1.0.5.30: small PCL re-organization
[sbcl/lichteblau.git] / src / pcl / defcombin.lisp
blobf3296a9685e09507bf60df6c04a7a6f5a699e205
1 ;;;; This software is part of the SBCL system. See the README file for
2 ;;;; more information.
4 ;;;; This software is derived from software originally released by Xerox
5 ;;;; Corporation. Copyright and release statements follow. Later modifications
6 ;;;; to the software are in the public domain and are provided with
7 ;;;; absolutely no warranty. See the COPYING and CREDITS files for more
8 ;;;; information.
10 ;;;; copyright information from original PCL sources:
11 ;;;;
12 ;;;; Copyright (c) 1985, 1986, 1987, 1988, 1989, 1990 Xerox Corporation.
13 ;;;; All rights reserved.
14 ;;;;
15 ;;;; Use and copying of this software and preparation of derivative works based
16 ;;;; upon this software are permitted. Any distribution of this software or
17 ;;;; derivative works must comply with all applicable United States export
18 ;;;; control laws.
19 ;;;;
20 ;;;; This software is made available AS IS, and Xerox Corporation makes no
21 ;;;; warranty about the software, its performance or its conformity to any
22 ;;;; specification.
24 (in-package "SB-PCL")
26 (defmacro define-method-combination (&whole form &rest args)
27 (declare (ignore args))
28 `(progn
29 (with-single-package-locked-error
30 (:symbol ',(second form) "defining ~A as a method combination"))
31 ,(if (and (cddr form)
32 (listp (caddr form)))
33 (expand-long-defcombin form)
34 (expand-short-defcombin form))))
36 ;;;; standard method combination
38 ;;; The STANDARD method combination type is implemented directly by
39 ;;; the class STANDARD-METHOD-COMBINATION. The method on
40 ;;; COMPUTE-EFFECTIVE-METHOD does standard method combination directly
41 ;;; and is defined by hand in the file combin.lisp. The method for
42 ;;; FIND-METHOD-COMBINATION must appear in this file for bootstrapping
43 ;;; reasons.
44 (defmethod find-method-combination ((generic-function generic-function)
45 (type-name (eql 'standard))
46 options)
47 (when options
48 (method-combination-error
49 "STANDARD method combination accepts no options."))
50 *standard-method-combination*)
52 ;;;; short method combinations
53 ;;;;
54 ;;;; Short method combinations all follow the same rule for computing the
55 ;;;; effective method. So, we just implement that rule once. Each short
56 ;;;; method combination object just reads the parameters out of the object
57 ;;;; and runs the same rule.
59 (defun expand-short-defcombin (whole)
60 (let* ((type-name (cadr whole))
61 (documentation
62 (getf (cddr whole) :documentation))
63 (identity-with-one-arg
64 (getf (cddr whole) :identity-with-one-argument nil))
65 (operator
66 (getf (cddr whole) :operator type-name)))
67 `(load-short-defcombin
68 ',type-name ',operator ',identity-with-one-arg ',documentation
69 (sb-c:source-location))))
71 (defun load-short-defcombin (type-name operator ioa doc source-location)
72 (let* ((specializers
73 (list (find-class 'generic-function)
74 (intern-eql-specializer type-name)
75 *the-class-t*))
76 (old-method
77 (get-method #'find-method-combination () specializers nil))
78 (new-method nil))
79 (setq new-method
80 (make-instance 'standard-method
81 :qualifiers ()
82 :specializers specializers
83 :lambda-list '(generic-function type-name options)
84 :function (lambda (args nms &rest cm-args)
85 (declare (ignore nms cm-args))
86 (apply
87 (lambda (gf type-name options)
88 (declare (ignore gf))
89 (short-combine-methods
90 type-name options operator ioa new-method doc))
91 args))
92 :definition-source source-location))
93 (when old-method
94 (remove-method #'find-method-combination old-method))
95 (add-method #'find-method-combination new-method)
96 (setf (random-documentation type-name 'method-combination) doc)
97 type-name))
99 (defun short-combine-methods (type-name options operator ioa method doc)
100 (cond ((null options) (setq options '(:most-specific-first)))
101 ((equal options '(:most-specific-first)))
102 ((equal options '(:most-specific-last)))
104 (method-combination-error
105 "Illegal options to a short method combination type.~%~
106 The method combination type ~S accepts one option which~%~
107 must be either :MOST-SPECIFIC-FIRST or :MOST-SPECIFIC-LAST."
108 type-name)))
109 (make-instance 'short-method-combination
110 :type-name type-name
111 :options options
112 :operator operator
113 :identity-with-one-argument ioa
114 :definition-source method
115 :documentation doc))
117 (defmethod compute-effective-method ((generic-function generic-function)
118 (combin short-method-combination)
119 applicable-methods)
120 (let ((type-name (method-combination-type-name combin))
121 (operator (short-combination-operator combin))
122 (ioa (short-combination-identity-with-one-argument combin))
123 (order (car (method-combination-options combin)))
124 (around ())
125 (primary ()))
126 (flet ((invalid (gf combin m)
127 (return-from compute-effective-method
128 `(%invalid-qualifiers ',gf ',combin ',m))))
129 (dolist (m applicable-methods)
130 (let ((qualifiers (method-qualifiers m)))
131 (cond ((null qualifiers) (invalid generic-function combin m))
132 ((cdr qualifiers) (invalid generic-function combin m))
133 ((eq (car qualifiers) :around)
134 (push m around))
135 ((eq (car qualifiers) type-name)
136 (push m primary))
137 (t (invalid generic-function combin m))))))
138 (setq around (nreverse around))
139 (ecase order
140 (:most-specific-last) ; nothing to be done, already in correct order
141 (:most-specific-first
142 (setq primary (nreverse primary))))
143 (let ((main-method
144 (if (and (null (cdr primary))
145 (not (null ioa)))
146 `(call-method ,(car primary) ())
147 `(,operator ,@(mapcar (lambda (m) `(call-method ,m ()))
148 primary)))))
149 (cond ((null primary)
150 ;; As of sbcl-0.8.0.80 we don't seem to need to need
151 ;; to do anything messy like
152 ;; `(APPLY (FUNCTION (IF AROUND
153 ;; 'NO-PRIMARY-METHOD
154 ;; 'NO-APPLICABLE-METHOD)
155 ;; ',GENERIC-FUNCTION
156 ;; .ARGS.)
157 ;; here because (for reasons I don't understand at the
158 ;; moment -- WHN) control will never reach here if there
159 ;; are no applicable methods, but instead end up
160 ;; in NO-APPLICABLE-METHODS first.
162 ;; FIXME: The way that we arrange for .ARGS. to be bound
163 ;; here seems weird. We rely on EXPAND-EFFECTIVE-METHOD-FUNCTION
164 ;; recognizing any form whose operator is %NO-PRIMARY-METHOD
165 ;; as magical, and carefully surrounding it with a
166 ;; LAMBDA form which binds .ARGS. But...
167 ;; 1. That seems fragile, because the magicalness of
168 ;; %NO-PRIMARY-METHOD forms is scattered around
169 ;; the system. So it could easily be broken by
170 ;; locally-plausible maintenance changes like,
171 ;; e.g., using the APPLY expression above.
172 ;; 2. That seems buggy w.r.t. to MOPpish tricks in
173 ;; user code, e.g.
174 ;; (DEFMETHOD COMPUTE-EFFECTIVE-METHOD :AROUND (...)
175 ;; `(PROGN ,(CALL-NEXT-METHOD) (INCF *MY-CTR*)))
176 `(%no-primary-method ',generic-function .args.))
177 ((null around) main-method)
179 `(call-method ,(car around)
180 (,@(cdr around) (make-method ,main-method))))))))
182 (defmethod invalid-qualifiers ((gf generic-function)
183 (combin short-method-combination)
184 method)
185 (let ((qualifiers (method-qualifiers method))
186 (type-name (method-combination-type-name combin)))
187 (let ((why (cond
188 ((null qualifiers) "has no qualifiers")
189 ((cdr qualifiers) "has too many qualifiers")
190 (t (aver (and (neq (car qualifiers) type-name)
191 (neq (car qualifiers) :around)))
192 "has an invalid qualifier"))))
193 (invalid-method-error
194 method
195 "The method ~S on ~S ~A.~%~
196 The method combination type ~S was defined with the~%~
197 short form of DEFINE-METHOD-COMBINATION and so requires~%~
198 all methods have either the single qualifier ~S or the~%~
199 single qualifier :AROUND."
200 method gf why type-name type-name))))
202 ;;;; long method combinations
204 (defun expand-long-defcombin (form)
205 (let ((type-name (cadr form))
206 (lambda-list (caddr form))
207 (method-group-specifiers (cadddr form))
208 (body (cddddr form))
209 (args-option ())
210 (gf-var nil))
211 (when (and (consp (car body)) (eq (caar body) :arguments))
212 (setq args-option (cdr (pop body))))
213 (when (and (consp (car body)) (eq (caar body) :generic-function))
214 (setq gf-var (cadr (pop body))))
215 (multiple-value-bind (documentation function)
216 (make-long-method-combination-function
217 type-name lambda-list method-group-specifiers args-option gf-var
218 body)
219 `(load-long-defcombin ',type-name ',documentation #',function
220 ',args-option (sb-c:source-location)))))
222 (defvar *long-method-combination-functions* (make-hash-table :test 'eq))
224 (defun load-long-defcombin
225 (type-name doc function args-lambda-list source-location)
226 (let* ((specializers
227 (list (find-class 'generic-function)
228 (intern-eql-specializer type-name)
229 *the-class-t*))
230 (old-method
231 (get-method #'find-method-combination () specializers nil))
232 (new-method
233 (make-instance 'standard-method
234 :qualifiers ()
235 :specializers specializers
236 :lambda-list '(generic-function type-name options)
237 :function (lambda (args nms &rest cm-args)
238 (declare (ignore nms cm-args))
239 (apply
240 (lambda (generic-function type-name options)
241 (declare (ignore generic-function))
242 (make-instance 'long-method-combination
243 :type-name type-name
244 :options options
245 :args-lambda-list args-lambda-list
246 :documentation doc))
247 args))
248 :definition-source source-location)))
249 (setf (gethash type-name *long-method-combination-functions*) function)
250 (when old-method (remove-method #'find-method-combination old-method))
251 (add-method #'find-method-combination new-method)
252 (setf (random-documentation type-name 'method-combination) doc)
253 type-name))
255 (defmethod compute-effective-method ((generic-function generic-function)
256 (combin long-method-combination)
257 applicable-methods)
258 (funcall (gethash (method-combination-type-name combin)
259 *long-method-combination-functions*)
260 generic-function
261 combin
262 applicable-methods))
264 (defun make-long-method-combination-function
265 (type-name ll method-group-specifiers args-option gf-var body)
266 (declare (ignore type-name))
267 (multiple-value-bind (real-body declarations documentation)
268 (parse-body body)
269 (let ((wrapped-body
270 (wrap-method-group-specifier-bindings method-group-specifiers
271 declarations
272 real-body)))
273 (when gf-var
274 (push `(,gf-var .generic-function.) (cadr wrapped-body)))
276 (when args-option
277 (setq wrapped-body (deal-with-args-option wrapped-body args-option)))
279 (when ll
280 (setq wrapped-body
281 `(apply #'(lambda ,ll ,wrapped-body)
282 (method-combination-options .method-combination.))))
284 (values
285 documentation
286 `(lambda (.generic-function. .method-combination. .applicable-methods.)
287 (declare (ignorable .generic-function.
288 .method-combination. .applicable-methods.))
289 (block .long-method-combination-function. ,wrapped-body))))))
291 (define-condition long-method-combination-error
292 (reference-condition simple-error)
294 (:default-initargs
295 :references (list '(:ansi-cl :macro define-method-combination))))
297 ;;; NOTE:
299 ;;; The semantics of long form method combination in the presence of
300 ;;; multiple methods with the same specializers in the same method
301 ;;; group are unclear by the spec: a portion of the standard implies
302 ;;; that an error should be signalled, and another is more lenient.
304 ;;; It is reasonable to allow a single method group of * to bypass all
305 ;;; rules, as this is explicitly stated in the standard.
307 (defun group-cond-clause (name tests specializer-cache star-only)
308 (let ((maybe-error-clause
309 (if star-only
310 `(setq ,specializer-cache .specializers.)
311 `(if (and (equal ,specializer-cache .specializers.)
312 (not (null .specializers.)))
313 (return-from .long-method-combination-function.
314 '(error 'long-method-combination-error
315 :format-control "More than one method of type ~S ~
316 with the same specializers."
317 :format-arguments (list ',name)))
318 (setq ,specializer-cache .specializers.)))))
319 `((or ,@tests)
320 ,maybe-error-clause
321 (push .method. ,name))))
323 (defun wrap-method-group-specifier-bindings
324 (method-group-specifiers declarations real-body)
325 (let (names specializer-caches cond-clauses required-checks order-cleanups)
326 (let ((nspecifiers (length method-group-specifiers)))
327 (dolist (method-group-specifier method-group-specifiers
328 (push `(t (return-from .long-method-combination-function.
329 `(invalid-method-error , .method.
330 "~@<is applicable, but does not belong ~
331 to any method group~@:>")))
332 cond-clauses))
333 (multiple-value-bind (name tests description order required)
334 (parse-method-group-specifier method-group-specifier)
335 (declare (ignore description))
336 (let ((specializer-cache (gensym)))
337 (push name names)
338 (push specializer-cache specializer-caches)
339 (push (group-cond-clause name tests specializer-cache
340 (and (eq (cadr method-group-specifier) '*)
341 (= nspecifiers 1)))
342 cond-clauses)
343 (when required
344 (push `(when (null ,name)
345 (return-from .long-method-combination-function.
346 '(error 'long-method-combination-error
347 :format-control "No ~S methods."
348 :format-arguments (list ',name))))
349 required-checks))
350 (loop (unless (and (constantp order)
351 (neq order (setq order
352 (constant-form-value order))))
353 (return t)))
354 (push (cond ((eq order :most-specific-first)
355 `(setq ,name (nreverse ,name)))
356 ((eq order :most-specific-last) ())
358 `(ecase ,order
359 (:most-specific-first
360 (setq ,name (nreverse ,name)))
361 (:most-specific-last))))
362 order-cleanups))))
363 `(let (,@(nreverse names) ,@(nreverse specializer-caches))
364 ,@declarations
365 (dolist (.method. .applicable-methods.)
366 (let ((.qualifiers. (method-qualifiers .method.))
367 (.specializers. (method-specializers .method.)))
368 (declare (ignorable .qualifiers. .specializers.))
369 (cond ,@(nreverse cond-clauses))))
370 ,@(nreverse required-checks)
371 ,@(nreverse order-cleanups)
372 ,@real-body))))
374 (defun parse-method-group-specifier (method-group-specifier)
375 ;;(declare (values name tests description order required))
376 (let* ((name (pop method-group-specifier))
377 (patterns ())
378 (tests
379 (let (collect)
380 (block collect-tests
381 (loop
382 (if (or (null method-group-specifier)
383 (memq (car method-group-specifier)
384 '(:description :order :required)))
385 (return-from collect-tests t)
386 (let ((pattern (pop method-group-specifier)))
387 (push pattern patterns)
388 (push (parse-qualifier-pattern name pattern)
389 collect)))))
390 (nreverse collect))))
391 (values name
392 tests
393 (getf method-group-specifier :description
394 (make-default-method-group-description patterns))
395 (getf method-group-specifier :order :most-specific-first)
396 (getf method-group-specifier :required nil))))
398 (defun parse-qualifier-pattern (name pattern)
399 (cond ((eq pattern '()) `(null .qualifiers.))
400 ((eq pattern '*) t)
401 ((symbolp pattern) `(,pattern .qualifiers.))
402 ((listp pattern) `(qualifier-check-runtime ',pattern .qualifiers.))
403 (t (error "In the method group specifier ~S,~%~
404 ~S isn't a valid qualifier pattern."
405 name pattern))))
407 (defun qualifier-check-runtime (pattern qualifiers)
408 (loop (cond ((and (null pattern) (null qualifiers))
409 (return t))
410 ((eq pattern '*) (return t))
411 ((and pattern qualifiers (eq (car pattern) (car qualifiers)))
412 (pop pattern)
413 (pop qualifiers))
414 (t (return nil)))))
416 (defun make-default-method-group-description (patterns)
417 (if (cdr patterns)
418 (format nil
419 "methods matching one of the patterns: ~{~S, ~} ~S"
420 (butlast patterns) (car (last patterns)))
421 (format nil
422 "methods matching the pattern: ~S"
423 (car patterns))))
425 ;;; This baby is a complete mess. I can't believe we put it in this
426 ;;; way. No doubt this is a large part of what drives MLY crazy.
428 ;;; At runtime (when the effective-method is run), we bind an intercept
429 ;;; lambda-list to the arguments to the generic function.
431 ;;; At compute-effective-method time, the symbols in the :arguments
432 ;;; option are bound to the symbols in the intercept lambda list.
434 ;;; FIXME: in here we have not one but two mini-copies of a weird
435 ;;; hybrid of PARSE-LAMBDA-LIST and PARSE-DEFMACRO-LAMBDA-LIST.
436 (defun deal-with-args-option (wrapped-body args-lambda-list)
437 (let ((intercept-rebindings
438 (let (rebindings)
439 (dolist (arg args-lambda-list (nreverse rebindings))
440 (unless (member arg lambda-list-keywords)
441 (typecase arg
442 (symbol (push `(,arg ',arg) rebindings))
443 (cons
444 (unless (symbolp (car arg))
445 (error "invalid lambda-list specifier: ~S." arg))
446 (push `(,(car arg) ',(car arg)) rebindings))
447 (t (error "invalid lambda-list-specifier: ~S." arg)))))))
448 (nreq 0)
449 (nopt 0)
450 (whole nil))
451 ;; Count the number of required and optional parameters in
452 ;; ARGS-LAMBDA-LIST into NREQ and NOPT, and set WHOLE to the
453 ;; name of a &WHOLE parameter, if any.
454 (when (member '&whole (rest args-lambda-list))
455 (error 'simple-program-error
456 :format-control "~@<The value of the :ARGUMENTS option of ~
457 DEFINE-METHOD-COMBINATION is~2I~_~S,~I~_but &WHOLE may ~
458 only appear first in the lambda list.~:>"
459 :format-arguments (list args-lambda-list)))
460 (loop with state = 'required
461 for arg in args-lambda-list do
462 (if (memq arg lambda-list-keywords)
463 (setq state arg)
464 (case state
465 (required (incf nreq))
466 (&optional (incf nopt))
467 (&whole (setq whole arg state 'required)))))
468 ;; This assumes that the head of WRAPPED-BODY is a let, and it
469 ;; injects let-bindings of the form (ARG 'SYM) for all variables
470 ;; of the argument-lambda-list; SYM is a gensym.
471 (aver (memq (first wrapped-body) '(let let*)))
472 (setf (second wrapped-body)
473 (append intercept-rebindings (second wrapped-body)))
474 ;; Be sure to fill out the args lambda list so that it can be too
475 ;; short if it wants to.
476 (unless (or (memq '&rest args-lambda-list)
477 (memq '&allow-other-keys args-lambda-list))
478 (let ((aux (memq '&aux args-lambda-list)))
479 (setq args-lambda-list
480 (append (ldiff args-lambda-list aux)
481 (if (memq '&key args-lambda-list)
482 '(&allow-other-keys)
483 '(&rest .ignore.))
484 aux))))
485 ;; .GENERIC-FUNCTION. is bound to the generic function in the
486 ;; method combination function, and .GF-ARGS* is bound to the
487 ;; generic function arguments in effective method functions
488 ;; created for generic functions having a method combination that
489 ;; uses :ARGUMENTS.
491 ;; The DESTRUCTURING-BIND binds the parameters of the
492 ;; ARGS-LAMBDA-LIST to actual generic function arguments. Because
493 ;; ARGS-LAMBDA-LIST may be shorter or longer than the generic
494 ;; function's lambda list, which is only known at run time, this
495 ;; destructuring has to be done on a slighly modified list of
496 ;; actual arguments, from which values might be stripped or added.
498 ;; Using one of the variable names in the body inserts a symbol
499 ;; into the effective method, and running the effective method
500 ;; produces the value of actual argument that is bound to the
501 ;; symbol.
502 `(let ((inner-result. ,wrapped-body)
503 (gf-lambda-list (generic-function-lambda-list .generic-function.)))
504 `(destructuring-bind ,',args-lambda-list
505 (frob-combined-method-args
506 .gf-args. ',gf-lambda-list
507 ,',nreq ,',nopt)
508 ,,(when (memq '.ignore. args-lambda-list)
509 ''(declare (ignore .ignore.)))
510 ;; If there is a &WHOLE in the args-lambda-list, let
511 ;; it result in the actual arguments of the generic-function
512 ;; not the frobbed list.
513 ,,(when whole
514 ``(setq ,',whole .gf-args.))
515 ,inner-result.))))
517 ;;; Partition VALUES into three sections: required, optional, and the
518 ;;; rest, according to required, optional, and other parameters in
519 ;;; LAMBDA-LIST. Make the required and optional sections NREQ and
520 ;;; NOPT elements long by discarding values or adding NILs. Value is
521 ;;; the concatenated list of required and optional sections, and what
522 ;;; is left as rest from VALUES.
523 (defun frob-combined-method-args (values lambda-list nreq nopt)
524 (loop with section = 'required
525 for arg in lambda-list
526 if (memq arg lambda-list-keywords) do
527 (setq section arg)
528 (unless (eq section '&optional)
529 (loop-finish))
530 else if (eq section 'required)
531 count t into nr
532 and collect (pop values) into required
533 else if (eq section '&optional)
534 count t into no
535 and collect (pop values) into optional
536 finally
537 (flet ((frob (list n m)
538 (cond ((> n m) (butlast list (- n m)))
539 ((< n m) (nconc list (make-list (- m n))))
540 (t list))))
541 (return (nconc (frob required nr nreq)
542 (frob optional no nopt)
543 values)))))