0.7.8.7:
[sbcl/lichteblau.git] / src / code / seq.lisp
blob9ccda2a08669c511f432fc55aec9b2dedc1f60f7
1 ;;;; generic SEQUENCEs
2 ;;;;
3 ;;;; KLUDGE: comment from original CMU CL source:
4 ;;;; Be careful when modifying code. A lot of the structure of the
5 ;;;; code is affected by the fact that compiler transforms use the
6 ;;;; lower level support functions. If transforms are written for
7 ;;;; some sequence operation, note how the END argument is handled
8 ;;;; in other operations with transforms.
10 ;;;; This software is part of the SBCL system. See the README file for
11 ;;;; more information.
12 ;;;;
13 ;;;; This software is derived from the CMU CL system, which was
14 ;;;; written at Carnegie Mellon University and released into the
15 ;;;; public domain. The software is in the public domain and is
16 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
17 ;;;; files for more information.
19 (in-package "SB!IMPL")
21 ;;;; utilities
23 (eval-when (:compile-toplevel)
25 ;;; SEQ-DISPATCH does an efficient type-dispatch on the given SEQUENCE.
26 ;;;
27 ;;; FIXME: It might be worth making three cases here, LIST,
28 ;;; SIMPLE-VECTOR, and VECTOR, instead of the current LIST and VECTOR.
29 ;;; It tend to make code run faster but be bigger; some benchmarking
30 ;;; is needed to decide.
31 (sb!xc:defmacro seq-dispatch (sequence list-form array-form)
32 `(if (listp ,sequence)
33 ,list-form
34 ,array-form))
36 (sb!xc:defmacro make-sequence-like (sequence length)
37 #!+sb-doc
38 "Return a sequence of the same type as SEQUENCE and the given LENGTH."
39 `(make-sequence-of-type (type-of ,sequence) ,length))
41 (sb!xc:defmacro type-specifier-atom (type)
42 #!+sb-doc "Return the broad class of which TYPE is a specific subclass."
43 `(if (atom ,type) ,type (car ,type)))
45 ) ; EVAL-WHEN
47 ;;; It's possible with some sequence operations to declare the length
48 ;;; of a result vector, and to be safe, we really ought to verify that
49 ;;; the actual result has the declared length.
50 (defun vector-of-checked-length-given-length (vector declared-length)
51 (declare (type vector vector))
52 (declare (type index declared-length))
53 (let ((actual-length (length vector)))
54 (unless (= actual-length declared-length)
55 (error 'simple-type-error
56 :datum vector
57 :expected-type `(vector ,declared-length)
58 :format-control
59 "Vector length (~W) doesn't match declared length (~W)."
60 :format-arguments (list actual-length declared-length))))
61 vector)
62 (defun sequence-of-checked-length-given-type (sequence result-type)
63 (let ((ctype (specifier-type result-type)))
64 (if (not (array-type-p ctype))
65 sequence
66 (let ((declared-length (first (array-type-dimensions ctype))))
67 (if (eq declared-length '*)
68 sequence
69 (vector-of-checked-length-given-length sequence
70 declared-length))))))
72 ;;; Given an arbitrary type specifier, return a sane sequence type
73 ;;; specifier that we can directly match.
74 (defun result-type-or-lose (type &optional nil-ok)
75 (let ((type (specifier-type type)))
76 (cond
77 ((eq type *empty-type*)
78 (if nil-ok
79 nil
80 (error 'simple-type-error
81 :datum type
82 :expected-type '(or vector cons)
83 :format-control
84 "A NIL output type is invalid for this sequence function."
85 :format-arguments ())))
86 ((dolist (seq-type '(list string simple-vector bit-vector))
87 (when (csubtypep type (specifier-type seq-type))
88 (return seq-type))))
89 ((csubtypep type (specifier-type 'vector))
90 (type-specifier type))
92 (error 'simple-type-error
93 :datum type
94 :expected-type 'sequence
95 :format-control
96 "~S is not a legal type specifier for sequence functions."
97 :format-arguments (list type))))))
99 (defun signal-index-too-large-error (sequence index)
100 (let* ((length (length sequence))
101 (max-index (and (plusp length)
102 (1- length))))
103 (error 'index-too-large-error
104 :datum index
105 :expected-type (if max-index
106 `(integer 0 ,max-index)
107 ;; This seems silly, is there something better?
108 '(integer (0) (0))))))
110 (defun signal-end-too-large-error (sequence end)
111 (let* ((length (length sequence))
112 (max-end (and (not (minusp length))
113 length)))
114 (error 'end-too-large-error
115 :datum end
116 :expected-type (if max-end
117 `(integer 0 ,max-end)
118 ;; This seems silly, is there something better?
119 '(integer (0) 0)))))
121 (defun make-sequence-of-type (type length)
122 #!+sb-doc "Return a sequence of the given TYPE and LENGTH."
123 (declare (fixnum length))
124 (case (type-specifier-atom type)
125 (list (make-list length))
126 ((bit-vector simple-bit-vector) (make-array length :element-type '(mod 2)))
127 ((string simple-string base-string simple-base-string)
128 (make-string length))
129 (simple-vector (make-array length))
130 ((array simple-array vector)
131 (if (listp type)
132 (make-array length :element-type (cadr type))
133 (make-array length)))
135 (make-sequence-of-type (result-type-or-lose type) length))))
137 (defun elt (sequence index)
138 #!+sb-doc "Return the element of SEQUENCE specified by INDEX."
139 (etypecase sequence
140 (list
141 (do ((count index (1- count))
142 (list sequence (cdr list)))
143 ((= count 0)
144 (if (endp list)
145 (signal-index-too-large-error sequence index)
146 (car list)))
147 (declare (type (integer 0) count))))
148 (vector
149 (when (>= index (length sequence))
150 (signal-index-too-large-error sequence index))
151 (aref sequence index))))
153 (defun %setelt (sequence index newval)
154 #!+sb-doc "Store NEWVAL as the component of SEQUENCE specified by INDEX."
155 (etypecase sequence
156 (list
157 (do ((count index (1- count))
158 (seq sequence))
159 ((= count 0) (rplaca seq newval) newval)
160 (declare (fixnum count))
161 (if (atom (cdr seq))
162 (signal-index-too-large-error sequence index)
163 (setq seq (cdr seq)))))
164 (vector
165 (when (>= index (length sequence))
166 (signal-index-too-large-error sequence index))
167 (setf (aref sequence index) newval))))
169 (defun length (sequence)
170 #!+sb-doc "Return an integer that is the length of SEQUENCE."
171 (etypecase sequence
172 (vector (length (truly-the vector sequence)))
173 (list (length (truly-the list sequence)))))
175 (defun make-sequence (type length &key (initial-element NIL iep))
176 #!+sb-doc
177 "Return a sequence of the given TYPE and LENGTH, with elements initialized
178 to :INITIAL-ELEMENT."
179 (declare (fixnum length))
180 (let ((type (specifier-type type)))
181 (cond ((csubtypep type (specifier-type 'list))
182 (make-list length :initial-element initial-element))
183 ((csubtypep type (specifier-type 'string))
184 (if iep
185 (make-string length :initial-element initial-element)
186 (make-string length)))
187 ((csubtypep type (specifier-type 'simple-vector))
188 (make-array length :initial-element initial-element))
189 ((csubtypep type (specifier-type 'bit-vector))
190 (if iep
191 (make-array length :element-type '(mod 2)
192 :initial-element initial-element)
193 (make-array length :element-type '(mod 2))))
194 ((csubtypep type (specifier-type 'vector))
195 (if (typep type 'array-type)
196 (let ((etype (type-specifier
197 (array-type-specialized-element-type type)))
198 (vlen (car (array-type-dimensions type))))
199 (if (and (numberp vlen) (/= vlen length))
200 (error 'simple-type-error
201 ;; These two are under-specified by ANSI.
202 :datum (type-specifier type)
203 :expected-type (type-specifier type)
204 :format-control
205 "The length of ~S does not match the specified ~
206 length=~S."
207 :format-arguments
208 (list (type-specifier type) length)))
209 (if iep
210 (make-array length :element-type etype
211 :initial-element initial-element)
212 (make-array length :element-type etype)))
213 (make-array length :initial-element initial-element)))
214 (t (error 'simple-type-error
215 :datum type
216 :expected-type 'sequence
217 :format-control "~S is a bad type specifier for sequences."
218 :format-arguments (list type))))))
220 ;;;; SUBSEQ
221 ;;;;
222 ;;;; The support routines for SUBSEQ are used by compiler transforms,
223 ;;;; so we worry about dealing with END being supplied or defaulting
224 ;;;; to NIL at this level.
226 (defun vector-subseq* (sequence start &optional end)
227 (declare (type vector sequence))
228 (declare (type fixnum start))
229 (declare (type (or null fixnum) end))
230 (if (null end)
231 (setf end (length sequence))
232 (unless (<= end (length sequence))
233 (signal-index-too-large-error sequence end)))
234 (do ((old-index start (1+ old-index))
235 (new-index 0 (1+ new-index))
236 (copy (make-sequence-like sequence (- end start))))
237 ((= old-index end) copy)
238 (declare (fixnum old-index new-index))
239 (setf (aref copy new-index)
240 (aref sequence old-index))))
242 (defun list-subseq* (sequence start &optional end)
243 (declare (type list sequence))
244 (declare (type fixnum start))
245 (declare (type (or null fixnum) end))
246 (if (and end (>= start (the fixnum end)))
248 (let* ((groveled (nthcdr start sequence))
249 (result (list (car groveled))))
250 (if groveled
251 (do ((list (cdr groveled) (cdr list))
252 (splice result (cdr (rplacd splice (list (car list)))))
253 (index (1+ start) (1+ index)))
254 ((or (atom list) (and end (= index (the fixnum end))))
255 result)
256 (declare (fixnum index)))
257 ()))))
259 ;;; SUBSEQ cannot default END to the length of sequence since it is
260 ;;; not an error to supply NIL for its value. We must test for END
261 ;;; being NIL in the body of the function, and this is actually done
262 ;;; in the support routines for other reasons. (See above.)
263 (defun subseq (sequence start &optional end)
264 #!+sb-doc
265 "Return a copy of a subsequence of SEQUENCE starting with element number
266 START and continuing to the end of SEQUENCE or the optional END."
267 (seq-dispatch sequence
268 (list-subseq* sequence start end)
269 (vector-subseq* sequence start end)))
271 ;;;; COPY-SEQ
273 (eval-when (:compile-toplevel :execute)
275 (sb!xc:defmacro vector-copy-seq (sequence type)
276 `(let ((length (length (the vector ,sequence))))
277 (declare (fixnum length))
278 (do ((index 0 (1+ index))
279 (copy (make-sequence-of-type ,type length)))
280 ((= index length) copy)
281 (declare (fixnum index))
282 (setf (aref copy index) (aref ,sequence index)))))
284 (sb!xc:defmacro list-copy-seq (list)
285 `(if (atom ,list) '()
286 (let ((result (cons (car ,list) '()) ))
287 (do ((x (cdr ,list) (cdr x))
288 (splice result
289 (cdr (rplacd splice (cons (car x) '() ))) ))
290 ((atom x) (unless (null x)
291 (rplacd splice x))
292 result)))))
294 ) ; EVAL-WHEN
296 (defun copy-seq (sequence)
297 #!+sb-doc "Return a copy of SEQUENCE which is EQUAL to SEQUENCE but not EQ."
298 (seq-dispatch sequence
299 (list-copy-seq* sequence)
300 (vector-copy-seq* sequence)))
302 ;;; internal frobs
304 (defun list-copy-seq* (sequence)
305 (list-copy-seq sequence))
307 (defun vector-copy-seq* (sequence)
308 (declare (type vector sequence))
309 (vector-copy-seq sequence
310 (typecase sequence
311 ;; Pick off the common cases so that we don't have to...
312 ((vector t) 'simple-vector)
313 (string 'simple-string)
314 (bit-vector 'simple-bit-vector)
315 ((vector single-float) '(simple-array single-float 1))
316 ((vector double-float) '(simple-array double-float 1))
317 ;; ...do a full call to TYPE-OF.
318 (t (type-of sequence)))))
320 ;;;; FILL
322 (eval-when (:compile-toplevel :execute)
324 (sb!xc:defmacro vector-fill (sequence item start end)
325 `(do ((index ,start (1+ index)))
326 ((= index (the fixnum ,end)) ,sequence)
327 (declare (fixnum index))
328 (setf (aref ,sequence index) ,item)))
330 (sb!xc:defmacro list-fill (sequence item start end)
331 `(do ((current (nthcdr ,start ,sequence) (cdr current))
332 (index ,start (1+ index)))
333 ((or (atom current) (and end (= index (the fixnum ,end))))
334 sequence)
335 (declare (fixnum index))
336 (rplaca current ,item)))
338 ) ; EVAL-WHEN
340 ;;; The support routines for FILL are used by compiler transforms, so we
341 ;;; worry about dealing with END being supplied or defaulting to NIL
342 ;;; at this level.
344 (defun list-fill* (sequence item start end)
345 (declare (list sequence))
346 (list-fill sequence item start end))
348 (defun vector-fill* (sequence item start end)
349 (declare (vector sequence))
350 (when (null end) (setq end (length sequence)))
351 (vector-fill sequence item start end))
353 ;;; FILL cannot default end to the length of sequence since it is not
354 ;;; an error to supply nil for its value. We must test for end being nil
355 ;;; in the body of the function, and this is actually done in the support
356 ;;; routines for other reasons (see above).
357 (defun fill (sequence item &key (start 0) end)
358 #!+sb-doc "Replace the specified elements of SEQUENCE with ITEM."
359 (seq-dispatch sequence
360 (list-fill* sequence item start end)
361 (vector-fill* sequence item start end)))
363 ;;;; REPLACE
365 (eval-when (:compile-toplevel :execute)
367 ;;; If we are copying around in the same vector, be careful not to copy the
368 ;;; same elements over repeatedly. We do this by copying backwards.
369 (sb!xc:defmacro mumble-replace-from-mumble ()
370 `(if (and (eq target-sequence source-sequence) (> target-start source-start))
371 (let ((nelts (min (- target-end target-start)
372 (- source-end source-start))))
373 (do ((target-index (+ (the fixnum target-start) (the fixnum nelts) -1)
374 (1- target-index))
375 (source-index (+ (the fixnum source-start) (the fixnum nelts) -1)
376 (1- source-index)))
377 ((= target-index (the fixnum (1- target-start))) target-sequence)
378 (declare (fixnum target-index source-index))
379 (setf (aref target-sequence target-index)
380 (aref source-sequence source-index))))
381 (do ((target-index target-start (1+ target-index))
382 (source-index source-start (1+ source-index)))
383 ((or (= target-index (the fixnum target-end))
384 (= source-index (the fixnum source-end)))
385 target-sequence)
386 (declare (fixnum target-index source-index))
387 (setf (aref target-sequence target-index)
388 (aref source-sequence source-index)))))
390 (sb!xc:defmacro list-replace-from-list ()
391 `(if (and (eq target-sequence source-sequence) (> target-start source-start))
392 (let ((new-elts (subseq source-sequence source-start
393 (+ (the fixnum source-start)
394 (the fixnum
395 (min (- (the fixnum target-end)
396 (the fixnum target-start))
397 (- (the fixnum source-end)
398 (the fixnum source-start))))))))
399 (do ((n new-elts (cdr n))
400 (o (nthcdr target-start target-sequence) (cdr o)))
401 ((null n) target-sequence)
402 (rplaca o (car n))))
403 (do ((target-index target-start (1+ target-index))
404 (source-index source-start (1+ source-index))
405 (target-sequence-ref (nthcdr target-start target-sequence)
406 (cdr target-sequence-ref))
407 (source-sequence-ref (nthcdr source-start source-sequence)
408 (cdr source-sequence-ref)))
409 ((or (= target-index (the fixnum target-end))
410 (= source-index (the fixnum source-end))
411 (null target-sequence-ref) (null source-sequence-ref))
412 target-sequence)
413 (declare (fixnum target-index source-index))
414 (rplaca target-sequence-ref (car source-sequence-ref)))))
416 (sb!xc:defmacro list-replace-from-mumble ()
417 `(do ((target-index target-start (1+ target-index))
418 (source-index source-start (1+ source-index))
419 (target-sequence-ref (nthcdr target-start target-sequence)
420 (cdr target-sequence-ref)))
421 ((or (= target-index (the fixnum target-end))
422 (= source-index (the fixnum source-end))
423 (null target-sequence-ref))
424 target-sequence)
425 (declare (fixnum source-index target-index))
426 (rplaca target-sequence-ref (aref source-sequence source-index))))
428 (sb!xc:defmacro mumble-replace-from-list ()
429 `(do ((target-index target-start (1+ target-index))
430 (source-index source-start (1+ source-index))
431 (source-sequence (nthcdr source-start source-sequence)
432 (cdr source-sequence)))
433 ((or (= target-index (the fixnum target-end))
434 (= source-index (the fixnum source-end))
435 (null source-sequence))
436 target-sequence)
437 (declare (fixnum target-index source-index))
438 (setf (aref target-sequence target-index) (car source-sequence))))
440 ) ; EVAL-WHEN
442 ;;;; The support routines for REPLACE are used by compiler transforms, so we
443 ;;;; worry about dealing with END being supplied or defaulting to NIL
444 ;;;; at this level.
446 (defun list-replace-from-list* (target-sequence source-sequence target-start
447 target-end source-start source-end)
448 (when (null target-end) (setq target-end (length target-sequence)))
449 (when (null source-end) (setq source-end (length source-sequence)))
450 (list-replace-from-list))
452 (defun list-replace-from-vector* (target-sequence source-sequence target-start
453 target-end source-start source-end)
454 (when (null target-end) (setq target-end (length target-sequence)))
455 (when (null source-end) (setq source-end (length source-sequence)))
456 (list-replace-from-mumble))
458 (defun vector-replace-from-list* (target-sequence source-sequence target-start
459 target-end source-start source-end)
460 (when (null target-end) (setq target-end (length target-sequence)))
461 (when (null source-end) (setq source-end (length source-sequence)))
462 (mumble-replace-from-list))
464 (defun vector-replace-from-vector* (target-sequence source-sequence
465 target-start target-end source-start
466 source-end)
467 (when (null target-end) (setq target-end (length target-sequence)))
468 (when (null source-end) (setq source-end (length source-sequence)))
469 (mumble-replace-from-mumble))
471 ;;; REPLACE cannot default END arguments to the length of SEQUENCE since it
472 ;;; is not an error to supply NIL for their values. We must test for ENDs
473 ;;; being NIL in the body of the function.
474 (defun replace (target-sequence source-sequence &key
475 ((:start1 target-start) 0)
476 ((:end1 target-end))
477 ((:start2 source-start) 0)
478 ((:end2 source-end)))
479 #!+sb-doc
480 "The target sequence is destructively modified by copying successive
481 elements into it from the source sequence."
482 (let ((target-end (or target-end (length target-sequence)))
483 (source-end (or source-end (length source-sequence))))
484 (seq-dispatch target-sequence
485 (seq-dispatch source-sequence
486 (list-replace-from-list)
487 (list-replace-from-mumble))
488 (seq-dispatch source-sequence
489 (mumble-replace-from-list)
490 (mumble-replace-from-mumble)))))
492 ;;;; REVERSE
494 (eval-when (:compile-toplevel :execute)
496 (sb!xc:defmacro vector-reverse (sequence type)
497 `(let ((length (length ,sequence)))
498 (declare (fixnum length))
499 (do ((forward-index 0 (1+ forward-index))
500 (backward-index (1- length) (1- backward-index))
501 (new-sequence (make-sequence-of-type ,type length)))
502 ((= forward-index length) new-sequence)
503 (declare (fixnum forward-index backward-index))
504 (setf (aref new-sequence forward-index)
505 (aref ,sequence backward-index)))))
507 (sb!xc:defmacro list-reverse-macro (sequence)
508 `(do ((new-list ()))
509 ((atom ,sequence) new-list)
510 (push (pop ,sequence) new-list)))
512 ) ; EVAL-WHEN
514 (defun reverse (sequence)
515 #!+sb-doc
516 "Return a new sequence containing the same elements but in reverse order."
517 (seq-dispatch sequence
518 (list-reverse* sequence)
519 (vector-reverse* sequence)))
521 ;;; internal frobs
523 (defun list-reverse* (sequence)
524 (list-reverse-macro sequence))
526 (defun vector-reverse* (sequence)
527 (vector-reverse sequence (type-of sequence)))
529 ;;;; NREVERSE
531 (eval-when (:compile-toplevel :execute)
533 (sb!xc:defmacro vector-nreverse (sequence)
534 `(let ((length (length (the vector ,sequence))))
535 (declare (fixnum length))
536 (do ((left-index 0 (1+ left-index))
537 (right-index (1- length) (1- right-index))
538 (half-length (truncate length 2)))
539 ((= left-index half-length) ,sequence)
540 (declare (fixnum left-index right-index half-length))
541 (rotatef (aref ,sequence left-index)
542 (aref ,sequence right-index)))))
544 (sb!xc:defmacro list-nreverse-macro (list)
545 `(do ((1st (cdr ,list) (if (atom 1st) 1st (cdr 1st)))
546 (2nd ,list 1st)
547 (3rd '() 2nd))
548 ((atom 2nd) 3rd)
549 (rplacd 2nd 3rd)))
551 ) ; EVAL-WHEN
553 (defun list-nreverse* (sequence)
554 (list-nreverse-macro sequence))
556 (defun vector-nreverse* (sequence)
557 (vector-nreverse sequence))
559 (defun nreverse (sequence)
560 #!+sb-doc
561 "Return a sequence of the same elements in reverse order; the argument
562 is destroyed."
563 (seq-dispatch sequence
564 (list-nreverse* sequence)
565 (vector-nreverse* sequence)))
567 ;;;; CONCATENATE
569 (eval-when (:compile-toplevel :execute)
571 (sb!xc:defmacro concatenate-to-list (sequences)
572 `(let ((result (list nil)))
573 (do ((sequences ,sequences (cdr sequences))
574 (splice result))
575 ((null sequences) (cdr result))
576 (let ((sequence (car sequences)))
577 ;; FIXME: It appears to me that this and CONCATENATE-TO-MUMBLE
578 ;; could benefit from a DO-SEQUENCE macro.
579 (seq-dispatch sequence
580 (do ((sequence sequence (cdr sequence)))
581 ((atom sequence))
582 (setq splice
583 (cdr (rplacd splice (list (car sequence))))))
584 (do ((index 0 (1+ index))
585 (length (length sequence)))
586 ((= index length))
587 (declare (fixnum index length))
588 (setq splice
589 (cdr (rplacd splice
590 (list (aref sequence index)))))))))))
592 (sb!xc:defmacro concatenate-to-mumble (output-type-spec sequences)
593 `(do ((seqs ,sequences (cdr seqs))
594 (total-length 0)
595 (lengths ()))
596 ((null seqs)
597 (do ((sequences ,sequences (cdr sequences))
598 (lengths lengths (cdr lengths))
599 (index 0)
600 (result (make-sequence-of-type ,output-type-spec total-length)))
601 ((= index total-length) result)
602 (declare (fixnum index))
603 (let ((sequence (car sequences)))
604 (seq-dispatch sequence
605 (do ((sequence sequence (cdr sequence)))
606 ((atom sequence))
607 (setf (aref result index) (car sequence))
608 (setq index (1+ index)))
609 (do ((jndex 0 (1+ jndex))
610 (this-length (car lengths)))
611 ((= jndex this-length))
612 (declare (fixnum jndex this-length))
613 (setf (aref result index)
614 (aref sequence jndex))
615 (setq index (1+ index)))))))
616 (let ((length (length (car seqs))))
617 (declare (fixnum length))
618 (setq lengths (nconc lengths (list length)))
619 (setq total-length (+ total-length length)))))
621 ) ; EVAL-WHEN
623 ;;; FIXME: Make a compiler macro or transform for this which efficiently
624 ;;; handles the case of constant 'STRING first argument. (It's not just time
625 ;;; efficiency, but space efficiency..)
626 (defun concatenate (output-type-spec &rest sequences)
627 #!+sb-doc
628 "Return a new sequence of all the argument sequences concatenated together
629 which shares no structure with the original argument sequences of the
630 specified OUTPUT-TYPE-SPEC."
631 (case (type-specifier-atom output-type-spec)
632 ((simple-vector simple-string vector string array simple-array
633 bit-vector simple-bit-vector base-string
634 simple-base-string) ; FIXME: unifying principle here?
635 (let ((result (apply #'concat-to-simple* output-type-spec sequences)))
636 #!+high-security (aver (typep result output-type-spec))
637 result))
638 (list (apply #'concat-to-list* sequences))
640 (apply #'concatenate (result-type-or-lose output-type-spec) sequences))))
642 ;;; internal frobs
643 ;;; FIXME: These are weird. They're never called anywhere except in
644 ;;; CONCATENATE. It seems to me that the macros ought to just
645 ;;; be expanded directly in CONCATENATE, or in CONCATENATE-STRING
646 ;;; and CONCATENATE-LIST variants. Failing that, these ought to be local
647 ;;; functions (FLET).
648 (defun concat-to-list* (&rest sequences)
649 (concatenate-to-list sequences))
650 (defun concat-to-simple* (type &rest sequences)
651 (concatenate-to-mumble type sequences))
653 ;;;; MAP and MAP-INTO
655 ;;; helper functions to handle arity-1 subcases of MAP
656 (declaim (ftype (function (function sequence) list) %map-list-arity-1))
657 (declaim (ftype (function (function sequence) simple-vector)
658 %map-simple-vector-arity-1))
659 (macrolet ((dosequence ((i sequence) &body body)
660 (once-only ((sequence sequence))
661 `(etypecase ,sequence
662 (list (dolist (,i ,sequence) ,@body))
663 (simple-vector (dovector (,i sequence) ,@body))
664 (vector (dovector (,i sequence) ,@body))))))
665 (defun %map-to-list-arity-1 (fun sequence)
666 (let ((reversed-result nil)
667 (really-fun (%coerce-callable-to-fun fun)))
668 (dosequence (element sequence)
669 (push (funcall really-fun element)
670 reversed-result))
671 (nreverse reversed-result)))
672 (defun %map-to-simple-vector-arity-1 (fun sequence)
673 (let ((result (make-array (length sequence)))
674 (index 0)
675 (really-fun (%coerce-callable-to-fun fun)))
676 (declare (type index index))
677 (dosequence (element sequence)
678 (setf (aref result index)
679 (funcall really-fun element))
680 (incf index))
681 result))
682 (defun %map-for-effect-arity-1 (fun sequence)
683 (let ((really-fun (%coerce-callable-to-fun fun)))
684 (dosequence (element sequence)
685 (funcall really-fun element)))
686 nil))
688 ;;; helper functions to handle arity-N subcases of MAP
690 ;;; KLUDGE: This is hairier, and larger, than need be, because we
691 ;;; don't have DYNAMIC-EXTENT. With DYNAMIC-EXTENT, we could define
692 ;;; %MAP-FOR-EFFECT, and then implement the
693 ;;; other %MAP-TO-FOO functions reasonably efficiently by passing closures to
694 ;;; %MAP-FOR-EFFECT. (DYNAMIC-EXTENT would help a little by avoiding
695 ;;; consing each closure, and would help a lot by allowing us to define
696 ;;; a closure (LAMBDA (&REST REST) <do something with (APPLY FUN REST)>)
697 ;;; with the REST list allocated with DYNAMIC-EXTENT. -- WHN 20000920
698 (macrolet (;; Execute BODY in a context where the machinery for
699 ;; UPDATED-MAP-APPLY-ARGS has been set up.
700 (with-map-state (sequences &body body)
701 `(let* ((%sequences ,sequences)
702 (%iters (mapcar (lambda (sequence)
703 (etypecase sequence
704 (list sequence)
705 (vector 0)))
706 %sequences))
707 (%apply-args (make-list (length %sequences))))
708 (declare (type list %sequences %iters %apply-args))
709 ,@body))
710 ;; Return a list of args to pass to APPLY for the next
711 ;; function call in the mapping, or NIL if no more function
712 ;; calls should be made (because we've reached the end of a
713 ;; sequence arg).
714 (updated-map-apply-args ()
715 '(do ((in-sequences %sequences (cdr in-sequences))
716 (in-iters %iters (cdr in-iters))
717 (in-apply-args %apply-args (cdr in-apply-args)))
718 ((null in-sequences)
719 %apply-args)
720 (declare (type list in-sequences in-iters in-apply-args))
721 (let ((i (car in-iters)))
722 (declare (type (or list index) i))
723 (if (listp i)
724 (if (null i) ; if end of this sequence
725 (return nil)
726 (setf (car in-apply-args) (car i)
727 (car in-iters) (cdr i)))
728 (let ((v (the vector (car in-sequences))))
729 (if (>= i (length v)) ; if end of this sequence
730 (return nil)
731 (setf (car in-apply-args) (aref v i)
732 (car in-iters) (1+ i)))))))))
733 (defun %map-to-list (func sequences)
734 (declare (type function func))
735 (declare (type list sequences))
736 (with-map-state sequences
737 (loop with updated-map-apply-args
738 while (setf updated-map-apply-args (updated-map-apply-args))
739 collect (apply func updated-map-apply-args))))
740 (defun %map-to-vector (output-type-spec func sequences)
741 (declare (type function func))
742 (declare (type list sequences))
743 (let ((min-len (with-map-state sequences
744 (do ((counter 0 (1+ counter)))
745 ;; Note: Doing everything in
746 ;; UPDATED-MAP-APPLY-ARGS here is somewhat
747 ;; wasteful; we even do some extra consing.
748 ;; And stepping over every element of
749 ;; VECTORs, instead of just grabbing their
750 ;; LENGTH, is also wasteful. But it's easy
751 ;; and safe. (If you do rewrite it, please
752 ;; try to make sure that
753 ;; (MAP NIL #'F SOME-CIRCULAR-LIST #(1))
754 ;; does the right thing.)
755 ((not (updated-map-apply-args))
756 counter)
757 (declare (type index counter))))))
758 (declare (type index min-len))
759 (with-map-state sequences
760 (let ((result (make-sequence-of-type output-type-spec min-len))
761 (index 0))
762 (declare (type index index))
763 (loop with updated-map-apply-args
764 while (setf updated-map-apply-args (updated-map-apply-args))
766 (setf (aref result index)
767 (apply func updated-map-apply-args))
768 (incf index))
769 result))))
770 (defun %map-for-effect (func sequences)
771 (declare (type function func))
772 (declare (type list sequences))
773 (with-map-state sequences
774 (loop with updated-map-apply-args
775 while (setf updated-map-apply-args (updated-map-apply-args))
777 (apply func updated-map-apply-args))
778 nil)))
780 "FUNCTION must take as many arguments as there are sequences provided.
781 The result is a sequence of type OUTPUT-TYPE-SPEC such that element I
782 is the result of applying FUNCTION to element I of each of the argument
783 sequences."
785 ;;; %MAP is just MAP without the final just-to-be-sure check that
786 ;;; length of the output sequence matches any length specified
787 ;;; in RESULT-TYPE.
788 (defun %map (result-type function first-sequence &rest more-sequences)
789 (let ((really-fun (%coerce-callable-to-fun function)))
790 ;; Handle one-argument MAP NIL specially, using ETYPECASE to turn
791 ;; it into something which can be DEFTRANSFORMed away. (It's
792 ;; fairly important to handle this case efficiently, since
793 ;; quantifiers like SOME are transformed into this case, and since
794 ;; there's no consing overhead to dwarf our inefficiency.)
795 (if (and (null more-sequences)
796 (null result-type))
797 (%map-for-effect-arity-1 really-fun first-sequence)
798 ;; Otherwise, use the industrial-strength full-generality
799 ;; approach, consing O(N-ARGS) temporary storage (which can have
800 ;; DYNAMIC-EXTENT), then using O(N-ARGS * RESULT-LENGTH) time.
801 (let ((sequences (cons first-sequence more-sequences)))
802 (case (type-specifier-atom result-type)
803 ((nil) (%map-for-effect really-fun sequences))
804 (list (%map-to-list really-fun sequences))
805 ((simple-vector simple-string vector string array simple-array
806 bit-vector simple-bit-vector base-string simple-base-string)
807 (%map-to-vector result-type really-fun sequences))
809 (apply #'map
810 (result-type-or-lose result-type t)
811 really-fun
812 sequences)))))))
814 (defun map (result-type function first-sequence &rest more-sequences)
815 (sequence-of-checked-length-given-type (apply #'%map
816 result-type
817 function
818 first-sequence
819 more-sequences)
820 ;; (The RESULT-TYPE isn't
821 ;; strictly the type of the
822 ;; result, because when
823 ;; RESULT-TYPE=NIL, the result
824 ;; actually has NULL type. But
825 ;; that special case doesn't
826 ;; matter here, since we only
827 ;; look closely at vector
828 ;; types; so we can just pass
829 ;; RESULT-TYPE straight through
830 ;; as a type specifier.)
831 result-type))
833 ;;; KLUDGE: MAP has been rewritten substantially since the fork from
834 ;;; CMU CL in order to give reasonable performance, but this
835 ;;; implementation of MAP-INTO still has the same problems as the old
836 ;;; MAP code. Ideally, MAP-INTO should be rewritten to be efficient in
837 ;;; the same way that the corresponding cases of MAP have been
838 ;;; rewritten. Instead of doing it now, though, it's easier to wait
839 ;;; until we have DYNAMIC-EXTENT, at which time it should become
840 ;;; extremely easy to define a reasonably efficient MAP-INTO in terms
841 ;;; of (MAP NIL ..). -- WHN 20000920
842 (defun map-into (result-sequence function &rest sequences)
843 (let* ((fp-result
844 (and (arrayp result-sequence)
845 (array-has-fill-pointer-p result-sequence)))
846 (len (apply #'min
847 (if fp-result
848 (array-dimension result-sequence 0)
849 (length result-sequence))
850 (mapcar #'length sequences))))
852 (when fp-result
853 (setf (fill-pointer result-sequence) len))
855 (let ((really-fun (%coerce-callable-to-fun function)))
856 (dotimes (index len)
857 (setf (elt result-sequence index)
858 (apply really-fun
859 (mapcar (lambda (seq) (elt seq index))
860 sequences))))))
861 result-sequence)
863 ;;;; quantifiers
865 ;;; We borrow the logic from (MAP NIL ..) to handle iteration over
866 ;;; arbitrary sequence arguments, both in the full call case and in
867 ;;; the open code case.
868 (macrolet ((defquantifier (name found-test found-result
869 &key doc (unfound-result (not found-result)))
870 `(progn
871 ;; KLUDGE: It would be really nice if we could simply
872 ;; do something like this
873 ;; (declaim (inline ,name))
874 ;; (defun ,name (pred first-seq &rest more-seqs)
875 ;; ,doc
876 ;; (flet ((map-me (&rest rest)
877 ;; (let ((pred-value (apply pred rest)))
878 ;; (,found-test pred-value
879 ;; (return-from ,name
880 ;; ,found-result)))))
881 ;; (declare (inline map-me))
882 ;; (apply #'map nil #'map-me first-seq more-seqs)
883 ;; ,unfound-result))
884 ;; but Python doesn't seem to be smart enough about
885 ;; inlining and APPLY to recognize that it can use
886 ;; the DEFTRANSFORM for MAP in the resulting inline
887 ;; expansion. I don't have any appetite for deep
888 ;; compiler hacking right now, so I'll just work
889 ;; around the apparent problem by using a compiler
890 ;; macro instead. -- WHN 20000410
891 (defun ,name (pred first-seq &rest more-seqs)
892 #!+sb-doc ,doc
893 (flet ((map-me (&rest rest)
894 (let ((pred-value (apply pred rest)))
895 (,found-test pred-value
896 (return-from ,name
897 ,found-result)))))
898 (declare (inline map-me))
899 (apply #'map nil #'map-me first-seq more-seqs)
900 ,unfound-result))
901 ;; KLUDGE: It would be more obviously correct -- but
902 ;; also significantly messier -- for PRED-VALUE to be
903 ;; a gensym. However, a private symbol really does
904 ;; seem to be good enough; and anyway the really
905 ;; obviously correct solution is to make Python smart
906 ;; enough that we can use an inline function instead
907 ;; of a compiler macro (as above). -- WHN 20000410
909 ;; FIXME: The DEFINE-COMPILER-MACRO here can be
910 ;; important for performance, and it'd be good to have
911 ;; it be visible throughout the compilation of all the
912 ;; target SBCL code. That could be done by defining
913 ;; SB-XC:DEFINE-COMPILER-MACRO and using it here,
914 ;; moving this DEFQUANTIFIER stuff (and perhaps other
915 ;; inline definitions in seq.lisp as well) into a new
916 ;; seq.lisp, and moving remaining target-only stuff
917 ;; from the old seq.lisp into target-seq.lisp.
918 (define-compiler-macro ,name (pred first-seq &rest more-seqs)
919 (let ((elements (make-gensym-list (1+ (length more-seqs))))
920 (blockname (gensym "BLOCK")))
921 (once-only ((pred pred))
922 `(block ,blockname
923 (map nil
924 (lambda (,@elements)
925 (let ((pred-value (funcall ,pred ,@elements)))
926 (,',found-test pred-value
927 (return-from ,blockname
928 ,',found-result))))
929 ,first-seq
930 ,@more-seqs)
931 ,',unfound-result)))))))
932 (defquantifier some when pred-value :unfound-result nil :doc
933 "Apply PREDICATE to the 0-indexed elements of the sequences, then
934 possibly to those with index 1, and so on. Return the first
935 non-NIL value encountered, or NIL if the end of any sequence is reached.")
936 (defquantifier every unless nil :doc
937 "Apply PREDICATE to the 0-indexed elements of the sequences, then
938 possibly to those with index 1, and so on. Return NIL as soon
939 as any invocation of PREDICATE returns NIL, or T if every invocation
940 is non-NIL.")
941 (defquantifier notany when nil :doc
942 "Apply PREDICATE to the 0-indexed elements of the sequences, then
943 possibly to those with index 1, and so on. Return NIL as soon
944 as any invocation of PREDICATE returns a non-NIL value, or T if the end
945 of any sequence is reached.")
946 (defquantifier notevery unless t :doc
947 "Apply PREDICATE to 0-indexed elements of the sequences, then
948 possibly to those with index 1, and so on. Return T as soon
949 as any invocation of PREDICATE returns NIL, or NIL if every invocation
950 is non-NIL."))
952 ;;;; REDUCE
954 (eval-when (:compile-toplevel :execute)
956 (sb!xc:defmacro mumble-reduce (function
957 sequence
959 start
961 initial-value
962 ref)
963 `(do ((index ,start (1+ index))
964 (value ,initial-value))
965 ((= index (the fixnum ,end)) value)
966 (declare (fixnum index))
967 (setq value (funcall ,function value
968 (apply-key ,key (,ref ,sequence index))))))
970 (sb!xc:defmacro mumble-reduce-from-end (function
971 sequence
973 start
975 initial-value
976 ref)
977 `(do ((index (1- ,end) (1- index))
978 (value ,initial-value)
979 (terminus (1- ,start)))
980 ((= index terminus) value)
981 (declare (fixnum index terminus))
982 (setq value (funcall ,function
983 (apply-key ,key (,ref ,sequence index))
984 value))))
986 (sb!xc:defmacro list-reduce (function
987 sequence
989 start
991 initial-value
992 ivp)
993 `(let ((sequence (nthcdr ,start ,sequence)))
994 (do ((count (if ,ivp ,start (1+ (the fixnum ,start)))
995 (1+ count))
996 (sequence (if ,ivp sequence (cdr sequence))
997 (cdr sequence))
998 (value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
999 (funcall ,function value (apply-key ,key (car sequence)))))
1000 ((= count (the fixnum ,end)) value)
1001 (declare (fixnum count)))))
1003 (sb!xc:defmacro list-reduce-from-end (function
1004 sequence
1006 start
1008 initial-value
1009 ivp)
1010 `(let ((sequence (nthcdr (- (the fixnum (length ,sequence))
1011 (the fixnum ,end))
1012 (reverse ,sequence))))
1013 (do ((count (if ,ivp ,start (1+ (the fixnum ,start)))
1014 (1+ count))
1015 (sequence (if ,ivp sequence (cdr sequence))
1016 (cdr sequence))
1017 (value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
1018 (funcall ,function (apply-key ,key (car sequence)) value)))
1019 ((= count (the fixnum ,end)) value)
1020 (declare (fixnum count)))))
1022 ) ; EVAL-WHEN
1024 (defun reduce (function sequence &key key from-end (start 0)
1025 end (initial-value nil ivp))
1026 (declare (type index start))
1027 (let ((start start)
1028 (end (or end (length sequence))))
1029 (declare (type index start end))
1030 (cond ((= end start)
1031 (if ivp initial-value (funcall function)))
1032 ((listp sequence)
1033 (if from-end
1034 (list-reduce-from-end function sequence key start end
1035 initial-value ivp)
1036 (list-reduce function sequence key start end
1037 initial-value ivp)))
1038 (from-end
1039 (when (not ivp)
1040 (setq end (1- (the fixnum end)))
1041 (setq initial-value (apply-key key (aref sequence end))))
1042 (mumble-reduce-from-end function sequence key start end
1043 initial-value aref))
1045 (when (not ivp)
1046 (setq initial-value (apply-key key (aref sequence start)))
1047 (setq start (1+ start)))
1048 (mumble-reduce function sequence key start end
1049 initial-value aref)))))
1051 ;;;; DELETE
1053 (eval-when (:compile-toplevel :execute)
1055 (sb!xc:defmacro mumble-delete (pred)
1056 `(do ((index start (1+ index))
1057 (jndex start)
1058 (number-zapped 0))
1059 ((or (= index (the fixnum end)) (= number-zapped (the fixnum count)))
1060 (do ((index index (1+ index)) ; Copy the rest of the vector.
1061 (jndex jndex (1+ jndex)))
1062 ((= index (the fixnum length))
1063 (shrink-vector sequence jndex))
1064 (declare (fixnum index jndex))
1065 (setf (aref sequence jndex) (aref sequence index))))
1066 (declare (fixnum index jndex number-zapped))
1067 (setf (aref sequence jndex) (aref sequence index))
1068 (if ,pred
1069 (setq number-zapped (1+ number-zapped))
1070 (setq jndex (1+ jndex)))))
1072 (sb!xc:defmacro mumble-delete-from-end (pred)
1073 `(do ((index (1- (the fixnum end)) (1- index)) ; Find the losers.
1074 (number-zapped 0)
1075 (losers ())
1076 this-element
1077 (terminus (1- start)))
1078 ((or (= index terminus) (= number-zapped (the fixnum count)))
1079 (do ((losers losers) ; Delete the losers.
1080 (index start (1+ index))
1081 (jndex start))
1082 ((or (null losers) (= index (the fixnum end)))
1083 (do ((index index (1+ index)) ; Copy the rest of the vector.
1084 (jndex jndex (1+ jndex)))
1085 ((= index (the fixnum length))
1086 (shrink-vector sequence jndex))
1087 (declare (fixnum index jndex))
1088 (setf (aref sequence jndex) (aref sequence index))))
1089 (declare (fixnum index jndex))
1090 (setf (aref sequence jndex) (aref sequence index))
1091 (if (= index (the fixnum (car losers)))
1092 (pop losers)
1093 (setq jndex (1+ jndex)))))
1094 (declare (fixnum index number-zapped terminus))
1095 (setq this-element (aref sequence index))
1096 (when ,pred
1097 (setq number-zapped (1+ number-zapped))
1098 (push index losers))))
1100 (sb!xc:defmacro normal-mumble-delete ()
1101 `(mumble-delete
1102 (if test-not
1103 (not (funcall test-not item (apply-key key (aref sequence index))))
1104 (funcall test item (apply-key key (aref sequence index))))))
1106 (sb!xc:defmacro normal-mumble-delete-from-end ()
1107 `(mumble-delete-from-end
1108 (if test-not
1109 (not (funcall test-not item (apply-key key this-element)))
1110 (funcall test item (apply-key key this-element)))))
1112 (sb!xc:defmacro list-delete (pred)
1113 `(let ((handle (cons nil sequence)))
1114 (do ((current (nthcdr start sequence) (cdr current))
1115 (previous (nthcdr start handle))
1116 (index start (1+ index))
1117 (number-zapped 0))
1118 ((or (= index (the fixnum end)) (= number-zapped (the fixnum count)))
1119 (cdr handle))
1120 (declare (fixnum index number-zapped))
1121 (cond (,pred
1122 (rplacd previous (cdr current))
1123 (setq number-zapped (1+ number-zapped)))
1125 (setq previous (cdr previous)))))))
1127 (sb!xc:defmacro list-delete-from-end (pred)
1128 `(let* ((reverse (nreverse (the list sequence)))
1129 (handle (cons nil reverse)))
1130 (do ((current (nthcdr (- (the fixnum length) (the fixnum end)) reverse)
1131 (cdr current))
1132 (previous (nthcdr (- (the fixnum length) (the fixnum end)) handle))
1133 (index start (1+ index))
1134 (number-zapped 0))
1135 ((or (= index (the fixnum end)) (= number-zapped (the fixnum count)))
1136 (nreverse (cdr handle)))
1137 (declare (fixnum index number-zapped))
1138 (cond (,pred
1139 (rplacd previous (cdr current))
1140 (setq number-zapped (1+ number-zapped)))
1142 (setq previous (cdr previous)))))))
1144 (sb!xc:defmacro normal-list-delete ()
1145 '(list-delete
1146 (if test-not
1147 (not (funcall test-not item (apply-key key (car current))))
1148 (funcall test item (apply-key key (car current))))))
1150 (sb!xc:defmacro normal-list-delete-from-end ()
1151 '(list-delete-from-end
1152 (if test-not
1153 (not (funcall test-not item (apply-key key (car current))))
1154 (funcall test item (apply-key key (car current))))))
1156 ) ; EVAL-WHEN
1158 (defun delete (item sequence &key from-end (test #'eql) test-not (start 0)
1159 end count key)
1160 #!+sb-doc
1161 "Return a sequence formed by destructively removing the specified ITEM from
1162 the given SEQUENCE."
1163 (declare (fixnum start))
1164 (let* ((length (length sequence))
1165 (end (or end length))
1166 (count (or count most-positive-fixnum)))
1167 (declare (type index length end)
1168 (fixnum count))
1169 (seq-dispatch sequence
1170 (if from-end
1171 (normal-list-delete-from-end)
1172 (normal-list-delete))
1173 (if from-end
1174 (normal-mumble-delete-from-end)
1175 (normal-mumble-delete)))))
1177 (eval-when (:compile-toplevel :execute)
1179 (sb!xc:defmacro if-mumble-delete ()
1180 `(mumble-delete
1181 (funcall predicate (apply-key key (aref sequence index)))))
1183 (sb!xc:defmacro if-mumble-delete-from-end ()
1184 `(mumble-delete-from-end
1185 (funcall predicate (apply-key key this-element))))
1187 (sb!xc:defmacro if-list-delete ()
1188 '(list-delete
1189 (funcall predicate (apply-key key (car current)))))
1191 (sb!xc:defmacro if-list-delete-from-end ()
1192 '(list-delete-from-end
1193 (funcall predicate (apply-key key (car current)))))
1195 ) ; EVAL-WHEN
1197 (defun delete-if (predicate sequence &key from-end (start 0) key end count)
1198 #!+sb-doc
1199 "Return a sequence formed by destructively removing the elements satisfying
1200 the specified PREDICATE from the given SEQUENCE."
1201 (declare (fixnum start))
1202 (let* ((length (length sequence))
1203 (end (or end length))
1204 (count (or count most-positive-fixnum)))
1205 (declare (type index length end)
1206 (fixnum count))
1207 (seq-dispatch sequence
1208 (if from-end
1209 (if-list-delete-from-end)
1210 (if-list-delete))
1211 (if from-end
1212 (if-mumble-delete-from-end)
1213 (if-mumble-delete)))))
1215 (eval-when (:compile-toplevel :execute)
1217 (sb!xc:defmacro if-not-mumble-delete ()
1218 `(mumble-delete
1219 (not (funcall predicate (apply-key key (aref sequence index))))))
1221 (sb!xc:defmacro if-not-mumble-delete-from-end ()
1222 `(mumble-delete-from-end
1223 (not (funcall predicate (apply-key key this-element)))))
1225 (sb!xc:defmacro if-not-list-delete ()
1226 '(list-delete
1227 (not (funcall predicate (apply-key key (car current))))))
1229 (sb!xc:defmacro if-not-list-delete-from-end ()
1230 '(list-delete-from-end
1231 (not (funcall predicate (apply-key key (car current))))))
1233 ) ; EVAL-WHEN
1235 (defun delete-if-not (predicate sequence &key from-end (start 0) end key count)
1236 #!+sb-doc
1237 "Return a sequence formed by destructively removing the elements not
1238 satisfying the specified PREDICATE from the given SEQUENCE."
1239 (declare (fixnum start))
1240 (let* ((length (length sequence))
1241 (end (or end length))
1242 (count (or count most-positive-fixnum)))
1243 (declare (type index length end)
1244 (fixnum count))
1245 (seq-dispatch sequence
1246 (if from-end
1247 (if-not-list-delete-from-end)
1248 (if-not-list-delete))
1249 (if from-end
1250 (if-not-mumble-delete-from-end)
1251 (if-not-mumble-delete)))))
1253 ;;;; REMOVE
1255 (eval-when (:compile-toplevel :execute)
1257 ;;; MUMBLE-REMOVE-MACRO does not include (removes) each element that
1258 ;;; satisfies the predicate.
1259 (sb!xc:defmacro mumble-remove-macro (bump left begin finish right pred)
1260 `(do ((index ,begin (,bump index))
1261 (result
1262 (do ((index ,left (,bump index))
1263 (result (make-sequence-like sequence length)))
1264 ((= index (the fixnum ,begin)) result)
1265 (declare (fixnum index))
1266 (setf (aref result index) (aref sequence index))))
1267 (new-index ,begin)
1268 (number-zapped 0)
1269 (this-element))
1270 ((or (= index (the fixnum ,finish))
1271 (= number-zapped (the fixnum count)))
1272 (do ((index index (,bump index))
1273 (new-index new-index (,bump new-index)))
1274 ((= index (the fixnum ,right)) (shrink-vector result new-index))
1275 (declare (fixnum index new-index))
1276 (setf (aref result new-index) (aref sequence index))))
1277 (declare (fixnum index new-index number-zapped))
1278 (setq this-element (aref sequence index))
1279 (cond (,pred (setq number-zapped (1+ number-zapped)))
1280 (t (setf (aref result new-index) this-element)
1281 (setq new-index (,bump new-index))))))
1283 (sb!xc:defmacro mumble-remove (pred)
1284 `(mumble-remove-macro 1+ 0 start end length ,pred))
1286 (sb!xc:defmacro mumble-remove-from-end (pred)
1287 `(let ((sequence (copy-seq sequence)))
1288 (mumble-delete-from-end ,pred)))
1290 (sb!xc:defmacro normal-mumble-remove ()
1291 `(mumble-remove
1292 (if test-not
1293 (not (funcall test-not item (apply-key key this-element)))
1294 (funcall test item (apply-key key this-element)))))
1296 (sb!xc:defmacro normal-mumble-remove-from-end ()
1297 `(mumble-remove-from-end
1298 (if test-not
1299 (not (funcall test-not item (apply-key key this-element)))
1300 (funcall test item (apply-key key this-element)))))
1302 (sb!xc:defmacro if-mumble-remove ()
1303 `(mumble-remove (funcall predicate (apply-key key this-element))))
1305 (sb!xc:defmacro if-mumble-remove-from-end ()
1306 `(mumble-remove-from-end (funcall predicate (apply-key key this-element))))
1308 (sb!xc:defmacro if-not-mumble-remove ()
1309 `(mumble-remove (not (funcall predicate (apply-key key this-element)))))
1311 (sb!xc:defmacro if-not-mumble-remove-from-end ()
1312 `(mumble-remove-from-end
1313 (not (funcall predicate (apply-key key this-element)))))
1315 ;;; LIST-REMOVE-MACRO does not include (removes) each element that satisfies
1316 ;;; the predicate.
1317 (sb!xc:defmacro list-remove-macro (pred reverse?)
1318 `(let* ((sequence ,(if reverse?
1319 '(reverse (the list sequence))
1320 'sequence))
1321 (splice (list nil))
1322 (results (do ((index 0 (1+ index))
1323 (before-start splice))
1324 ((= index (the fixnum start)) before-start)
1325 (declare (fixnum index))
1326 (setq splice
1327 (cdr (rplacd splice (list (pop sequence))))))))
1328 (do ((index start (1+ index))
1329 (this-element)
1330 (number-zapped 0))
1331 ((or (= index (the fixnum end)) (= number-zapped (the fixnum count)))
1332 (do ((index index (1+ index)))
1333 ((null sequence)
1334 ,(if reverse?
1335 '(nreverse (the list (cdr results)))
1336 '(cdr results)))
1337 (declare (fixnum index))
1338 (setq splice (cdr (rplacd splice (list (pop sequence)))))))
1339 (declare (fixnum index number-zapped))
1340 (setq this-element (pop sequence))
1341 (if ,pred
1342 (setq number-zapped (1+ number-zapped))
1343 (setq splice (cdr (rplacd splice (list this-element))))))))
1345 (sb!xc:defmacro list-remove (pred)
1346 `(list-remove-macro ,pred nil))
1348 (sb!xc:defmacro list-remove-from-end (pred)
1349 `(list-remove-macro ,pred t))
1351 (sb!xc:defmacro normal-list-remove ()
1352 `(list-remove
1353 (if test-not
1354 (not (funcall test-not item (apply-key key this-element)))
1355 (funcall test item (apply-key key this-element)))))
1357 (sb!xc:defmacro normal-list-remove-from-end ()
1358 `(list-remove-from-end
1359 (if test-not
1360 (not (funcall test-not item (apply-key key this-element)))
1361 (funcall test item (apply-key key this-element)))))
1363 (sb!xc:defmacro if-list-remove ()
1364 `(list-remove
1365 (funcall predicate (apply-key key this-element))))
1367 (sb!xc:defmacro if-list-remove-from-end ()
1368 `(list-remove-from-end
1369 (funcall predicate (apply-key key this-element))))
1371 (sb!xc:defmacro if-not-list-remove ()
1372 `(list-remove
1373 (not (funcall predicate (apply-key key this-element)))))
1375 (sb!xc:defmacro if-not-list-remove-from-end ()
1376 `(list-remove-from-end
1377 (not (funcall predicate (apply-key key this-element)))))
1379 ) ; EVAL-WHEN
1381 (defun remove (item sequence &key from-end (test #'eql) test-not (start 0)
1382 end count key)
1383 #!+sb-doc
1384 "Return a copy of SEQUENCE with elements satisfying the test (default is
1385 EQL) with ITEM removed."
1386 (declare (fixnum start))
1387 (let* ((length (length sequence))
1388 (end (or end length))
1389 (count (or count most-positive-fixnum)))
1390 (declare (type index length end)
1391 (fixnum count))
1392 (seq-dispatch sequence
1393 (if from-end
1394 (normal-list-remove-from-end)
1395 (normal-list-remove))
1396 (if from-end
1397 (normal-mumble-remove-from-end)
1398 (normal-mumble-remove)))))
1400 (defun remove-if (predicate sequence &key from-end (start 0) end count key)
1401 #!+sb-doc
1402 "Return a copy of sequence with elements such that predicate(element)
1403 is non-null removed"
1404 (declare (fixnum start))
1405 (let* ((length (length sequence))
1406 (end (or end length))
1407 (count (or count most-positive-fixnum)))
1408 (declare (type index length end)
1409 (fixnum count))
1410 (seq-dispatch sequence
1411 (if from-end
1412 (if-list-remove-from-end)
1413 (if-list-remove))
1414 (if from-end
1415 (if-mumble-remove-from-end)
1416 (if-mumble-remove)))))
1418 (defun remove-if-not (predicate sequence &key from-end (start 0) end count key)
1419 #!+sb-doc
1420 "Return a copy of sequence with elements such that predicate(element)
1421 is null removed"
1422 (declare (fixnum start))
1423 (let* ((length (length sequence))
1424 (end (or end length))
1425 (count (or count most-positive-fixnum)))
1426 (declare (type index length end)
1427 (fixnum count))
1428 (seq-dispatch sequence
1429 (if from-end
1430 (if-not-list-remove-from-end)
1431 (if-not-list-remove))
1432 (if from-end
1433 (if-not-mumble-remove-from-end)
1434 (if-not-mumble-remove)))))
1436 ;;;; REMOVE-DUPLICATES
1438 ;;; Remove duplicates from a list. If from-end, remove the later duplicates,
1439 ;;; not the earlier ones. Thus if we check from-end we don't copy an item
1440 ;;; if we look into the already copied structure (from after :start) and see
1441 ;;; the item. If we check from beginning we check into the rest of the
1442 ;;; original list up to the :end marker (this we have to do by running a
1443 ;;; do loop down the list that far and using our test.
1444 (defun list-remove-duplicates* (list test test-not start end key from-end)
1445 (declare (fixnum start))
1446 (let* ((result (list ())) ; Put a marker on the beginning to splice with.
1447 (splice result)
1448 (current list))
1449 (do ((index 0 (1+ index)))
1450 ((= index start))
1451 (declare (fixnum index))
1452 (setq splice (cdr (rplacd splice (list (car current)))))
1453 (setq current (cdr current)))
1454 (do ((index 0 (1+ index)))
1455 ((or (and end (= index (the fixnum end)))
1456 (atom current)))
1457 (declare (fixnum index))
1458 (if (or (and from-end
1459 (not (member (apply-key key (car current))
1460 (nthcdr (1+ start) result)
1461 :test test
1462 :test-not test-not
1463 :key key)))
1464 (and (not from-end)
1465 (not (do ((it (apply-key key (car current)))
1466 (l (cdr current) (cdr l))
1467 (i (1+ index) (1+ i)))
1468 ((or (atom l) (and end (= i (the fixnum end))))
1470 (declare (fixnum i))
1471 (if (if test-not
1472 (not (funcall test-not it (apply-key key (car l))))
1473 (funcall test it (apply-key key (car l))))
1474 (return t))))))
1475 (setq splice (cdr (rplacd splice (list (car current))))))
1476 (setq current (cdr current)))
1477 (do ()
1478 ((atom current))
1479 (setq splice (cdr (rplacd splice (list (car current)))))
1480 (setq current (cdr current)))
1481 (cdr result)))
1483 (defun vector-remove-duplicates* (vector test test-not start end key from-end
1484 &optional (length (length vector)))
1485 (declare (vector vector) (fixnum start length))
1486 (when (null end) (setf end (length vector)))
1487 (let ((result (make-sequence-like vector length))
1488 (index 0)
1489 (jndex start))
1490 (declare (fixnum index jndex))
1491 (do ()
1492 ((= index start))
1493 (setf (aref result index) (aref vector index))
1494 (setq index (1+ index)))
1495 (do ((elt))
1496 ((= index end))
1497 (setq elt (aref vector index))
1498 (unless (or (and from-end
1499 (position (apply-key key elt) result :start start
1500 :end jndex :test test :test-not test-not :key key))
1501 (and (not from-end)
1502 (position (apply-key key elt) vector :start (1+ index)
1503 :end end :test test :test-not test-not :key key)))
1504 (setf (aref result jndex) elt)
1505 (setq jndex (1+ jndex)))
1506 (setq index (1+ index)))
1507 (do ()
1508 ((= index length))
1509 (setf (aref result jndex) (aref vector index))
1510 (setq index (1+ index))
1511 (setq jndex (1+ jndex)))
1512 (shrink-vector result jndex)))
1514 (defun remove-duplicates (sequence &key
1515 (test #'eql)
1516 test-not
1517 (start 0)
1518 from-end
1520 key)
1521 #!+sb-doc
1522 "The elements of Sequence are compared pairwise, and if any two match,
1523 the one occurring earlier is discarded, unless FROM-END is true, in
1524 which case the one later in the sequence is discarded. The resulting
1525 sequence is returned.
1527 The :TEST-NOT argument is depreciated."
1528 (declare (fixnum start))
1529 (seq-dispatch sequence
1530 (if sequence
1531 (list-remove-duplicates* sequence test test-not
1532 start end key from-end))
1533 (vector-remove-duplicates* sequence test test-not
1534 start end key from-end)))
1536 ;;;; DELETE-DUPLICATES
1538 (defun list-delete-duplicates* (list test test-not key from-end start end)
1539 (declare (fixnum start))
1540 (let ((handle (cons nil list)))
1541 (do ((current (nthcdr start list) (cdr current))
1542 (previous (nthcdr start handle))
1543 (index start (1+ index)))
1544 ((or (and end (= index (the fixnum end))) (null current))
1545 (cdr handle))
1546 (declare (fixnum index))
1547 (if (do ((x (if from-end
1548 (nthcdr (1+ start) handle)
1549 (cdr current))
1550 (cdr x))
1551 (i (1+ index) (1+ i)))
1552 ((or (null x)
1553 (and (not from-end) end (= i (the fixnum end)))
1554 (eq x current))
1555 nil)
1556 (declare (fixnum i))
1557 (if (if test-not
1558 (not (funcall test-not
1559 (apply-key key (car current))
1560 (apply-key key (car x))))
1561 (funcall test
1562 (apply-key key (car current))
1563 (apply-key key (car x))))
1564 (return t)))
1565 (rplacd previous (cdr current))
1566 (setq previous (cdr previous))))))
1568 (defun vector-delete-duplicates* (vector test test-not key from-end start end
1569 &optional (length (length vector)))
1570 (declare (vector vector) (fixnum start length))
1571 (when (null end) (setf end (length vector)))
1572 (do ((index start (1+ index))
1573 (jndex start))
1574 ((= index end)
1575 (do ((index index (1+ index)) ; copy the rest of the vector
1576 (jndex jndex (1+ jndex)))
1577 ((= index length)
1578 (shrink-vector vector jndex)
1579 vector)
1580 (setf (aref vector jndex) (aref vector index))))
1581 (declare (fixnum index jndex))
1582 (setf (aref vector jndex) (aref vector index))
1583 (unless (position (apply-key key (aref vector index)) vector :key key
1584 :start (if from-end start (1+ index)) :test test
1585 :end (if from-end jndex end) :test-not test-not)
1586 (setq jndex (1+ jndex)))))
1588 (defun delete-duplicates (sequence &key
1589 (test #'eql)
1590 test-not
1591 (start 0)
1592 from-end
1594 key)
1595 #!+sb-doc
1596 "The elements of Sequence are examined, and if any two match, one is
1597 discarded. The resulting sequence, which may be formed by destroying the
1598 given sequence, is returned.
1600 The :TEST-NOT argument is depreciated."
1601 (seq-dispatch sequence
1602 (if sequence
1603 (list-delete-duplicates* sequence test test-not key from-end start end))
1604 (vector-delete-duplicates* sequence test test-not key from-end start end)))
1606 ;;;; SUBSTITUTE
1608 (defun list-substitute* (pred new list start end count key test test-not old)
1609 (declare (fixnum start end count))
1610 (let* ((result (list nil))
1612 (splice result)
1613 (list list)) ; Get a local list for a stepper.
1614 (do ((index 0 (1+ index)))
1615 ((= index start))
1616 (declare (fixnum index))
1617 (setq splice (cdr (rplacd splice (list (car list)))))
1618 (setq list (cdr list)))
1619 (do ((index start (1+ index)))
1620 ((or (= index end) (null list) (= count 0)))
1621 (declare (fixnum index))
1622 (setq elt (car list))
1623 (setq splice
1624 (cdr (rplacd splice
1625 (list
1626 (cond
1627 ((case pred
1628 (normal
1629 (if test-not
1630 (not
1631 (funcall test-not old (apply-key key elt)))
1632 (funcall test old (apply-key key elt))))
1633 (if (funcall test (apply-key key elt)))
1634 (if-not (not (funcall test (apply-key key elt)))))
1635 (setq count (1- count))
1636 new)
1637 (t elt))))))
1638 (setq list (cdr list)))
1639 (do ()
1640 ((null list))
1641 (setq splice (cdr (rplacd splice (list (car list)))))
1642 (setq list (cdr list)))
1643 (cdr result)))
1645 ;;; Replace old with new in sequence moving from left to right by incrementer
1646 ;;; on each pass through the loop. Called by all three substitute functions.
1647 (defun vector-substitute* (pred new sequence incrementer left right length
1648 start end count key test test-not old)
1649 (declare (fixnum start count end incrementer right))
1650 (let ((result (make-sequence-like sequence length))
1651 (index left))
1652 (declare (fixnum index))
1653 (do ()
1654 ((= index start))
1655 (setf (aref result index) (aref sequence index))
1656 (setq index (+ index incrementer)))
1657 (do ((elt))
1658 ((or (= index end) (= count 0)))
1659 (setq elt (aref sequence index))
1660 (setf (aref result index)
1661 (cond ((case pred
1662 (normal
1663 (if test-not
1664 (not (funcall test-not old (apply-key key elt)))
1665 (funcall test old (apply-key key elt))))
1666 (if (funcall test (apply-key key elt)))
1667 (if-not (not (funcall test (apply-key key elt)))))
1668 (setq count (1- count))
1669 new)
1670 (t elt)))
1671 (setq index (+ index incrementer)))
1672 (do ()
1673 ((= index right))
1674 (setf (aref result index) (aref sequence index))
1675 (setq index (+ index incrementer)))
1676 result))
1678 (eval-when (:compile-toplevel :execute)
1680 (sb!xc:defmacro subst-dispatch (pred)
1681 `(if (listp sequence)
1682 (if from-end
1683 (nreverse (list-substitute* ,pred
1685 (reverse sequence)
1686 (- (the fixnum length)
1687 (the fixnum end))
1688 (- (the fixnum length)
1689 (the fixnum start))
1690 count key test test-not old))
1691 (list-substitute* ,pred
1692 new sequence start end count key test test-not
1693 old))
1694 (if from-end
1695 (vector-substitute* ,pred new sequence -1 (1- (the fixnum length))
1696 -1 length (1- (the fixnum end))
1697 (1- (the fixnum start))
1698 count key test test-not old)
1699 (vector-substitute* ,pred new sequence 1 0 length length
1700 start end count key test test-not old))))
1702 ) ; EVAL-WHEN
1704 (defun substitute (new old sequence &key from-end (test #'eql) test-not
1705 (start 0) count end key)
1706 #!+sb-doc
1707 "Return a sequence of the same kind as SEQUENCE with the same elements,
1708 except that all elements equal to OLD are replaced with NEW. See manual
1709 for details."
1710 (declare (fixnum start))
1711 (let* ((length (length sequence))
1712 (end (or end length))
1713 (count (or count most-positive-fixnum)))
1714 (declare (type index length end)
1715 (fixnum count))
1716 (subst-dispatch 'normal)))
1718 ;;;; SUBSTITUTE-IF, SUBSTITUTE-IF-NOT
1720 (defun substitute-if (new test sequence &key from-end (start 0) end count key)
1721 #!+sb-doc
1722 "Return a sequence of the same kind as SEQUENCE with the same elements
1723 except that all elements satisfying the TEST are replaced with NEW. See
1724 manual for details."
1725 (declare (fixnum start))
1726 (let* ((length (length sequence))
1727 (end (or end length))
1728 (count (or count most-positive-fixnum))
1729 test-not
1730 old)
1731 (declare (type index length end)
1732 (fixnum count))
1733 (subst-dispatch 'if)))
1735 (defun substitute-if-not (new test sequence &key from-end (start 0)
1736 end count key)
1737 #!+sb-doc
1738 "Return a sequence of the same kind as SEQUENCE with the same elements
1739 except that all elements not satisfying the TEST are replaced with NEW.
1740 See manual for details."
1741 (declare (fixnum start))
1742 (let* ((length (length sequence))
1743 (end (or end length))
1744 (count (or count most-positive-fixnum))
1745 test-not
1746 old)
1747 (declare (type index length end)
1748 (fixnum count))
1749 (subst-dispatch 'if-not)))
1751 ;;;; NSUBSTITUTE
1753 (defun nsubstitute (new old sequence &key from-end (test #'eql) test-not
1754 end count key (start 0))
1755 #!+sb-doc
1756 "Return a sequence of the same kind as SEQUENCE with the same elements
1757 except that all elements equal to OLD are replaced with NEW. The SEQUENCE
1758 may be destructively modified. See manual for details."
1759 (declare (fixnum start))
1760 (let ((end (or end (length sequence)))
1761 (count (or count most-positive-fixnum)))
1762 (declare (fixnum count))
1763 (if (listp sequence)
1764 (if from-end
1765 (nreverse (nlist-substitute*
1766 new old (nreverse (the list sequence))
1767 test test-not start end count key))
1768 (nlist-substitute* new old sequence
1769 test test-not start end count key))
1770 (if from-end
1771 (nvector-substitute* new old sequence -1
1772 test test-not (1- end) (1- start) count key)
1773 (nvector-substitute* new old sequence 1
1774 test test-not start end count key)))))
1776 (defun nlist-substitute* (new old sequence test test-not start end count key)
1777 (declare (fixnum start count end))
1778 (do ((list (nthcdr start sequence) (cdr list))
1779 (index start (1+ index)))
1780 ((or (= index end) (null list) (= count 0)) sequence)
1781 (declare (fixnum index))
1782 (when (if test-not
1783 (not (funcall test-not old (apply-key key (car list))))
1784 (funcall test old (apply-key key (car list))))
1785 (rplaca list new)
1786 (setq count (1- count)))))
1788 (defun nvector-substitute* (new old sequence incrementer
1789 test test-not start end count key)
1790 (declare (fixnum start incrementer count end))
1791 (do ((index start (+ index incrementer)))
1792 ((or (= index end) (= count 0)) sequence)
1793 (declare (fixnum index))
1794 (when (if test-not
1795 (not (funcall test-not
1797 (apply-key key (aref sequence index))))
1798 (funcall test old (apply-key key (aref sequence index))))
1799 (setf (aref sequence index) new)
1800 (setq count (1- count)))))
1802 ;;;; NSUBSTITUTE-IF, NSUBSTITUTE-IF-NOT
1804 (defun nsubstitute-if (new test sequence &key from-end (start 0) end count key)
1805 #!+sb-doc
1806 "Return a sequence of the same kind as SEQUENCE with the same elements
1807 except that all elements satisfying the TEST are replaced with NEW.
1808 SEQUENCE may be destructively modified. See manual for details."
1809 (declare (fixnum start))
1810 (let ((end (or end (length sequence)))
1811 (count (or count most-positive-fixnum)))
1812 (declare (fixnum end count))
1813 (if (listp sequence)
1814 (if from-end
1815 (nreverse (nlist-substitute-if*
1816 new test (nreverse (the list sequence))
1817 start end count key))
1818 (nlist-substitute-if* new test sequence
1819 start end count key))
1820 (if from-end
1821 (nvector-substitute-if* new test sequence -1
1822 (1- end) (1- start) count key)
1823 (nvector-substitute-if* new test sequence 1
1824 start end count key)))))
1826 (defun nlist-substitute-if* (new test sequence start end count key)
1827 (declare (fixnum end))
1828 (do ((list (nthcdr start sequence) (cdr list))
1829 (index start (1+ index)))
1830 ((or (= index end) (null list) (= count 0)) sequence)
1831 (when (funcall test (apply-key key (car list)))
1832 (rplaca list new)
1833 (setq count (1- count)))))
1835 (defun nvector-substitute-if* (new test sequence incrementer
1836 start end count key)
1837 (do ((index start (+ index incrementer)))
1838 ((or (= index end) (= count 0)) sequence)
1839 (when (funcall test (apply-key key (aref sequence index)))
1840 (setf (aref sequence index) new)
1841 (setq count (1- count)))))
1843 (defun nsubstitute-if-not (new test sequence &key from-end (start 0)
1844 end count key)
1845 #!+sb-doc
1846 "Return a sequence of the same kind as SEQUENCE with the same elements
1847 except that all elements not satisfying the TEST are replaced with NEW.
1848 SEQUENCE may be destructively modified. See manual for details."
1849 (declare (fixnum start))
1850 (let ((end (or end (length sequence)))
1851 (count (or count most-positive-fixnum)))
1852 (declare (fixnum end count))
1853 (if (listp sequence)
1854 (if from-end
1855 (nreverse (nlist-substitute-if-not*
1856 new test (nreverse (the list sequence))
1857 start end count key))
1858 (nlist-substitute-if-not* new test sequence
1859 start end count key))
1860 (if from-end
1861 (nvector-substitute-if-not* new test sequence -1
1862 (1- end) (1- start) count key)
1863 (nvector-substitute-if-not* new test sequence 1
1864 start end count key)))))
1866 (defun nlist-substitute-if-not* (new test sequence start end count key)
1867 (declare (fixnum end))
1868 (do ((list (nthcdr start sequence) (cdr list))
1869 (index start (1+ index)))
1870 ((or (= index end) (null list) (= count 0)) sequence)
1871 (when (not (funcall test (apply-key key (car list))))
1872 (rplaca list new)
1873 (setq count (1- count)))))
1875 (defun nvector-substitute-if-not* (new test sequence incrementer
1876 start end count key)
1877 (do ((index start (+ index incrementer)))
1878 ((or (= index end) (= count 0)) sequence)
1879 (when (not (funcall test (apply-key key (aref sequence index))))
1880 (setf (aref sequence index) new)
1881 (setq count (1- count)))))
1883 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
1885 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1886 ;;; POSITION-IF, etc.
1887 (declaim (inline effective-find-position-test effective-find-position-key))
1888 (defun effective-find-position-test (test test-not)
1889 (cond ((and test test-not)
1890 (error "can't specify both :TEST and :TEST-NOT"))
1891 (test (%coerce-callable-to-fun test))
1892 (test-not
1893 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1894 ;; inefficient, but since the TEST-NOT option is deprecated
1895 ;; anyway, we don't care.)
1896 (complement (%coerce-callable-to-fun test-not)))
1897 (t #'eql)))
1898 (defun effective-find-position-key (key)
1899 (if key
1900 (%coerce-callable-to-fun key)
1901 #'identity))
1903 ;;; shared guts of out-of-line FIND, POSITION, FIND-IF, and POSITION-IF
1904 (macrolet (;; shared logic for defining %FIND-POSITION and
1905 ;; %FIND-POSITION-IF in terms of various inlineable cases
1906 ;; of the expression defined in FROB and VECTOR*-FROB
1907 (frobs ()
1908 `(etypecase sequence-arg
1909 (list (frob sequence-arg from-end))
1910 (vector
1911 (with-array-data ((sequence sequence-arg :offset-var offset)
1912 (start start)
1913 (end (or end (length sequence-arg))))
1914 (multiple-value-bind (f p)
1915 (macrolet ((frob2 () '(if from-end
1916 (frob sequence t)
1917 (frob sequence nil))))
1918 (typecase sequence
1919 (simple-vector (frob2))
1920 (simple-string (frob2))
1921 (t (vector*-frob sequence))))
1922 (declare (type (or index null) p))
1923 (values f (and p (the index (+ p offset))))))))))
1924 (defun %find-position (item sequence-arg from-end start end key test)
1925 (macrolet ((frob (sequence from-end)
1926 `(%find-position item ,sequence
1927 ,from-end start end key test))
1928 (vector*-frob (sequence)
1929 `(%find-position-vector-macro item ,sequence
1930 from-end start end key test)))
1931 (frobs)))
1932 (defun %find-position-if (predicate sequence-arg from-end start end key)
1933 (macrolet ((frob (sequence from-end)
1934 `(%find-position-if predicate ,sequence
1935 ,from-end start end key))
1936 (vector*-frob (sequence)
1937 `(%find-position-if-vector-macro predicate ,sequence
1938 from-end start end key)))
1939 (frobs)))
1940 (defun %find-position-if-not (predicate sequence-arg from-end start end key)
1941 (macrolet ((frob (sequence from-end)
1942 `(%find-position-if-not predicate ,sequence
1943 ,from-end start end key))
1944 (vector*-frob (sequence)
1945 `(%find-position-if-not-vector-macro predicate ,sequence
1946 from-end start end key)))
1947 (frobs))))
1949 ;;; the user interface to FIND and POSITION: Get all our ducks in a
1950 ;;; row, then call %FIND-POSITION.
1951 (declaim (inline find position))
1952 (macrolet ((def-find-position (fun-name values-index)
1953 `(defun ,fun-name (item
1954 sequence
1955 &key
1956 from-end
1957 (start 0)
1960 test
1961 test-not)
1962 (nth-value
1963 ,values-index
1964 (%find-position item
1965 sequence
1966 from-end
1967 start
1969 (effective-find-position-key key)
1970 (effective-find-position-test test
1971 test-not))))))
1972 (def-find-position find 0)
1973 (def-find-position position 1))
1975 ;;; the user interface to FIND-IF and POSITION-IF, entirely analogous
1976 ;;; to the interface to FIND and POSITION
1977 (declaim (inline find-if position-if))
1978 (macrolet ((def-find-position-if (fun-name values-index)
1979 `(defun ,fun-name (predicate sequence
1980 &key from-end (start 0) end key)
1981 (nth-value
1982 ,values-index
1983 (%find-position-if (%coerce-callable-to-fun predicate)
1984 sequence
1985 from-end
1986 start
1988 (effective-find-position-key key))))))
1990 (def-find-position-if find-if 0)
1991 (def-find-position-if position-if 1))
1993 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1994 ;;; didn't bother to worry about optimizing them, except note that on
1995 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1996 ;;; sbcl-devel
1998 ;;; My understanding is that while the :test-not argument is
1999 ;;; deprecated in favour of :test (complement #'foo) because of
2000 ;;; semantic difficulties (what happens if both :test and :test-not
2001 ;;; are supplied, etc) the -if-not variants, while officially
2002 ;;; deprecated, would be undeprecated were X3J13 actually to produce
2003 ;;; a revised standard, as there are perfectly legitimate idiomatic
2004 ;;; reasons for allowing the -if-not versions equal status,
2005 ;;; particularly remove-if-not (== filter).
2006 ;;;
2007 ;;; This is only an informal understanding, I grant you, but
2008 ;;; perhaps it's worth optimizing the -if-not versions in the same
2009 ;;; way as the others?
2011 ;;; That sounds reasonable, so if someone wants to submit patches to
2012 ;;; make the -IF-NOT functions compile as efficiently as the
2013 ;;; corresponding -IF variants do, go for it. -- WHN 2001-10-06)
2015 ;;; FIXME: Remove uses of these deprecated functions (and of :TEST-NOT
2016 ;;; too) within the implementation of SBCL.
2017 (declaim (inline find-if-not position-if-not))
2018 (macrolet ((def-find-position-if-not (fun-name values-index)
2019 `(defun ,fun-name (predicate sequence
2020 &key from-end (start 0) end key)
2021 (nth-value
2022 ,values-index
2023 (%find-position-if-not (%coerce-callable-to-fun predicate)
2024 sequence
2025 from-end
2026 start
2028 (effective-find-position-key key))))))
2030 (def-find-position-if-not find-if-not 0)
2031 (def-find-position-if-not position-if-not 1))
2033 ;;;; COUNT
2035 (eval-when (:compile-toplevel :execute)
2037 (sb!xc:defmacro vector-count (item sequence)
2038 `(do ((index start (1+ index))
2039 (count 0))
2040 ((= index (the fixnum end)) count)
2041 (declare (fixnum index count))
2042 (if test-not
2043 (unless (funcall test-not ,item
2044 (apply-key key (aref ,sequence index)))
2045 (setq count (1+ count)))
2046 (when (funcall test ,item (apply-key key (aref ,sequence index)))
2047 (setq count (1+ count))))))
2049 (sb!xc:defmacro list-count (item sequence)
2050 `(do ((sequence (nthcdr start ,sequence))
2051 (index start (1+ index))
2052 (count 0))
2053 ((or (= index (the fixnum end)) (null sequence)) count)
2054 (declare (fixnum index count))
2055 (if test-not
2056 (unless (funcall test-not ,item (apply-key key (pop sequence)))
2057 (setq count (1+ count)))
2058 (when (funcall test ,item (apply-key key (pop sequence)))
2059 (setq count (1+ count))))))
2061 ) ; EVAL-WHEN
2063 (defun count (item sequence &key from-end (test #'eql) test-not (start 0)
2064 end key)
2065 #!+sb-doc
2066 "Return the number of elements in SEQUENCE satisfying a test with ITEM,
2067 which defaults to EQL."
2068 (declare (ignore from-end) (fixnum start))
2069 (let ((end (or end (length sequence))))
2070 (declare (type index end))
2071 (seq-dispatch sequence
2072 (list-count item sequence)
2073 (vector-count item sequence))))
2075 ;;;; COUNT-IF and COUNT-IF-NOT
2077 (eval-when (:compile-toplevel :execute)
2079 (sb!xc:defmacro vector-count-if (predicate sequence)
2080 `(do ((index start (1+ index))
2081 (count 0))
2082 ((= index (the fixnum end)) count)
2083 (declare (fixnum index count))
2084 (if (funcall ,predicate (apply-key key (aref ,sequence index)))
2085 (setq count (1+ count)))))
2087 (sb!xc:defmacro list-count-if (predicate sequence)
2088 `(do ((sequence (nthcdr start ,sequence))
2089 (index start (1+ index))
2090 (count 0))
2091 ((or (= index (the fixnum end)) (null sequence)) count)
2092 (declare (fixnum index count))
2093 (if (funcall ,predicate (apply-key key (pop sequence)))
2094 (setq count (1+ count)))))
2096 ) ; EVAL-WHEN
2098 (defun count-if (test sequence &key from-end (start 0) end key)
2099 #!+sb-doc
2100 "Return the number of elements in SEQUENCE satisfying TEST(el)."
2101 (declare (ignore from-end) (fixnum start))
2102 (let ((end (or end (length sequence))))
2103 (declare (type index end))
2104 (seq-dispatch sequence
2105 (list-count-if test sequence)
2106 (vector-count-if test sequence))))
2108 (eval-when (:compile-toplevel :execute)
2110 (sb!xc:defmacro vector-count-if-not (predicate sequence)
2111 `(do ((index start (1+ index))
2112 (count 0))
2113 ((= index (the fixnum end)) count)
2114 (declare (fixnum index count))
2115 (if (not (funcall ,predicate (apply-key key (aref ,sequence index))))
2116 (setq count (1+ count)))))
2118 (sb!xc:defmacro list-count-if-not (predicate sequence)
2119 `(do ((sequence (nthcdr start ,sequence))
2120 (index start (1+ index))
2121 (count 0))
2122 ((or (= index (the fixnum end)) (null sequence)) count)
2123 (declare (fixnum index count))
2124 (if (not (funcall ,predicate (apply-key key (pop sequence))))
2125 (setq count (1+ count)))))
2127 ) ; EVAL-WHEN
2129 (defun count-if-not (test sequence &key from-end (start 0) end key)
2130 #!+sb-doc
2131 "Return the number of elements in SEQUENCE not satisfying TEST(el)."
2132 (declare (ignore from-end) (fixnum start))
2133 (let ((end (or end (length sequence))))
2134 (declare (type index end))
2135 (seq-dispatch sequence
2136 (list-count-if-not test sequence)
2137 (vector-count-if-not test sequence))))
2139 ;;;; MISMATCH
2141 (eval-when (:compile-toplevel :execute)
2143 (sb!xc:defmacro match-vars (&rest body)
2144 `(let ((inc (if from-end -1 1))
2145 (start1 (if from-end (1- (the fixnum end1)) start1))
2146 (start2 (if from-end (1- (the fixnum end2)) start2))
2147 (end1 (if from-end (1- (the fixnum start1)) end1))
2148 (end2 (if from-end (1- (the fixnum start2)) end2)))
2149 (declare (fixnum inc start1 start2 end1 end2))
2150 ,@body))
2152 (sb!xc:defmacro matchify-list ((sequence start length end) &body body)
2153 (declare (ignore end)) ;; ### Should END be used below?
2154 `(let ((,sequence (if from-end
2155 (nthcdr (- (the fixnum ,length) (the fixnum ,start) 1)
2156 (reverse (the list ,sequence)))
2157 (nthcdr ,start ,sequence))))
2158 (declare (type list ,sequence))
2159 ,@body))
2161 ) ; EVAL-WHEN
2163 (eval-when (:compile-toplevel :execute)
2165 (sb!xc:defmacro if-mismatch (elt1 elt2)
2166 `(cond ((= (the fixnum index1) (the fixnum end1))
2167 (return (if (= (the fixnum index2) (the fixnum end2))
2169 (if from-end
2170 (1+ (the fixnum index1))
2171 (the fixnum index1)))))
2172 ((= (the fixnum index2) (the fixnum end2))
2173 (return (if from-end (1+ (the fixnum index1)) index1)))
2174 (test-not
2175 (if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
2176 (return (if from-end (1+ (the fixnum index1)) index1))))
2177 (t (if (not (funcall test (apply-key key ,elt1)
2178 (apply-key key ,elt2)))
2179 (return (if from-end (1+ (the fixnum index1)) index1))))))
2181 (sb!xc:defmacro mumble-mumble-mismatch ()
2182 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2183 (index2 start2 (+ index2 (the fixnum inc))))
2184 (())
2185 (declare (fixnum index1 index2))
2186 (if-mismatch (aref sequence1 index1) (aref sequence2 index2))))
2188 (sb!xc:defmacro mumble-list-mismatch ()
2189 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2190 (index2 start2 (+ index2 (the fixnum inc))))
2191 (())
2192 (declare (fixnum index1 index2))
2193 (if-mismatch (aref sequence1 index1) (pop sequence2))))
2195 (sb!xc:defmacro list-mumble-mismatch ()
2196 `(do ((index1 start1 (+ index1 (the fixnum inc)))
2197 (index2 start2 (+ index2 (the fixnum inc))))
2198 (())
2199 (declare (fixnum index1 index2))
2200 (if-mismatch (pop sequence1) (aref sequence2 index2))))
2202 (sb!xc:defmacro list-list-mismatch ()
2203 `(do ((sequence1 sequence1)
2204 (sequence2 sequence2)
2205 (index1 start1 (+ index1 (the fixnum inc)))
2206 (index2 start2 (+ index2 (the fixnum inc))))
2207 (())
2208 (declare (fixnum index1 index2))
2209 (if-mismatch (pop sequence1) (pop sequence2))))
2211 ) ; EVAL-WHEN
2213 (defun mismatch (sequence1 sequence2 &key from-end (test #'eql) test-not
2214 (start1 0) end1 (start2 0) end2 key)
2215 #!+sb-doc
2216 "The specified subsequences of SEQUENCE1 and SEQUENCE2 are compared
2217 element-wise. If they are of equal length and match in every element, the
2218 result is Nil. Otherwise, the result is a non-negative integer, the index
2219 within SEQUENCE1 of the leftmost position at which they fail to match; or,
2220 if one is shorter than and a matching prefix of the other, the index within
2221 SEQUENCE1 beyond the last position tested is returned. If a non-NIL
2222 :FROM-END argument is given, then one plus the index of the rightmost
2223 position in which the sequences differ is returned."
2224 (declare (fixnum start1 start2))
2225 (let* ((length1 (length sequence1))
2226 (end1 (or end1 length1))
2227 (length2 (length sequence2))
2228 (end2 (or end2 length2)))
2229 (declare (type index length1 end1 length2 end2))
2230 (match-vars
2231 (seq-dispatch sequence1
2232 (matchify-list (sequence1 start1 length1 end1)
2233 (seq-dispatch sequence2
2234 (matchify-list (sequence2 start2 length2 end2)
2235 (list-list-mismatch))
2236 (list-mumble-mismatch)))
2237 (seq-dispatch sequence2
2238 (matchify-list (sequence2 start2 length2 end2)
2239 (mumble-list-mismatch))
2240 (mumble-mumble-mismatch))))))
2242 ;;; search comparison functions
2244 (eval-when (:compile-toplevel :execute)
2246 ;;; Compare two elements and return if they don't match.
2247 (sb!xc:defmacro compare-elements (elt1 elt2)
2248 `(if test-not
2249 (if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
2250 (return nil)
2252 (if (not (funcall test (apply-key key ,elt1) (apply-key key ,elt2)))
2253 (return nil)
2254 t)))
2256 (sb!xc:defmacro search-compare-list-list (main sub)
2257 `(do ((main ,main (cdr main))
2258 (jndex start1 (1+ jndex))
2259 (sub (nthcdr start1 ,sub) (cdr sub)))
2260 ((or (null main) (null sub) (= (the fixnum end1) jndex))
2262 (declare (fixnum jndex))
2263 (compare-elements (car main) (car sub))))
2265 (sb!xc:defmacro search-compare-list-vector (main sub)
2266 `(do ((main ,main (cdr main))
2267 (index start1 (1+ index)))
2268 ((or (null main) (= index (the fixnum end1))) t)
2269 (declare (fixnum index))
2270 (compare-elements (car main) (aref ,sub index))))
2272 (sb!xc:defmacro search-compare-vector-list (main sub index)
2273 `(do ((sub (nthcdr start1 ,sub) (cdr sub))
2274 (jndex start1 (1+ jndex))
2275 (index ,index (1+ index)))
2276 ((or (= (the fixnum end1) jndex) (null sub)) t)
2277 (declare (fixnum jndex index))
2278 (compare-elements (aref ,main index) (car sub))))
2280 (sb!xc:defmacro search-compare-vector-vector (main sub index)
2281 `(do ((index ,index (1+ index))
2282 (sub-index start1 (1+ sub-index)))
2283 ((= sub-index (the fixnum end1)) t)
2284 (declare (fixnum sub-index index))
2285 (compare-elements (aref ,main index) (aref ,sub sub-index))))
2287 (sb!xc:defmacro search-compare (main-type main sub index)
2288 (if (eq main-type 'list)
2289 `(seq-dispatch ,sub
2290 (search-compare-list-list ,main ,sub)
2291 (search-compare-list-vector ,main ,sub))
2292 `(seq-dispatch ,sub
2293 (search-compare-vector-list ,main ,sub ,index)
2294 (search-compare-vector-vector ,main ,sub ,index))))
2296 ) ; EVAL-WHEN
2298 ;;;; SEARCH
2300 (eval-when (:compile-toplevel :execute)
2302 (sb!xc:defmacro list-search (main sub)
2303 `(do ((main (nthcdr start2 ,main) (cdr main))
2304 (index2 start2 (1+ index2))
2305 (terminus (- (the fixnum end2)
2306 (the fixnum (- (the fixnum end1)
2307 (the fixnum start1)))))
2308 (last-match ()))
2309 ((> index2 terminus) last-match)
2310 (declare (fixnum index2 terminus))
2311 (if (search-compare list main ,sub index2)
2312 (if from-end
2313 (setq last-match index2)
2314 (return index2)))))
2316 (sb!xc:defmacro vector-search (main sub)
2317 `(do ((index2 start2 (1+ index2))
2318 (terminus (- (the fixnum end2)
2319 (the fixnum (- (the fixnum end1)
2320 (the fixnum start1)))))
2321 (last-match ()))
2322 ((> index2 terminus) last-match)
2323 (declare (fixnum index2 terminus))
2324 (if (search-compare vector ,main ,sub index2)
2325 (if from-end
2326 (setq last-match index2)
2327 (return index2)))))
2329 ) ; EVAL-WHEN
2331 (defun search (sequence1 sequence2 &key from-end (test #'eql) test-not
2332 (start1 0) end1 (start2 0) end2 key)
2333 (declare (fixnum start1 start2))
2334 (let ((end1 (or end1 (length sequence1)))
2335 (end2 (or end2 (length sequence2))))
2336 (seq-dispatch sequence2
2337 (list-search sequence2 sequence1)
2338 (vector-search sequence2 sequence1))))