_words + nheader_words;
1717 /* FSHOW((stderr,
1718 "/compiled code object at %x: header words = %d, code words = %d\n",
1719 new_code, nheader_words, ncode_words)); */
1720 constants_start_addr = (void *)new_code + 5*4;
1721 constants_end_addr = (void *)new_code + nheader_words*4;
1722 code_start_addr = (void *)new_code + nheader_words*4;
1723 code_end_addr = (void *)new_code + nwords*4;
1725 FSHOW((stderr,
1726 "/const start = %x, end = %x\n",
1727 constants_start_addr,constants_end_addr));
1728 FSHOW((stderr,
1729 "/code start = %x; end = %x\n",
1730 code_start_addr,code_end_addr));
1733 /* The first constant should be a pointer to the fixups for this
1734 code objects. Check. */
1735 fixups = new_code->constants[0];
1737 /* It will be 0 or the unbound-marker if there are no fixups, and
1738 * will be an other pointer if it is valid. */
1739 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1740 !is_lisp_pointer(fixups)) {
1741 /* Check for possible errors. */
1742 if (check_code_fixups)
1743 sniff_code_object(new_code, displacement);
1745 /*fprintf(stderr,"Fixups for code object not found!?\n");
1746 fprintf(stderr,"*** Compiled code object at %x: header_words=%d code_words=%d .\n",
1747 new_code, nheader_words, ncode_words);
1748 fprintf(stderr,"*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
1749 constants_start_addr,constants_end_addr,
1750 code_start_addr,code_end_addr);*/
1751 return;
1754 fixups_vector = (struct vector *)native_pointer(fixups);
1756 /* Could be pointing to a forwarding pointer. */
1757 if (is_lisp_pointer(fixups) &&
1758 (find_page_index((void*)fixups_vector) != -1) &&
1759 (fixups_vector->header == 0x01)) {
1760 /* If so, then follow it. */
1761 /*SHOW("following pointer to a forwarding pointer");*/
1762 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1765 /*SHOW("got fixups");*/
1767 if (widetag_of(fixups_vector->header) ==
1768 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
1769 /* Got the fixups for the code block. Now work through the vector,
1770 and apply a fixup at each address. */
1771 int length = fixnum_value(fixups_vector->length);
1772 int i;
1773 for (i = 0; i < length; i++) {
1774 unsigned offset = fixups_vector->data[i];
1775 /* Now check the current value of offset. */
1776 unsigned old_value =
1777 *(unsigned *)((unsigned)code_start_addr + offset);
1779 /* If it's within the old_code object then it must be an
1780 * absolute fixup (relative ones are not saved) */
1781 if ((old_value >= (unsigned)old_code)
1782 && (old_value < ((unsigned)old_code + nwords*4)))
1783 /* So add the dispacement. */
1784 *(unsigned *)((unsigned)code_start_addr + offset) =
1785 old_value + displacement;
1786 else
1787 /* It is outside the old code object so it must be a
1788 * relative fixup (absolute fixups are not saved). So
1789 * subtract the displacement. */
1790 *(unsigned *)((unsigned)code_start_addr + offset) =
1791 old_value - displacement;
1795 /* Check for possible errors. */
1796 if (check_code_fixups) {
1797 sniff_code_object(new_code,displacement);
1802 static lispobj
1803 trans_boxed_large(lispobj object)
1805 lispobj header;
1806 unsigned long length;
1808 gc_assert(is_lisp_pointer(object));
1810 header = *((lispobj *) native_pointer(object));
1811 length = HeaderValue(header) + 1;
1812 length = CEILING(length, 2);
1814 return copy_large_object(object, length);
1818 static lispobj
1819 trans_unboxed_large(lispobj object)
1821 lispobj header;
1822 unsigned long length;
1825 gc_assert(is_lisp_pointer(object));
1827 header = *((lispobj *) native_pointer(object));
1828 length = HeaderValue(header) + 1;
1829 length = CEILING(length, 2);
1831 return copy_large_unboxed_object(object, length);
1836 * vector-like objects
1840 /* FIXME: What does this mean? */
1841 int gencgc_hash = 1;
1843 static int
1844 scav_vector(lispobj *where, lispobj object)
1846 unsigned int kv_length;
1847 lispobj *kv_vector;
1848 unsigned int length = 0; /* (0 = dummy to stop GCC warning) */
1849 lispobj *hash_table;
1850 lispobj empty_symbol;
1851 unsigned int *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1852 unsigned int *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1853 unsigned int *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1854 lispobj weak_p_obj;
1855 unsigned next_vector_length = 0;
1857 /* FIXME: A comment explaining this would be nice. It looks as
1858 * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
1859 * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
1860 if (HeaderValue(object) != subtype_VectorValidHashing)
1861 return 1;
1863 if (!gencgc_hash) {
1864 /* This is set for backward compatibility. FIXME: Do we need
1865 * this any more? */
1866 *where =
1867 (subtype_VectorMustRehash<<N_WIDETAG_BITS) | SIMPLE_VECTOR_WIDETAG;
1868 return 1;
1871 kv_length = fixnum_value(where[1]);
1872 kv_vector = where + 2; /* Skip the header and length. */
1873 /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
1875 /* Scavenge element 0, which may be a hash-table structure. */
1876 scavenge(where+2, 1);
1877 if (!is_lisp_pointer(where[2])) {
1878 lose("no pointer at %x in hash table", where[2]);
1880 hash_table = (lispobj *)native_pointer(where[2]);
1881 /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
1882 if (widetag_of(hash_table[0]) != INSTANCE_HEADER_WIDETAG) {
1883 lose("hash table not instance (%x at %x)", hash_table[0], hash_table);
1886 /* Scavenge element 1, which should be some internal symbol that
1887 * the hash table code reserves for marking empty slots. */
1888 scavenge(where+3, 1);
1889 if (!is_lisp_pointer(where[3])) {
1890 lose("not empty-hash-table-slot symbol pointer: %x", where[3]);
1892 empty_symbol = where[3];
1893 /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
1894 if (widetag_of(*(lispobj *)native_pointer(empty_symbol)) !=
1895 SYMBOL_HEADER_WIDETAG) {
1896 lose("not a symbol where empty-hash-table-slot symbol expected: %x",
1897 *(lispobj *)native_pointer(empty_symbol));
1900 /* Scavenge hash table, which will fix the positions of the other
1901 * needed objects. */
1902 scavenge(hash_table, 16);
1904 /* Cross-check the kv_vector. */
1905 if (where != (lispobj *)native_pointer(hash_table[9])) {
1906 lose("hash_table table!=this table %x", hash_table[9]);
1909 /* WEAK-P */
1910 weak_p_obj = hash_table[10];
1912 /* index vector */
1914 lispobj index_vector_obj = hash_table[13];
1916 if (is_lisp_pointer(index_vector_obj) &&
1917 (widetag_of(*(lispobj *)native_pointer(index_vector_obj)) ==
1918 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1919 index_vector = ((unsigned int *)native_pointer(index_vector_obj)) + 2;
1920 /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
1921 length = fixnum_value(((unsigned int *)native_pointer(index_vector_obj))[1]);
1922 /*FSHOW((stderr, "/length = %d\n", length));*/
1923 } else {
1924 lose("invalid index_vector %x", index_vector_obj);
1928 /* next vector */
1930 lispobj next_vector_obj = hash_table[14];
1932 if (is_lisp_pointer(next_vector_obj) &&
1933 (widetag_of(*(lispobj *)native_pointer(next_vector_obj)) ==
1934 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1935 next_vector = ((unsigned int *)native_pointer(next_vector_obj)) + 2;
1936 /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
1937 next_vector_length = fixnum_value(((unsigned int *)native_pointer(next_vector_obj))[1]);
1938 /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
1939 } else {
1940 lose("invalid next_vector %x", next_vector_obj);
1944 /* maybe hash vector */
1946 /* FIXME: This bare "15" offset should become a symbolic
1947 * expression of some sort. And all the other bare offsets
1948 * too. And the bare "16" in scavenge(hash_table, 16). And
1949 * probably other stuff too. Ugh.. */
1950 lispobj hash_vector_obj = hash_table[15];
1952 if (is_lisp_pointer(hash_vector_obj) &&
1953 (widetag_of(*(lispobj *)native_pointer(hash_vector_obj))
1954 == SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1955 hash_vector = ((unsigned int *)native_pointer(hash_vector_obj)) + 2;
1956 /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
1957 gc_assert(fixnum_value(((unsigned int *)native_pointer(hash_vector_obj))[1])
1958 == next_vector_length);
1959 } else {
1960 hash_vector = NULL;
1961 /*FSHOW((stderr, "/no hash_vector: %x\n", hash_vector_obj));*/
1965 /* These lengths could be different as the index_vector can be a
1966 * different length from the others, a larger index_vector could help
1967 * reduce collisions. */
1968 gc_assert(next_vector_length*2 == kv_length);
1970 /* now all set up.. */
1972 /* Work through the KV vector. */
1974 int i;
1975 for (i = 1; i < next_vector_length; i++) {
1976 lispobj old_key = kv_vector[2*i];
1977 unsigned int old_index = (old_key & 0x1fffffff)%length;
1979 /* Scavenge the key and value. */
1980 scavenge(&kv_vector[2*i],2);
1982 /* Check whether the key has moved and is EQ based. */
1984 lispobj new_key = kv_vector[2*i];
1985 unsigned int new_index = (new_key & 0x1fffffff)%length;
1987 if ((old_index != new_index) &&
1988 ((!hash_vector) || (hash_vector[i] == 0x80000000)) &&
1989 ((new_key != empty_symbol) ||
1990 (kv_vector[2*i] != empty_symbol))) {
1992 /*FSHOW((stderr,
1993 "* EQ key %d moved from %x to %x; index %d to %d\n",
1994 i, old_key, new_key, old_index, new_index));*/
1996 if (index_vector[old_index] != 0) {
1997 /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
1999 /* Unlink the key from the old_index chain. */
2000 if (index_vector[old_index] == i) {
2001 /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
2002 index_vector[old_index] = next_vector[i];
2003 /* Link it into the needing rehash chain. */
2004 next_vector[i] = fixnum_value(hash_table[11]);
2005 hash_table[11] = make_fixnum(i);
2006 /*SHOW("P2");*/
2007 } else {
2008 unsigned prior = index_vector[old_index];
2009 unsigned next = next_vector[prior];
2011 /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
2013 while (next != 0) {
2014 /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
2015 if (next == i) {
2016 /* Unlink it. */
2017 next_vector[prior] = next_vector[next];
2018 /* Link it into the needing rehash
2019 * chain. */
2020 next_vector[next] =
2021 fixnum_value(hash_table[11]);
2022 hash_table[11] = make_fixnum(next);
2023 /*SHOW("/P3");*/
2024 break;
2026 prior = next;
2027 next = next_vector[next];
2035 return (CEILING(kv_length + 2, 2));
2041 * weak pointers
2044 /* XX This is a hack adapted from cgc.c. These don't work too
2045 * efficiently with the gencgc as a list of the weak pointers is
2046 * maintained within the objects which causes writes to the pages. A
2047 * limited attempt is made to avoid unnecessary writes, but this needs
2048 * a re-think. */
2049 #define WEAK_POINTER_NWORDS \
2050 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2052 static int
2053 scav_weak_pointer(lispobj *where, lispobj object)
2055 struct weak_pointer *wp = weak_pointers;
2056 /* Push the weak pointer onto the list of weak pointers.
2057 * Do I have to watch for duplicates? Originally this was
2058 * part of trans_weak_pointer but that didn't work in the
2059 * case where the WP was in a promoted region.
2062 /* Check whether it's already in the list. */
2063 while (wp != NULL) {
2064 if (wp == (struct weak_pointer*)where) {
2065 break;
2067 wp = wp->next;
2069 if (wp == NULL) {
2070 /* Add it to the start of the list. */
2071 wp = (struct weak_pointer*)where;
2072 if (wp->next != weak_pointers) {
2073 wp->next = weak_pointers;
2074 } else {
2075 /*SHOW("avoided write to weak pointer");*/
2077 weak_pointers = wp;
2080 /* Do not let GC scavenge the value slot of the weak pointer.
2081 * (That is why it is a weak pointer.) */
2083 return WEAK_POINTER_NWORDS;
2087 /* Scan an area looking for an object which encloses the given pointer.
2088 * Return the object start on success or NULL on failure. */
2089 static lispobj *
2090 search_space(lispobj *start, size_t words, lispobj *pointer)
2092 while (words > 0) {
2093 size_t count = 1;
2094 lispobj thing = *start;
2096 /* If thing is an immediate then this is a cons. */
2097 if (is_lisp_pointer(thing)
2098 || ((thing & 3) == 0) /* fixnum */
2099 || (widetag_of(thing) == BASE_CHAR_WIDETAG)
2100 || (widetag_of(thing) == UNBOUND_MARKER_WIDETAG))
2101 count = 2;
2102 else
2103 count = (sizetab[widetag_of(thing)])(start);
2105 /* Check whether the pointer is within this object. */
2106 if ((pointer >= start) && (pointer < (start+count))) {
2107 /* found it! */
2108 /*FSHOW((stderr,"/found %x in %x %x\n", pointer, start, thing));*/
2109 return(start);
2112 /* Round up the count. */
2113 count = CEILING(count,2);
2115 start += count;
2116 words -= count;
2118 return (NULL);
2121 static lispobj*
2122 search_read_only_space(lispobj *pointer)
2124 lispobj* start = (lispobj*)READ_ONLY_SPACE_START;
2125 lispobj* end = (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2126 if ((pointer < start) || (pointer >= end))
2127 return NULL;
2128 return (search_space(start, (pointer+2)-start, pointer));
2131 static lispobj *
2132 search_static_space(lispobj *pointer)
2134 lispobj* start = (lispobj*)STATIC_SPACE_START;
2135 lispobj* end = (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2136 if ((pointer < start) || (pointer >= end))
2137 return NULL;
2138 return (search_space(start, (pointer+2)-start, pointer));
2141 /* a faster version for searching the dynamic space. This will work even
2142 * if the object is in a current allocation region. */
2143 lispobj *
2144 search_dynamic_space(lispobj *pointer)
2146 int page_index = find_page_index(pointer);
2147 lispobj *start;
2149 /* The address may be invalid, so do some checks. */
2150 if ((page_index == -1) || (page_table[page_index].allocated == FREE_PAGE))
2151 return NULL;
2152 start = (lispobj *)((void *)page_address(page_index)
2153 + page_table[page_index].first_object_offset);
2154 return (search_space(start, (pointer+2)-start, pointer));
2157 /* Is there any possibility that pointer is a valid Lisp object
2158 * reference, and/or something else (e.g. subroutine call return
2159 * address) which should prevent us from moving the referred-to thing?
2160 * This is called from preserve_pointers() */
2161 static int
2162 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2164 lispobj *start_addr;
2166 /* Find the object start address. */
2167 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2168 return 0;
2171 /* We need to allow raw pointers into Code objects for return
2172 * addresses. This will also pick up pointers to functions in code
2173 * objects. */
2174 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
2175 /* XXX could do some further checks here */
2176 return 1;
2179 /* If it's not a return address then it needs to be a valid Lisp
2180 * pointer. */
2181 if (!is_lisp_pointer((lispobj)pointer)) {
2182 return 0;
2185 /* Check that the object pointed to is consistent with the pointer
2186 * low tag.
2188 switch (lowtag_of((lispobj)pointer)) {
2189 case FUN_POINTER_LOWTAG:
2190 /* Start_addr should be the enclosing code object, or a closure
2191 * header. */
2192 switch (widetag_of(*start_addr)) {
2193 case CODE_HEADER_WIDETAG:
2194 /* This case is probably caught above. */
2195 break;
2196 case CLOSURE_HEADER_WIDETAG:
2197 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2198 if ((unsigned)pointer !=
2199 ((unsigned)start_addr+FUN_POINTER_LOWTAG)) {
2200 if (gencgc_verbose)
2201 FSHOW((stderr,
2202 "/Wf2: %x %x %x\n",
2203 pointer, start_addr, *start_addr));
2204 return 0;
2206 break;
2207 default:
2208 if (gencgc_verbose)
2209 FSHOW((stderr,
2210 "/Wf3: %x %x %x\n",
2211 pointer, start_addr, *start_addr));
2212 return 0;
2214 break;
2215 case LIST_POINTER_LOWTAG:
2216 if ((unsigned)pointer !=
2217 ((unsigned)start_addr+LIST_POINTER_LOWTAG)) {
2218 if (gencgc_verbose)
2219 FSHOW((stderr,
2220 "/Wl1: %x %x %x\n",
2221 pointer, start_addr, *start_addr));
2222 return 0;
2224 /* Is it plausible cons? */
2225 if ((is_lisp_pointer(start_addr[0])
2226 || ((start_addr[0] & 3) == 0) /* fixnum */
2227 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
2228 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
2229 && (is_lisp_pointer(start_addr[1])
2230 || ((start_addr[1] & 3) == 0) /* fixnum */
2231 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
2232 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
2233 break;
2234 else {
2235 if (gencgc_verbose)
2236 FSHOW((stderr,
2237 "/Wl2: %x %x %x\n",
2238 pointer, start_addr, *start_addr));
2239 return 0;
2241 case INSTANCE_POINTER_LOWTAG:
2242 if ((unsigned)pointer !=
2243 ((unsigned)start_addr+INSTANCE_POINTER_LOWTAG)) {
2244 if (gencgc_verbose)
2245 FSHOW((stderr,
2246 "/Wi1: %x %x %x\n",
2247 pointer, start_addr, *start_addr));
2248 return 0;
2250 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2251 if (gencgc_verbose)
2252 FSHOW((stderr,
2253 "/Wi2: %x %x %x\n",
2254 pointer, start_addr, *start_addr));
2255 return 0;
2257 break;
2258 case OTHER_POINTER_LOWTAG:
2259 if ((unsigned)pointer !=
2260 ((int)start_addr+OTHER_POINTER_LOWTAG)) {
2261 if (gencgc_verbose)
2262 FSHOW((stderr,
2263 "/Wo1: %x %x %x\n",
2264 pointer, start_addr, *start_addr));
2265 return 0;
2267 /* Is it plausible? Not a cons. XXX should check the headers. */
2268 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2269 if (gencgc_verbose)
2270 FSHOW((stderr,
2271 "/Wo2: %x %x %x\n",
2272 pointer, start_addr, *start_addr));
2273 return 0;
2275 switch (widetag_of(start_addr[0])) {
2276 case UNBOUND_MARKER_WIDETAG:
2277 case BASE_CHAR_WIDETAG:
2278 if (gencgc_verbose)
2279 FSHOW((stderr,
2280 "*Wo3: %x %x %x\n",
2281 pointer, start_addr, *start_addr));
2282 return 0;
2284 /* only pointed to by function pointers? */
2285 case CLOSURE_HEADER_WIDETAG:
2286 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2287 if (gencgc_verbose)
2288 FSHOW((stderr,
2289 "*Wo4: %x %x %x\n",
2290 pointer, start_addr, *start_addr));
2291 return 0;
2293 case INSTANCE_HEADER_WIDETAG:
2294 if (gencgc_verbose)
2295 FSHOW((stderr,
2296 "*Wo5: %x %x %x\n",
2297 pointer, start_addr, *start_addr));
2298 return 0;
2300 /* the valid other immediate pointer objects */
2301 case SIMPLE_VECTOR_WIDETAG:
2302 case RATIO_WIDETAG:
2303 case COMPLEX_WIDETAG:
2304 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2305 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2306 #endif
2307 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2308 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2309 #endif
2310 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2311 case COMPLEX_LONG_FLOAT_WIDETAG:
2312 #endif
2313 case SIMPLE_ARRAY_WIDETAG:
2314 case COMPLEX_BASE_STRING_WIDETAG:
2315 case COMPLEX_VECTOR_NIL_WIDETAG:
2316 case COMPLEX_BIT_VECTOR_WIDETAG:
2317 case COMPLEX_VECTOR_WIDETAG:
2318 case COMPLEX_ARRAY_WIDETAG:
2319 case VALUE_CELL_HEADER_WIDETAG:
2320 case SYMBOL_HEADER_WIDETAG:
2321 case FDEFN_WIDETAG:
2322 case CODE_HEADER_WIDETAG:
2323 case BIGNUM_WIDETAG:
2324 case SINGLE_FLOAT_WIDETAG:
2325 case DOUBLE_FLOAT_WIDETAG:
2326 #ifdef LONG_FLOAT_WIDETAG
2327 case LONG_FLOAT_WIDETAG:
2328 #endif
2329 case SIMPLE_BASE_STRING_WIDETAG:
2330 case SIMPLE_BIT_VECTOR_WIDETAG:
2331 case SIMPLE_ARRAY_NIL_WIDETAG:
2332 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2333 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2334 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2335 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2336 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2337 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2338 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2339 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2340 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2341 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2342 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2343 #endif
2344 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2345 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2346 #endif
2347 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2348 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2349 #endif
2350 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2351 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2352 #endif
2353 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2354 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2355 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2356 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2357 #endif
2358 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2359 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2360 #endif
2361 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2362 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2363 #endif
2364 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2365 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2366 #endif
2367 case SAP_WIDETAG:
2368 case WEAK_POINTER_WIDETAG:
2369 break;
2371 default:
2372 if (gencgc_verbose)
2373 FSHOW((stderr,
2374 "/Wo6: %x %x %x\n",
2375 pointer, start_addr, *start_addr));
2376 return 0;
2378 break;
2379 default:
2380 if (gencgc_verbose)
2381 FSHOW((stderr,
2382 "*W?: %x %x %x\n",
2383 pointer, start_addr, *start_addr));
2384 return 0;
2387 /* looks good */
2388 return 1;
2391 /* Adjust large bignum and vector objects. This will adjust the
2392 * allocated region if the size has shrunk, and move unboxed objects
2393 * into unboxed pages. The pages are not promoted here, and the
2394 * promoted region is not added to the new_regions; this is really
2395 * only designed to be called from preserve_pointer(). Shouldn't fail
2396 * if this is missed, just may delay the moving of objects to unboxed
2397 * pages, and the freeing of pages. */
2398 static void
2399 maybe_adjust_large_object(lispobj *where)
2401 int first_page;
2402 int nwords;
2404 int remaining_bytes;
2405 int next_page;
2406 int bytes_freed;
2407 int old_bytes_used;
2409 int boxed;
2411 /* Check whether it's a vector or bignum object. */
2412 switch (widetag_of(where[0])) {
2413 case SIMPLE_VECTOR_WIDETAG:
2414 boxed = BOXED_PAGE;
2415 break;
2416 case BIGNUM_WIDETAG:
2417 case SIMPLE_BASE_STRING_WIDETAG:
2418 case SIMPLE_BIT_VECTOR_WIDETAG:
2419 case SIMPLE_ARRAY_NIL_WIDETAG:
2420 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2421 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2422 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2423 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2424 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2425 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2426 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2427 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2428 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2429 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2430 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2431 #endif
2432 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2433 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2434 #endif
2435 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2436 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2437 #endif
2438 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2439 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2440 #endif
2441 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2442 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2443 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2444 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2445 #endif
2446 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2447 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2448 #endif
2449 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2450 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2451 #endif
2452 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2453 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2454 #endif
2455 boxed = UNBOXED_PAGE;
2456 break;
2457 default:
2458 return;
2461 /* Find its current size. */
2462 nwords = (sizetab[widetag_of(where[0])])(where);
2464 first_page = find_page_index((void *)where);
2465 gc_assert(first_page >= 0);
2467 /* Note: Any page write-protection must be removed, else a later
2468 * scavenge_newspace may incorrectly not scavenge these pages.
2469 * This would not be necessary if they are added to the new areas,
2470 * but lets do it for them all (they'll probably be written
2471 * anyway?). */
2473 gc_assert(page_table[first_page].first_object_offset == 0);
2475 next_page = first_page;
2476 remaining_bytes = nwords*4;
2477 while (remaining_bytes > 4096) {
2478 gc_assert(page_table[next_page].gen == from_space);
2479 gc_assert((page_table[next_page].allocated == BOXED_PAGE)
2480 || (page_table[next_page].allocated == UNBOXED_PAGE));
2481 gc_assert(page_table[next_page].large_object);
2482 gc_assert(page_table[next_page].first_object_offset ==
2483 -4096*(next_page-first_page));
2484 gc_assert(page_table[next_page].bytes_used == 4096);
2486 page_table[next_page].allocated = boxed;
2488 /* Shouldn't be write-protected at this stage. Essential that the
2489 * pages aren't. */
2490 gc_assert(!page_table[next_page].write_protected);
2491 remaining_bytes -= 4096;
2492 next_page++;
2495 /* Now only one page remains, but the object may have shrunk so
2496 * there may be more unused pages which will be freed. */
2498 /* Object may have shrunk but shouldn't have grown - check. */
2499 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2501 page_table[next_page].allocated = boxed;
2502 gc_assert(page_table[next_page].allocated ==
2503 page_table[first_page].allocated);
2505 /* Adjust the bytes_used. */
2506 old_bytes_used = page_table[next_page].bytes_used;
2507 page_table[next_page].bytes_used = remaining_bytes;
2509 bytes_freed = old_bytes_used - remaining_bytes;
2511 /* Free any remaining pages; needs care. */
2512 next_page++;
2513 while ((old_bytes_used == 4096) &&
2514 (page_table[next_page].gen == from_space) &&
2515 ((page_table[next_page].allocated == UNBOXED_PAGE)
2516 || (page_table[next_page].allocated == BOXED_PAGE)) &&
2517 page_table[next_page].large_object &&
2518 (page_table[next_page].first_object_offset ==
2519 -(next_page - first_page)*4096)) {
2520 /* It checks out OK, free the page. We don't need to both zeroing
2521 * pages as this should have been done before shrinking the
2522 * object. These pages shouldn't be write protected as they
2523 * should be zero filled. */
2524 gc_assert(page_table[next_page].write_protected == 0);
2526 old_bytes_used = page_table[next_page].bytes_used;
2527 page_table[next_page].allocated = FREE_PAGE;
2528 page_table[next_page].bytes_used = 0;
2529 bytes_freed += old_bytes_used;
2530 next_page++;
2533 if ((bytes_freed > 0) && gencgc_verbose) {
2534 FSHOW((stderr,
2535 "/maybe_adjust_large_object() freed %d\n",
2536 bytes_freed));
2539 generations[from_space].bytes_allocated -= bytes_freed;
2540 bytes_allocated -= bytes_freed;
2542 return;
2545 /* Take a possible pointer to a Lisp object and mark its page in the
2546 * page_table so that it will not be relocated during a GC.
2548 * This involves locating the page it points to, then backing up to
2549 * the first page that has its first object start at offset 0, and
2550 * then marking all pages dont_move from the first until a page that
2551 * ends by being full, or having free gen.
2553 * This ensures that objects spanning pages are not broken.
2555 * It is assumed that all the page static flags have been cleared at
2556 * the start of a GC.
2558 * It is also assumed that the current gc_alloc() region has been
2559 * flushed and the tables updated. */
2560 static void
2561 preserve_pointer(void *addr)
2563 int addr_page_index = find_page_index(addr);
2564 int first_page;
2565 int i;
2566 unsigned region_allocation;
2568 /* quick check 1: Address is quite likely to have been invalid. */
2569 if ((addr_page_index == -1)
2570 || (page_table[addr_page_index].allocated == FREE_PAGE)
2571 || (page_table[addr_page_index].bytes_used == 0)
2572 || (page_table[addr_page_index].gen != from_space)
2573 /* Skip if already marked dont_move. */
2574 || (page_table[addr_page_index].dont_move != 0))
2575 return;
2576 gc_assert(!(page_table[addr_page_index].allocated & OPEN_REGION_PAGE));
2577 /* (Now that we know that addr_page_index is in range, it's
2578 * safe to index into page_table[] with it.) */
2579 region_allocation = page_table[addr_page_index].allocated;
2581 /* quick check 2: Check the offset within the page.
2583 * FIXME: The mask should have a symbolic name, and ideally should
2584 * be derived from page size instead of hardwired to 0xfff.
2585 * (Also fix other uses of 0xfff, elsewhere.) */
2586 if (((unsigned)addr & 0xfff) > page_table[addr_page_index].bytes_used)
2587 return;
2589 /* Filter out anything which can't be a pointer to a Lisp object
2590 * (or, as a special case which also requires dont_move, a return
2591 * address referring to something in a CodeObject). This is
2592 * expensive but important, since it vastly reduces the
2593 * probability that random garbage will be bogusly interpreted as
2594 * a pointer which prevents a page from moving. */
2595 if (!(possibly_valid_dynamic_space_pointer(addr)))
2596 return;
2597 first_page = addr_page_index;
2599 /* Work backwards to find a page with a first_object_offset of 0.
2600 * The pages should be contiguous with all bytes used in the same
2601 * gen. Assumes the first_object_offset is negative or zero. */
2603 /* this is probably needlessly conservative. The first object in
2604 * the page may not even be the one we were passed a pointer to:
2605 * if this is the case, we will write-protect all the previous
2606 * object's pages too.
2609 while (page_table[first_page].first_object_offset != 0) {
2610 --first_page;
2611 /* Do some checks. */
2612 gc_assert(page_table[first_page].bytes_used == 4096);
2613 gc_assert(page_table[first_page].gen == from_space);
2614 gc_assert(page_table[first_page].allocated == region_allocation);
2617 /* Adjust any large objects before promotion as they won't be
2618 * copied after promotion. */
2619 if (page_table[first_page].large_object) {
2620 maybe_adjust_large_object(page_address(first_page));
2621 /* If a large object has shrunk then addr may now point to a
2622 * free area in which case it's ignored here. Note it gets
2623 * through the valid pointer test above because the tail looks
2624 * like conses. */
2625 if ((page_table[addr_page_index].allocated == FREE_PAGE)
2626 || (page_table[addr_page_index].bytes_used == 0)
2627 /* Check the offset within the page. */
2628 || (((unsigned)addr & 0xfff)
2629 > page_table[addr_page_index].bytes_used)) {
2630 FSHOW((stderr,
2631 "weird? ignore ptr 0x%x to freed area of large object\n",
2632 addr));
2633 return;
2635 /* It may have moved to unboxed pages. */
2636 region_allocation = page_table[first_page].allocated;
2639 /* Now work forward until the end of this contiguous area is found,
2640 * marking all pages as dont_move. */
2641 for (i = first_page; ;i++) {
2642 gc_assert(page_table[i].allocated == region_allocation);
2644 /* Mark the page static. */
2645 page_table[i].dont_move = 1;
2647 /* Move the page to the new_space. XX I'd rather not do this
2648 * but the GC logic is not quite able to copy with the static
2649 * pages remaining in the from space. This also requires the
2650 * generation bytes_allocated counters be updated. */
2651 page_table[i].gen = new_space;
2652 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2653 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2655 /* It is essential that the pages are not write protected as
2656 * they may have pointers into the old-space which need
2657 * scavenging. They shouldn't be write protected at this
2658 * stage. */
2659 gc_assert(!page_table[i].write_protected);
2661 /* Check whether this is the last page in this contiguous block.. */
2662 if ((page_table[i].bytes_used < 4096)
2663 /* ..or it is 4096 and is the last in the block */
2664 || (page_table[i+1].allocated == FREE_PAGE)
2665 || (page_table[i+1].bytes_used == 0) /* next page free */
2666 || (page_table[i+1].gen != from_space) /* diff. gen */
2667 || (page_table[i+1].first_object_offset == 0))
2668 break;
2671 /* Check that the page is now static. */
2672 gc_assert(page_table[addr_page_index].dont_move != 0);
2675 /* If the given page is not write-protected, then scan it for pointers
2676 * to younger generations or the top temp. generation, if no
2677 * suspicious pointers are found then the page is write-protected.
2679 * Care is taken to check for pointers to the current gc_alloc()
2680 * region if it is a younger generation or the temp. generation. This
2681 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2682 * the gc_alloc_generation does not need to be checked as this is only
2683 * called from scavenge_generation() when the gc_alloc generation is
2684 * younger, so it just checks if there is a pointer to the current
2685 * region.
2687 * We return 1 if the page was write-protected, else 0. */
2688 static int
2689 update_page_write_prot(int page)
2691 int gen = page_table[page].gen;
2692 int j;
2693 int wp_it = 1;
2694 void **page_addr = (void **)page_address(page);
2695 int num_words = page_table[page].bytes_used / 4;
2697 /* Shouldn't be a free page. */
2698 gc_assert(page_table[page].allocated != FREE_PAGE);
2699 gc_assert(page_table[page].bytes_used != 0);
2701 /* Skip if it's already write-protected, pinned, or unboxed */
2702 if (page_table[page].write_protected
2703 || page_table[page].dont_move
2704 || (page_table[page].allocated & UNBOXED_PAGE))
2705 return (0);
2707 /* Scan the page for pointers to younger generations or the
2708 * top temp. generation. */
2710 for (j = 0; j < num_words; j++) {
2711 void *ptr = *(page_addr+j);
2712 int index = find_page_index(ptr);
2714 /* Check that it's in the dynamic space */
2715 if (index != -1)
2716 if (/* Does it point to a younger or the temp. generation? */
2717 ((page_table[index].allocated != FREE_PAGE)
2718 && (page_table[index].bytes_used != 0)
2719 && ((page_table[index].gen < gen)
2720 || (page_table[index].gen == NUM_GENERATIONS)))
2722 /* Or does it point within a current gc_alloc() region? */
2723 || ((boxed_region.start_addr <= ptr)
2724 && (ptr <= boxed_region.free_pointer))
2725 || ((unboxed_region.start_addr <= ptr)
2726 && (ptr <= unboxed_region.free_pointer))) {
2727 wp_it = 0;
2728 break;
2732 if (wp_it == 1) {
2733 /* Write-protect the page. */
2734 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2736 os_protect((void *)page_addr,
2737 4096,
2738 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2740 /* Note the page as protected in the page tables. */
2741 page_table[page].write_protected = 1;
2744 return (wp_it);
2747 /* Scavenge a generation.
2749 * This will not resolve all pointers when generation is the new
2750 * space, as new objects may be added which are not check here - use
2751 * scavenge_newspace generation.
2753 * Write-protected pages should not have any pointers to the
2754 * from_space so do need scavenging; thus write-protected pages are
2755 * not always scavenged. There is some code to check that these pages
2756 * are not written; but to check fully the write-protected pages need
2757 * to be scavenged by disabling the code to skip them.
2759 * Under the current scheme when a generation is GCed the younger
2760 * generations will be empty. So, when a generation is being GCed it
2761 * is only necessary to scavenge the older generations for pointers
2762 * not the younger. So a page that does not have pointers to younger
2763 * generations does not need to be scavenged.
2765 * The write-protection can be used to note pages that don't have
2766 * pointers to younger pages. But pages can be written without having
2767 * pointers to younger generations. After the pages are scavenged here
2768 * they can be scanned for pointers to younger generations and if
2769 * there are none the page can be write-protected.
2771 * One complication is when the newspace is the top temp. generation.
2773 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2774 * that none were written, which they shouldn't be as they should have
2775 * no pointers to younger generations. This breaks down for weak
2776 * pointers as the objects contain a link to the next and are written
2777 * if a weak pointer is scavenged. Still it's a useful check. */
2778 static void
2779 scavenge_generation(int generation)
2781 int i;
2782 int num_wp = 0;
2784 #define SC_GEN_CK 0
2785 #if SC_GEN_CK
2786 /* Clear the write_protected_cleared flags on all pages. */
2787 for (i = 0; i < NUM_PAGES; i++)
2788 page_table[i].write_protected_cleared = 0;
2789 #endif
2791 for (i = 0; i < last_free_page; i++) {
2792 if ((page_table[i].allocated & BOXED_PAGE)
2793 && (page_table[i].bytes_used != 0)
2794 && (page_table[i].gen == generation)) {
2795 int last_page;
2797 /* This should be the start of a contiguous block. */
2798 gc_assert(page_table[i].first_object_offset == 0);
2800 /* We need to find the full extent of this contiguous
2801 * block in case objects span pages. */
2803 /* Now work forward until the end of this contiguous area
2804 * is found. A small area is preferred as there is a
2805 * better chance of its pages being write-protected. */
2806 for (last_page = i; ; last_page++)
2807 /* Check whether this is the last page in this contiguous
2808 * block. */
2809 if ((page_table[last_page].bytes_used < 4096)
2810 /* Or it is 4096 and is the last in the block */
2811 || (!(page_table[last_page+1].allocated & BOXED_PAGE))
2812 || (page_table[last_page+1].bytes_used == 0)
2813 || (page_table[last_page+1].gen != generation)
2814 || (page_table[last_page+1].first_object_offset == 0))
2815 break;
2817 /* Do a limited check for write_protected pages. If all pages
2818 * are write_protected then there is no need to scavenge. */
2820 int j, all_wp = 1;
2821 for (j = i; j <= last_page; j++)
2822 if (page_table[j].write_protected == 0) {
2823 all_wp = 0;
2824 break;
2826 #if !SC_GEN_CK
2827 if (all_wp == 0)
2828 #endif
2830 scavenge(page_address(i), (page_table[last_page].bytes_used
2831 + (last_page-i)*4096)/4);
2833 /* Now scan the pages and write protect those
2834 * that don't have pointers to younger
2835 * generations. */
2836 if (enable_page_protection) {
2837 for (j = i; j <= last_page; j++) {
2838 num_wp += update_page_write_prot(j);
2843 i = last_page;
2847 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2848 FSHOW((stderr,
2849 "/write protected %d pages within generation %d\n",
2850 num_wp, generation));
2853 #if SC_GEN_CK
2854 /* Check that none of the write_protected pages in this generation
2855 * have been written to. */
2856 for (i = 0; i < NUM_PAGES; i++) {
2857 if ((page_table[i].allocation ! =FREE_PAGE)
2858 && (page_table[i].bytes_used != 0)
2859 && (page_table[i].gen == generation)
2860 && (page_table[i].write_protected_cleared != 0)) {
2861 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2862 FSHOW((stderr,
2863 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2864 page_table[i].bytes_used,
2865 page_table[i].first_object_offset,
2866 page_table[i].dont_move));
2867 lose("write to protected page %d in scavenge_generation()", i);
2870 #endif
2874 /* Scavenge a newspace generation. As it is scavenged new objects may
2875 * be allocated to it; these will also need to be scavenged. This
2876 * repeats until there are no more objects unscavenged in the
2877 * newspace generation.
2879 * To help improve the efficiency, areas written are recorded by
2880 * gc_alloc() and only these scavenged. Sometimes a little more will be
2881 * scavenged, but this causes no harm. An easy check is done that the
2882 * scavenged bytes equals the number allocated in the previous
2883 * scavenge.
2885 * Write-protected pages are not scanned except if they are marked
2886 * dont_move in which case they may have been promoted and still have
2887 * pointers to the from space.
2889 * Write-protected pages could potentially be written by alloc however
2890 * to avoid having to handle re-scavenging of write-protected pages
2891 * gc_alloc() does not write to write-protected pages.
2893 * New areas of objects allocated are recorded alternatively in the two
2894 * new_areas arrays below. */
2895 static struct new_area new_areas_1[NUM_NEW_AREAS];
2896 static struct new_area new_areas_2[NUM_NEW_AREAS];
2898 /* Do one full scan of the new space generation. This is not enough to
2899 * complete the job as new objects may be added to the generation in
2900 * the process which are not scavenged. */
2901 static void
2902 scavenge_newspace_generation_one_scan(int generation)
2904 int i;
2906 FSHOW((stderr,
2907 "/starting one full scan of newspace generation %d\n",
2908 generation));
2909 for (i = 0; i < last_free_page; i++) {
2910 /* note that this skips over open regions when it encounters them */
2911 if ((page_table[i].allocated == BOXED_PAGE)
2912 && (page_table[i].bytes_used != 0)
2913 && (page_table[i].gen == generation)
2914 && ((page_table[i].write_protected == 0)
2915 /* (This may be redundant as write_protected is now
2916 * cleared before promotion.) */
2917 || (page_table[i].dont_move == 1))) {
2918 int last_page;
2920 /* The scavenge will start at the first_object_offset of page i.
2922 * We need to find the full extent of this contiguous
2923 * block in case objects span pages.
2925 * Now work forward until the end of this contiguous area
2926 * is found. A small area is preferred as there is a
2927 * better chance of its pages being write-protected. */
2928 for (last_page = i; ;last_page++) {
2929 /* Check whether this is the last page in this
2930 * contiguous block */
2931 if ((page_table[last_page].bytes_used < 4096)
2932 /* Or it is 4096 and is the last in the block */
2933 || (!(page_table[last_page+1].allocated & BOXED_PAGE))
2934 || (page_table[last_page+1].bytes_used == 0)
2935 || (page_table[last_page+1].gen != generation)
2936 || (page_table[last_page+1].first_object_offset == 0))
2937 break;
2940 /* Do a limited check for write-protected pages. If all
2941 * pages are write-protected then no need to scavenge,
2942 * except if the pages are marked dont_move. */
2944 int j, all_wp = 1;
2945 for (j = i; j <= last_page; j++)
2946 if ((page_table[j].write_protected == 0)
2947 || (page_table[j].dont_move != 0)) {
2948 all_wp = 0;
2949 break;
2952 if (!all_wp) {
2953 int size;
2955 /* Calculate the size. */
2956 if (last_page == i)
2957 size = (page_table[last_page].bytes_used
2958 - page_table[i].first_object_offset)/4;
2959 else
2960 size = (page_table[last_page].bytes_used
2961 + (last_page-i)*4096
2962 - page_table[i].first_object_offset)/4;
2965 new_areas_ignore_page = last_page;
2967 scavenge(page_address(i) +
2968 page_table[i].first_object_offset,
2969 size);
2975 i = last_page;
2978 FSHOW((stderr,
2979 "/done with one full scan of newspace generation %d\n",
2980 generation));
2983 /* Do a complete scavenge of the newspace generation. */
2984 static void
2985 scavenge_newspace_generation(int generation)
2987 int i;
2989 /* the new_areas array currently being written to by gc_alloc() */
2990 struct new_area (*current_new_areas)[] = &new_areas_1;
2991 int current_new_areas_index;
2993 /* the new_areas created but the previous scavenge cycle */
2994 struct new_area (*previous_new_areas)[] = NULL;
2995 int previous_new_areas_index;
2997 /* Flush the current regions updating the tables. */
2998 gc_alloc_update_all_page_tables();
3000 /* Turn on the recording of new areas by gc_alloc(). */
3001 new_areas = current_new_areas;
3002 new_areas_index = 0;
3004 /* Don't need to record new areas that get scavenged anyway during
3005 * scavenge_newspace_generation_one_scan. */
3006 record_new_objects = 1;
3008 /* Start with a full scavenge. */
3009 scavenge_newspace_generation_one_scan(generation);
3011 /* Record all new areas now. */
3012 record_new_objects = 2;
3014 /* Flush the current regions updating the tables. */
3015 gc_alloc_update_all_page_tables();
3017 /* Grab new_areas_index. */
3018 current_new_areas_index = new_areas_index;
3020 /*FSHOW((stderr,
3021 "The first scan is finished; current_new_areas_index=%d.\n",
3022 current_new_areas_index));*/
3024 while (current_new_areas_index > 0) {
3025 /* Move the current to the previous new areas */
3026 previous_new_areas = current_new_areas;
3027 previous_new_areas_index = current_new_areas_index;
3029 /* Scavenge all the areas in previous new areas. Any new areas
3030 * allocated are saved in current_new_areas. */
3032 /* Allocate an array for current_new_areas; alternating between
3033 * new_areas_1 and 2 */
3034 if (previous_new_areas == &new_areas_1)
3035 current_new_areas = &new_areas_2;
3036 else
3037 current_new_areas = &new_areas_1;
3039 /* Set up for gc_alloc(). */
3040 new_areas = current_new_areas;
3041 new_areas_index = 0;
3043 /* Check whether previous_new_areas had overflowed. */
3044 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3046 /* New areas of objects allocated have been lost so need to do a
3047 * full scan to be sure! If this becomes a problem try
3048 * increasing NUM_NEW_AREAS. */
3049 if (gencgc_verbose)
3050 SHOW("new_areas overflow, doing full scavenge");
3052 /* Don't need to record new areas that get scavenge anyway
3053 * during scavenge_newspace_generation_one_scan. */
3054 record_new_objects = 1;
3056 scavenge_newspace_generation_one_scan(generation);
3058 /* Record all new areas now. */
3059 record_new_objects = 2;
3061 /* Flush the current regions updating the tables. */
3062 gc_alloc_update_all_page_tables();
3064 } else {
3066 /* Work through previous_new_areas. */
3067 for (i = 0; i < previous_new_areas_index; i++) {
3068 /* FIXME: All these bare *4 and /4 should be something
3069 * like BYTES_PER_WORD or WBYTES. */
3070 int page = (*previous_new_areas)[i].page;
3071 int offset = (*previous_new_areas)[i].offset;
3072 int size = (*previous_new_areas)[i].size / 4;
3073 gc_assert((*previous_new_areas)[i].size % 4 == 0);
3074 scavenge(page_address(page)+offset, size);
3077 /* Flush the current regions updating the tables. */
3078 gc_alloc_update_all_page_tables();
3081 current_new_areas_index = new_areas_index;
3083 /*FSHOW((stderr,
3084 "The re-scan has finished; current_new_areas_index=%d.\n",
3085 current_new_areas_index));*/
3088 /* Turn off recording of areas allocated by gc_alloc(). */
3089 record_new_objects = 0;
3091 #if SC_NS_GEN_CK
3092 /* Check that none of the write_protected pages in this generation
3093 * have been written to. */
3094 for (i = 0; i < NUM_PAGES; i++) {
3095 if ((page_table[i].allocation != FREE_PAGE)
3096 && (page_table[i].bytes_used != 0)
3097 && (page_table[i].gen == generation)
3098 && (page_table[i].write_protected_cleared != 0)
3099 && (page_table[i].dont_move == 0)) {
3100 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d",
3101 i, generation, page_table[i].dont_move);
3104 #endif
3107 /* Un-write-protect all the pages in from_space. This is done at the
3108 * start of a GC else there may be many page faults while scavenging
3109 * the newspace (I've seen drive the system time to 99%). These pages
3110 * would need to be unprotected anyway before unmapping in
3111 * free_oldspace; not sure what effect this has on paging.. */
3112 static void
3113 unprotect_oldspace(void)
3115 int i;
3117 for (i = 0; i < last_free_page; i++) {
3118 if ((page_table[i].allocated != FREE_PAGE)
3119 && (page_table[i].bytes_used != 0)
3120 && (page_table[i].gen == from_space)) {
3121 void *page_start;
3123 page_start = (void *)page_address(i);
3125 /* Remove any write-protection. We should be able to rely
3126 * on the write-protect flag to avoid redundant calls. */
3127 if (page_table[i].write_protected) {
3128 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3129 page_table[i].write_protected = 0;
3135 /* Work through all the pages and free any in from_space. This
3136 * assumes that all objects have been copied or promoted to an older
3137 * generation. Bytes_allocated and the generation bytes_allocated
3138 * counter are updated. The number of bytes freed is returned. */
3139 extern void i586_bzero(void *addr, int nbytes);
3140 static int
3141 free_oldspace(void)
3143 int bytes_freed = 0;
3144 int first_page, last_page;
3146 first_page = 0;
3148 do {
3149 /* Find a first page for the next region of pages. */
3150 while ((first_page < last_free_page)
3151 && ((page_table[first_page].allocated == FREE_PAGE)
3152 || (page_table[first_page].bytes_used == 0)
3153 || (page_table[first_page].gen != from_space)))
3154 first_page++;
3156 if (first_page >= last_free_page)
3157 break;
3159 /* Find the last page of this region. */
3160 last_page = first_page;
3162 do {
3163 /* Free the page. */
3164 bytes_freed += page_table[last_page].bytes_used;
3165 generations[page_table[last_page].gen].bytes_allocated -=
3166 page_table[last_page].bytes_used;
3167 page_table[last_page].allocated = FREE_PAGE;
3168 page_table[last_page].bytes_used = 0;
3170 /* Remove any write-protection. We should be able to rely
3171 * on the write-protect flag to avoid redundant calls. */
3173 void *page_start = (void *)page_address(last_page);
3175 if (page_table[last_page].write_protected) {
3176 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3177 page_table[last_page].write_protected = 0;
3180 last_page++;
3182 while ((last_page < last_free_page)
3183 && (page_table[last_page].allocated != FREE_PAGE)
3184 && (page_table[last_page].bytes_used != 0)
3185 && (page_table[last_page].gen == from_space));
3187 /* Zero pages from first_page to (last_page-1).
3189 * FIXME: Why not use os_zero(..) function instead of
3190 * hand-coding this again? (Check other gencgc_unmap_zero
3191 * stuff too. */
3192 if (gencgc_unmap_zero) {
3193 void *page_start, *addr;
3195 page_start = (void *)page_address(first_page);
3197 os_invalidate(page_start, 4096*(last_page-first_page));
3198 addr = os_validate(page_start, 4096*(last_page-first_page));
3199 if (addr == NULL || addr != page_start) {
3200 /* Is this an error condition? I couldn't really tell from
3201 * the old CMU CL code, which fprintf'ed a message with
3202 * an exclamation point at the end. But I've never seen the
3203 * message, so it must at least be unusual..
3205 * (The same condition is also tested for in gc_free_heap.)
3207 * -- WHN 19991129 */
3208 lose("i586_bzero: page moved, 0x%08x ==> 0x%08x",
3209 page_start,
3210 addr);
3212 } else {
3213 int *page_start;
3215 page_start = (int *)page_address(first_page);
3216 i586_bzero(page_start, 4096*(last_page-first_page));
3219 first_page = last_page;
3221 } while (first_page < last_free_page);
3223 bytes_allocated -= bytes_freed;
3224 return bytes_freed;
3227 #if 0
3228 /* Print some information about a pointer at the given address. */
3229 static void
3230 print_ptr(lispobj *addr)
3232 /* If addr is in the dynamic space then out the page information. */
3233 int pi1 = find_page_index((void*)addr);
3235 if (pi1 != -1)
3236 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3237 (unsigned int) addr,
3238 pi1,
3239 page_table[pi1].allocated,
3240 page_table[pi1].gen,
3241 page_table[pi1].bytes_used,
3242 page_table[pi1].first_object_offset,
3243 page_table[pi1].dont_move);
3244 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3245 *(addr-4),
3246 *(addr-3),
3247 *(addr-2),
3248 *(addr-1),
3249 *(addr-0),
3250 *(addr+1),
3251 *(addr+2),
3252 *(addr+3),
3253 *(addr+4));
3255 #endif
3257 extern int undefined_tramp;
3259 static void
3260 verify_space(lispobj *start, size_t words)
3262 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3263 int is_in_readonly_space =
3264 (READ_ONLY_SPACE_START <= (unsigned)start &&
3265 (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3267 while (words > 0) {
3268 size_t count = 1;
3269 lispobj thing = *(lispobj*)start;
3271 if (is_lisp_pointer(thing)) {
3272 int page_index = find_page_index((void*)thing);
3273 int to_readonly_space =
3274 (READ_ONLY_SPACE_START <= thing &&
3275 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3276 int to_static_space =
3277 (STATIC_SPACE_START <= thing &&
3278 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3280 /* Does it point to the dynamic space? */
3281 if (page_index != -1) {
3282 /* If it's within the dynamic space it should point to a used
3283 * page. XX Could check the offset too. */
3284 if ((page_table[page_index].allocated != FREE_PAGE)
3285 && (page_table[page_index].bytes_used == 0))
3286 lose ("Ptr %x @ %x sees free page.", thing, start);
3287 /* Check that it doesn't point to a forwarding pointer! */
3288 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3289 lose("Ptr %x @ %x sees forwarding ptr.", thing, start);
3291 /* Check that its not in the RO space as it would then be a
3292 * pointer from the RO to the dynamic space. */
3293 if (is_in_readonly_space) {
3294 lose("ptr to dynamic space %x from RO space %x",
3295 thing, start);
3297 /* Does it point to a plausible object? This check slows
3298 * it down a lot (so it's commented out).
3300 * "a lot" is serious: it ate 50 minutes cpu time on
3301 * my duron 950 before I came back from lunch and
3302 * killed it.
3304 * FIXME: Add a variable to enable this
3305 * dynamically. */
3307 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3308 lose("ptr %x to invalid object %x", thing, start);
3311 } else {
3312 /* Verify that it points to another valid space. */
3313 if (!to_readonly_space && !to_static_space
3314 && (thing != (unsigned)&undefined_tramp)) {
3315 lose("Ptr %x @ %x sees junk.", thing, start);
3318 } else {
3319 if (thing & 0x3) { /* Skip fixnums. FIXME: There should be an
3320 * is_fixnum for this. */
3322 switch(widetag_of(*start)) {
3324 /* boxed objects */
3325 case SIMPLE_VECTOR_WIDETAG:
3326 case RATIO_WIDETAG:
3327 case COMPLEX_WIDETAG:
3328 case SIMPLE_ARRAY_WIDETAG:
3329 case COMPLEX_BASE_STRING_WIDETAG:
3330 case COMPLEX_VECTOR_NIL_WIDETAG:
3331 case COMPLEX_BIT_VECTOR_WIDETAG:
3332 case COMPLEX_VECTOR_WIDETAG:
3333 case COMPLEX_ARRAY_WIDETAG:
3334 case CLOSURE_HEADER_WIDETAG:
3335 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3336 case VALUE_CELL_HEADER_WIDETAG:
3337 case SYMBOL_HEADER_WIDETAG:
3338 case BASE_CHAR_WIDETAG:
3339 case UNBOUND_MARKER_WIDETAG:
3340 case INSTANCE_HEADER_WIDETAG:
3341 case FDEFN_WIDETAG:
3342 count = 1;
3343 break;
3345 case CODE_HEADER_WIDETAG:
3347 lispobj object = *start;
3348 struct code *code;
3349 int nheader_words, ncode_words, nwords;
3350 lispobj fheaderl;
3351 struct simple_fun *fheaderp;
3353 code = (struct code *) start;
3355 /* Check that it's not in the dynamic space.
3356 * FIXME: Isn't is supposed to be OK for code
3357 * objects to be in the dynamic space these days? */
3358 if (is_in_dynamic_space
3359 /* It's ok if it's byte compiled code. The trace
3360 * table offset will be a fixnum if it's x86
3361 * compiled code - check.
3363 * FIXME: #^#@@! lack of abstraction here..
3364 * This line can probably go away now that
3365 * there's no byte compiler, but I've got
3366 * too much to worry about right now to try
3367 * to make sure. -- WHN 2001-10-06 */
3368 && !(code->trace_table_offset & 0x3)
3369 /* Only when enabled */
3370 && verify_dynamic_code_check) {
3371 FSHOW((stderr,
3372 "/code object at %x in the dynamic space\n",
3373 start));
3376 ncode_words = fixnum_value(code->code_size);
3377 nheader_words = HeaderValue(object);
3378 nwords = ncode_words + nheader_words;
3379 nwords = CEILING(nwords, 2);
3380 /* Scavenge the boxed section of the code data block */
3381 verify_space(start + 1, nheader_words - 1);
3383 /* Scavenge the boxed section of each function
3384 * object in the code data block. */
3385 fheaderl = code->entry_points;
3386 while (fheaderl != NIL) {
3387 fheaderp =
3388 (struct simple_fun *) native_pointer(fheaderl);
3389 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3390 verify_space(&fheaderp->name, 1);
3391 verify_space(&fheaderp->arglist, 1);
3392 verify_space(&fheaderp->type, 1);
3393 fheaderl = fheaderp->next;
3395 count = nwords;
3396 break;
3399 /* unboxed objects */
3400 case BIGNUM_WIDETAG:
3401 case SINGLE_FLOAT_WIDETAG:
3402 case DOUBLE_FLOAT_WIDETAG:
3403 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3404 case LONG_FLOAT_WIDETAG:
3405 #endif
3406 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3407 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3408 #endif
3409 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3410 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3411 #endif
3412 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3413 case COMPLEX_LONG_FLOAT_WIDETAG:
3414 #endif
3415 case SIMPLE_BASE_STRING_WIDETAG:
3416 case SIMPLE_BIT_VECTOR_WIDETAG:
3417 case SIMPLE_ARRAY_NIL_WIDETAG:
3418 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3419 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3420 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3421 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3422 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3423 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3424 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3425 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3426 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3427 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3428 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3429 #endif
3430 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3431 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3432 #endif
3433 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3434 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3435 #endif
3436 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3437 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3438 #endif
3439 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3440 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3441 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3442 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3443 #endif
3444 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3445 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3446 #endif
3447 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3448 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3449 #endif
3450 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3451 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3452 #endif
3453 case SAP_WIDETAG:
3454 case WEAK_POINTER_WIDETAG:
3455 count = (sizetab[widetag_of(*start)])(start);
3456 break;
3458 default:
3459 gc_abort();
3463 start += count;
3464 words -= count;
3468 static void
3469 verify_gc(void)
3471 /* FIXME: It would be nice to make names consistent so that
3472 * foo_size meant size *in* *bytes* instead of size in some
3473 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3474 * Some counts of lispobjs are called foo_count; it might be good
3475 * to grep for all foo_size and rename the appropriate ones to
3476 * foo_count. */
3477 int read_only_space_size =
3478 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3479 - (lispobj*)READ_ONLY_SPACE_START;
3480 int static_space_size =
3481 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3482 - (lispobj*)STATIC_SPACE_START;
3483 struct thread *th;
3484 for_each_thread(th) {
3485 int binding_stack_size =
3486 (lispobj*)SymbolValue(BINDING_STACK_POINTER,th)
3487 - (lispobj*)th->binding_stack_start;
3488 verify_space(th->binding_stack_start, binding_stack_size);
3490 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3491 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3494 static void
3495 verify_generation(int generation)
3497 int i;
3499 for (i = 0; i < last_free_page; i++) {
3500 if ((page_table[i].allocated != FREE_PAGE)
3501 && (page_table[i].bytes_used != 0)
3502 && (page_table[i].gen == generation)) {
3503 int last_page;
3504 int region_allocation = page_table[i].allocated;
3506 /* This should be the start of a contiguous block */
3507 gc_assert(page_table[i].first_object_offset == 0);
3509 /* Need to find the full extent of this contiguous block in case
3510 objects span pages. */
3512 /* Now work forward until the end of this contiguous area is
3513 found. */
3514 for (last_page = i; ;last_page++)
3515 /* Check whether this is the last page in this contiguous
3516 * block. */
3517 if ((page_table[last_page].bytes_used < 4096)
3518 /* Or it is 4096 and is the last in the block */
3519 || (page_table[last_page+1].allocated != region_allocation)
3520 || (page_table[last_page+1].bytes_used == 0)
3521 || (page_table[last_page+1].gen != generation)
3522 || (page_table[last_page+1].first_object_offset == 0))
3523 break;
3525 verify_space(page_address(i), (page_table[last_page].bytes_used
3526 + (last_page-i)*4096)/4);
3527 i = last_page;
3532 /* Check that all the free space is zero filled. */
3533 static void
3534 verify_zero_fill(void)
3536 int page;
3538 for (page = 0; page < last_free_page; page++) {
3539 if (page_table[page].allocated == FREE_PAGE) {
3540 /* The whole page should be zero filled. */
3541 int *start_addr = (int *)page_address(page);
3542 int size = 1024;
3543 int i;
3544 for (i = 0; i < size; i++) {
3545 if (start_addr[i] != 0) {
3546 lose("free page not zero at %x", start_addr + i);
3549 } else {
3550 int free_bytes = 4096 - page_table[page].bytes_used;
3551 if (free_bytes > 0) {
3552 int *start_addr = (int *)((unsigned)page_address(page)
3553 + page_table[page].bytes_used);
3554 int size = free_bytes / 4;
3555 int i;
3556 for (i = 0; i < size; i++) {
3557 if (start_addr[i] != 0) {
3558 lose("free region not zero at %x", start_addr + i);
3566 /* External entry point for verify_zero_fill */
3567 void
3568 gencgc_verify_zero_fill(void)
3570 /* Flush the alloc regions updating the tables. */
3571 gc_alloc_update_all_page_tables();
3572 SHOW("verifying zero fill");
3573 verify_zero_fill();
3576 static void
3577 verify_dynamic_space(void)
3579 int i;
3581 for (i = 0; i < NUM_GENERATIONS; i++)
3582 verify_generation(i);
3584 if (gencgc_enable_verify_zero_fill)
3585 verify_zero_fill();
3588 /* Write-protect all the dynamic boxed pages in the given generation. */
3589 static void
3590 write_protect_generation_pages(int generation)
3592 int i;
3594 gc_assert(generation < NUM_GENERATIONS);
3596 for (i = 0; i < last_free_page; i++)
3597 if ((page_table[i].allocated == BOXED_PAGE)
3598 && (page_table[i].bytes_used != 0)
3599 && !page_table[i].dont_move
3600 && (page_table[i].gen == generation)) {
3601 void *page_start;
3603 page_start = (void *)page_address(i);
3605 os_protect(page_start,
3606 4096,
3607 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3609 /* Note the page as protected in the page tables. */
3610 page_table[i].write_protected = 1;
3613 if (gencgc_verbose > 1) {
3614 FSHOW((stderr,
3615 "/write protected %d of %d pages in generation %d\n",
3616 count_write_protect_generation_pages(generation),
3617 count_generation_pages(generation),
3618 generation));
3622 /* Garbage collect a generation. If raise is 0 then the remains of the
3623 * generation are not raised to the next generation. */
3624 static void
3625 garbage_collect_generation(int generation, int raise)
3627 unsigned long bytes_freed;
3628 unsigned long i;
3629 unsigned long static_space_size;
3630 struct thread *th;
3631 gc_assert(generation <= (NUM_GENERATIONS-1));
3633 /* The oldest generation can't be raised. */
3634 gc_assert((generation != (NUM_GENERATIONS-1)) || (raise == 0));
3636 /* Initialize the weak pointer list. */
3637 weak_pointers = NULL;
3639 /* When a generation is not being raised it is transported to a
3640 * temporary generation (NUM_GENERATIONS), and lowered when
3641 * done. Set up this new generation. There should be no pages
3642 * allocated to it yet. */
3643 if (!raise)
3644 gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
3646 /* Set the global src and dest. generations */
3647 from_space = generation;
3648 if (raise)
3649 new_space = generation+1;
3650 else
3651 new_space = NUM_GENERATIONS;
3653 /* Change to a new space for allocation, resetting the alloc_start_page */
3654 gc_alloc_generation = new_space;
3655 generations[new_space].alloc_start_page = 0;
3656 generations[new_space].alloc_unboxed_start_page = 0;
3657 generations[new_space].alloc_large_start_page = 0;
3658 generations[new_space].alloc_large_unboxed_start_page = 0;
3660 /* Before any pointers are preserved, the dont_move flags on the
3661 * pages need to be cleared. */
3662 for (i = 0; i < last_free_page; i++)
3663 if(page_table[i].gen==from_space)
3664 page_table[i].dont_move = 0;
3666 /* Un-write-protect the old-space pages. This is essential for the
3667 * promoted pages as they may contain pointers into the old-space
3668 * which need to be scavenged. It also helps avoid unnecessary page
3669 * faults as forwarding pointers are written into them. They need to
3670 * be un-protected anyway before unmapping later. */
3671 unprotect_oldspace();
3673 /* Scavenge the stacks' conservative roots. */
3675 /* there are potentially two stacks for each thread: the main
3676 * stack, which may contain Lisp pointers, and the alternate stack.
3677 * We don't ever run Lisp code on the altstack, but it may
3678 * host a sigcontext with lisp objects in it */
3680 /* what we need to do: (1) find the stack pointer for the main
3681 * stack; scavenge it (2) find the interrupt context on the
3682 * alternate stack that might contain lisp values, and scavenge
3683 * that */
3685 /* we assume that none of the preceding applies to the thread that
3686 * initiates GC. If you ever call GC from inside an altstack
3687 * handler, you will lose. */
3688 for_each_thread(th) {
3689 void **ptr;
3690 void **esp=(void **)-1;
3691 int i,free;
3692 #ifdef LISP_FEATURE_SB_THREAD
3693 if(th==arch_os_get_current_thread()) {
3694 esp = (void **) &raise;
3695 } else {
3696 void **esp1;
3697 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3698 for(i=free-1;i>=0;i--) {
3699 os_context_t *c=th->interrupt_contexts[i];
3700 esp1 = (void **) *os_context_register_addr(c,reg_ESP);
3701 if(esp1>=th->control_stack_start&& esp1<th->control_stack_end){
3702 if(esp1<esp) esp=esp1;
3703 for(ptr = (void **)(c+1); ptr>=(void **)c; ptr--) {
3704 preserve_pointer(*ptr);
3709 #else
3710 esp = (void **) &raise;
3711 #endif
3712 for (ptr = (void **)th->control_stack_end; ptr > esp; ptr--) {
3713 preserve_pointer(*ptr);
3717 #if QSHOW
3718 if (gencgc_verbose > 1) {
3719 int num_dont_move_pages = count_dont_move_pages();
3720 fprintf(stderr,
3721 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3722 num_dont_move_pages,
3723 /* FIXME: 4096 should be symbolic constant here and
3724 * prob'ly elsewhere too. */
3725 num_dont_move_pages * 4096);
3727 #endif
3729 /* Scavenge all the rest of the roots. */
3731 /* Scavenge the Lisp functions of the interrupt handlers, taking
3732 * care to avoid SIG_DFL and SIG_IGN. */
3733 for_each_thread(th) {
3734 struct interrupt_data *data=th->interrupt_data;
3735 for (i = 0; i < NSIG; i++) {
3736 union interrupt_handler handler = data->interrupt_handlers[i];
3737 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3738 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3739 scavenge((lispobj *)(data->interrupt_handlers + i), 1);
3743 /* Scavenge the binding stacks. */
3745 struct thread *th;
3746 for_each_thread(th) {
3747 long len= (lispobj *)SymbolValue(BINDING_STACK_POINTER,th) -
3748 th->binding_stack_start;
3749 scavenge((lispobj *) th->binding_stack_start,len);
3750 #ifdef LISP_FEATURE_SB_THREAD
3751 /* do the tls as well */
3752 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
3753 (sizeof (struct thread))/(sizeof (lispobj));
3754 scavenge((lispobj *) (th+1),len);
3755 #endif
3759 /* The original CMU CL code had scavenge-read-only-space code
3760 * controlled by the Lisp-level variable
3761 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3762 * wasn't documented under what circumstances it was useful or
3763 * safe to turn it on, so it's been turned off in SBCL. If you
3764 * want/need this functionality, and can test and document it,
3765 * please submit a patch. */
3766 #if 0
3767 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3768 unsigned long read_only_space_size =
3769 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3770 (lispobj*)READ_ONLY_SPACE_START;
3771 FSHOW((stderr,
3772 "/scavenge read only space: %d bytes\n",
3773 read_only_space_size * sizeof(lispobj)));
3774 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3776 #endif
3778 /* Scavenge static space. */
3779 static_space_size =
3780 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
3781 (lispobj *)STATIC_SPACE_START;
3782 if (gencgc_verbose > 1) {
3783 FSHOW((stderr,
3784 "/scavenge static space: %d bytes\n",
3785 static_space_size * sizeof(lispobj)));
3787 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3789 /* All generations but the generation being GCed need to be
3790 * scavenged. The new_space generation needs special handling as
3791 * objects may be moved in - it is handled separately below. */
3792 for (i = 0; i < NUM_GENERATIONS; i++) {
3793 if ((i != generation) && (i != new_space)) {
3794 scavenge_generation(i);
3798 /* Finally scavenge the new_space generation. Keep going until no
3799 * more objects are moved into the new generation */
3800 scavenge_newspace_generation(new_space);
3802 /* FIXME: I tried reenabling this check when debugging unrelated
3803 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3804 * Since the current GC code seems to work well, I'm guessing that
3805 * this debugging code is just stale, but I haven't tried to
3806 * figure it out. It should be figured out and then either made to
3807 * work or just deleted. */
3808 #define RESCAN_CHECK 0
3809 #if RESCAN_CHECK
3810 /* As a check re-scavenge the newspace once; no new objects should
3811 * be found. */
3813 int old_bytes_allocated = bytes_allocated;
3814 int bytes_allocated;
3816 /* Start with a full scavenge. */
3817 scavenge_newspace_generation_one_scan(new_space);
3819 /* Flush the current regions, updating the tables. */
3820 gc_alloc_update_all_page_tables();
3822 bytes_allocated = bytes_allocated - old_bytes_allocated;
3824 if (bytes_allocated != 0) {
3825 lose("Rescan of new_space allocated %d more bytes.",
3826 bytes_allocated);
3829 #endif
3831 scan_weak_pointers();
3833 /* Flush the current regions, updating the tables. */
3834 gc_alloc_update_all_page_tables();
3836 /* Free the pages in oldspace, but not those marked dont_move. */
3837 bytes_freed = free_oldspace();
3839 /* If the GC is not raising the age then lower the generation back
3840 * to its normal generation number */
3841 if (!raise) {
3842 for (i = 0; i < last_free_page; i++)
3843 if ((page_table[i].bytes_used != 0)
3844 && (page_table[i].gen == NUM_GENERATIONS))
3845 page_table[i].gen = generation;
3846 gc_assert(generations[generation].bytes_allocated == 0);
3847 generations[generation].bytes_allocated =
3848 generations[NUM_GENERATIONS].bytes_allocated;
3849 generations[NUM_GENERATIONS].bytes_allocated = 0;
3852 /* Reset the alloc_start_page for generation. */
3853 generations[generation].alloc_start_page = 0;
3854 generations[generation].alloc_unboxed_start_page = 0;
3855 generations[generation].alloc_large_start_page = 0;
3856 generations[generation].alloc_large_unboxed_start_page = 0;
3858 if (generation >= verify_gens) {
3859 if (gencgc_verbose)
3860 SHOW("verifying");
3861 verify_gc();
3862 verify_dynamic_space();
3865 /* Set the new gc trigger for the GCed generation. */
3866 generations[generation].gc_trigger =
3867 generations[generation].bytes_allocated
3868 + generations[generation].bytes_consed_between_gc;
3870 if (raise)
3871 generations[generation].num_gc = 0;
3872 else
3873 ++generations[generation].num_gc;
3876 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3878 update_x86_dynamic_space_free_pointer(void)
3880 int last_page = -1;
3881 int i;
3883 for (i = 0; i < NUM_PAGES; i++)
3884 if ((page_table[i].allocated != FREE_PAGE)
3885 && (page_table[i].bytes_used != 0))
3886 last_page = i;
3888 last_free_page = last_page+1;
3890 SetSymbolValue(ALLOCATION_POINTER,
3891 (lispobj)(((char *)heap_base) + last_free_page*4096),0);
3892 return 0; /* dummy value: return something ... */
3895 /* GC all generations newer than last_gen, raising the objects in each
3896 * to the next older generation - we finish when all generations below
3897 * last_gen are empty. Then if last_gen is due for a GC, or if
3898 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
3899 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3901 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
3902 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
3904 void
3905 collect_garbage(unsigned last_gen)
3907 int gen = 0;
3908 int raise;
3909 int gen_to_wp;
3910 int i;
3912 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
3914 if (last_gen > NUM_GENERATIONS) {
3915 FSHOW((stderr,
3916 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
3917 last_gen));
3918 last_gen = 0;
3921 /* Flush the alloc regions updating the tables. */
3922 gc_alloc_update_all_page_tables();
3924 /* Verify the new objects created by Lisp code. */
3925 if (pre_verify_gen_0) {
3926 FSHOW((stderr, "pre-checking generation 0\n"));
3927 verify_generation(0);
3930 if (gencgc_verbose > 1)
3931 print_generation_stats(0);
3933 do {
3934 /* Collect the generation. */
3936 if (gen >= gencgc_oldest_gen_to_gc) {
3937 /* Never raise the oldest generation. */
3938 raise = 0;
3939 } else {
3940 raise =
3941 (gen < last_gen)
3942 || (generations[gen].num_gc >= generations[gen].trigger_age);
3945 if (gencgc_verbose > 1) {
3946 FSHOW((stderr,
3947 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
3948 gen,
3949 raise,
3950 generations[gen].bytes_allocated,
3951 generations[gen].gc_trigger,
3952 generations[gen].num_gc));
3955 /* If an older generation is being filled, then update its
3956 * memory age. */
3957 if (raise == 1) {
3958 generations[gen+1].cum_sum_bytes_allocated +=
3959 generations[gen+1].bytes_allocated;
3962 garbage_collect_generation(gen, raise);
3964 /* Reset the memory age cum_sum. */
3965 generations[gen].cum_sum_bytes_allocated = 0;
3967 if (gencgc_verbose > 1) {
3968 FSHOW((stderr, "GC of generation %d finished:\n", gen));
3969 print_generation_stats(0);
3972 gen++;
3973 } while ((gen <= gencgc_oldest_gen_to_gc)
3974 && ((gen < last_gen)
3975 || ((gen <= gencgc_oldest_gen_to_gc)
3976 && raise
3977 && (generations[gen].bytes_allocated
3978 > generations[gen].gc_trigger)
3979 && (gen_av_mem_age(gen)
3980 > generations[gen].min_av_mem_age))));
3982 /* Now if gen-1 was raised all generations before gen are empty.
3983 * If it wasn't raised then all generations before gen-1 are empty.
3985 * Now objects within this gen's pages cannot point to younger
3986 * generations unless they are written to. This can be exploited
3987 * by write-protecting the pages of gen; then when younger
3988 * generations are GCed only the pages which have been written
3989 * need scanning. */
3990 if (raise)
3991 gen_to_wp = gen;
3992 else
3993 gen_to_wp = gen - 1;
3995 /* There's not much point in WPing pages in generation 0 as it is
3996 * never scavenged (except promoted pages). */
3997 if ((gen_to_wp > 0) && enable_page_protection) {
3998 /* Check that they are all empty. */
3999 for (i = 0; i < gen_to_wp; i++) {
4000 if (generations[i].bytes_allocated)
4001 lose("trying to write-protect gen. %d when gen. %d nonempty",
4002 gen_to_wp, i);
4004 write_protect_generation_pages(gen_to_wp);
4007 /* Set gc_alloc() back to generation 0. The current regions should
4008 * be flushed after the above GCs. */
4009 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4010 gc_alloc_generation = 0;
4012 update_x86_dynamic_space_free_pointer();
4013 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4014 if(gencgc_verbose)
4015 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4016 auto_gc_trigger);
4017 SHOW("returning from collect_garbage");
4020 /* This is called by Lisp PURIFY when it is finished. All live objects
4021 * will have been moved to the RO and Static heaps. The dynamic space
4022 * will need a full re-initialization. We don't bother having Lisp
4023 * PURIFY flush the current gc_alloc() region, as the page_tables are
4024 * re-initialized, and every page is zeroed to be sure. */
4025 void
4026 gc_free_heap(void)
4028 int page;
4030 if (gencgc_verbose > 1)
4031 SHOW("entering gc_free_heap");
4033 for (page = 0; page < NUM_PAGES; page++) {
4034 /* Skip free pages which should already be zero filled. */
4035 if (page_table[page].allocated != FREE_PAGE) {
4036 void *page_start, *addr;
4038 /* Mark the page free. The other slots are assumed invalid
4039 * when it is a FREE_PAGE and bytes_used is 0 and it
4040 * should not be write-protected -- except that the
4041 * generation is used for the current region but it sets
4042 * that up. */
4043 page_table[page].allocated = FREE_PAGE;
4044 page_table[page].bytes_used = 0;
4046 /* Zero the page. */
4047 page_start = (void *)page_address(page);
4049 /* First, remove any write-protection. */
4050 os_protect(page_start, 4096, OS_VM_PROT_ALL);
4051 page_table[page].write_protected = 0;
4053 os_invalidate(page_start,4096);
4054 addr = os_validate(page_start,4096);
4055 if (addr == NULL || addr != page_start) {
4056 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
4057 page_start,
4058 addr);
4060 } else if (gencgc_zero_check_during_free_heap) {
4061 /* Double-check that the page is zero filled. */
4062 int *page_start, i;
4063 gc_assert(page_table[page].allocated == FREE_PAGE);
4064 gc_assert(page_table[page].bytes_used == 0);
4065 page_start = (int *)page_address(page);
4066 for (i=0; i<1024; i++) {
4067 if (page_start[i] != 0) {
4068 lose("free region not zero at %x", page_start + i);
4074 bytes_allocated = 0;
4076 /* Initialize the generations. */
4077 for (page = 0; page < NUM_GENERATIONS; page++) {
4078 generations[page].alloc_start_page = 0;
4079 generations[page].alloc_unboxed_start_page = 0;
4080 generations[page].alloc_large_start_page = 0;
4081 generations[page].alloc_large_unboxed_start_page = 0;
4082 generations[page].bytes_allocated = 0;
4083 generations[page].gc_trigger = 2000000;
4084 generations[page].num_gc = 0;
4085 generations[page].cum_sum_bytes_allocated = 0;
4088 if (gencgc_verbose > 1)
4089 print_generation_stats(0);
4091 /* Initialize gc_alloc(). */
4092 gc_alloc_generation = 0;
4094 gc_set_region_empty(&boxed_region);
4095 gc_set_region_empty(&unboxed_region);
4097 last_free_page = 0;
4098 SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base),0);
4100 if (verify_after_free_heap) {
4101 /* Check whether purify has left any bad pointers. */
4102 if (gencgc_verbose)
4103 SHOW("checking after free_heap\n");
4104 verify_gc();
4108 void
4109 gc_init(void)
4111 int i;
4113 gc_init_tables();
4114 scavtab[SIMPLE_VECTOR_WIDETAG] = scav_vector;
4115 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4116 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4118 heap_base = (void*)DYNAMIC_SPACE_START;
4120 /* Initialize each page structure. */
4121 for (i = 0; i < NUM_PAGES; i++) {
4122 /* Initialize all pages as free. */
4123 page_table[i].allocated = FREE_PAGE;
4124 page_table[i].bytes_used = 0;
4126 /* Pages are not write-protected at startup. */
4127 page_table[i].write_protected = 0;
4130 bytes_allocated = 0;
4132 /* Initialize the generations.
4134 * FIXME: very similar to code in gc_free_heap(), should be shared */
4135 for (i = 0; i < NUM_GENERATIONS; i++) {
4136 generations[i].alloc_start_page = 0;
4137 generations[i].alloc_unboxed_start_page = 0;
4138 generations[i].alloc_large_start_page = 0;
4139 generations[i].alloc_large_unboxed_start_page = 0;
4140 generations[i].bytes_allocated = 0;
4141 generations[i].gc_trigger = 2000000;
4142 generations[i].num_gc = 0;
4143 generations[i].cum_sum_bytes_allocated = 0;
4144 /* the tune-able parameters */
4145 generations[i].bytes_consed_between_gc = 2000000;
4146 generations[i].trigger_age = 1;
4147 generations[i].min_av_mem_age = 0.75;
4150 /* Initialize gc_alloc. */
4151 gc_alloc_generation = 0;
4152 gc_set_region_empty(&boxed_region);
4153 gc_set_region_empty(&unboxed_region);
4155 last_free_page = 0;
4159 /* Pick up the dynamic space from after a core load.
4161 * The ALLOCATION_POINTER points to the end of the dynamic space.
4163 * XX A scan is needed to identify the closest first objects for pages. */
4164 static void
4165 gencgc_pickup_dynamic(void)
4167 int page = 0;
4168 int addr = DYNAMIC_SPACE_START;
4169 int alloc_ptr = SymbolValue(ALLOCATION_POINTER,0);
4171 /* Initialize the first region. */
4172 do {
4173 page_table[page].allocated = BOXED_PAGE;
4174 page_table[page].gen = 0;
4175 page_table[page].bytes_used = 4096;
4176 page_table[page].large_object = 0;
4177 page_table[page].first_object_offset =
4178 (void *)DYNAMIC_SPACE_START - page_address(page);
4179 addr += 4096;
4180 page++;
4181 } while (addr < alloc_ptr);
4183 generations[0].bytes_allocated = 4096*page;
4184 bytes_allocated = 4096*page;
4188 void
4189 gc_initialize_pointers(void)
4191 gencgc_pickup_dynamic();
4197 /* alloc(..) is the external interface for memory allocation. It
4198 * allocates to generation 0. It is not called from within the garbage
4199 * collector as it is only external uses that need the check for heap
4200 * size (GC trigger) and to disable the interrupts (interrupts are
4201 * always disabled during a GC).
4203 * The vops that call alloc(..) assume that the returned space is zero-filled.
4204 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4206 * The check for a GC trigger is only performed when the current
4207 * region is full, so in most cases it's not needed. */
4209 char *
4210 alloc(int nbytes)
4212 struct thread *th=arch_os_get_current_thread();
4213 struct alloc_region *region=
4214 th ? &(th->alloc_region) : &boxed_region;
4215 void *new_obj;
4216 void *new_free_pointer;
4218 /* Check for alignment allocation problems. */
4219 gc_assert((((unsigned)region->free_pointer & 0x7) == 0)
4220 && ((nbytes & 0x7) == 0));
4221 if(all_threads)
4222 /* there are a few places in the C code that allocate data in the
4223 * heap before Lisp starts. This is before interrupts are enabled,
4224 * so we don't need to check for pseudo-atomic */
4225 #ifdef LISP_FEATURE_SB_THREAD
4226 if(!SymbolValue(PSEUDO_ATOMIC_ATOMIC,th)) {
4227 register u32 fs;
4228 fprintf(stderr, "fatal error in thread 0x%x, pid=%d\n",
4229 th,getpid());
4230 __asm__("movl %fs,%0" : "=r" (fs) : );
4231 fprintf(stderr, "fs is %x, th->tls_cookie=%x (should be identical)\n",
4232 debug_get_fs(),th->tls_cookie);
4233 lose("If you see this message before 2003.12.01, mail details to sbcl-devel\n");
4235 #else
4236 gc_assert(SymbolValue(PSEUDO_ATOMIC_ATOMIC,th));
4237 #endif
4239 /* maybe we can do this quickly ... */
4240 new_free_pointer = region->free_pointer + nbytes;
4241 if (new_free_pointer <= region->end_addr) {
4242 new_obj = (void*)(region->free_pointer);
4243 region->free_pointer = new_free_pointer;
4244 return(new_obj); /* yup */
4247 /* we have to go the long way around, it seems. Check whether
4248 * we should GC in the near future
4250 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4251 /* set things up so that GC happens when we finish the PA
4252 * section. */
4253 struct interrupt_data *data=th->interrupt_data;
4254 maybe_defer_handler(interrupt_maybe_gc_int,data,0,0,0);
4256 new_obj = gc_alloc_with_region(nbytes,0,region,0);
4257 return (new_obj);
4261 /* Find the code object for the given pc, or return NULL on failure.
4263 * FIXME: PC shouldn't be lispobj*, should it? Maybe void*? */
4264 lispobj *
4265 component_ptr_from_pc(lispobj *pc)
4267 lispobj *object = NULL;
4269 if ( (object = search_read_only_space(pc)) )
4271 else if ( (object = search_static_space(pc)) )
4273 else
4274 object = search_dynamic_space(pc);
4276 if (object) /* if we found something */
4277 if (widetag_of(*object) == CODE_HEADER_WIDETAG) /* if it's a code object */
4278 return(object);
4280 return (NULL);
4284 * shared support for the OS-dependent signal handlers which
4285 * catch GENCGC-related write-protect violations
4288 void unhandled_sigmemoryfault(void);
4290 /* Depending on which OS we're running under, different signals might
4291 * be raised for a violation of write protection in the heap. This
4292 * function factors out the common generational GC magic which needs
4293 * to invoked in this case, and should be called from whatever signal
4294 * handler is appropriate for the OS we're running under.
4296 * Return true if this signal is a normal generational GC thing that
4297 * we were able to handle, or false if it was abnormal and control
4298 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4301 gencgc_handle_wp_violation(void* fault_addr)
4303 int page_index = find_page_index(fault_addr);
4305 #if defined QSHOW_SIGNALS
4306 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4307 fault_addr, page_index));
4308 #endif
4310 /* Check whether the fault is within the dynamic space. */
4311 if (page_index == (-1)) {
4313 /* It can be helpful to be able to put a breakpoint on this
4314 * case to help diagnose low-level problems. */
4315 unhandled_sigmemoryfault();
4317 /* not within the dynamic space -- not our responsibility */
4318 return 0;
4320 } else {
4321 if (page_table[page_index].write_protected) {
4322 /* Unprotect the page. */
4323 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4324 page_table[page_index].write_protected_cleared = 1;
4325 page_table[page_index].write_protected = 0;
4326 } else {
4327 /* The only acceptable reason for this signal on a heap
4328 * access is that GENCGC write-protected the page.
4329 * However, if two CPUs hit a wp page near-simultaneously,
4330 * we had better not have the second one lose here if it
4331 * does this test after the first one has already set wp=0
4333 if(page_table[page_index].write_protected_cleared != 1)
4334 lose("fault in heap page not marked as write-protected");
4336 /* Don't worry, we can handle it. */
4337 return 1;
4340 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4341 * it's not just a case of the program hitting the write barrier, and
4342 * are about to let Lisp deal with it. It's basically just a
4343 * convenient place to set a gdb breakpoint. */
4344 void
4345 unhandled_sigmemoryfault()
4348 void gc_alloc_update_all_page_tables(void)
4350 /* Flush the alloc regions updating the tables. */
4351 struct thread *th;
4352 for_each_thread(th)
4353 gc_alloc_update_page_tables(0, &th->alloc_region);
4354 gc_alloc_update_page_tables(1, &unboxed_region);
4355 gc_alloc_update_page_tables(0, &boxed_region);
4357 void
4358 gc_set_region_empty(struct alloc_region *region)
4360 region->first_page = 0;
4361 region->last_page = -1;
4362 region->start_addr = page_address(0);
4363 region->free_pointer = page_address(0);
4364 region->end_addr = page_address(0);