0.7.8.7:
[sbcl/lichteblau.git] / src / code / print.lisp
blob04d85f4e31d0c9e25c20c5ab64082e8731febb27
1 ;;;; the printer
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 ;;; FIXME: Many of these have nontrivial types, e.g. *PRINT-LEVEL*,
17 ;;; *PRINT-LENGTH*, and *PRINT-LINES* are (OR NULL UNSIGNED-BYTE).
19 (defvar *print-readably* nil
20 #!+sb-doc
21 "If true, all objects will printed readably. If readable printing is
22 impossible, an error will be signalled. This overrides the value of
23 *PRINT-ESCAPE*.")
24 (defvar *print-escape* T
25 #!+sb-doc
26 "Should we print in a reasonably machine-readable way? (possibly
27 overridden by *PRINT-READABLY*)")
28 (defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
29 #!+sb-doc
30 "Should pretty printing be used?")
31 (defvar *print-base* 10.
32 #!+sb-doc
33 "the output base for RATIONALs (including integers)")
34 (defvar *print-radix* nil
35 #!+sb-doc
36 "Should base be verified when printing RATIONALs?")
37 (defvar *print-level* nil
38 #!+sb-doc
39 "How many levels should be printed before abbreviating with \"#\"?")
40 (defvar *print-length* nil
41 #!+sb-doc
42 "How many elements at any level should be printed before abbreviating
43 with \"...\"?")
44 (defvar *print-circle* nil
45 #!+sb-doc
46 "Should we use #n= and #n# notation to preserve uniqueness in general (and
47 circularity in particular) when printing?")
48 (defvar *print-case* :upcase
49 #!+sb-doc
50 "What case should the printer should use default?")
51 (defvar *print-array* t
52 #!+sb-doc
53 "Should the contents of arrays be printed?")
54 (defvar *print-gensym* t
55 #!+sb-doc
56 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
57 (defvar *print-lines* nil
58 #!+sb-doc
59 "the maximum number of lines to print per object")
60 (defvar *print-right-margin* nil
61 #!+sb-doc
62 "the position of the right margin in ems (for pretty-printing)")
63 (defvar *print-miser-width* nil
64 #!+sb-doc
65 "If the remaining space between the current column and the right margin
66 is less than this, then print using ``miser-style'' output. Miser
67 style conditional newlines are turned on, and all indentations are
68 turned off. If NIL, never use miser mode.")
69 (defvar *print-pprint-dispatch* nil
70 #!+sb-doc
71 "the pprint-dispatch-table that controls how to pretty-print objects")
73 (defmacro with-standard-io-syntax (&body body)
74 #!+sb-doc
75 "Bind the reader and printer control variables to values that enable READ
76 to reliably read the results of PRINT. These values are:
77 *PACKAGE* the COMMON-LISP-USER package
78 *PRINT-ARRAY* T
79 *PRINT-BASE* 10
80 *PRINT-CASE* :UPCASE
81 *PRINT-CIRCLE* NIL
82 *PRINT-ESCAPE* T
83 *PRINT-GENSYM* T
84 *PRINT-LENGTH* NIL
85 *PRINT-LEVEL* NIL
86 *PRINT-LINES* NIL
87 *PRINT-MISER-WIDTH* NIL
88 *PRINT-PRETTY* NIL
89 *PRINT-RADIX* NIL
90 *PRINT-READABLY* T
91 *PRINT-RIGHT-MARGIN* NIL
92 *READ-BASE* 10
93 *READ-DEFAULT-FLOAT-FORMAT* SINGLE-FLOAT
94 *READ-EVAL* T
95 *READ-SUPPRESS* NIL
96 *READTABLE* the standard readtable"
97 `(%with-standard-io-syntax (lambda () ,@body)))
99 (defun %with-standard-io-syntax (function)
100 (let ((*package* (find-package "COMMON-LISP-USER"))
101 (*print-array* t)
102 (*print-base* 10)
103 (*print-case* :upcase)
104 (*print-circle* nil)
105 (*print-escape* t)
106 (*print-gensym* t)
107 (*print-length* nil)
108 (*print-level* nil)
109 (*print-lines* nil)
110 (*print-miser-width* nil)
111 (*print-pretty* nil)
112 (*print-radix* nil)
113 (*print-readably* t)
114 (*print-right-margin* nil)
115 (*read-base* 10)
116 (*read-default-float-format* 'single-float)
117 (*read-eval* t)
118 (*read-suppress* nil)
119 ;; FIXME: It doesn't seem like a good idea to expose our
120 ;; disaster-recovery *STANDARD-READTABLE* here. What if some
121 ;; enterprising user corrupts the disaster-recovery readtable
122 ;; by doing destructive readtable operations within
123 ;; WITH-STANDARD-IO-SYNTAX? Perhaps we should do a
124 ;; COPY-READTABLE? The consing would be unfortunate, though.
125 (*readtable* *standard-readtable*))
126 (funcall function)))
128 ;;;; routines to print objects
130 (defun write (object &key
131 ((:stream stream) *standard-output*)
132 ((:escape *print-escape*) *print-escape*)
133 ((:radix *print-radix*) *print-radix*)
134 ((:base *print-base*) *print-base*)
135 ((:circle *print-circle*) *print-circle*)
136 ((:pretty *print-pretty*) *print-pretty*)
137 ((:level *print-level*) *print-level*)
138 ((:length *print-length*) *print-length*)
139 ((:case *print-case*) *print-case*)
140 ((:array *print-array*) *print-array*)
141 ((:gensym *print-gensym*) *print-gensym*)
142 ((:readably *print-readably*) *print-readably*)
143 ((:right-margin *print-right-margin*)
144 *print-right-margin*)
145 ((:miser-width *print-miser-width*)
146 *print-miser-width*)
147 ((:lines *print-lines*) *print-lines*)
148 ((:pprint-dispatch *print-pprint-dispatch*)
149 *print-pprint-dispatch*))
150 #!+sb-doc
151 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*"
152 (output-object object (out-synonym-of stream))
153 object)
155 (defun prin1 (object &optional stream)
156 #!+sb-doc
157 "Output a mostly READable printed representation of OBJECT on the specified
158 STREAM."
159 (let ((*print-escape* T))
160 (output-object object (out-synonym-of stream)))
161 object)
163 (defun princ (object &optional stream)
164 #!+sb-doc
165 "Output an aesthetic but not necessarily READable printed representation
166 of OBJECT on the specified STREAM."
167 (let ((*print-escape* NIL)
168 (*print-readably* NIL))
169 (output-object object (out-synonym-of stream)))
170 object)
172 (defun print (object &optional stream)
173 #!+sb-doc
174 "Output a newline, the mostly READable printed representation of OBJECT, and
175 space to the specified STREAM."
176 (let ((stream (out-synonym-of stream)))
177 (terpri stream)
178 (prin1 object stream)
179 (write-char #\space stream)
180 object))
182 (defun pprint (object &optional stream)
183 #!+sb-doc
184 "Prettily output OBJECT preceded by a newline."
185 (let ((*print-pretty* t)
186 (*print-escape* t)
187 (stream (out-synonym-of stream)))
188 (terpri stream)
189 (output-object object stream))
190 (values))
192 (defun write-to-string
193 (object &key
194 ((:escape *print-escape*) *print-escape*)
195 ((:radix *print-radix*) *print-radix*)
196 ((:base *print-base*) *print-base*)
197 ((:circle *print-circle*) *print-circle*)
198 ((:pretty *print-pretty*) *print-pretty*)
199 ((:level *print-level*) *print-level*)
200 ((:length *print-length*) *print-length*)
201 ((:case *print-case*) *print-case*)
202 ((:array *print-array*) *print-array*)
203 ((:gensym *print-gensym*) *print-gensym*)
204 ((:readably *print-readably*) *print-readably*)
205 ((:right-margin *print-right-margin*) *print-right-margin*)
206 ((:miser-width *print-miser-width*) *print-miser-width*)
207 ((:lines *print-lines*) *print-lines*)
208 ((:pprint-dispatch *print-pprint-dispatch*)
209 *print-pprint-dispatch*))
210 #!+sb-doc
211 "Return the printed representation of OBJECT as a string."
212 (stringify-object object))
214 (defun prin1-to-string (object)
215 #!+sb-doc
216 "Return the printed representation of OBJECT as a string with
217 slashification on."
218 (stringify-object object t))
220 (defun princ-to-string (object)
221 #!+sb-doc
222 "Return the printed representation of OBJECT as a string with
223 slashification off."
224 (stringify-object object nil))
226 ;;; This produces the printed representation of an object as a string.
227 ;;; The few ...-TO-STRING functions above call this.
228 (defvar *string-output-streams* ())
229 (defun stringify-object (object &optional (*print-escape* *print-escape*))
230 (let ((stream (if *string-output-streams*
231 (pop *string-output-streams*)
232 (make-string-output-stream))))
233 (setup-printer-state)
234 (output-object object stream)
235 (prog1
236 (get-output-stream-string stream)
237 (push stream *string-output-streams*))))
239 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
241 ;;; guts of PRINT-UNREADABLE-OBJECT
242 (defun %print-unreadable-object (object stream type identity body)
243 (when *print-readably*
244 (error 'print-not-readable :object object))
245 (flet ((print-description ()
246 (when type
247 (write (type-of object) :stream stream :circle nil
248 :level nil :length nil)
249 (when (or body identity)
250 (write-char #\space stream)
251 (pprint-newline :fill stream)))
252 (when body
253 (funcall body))
254 (when identity
255 (when body
256 (write-char #\space stream)
257 (pprint-newline :fill stream))
258 (write-char #\{ stream)
259 (write (get-lisp-obj-address object) :stream stream
260 :radix nil :base 16)
261 (write-char #\} stream))))
262 (cond ((print-pretty-on-stream-p stream)
263 ;; Since we're printing prettily on STREAM, format the
264 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
265 ;; not rebind the stream when it is already a pretty stream,
266 ;; so output from the body will go to the same stream.
267 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
268 (print-description)))
270 (write-string "#<" stream)
271 (print-description)
272 (write-char #\> stream))))
273 nil)
275 ;;;; circularity detection stuff
277 ;;; When *PRINT-CIRCLE* is T, this gets bound to a hash table that
278 ;;; (eventually) ends up with entries for every object printed. When
279 ;;; we are initially looking for circularities, we enter a T when we
280 ;;; find an object for the first time, and a 0 when we encounter an
281 ;;; object a second time around. When we are actually printing, the 0
282 ;;; entries get changed to the actual marker value when they are first
283 ;;; printed.
284 (defvar *circularity-hash-table* nil)
286 ;;; When NIL, we are just looking for circularities. After we have
287 ;;; found them all, this gets bound to 0. Then whenever we need a new
288 ;;; marker, it is incremented.
289 (defvar *circularity-counter* nil)
291 ;;; Check to see whether OBJECT is a circular reference, and return
292 ;;; something non-NIL if it is. If ASSIGN is T, then the number to use
293 ;;; in the #n= and #n# noise is assigned at this time.
294 ;;; If ASSIGN is true, reference bookkeeping will only be done for
295 ;;; existing entries, no new references will be recorded!
297 ;;; Note: CHECK-FOR-CIRCULARITY must be called *exactly* once with
298 ;;; ASSIGN true, or the circularity detection noise will get confused
299 ;;; about when to use #n= and when to use #n#. If this returns non-NIL
300 ;;; when ASSIGN is true, then you must call HANDLE-CIRCULARITY on it.
301 ;;; If CHECK-FOR-CIRCULARITY returns :INITIATE as the second value,
302 ;;; you need to initiate the circularity detection noise, e.g. bind
303 ;;; *CIRCULARITY-HASH-TABLE* and *CIRCULARITY-COUNTER* to suitable values
304 ;;; (see #'OUTPUT-OBJECT for an example).
305 (defun check-for-circularity (object &optional assign)
306 (cond ((null *print-circle*)
307 ;; Don't bother, nobody cares.
308 nil)
309 ((null *circularity-hash-table*)
310 (values nil :initiate))
311 ((null *circularity-counter*)
312 (ecase (gethash object *circularity-hash-table*)
313 ((nil)
314 ;; first encounter
315 (setf (gethash object *circularity-hash-table*) t)
316 ;; We need to keep looking.
317 nil)
318 ((t)
319 ;; second encounter
320 (setf (gethash object *circularity-hash-table*) 0)
321 ;; It's a circular reference.
324 ;; It's a circular reference.
325 t)))
327 (let ((value (gethash object *circularity-hash-table*)))
328 (case value
329 ((nil t)
330 ;; If NIL, we found an object that wasn't there the
331 ;; first time around. If T, this object appears exactly
332 ;; once. Either way, just print the thing without any
333 ;; special processing. Note: you might argue that
334 ;; finding a new object means that something is broken,
335 ;; but this can happen. If someone uses the ~@<...~:>
336 ;; format directive, it conses a new list each time
337 ;; though format (i.e. the &REST list), so we will have
338 ;; different cdrs.
339 nil)
341 (if assign
342 (let ((value (incf *circularity-counter*)))
343 ;; first occurrence of this object: Set the counter.
344 (setf (gethash object *circularity-hash-table*) value)
345 value)
348 ;; second or later occurrence
349 (- value)))))))
351 ;;; Handle the results of CHECK-FOR-CIRCULARITY. If this returns T then
352 ;;; you should go ahead and print the object. If it returns NIL, then
353 ;;; you should blow it off.
354 (defun handle-circularity (marker stream)
355 (case marker
356 (:initiate
357 ;; Someone forgot to initiate circularity detection.
358 (let ((*print-circle* nil))
359 (error "trying to use CHECK-FOR-CIRCULARITY when ~
360 circularity checking isn't initiated")))
361 ((t)
362 ;; It's a second (or later) reference to the object while we are
363 ;; just looking. So don't bother groveling it again.
364 nil)
366 (write-char #\# stream)
367 (let ((*print-base* 10) (*print-radix* nil))
368 (cond ((minusp marker)
369 (output-integer (- marker) stream)
370 (write-char #\# stream)
371 nil)
373 (output-integer marker stream)
374 (write-char #\= stream)
375 t))))))
377 ;;;; OUTPUT-OBJECT -- the main entry point
379 ;;; Objects whose print representation identifies them EQLly don't
380 ;;; need to be checked for circularity.
381 (defun uniquely-identified-by-print-p (x)
382 (or (numberp x)
383 (characterp x)
384 (and (symbolp x)
385 (symbol-package x))))
387 ;;; Output OBJECT to STREAM observing all printer control variables.
388 (defun output-object (object stream)
389 (labels ((print-it (stream)
390 (if *print-pretty*
391 (sb!pretty:output-pretty-object object stream)
392 (output-ugly-object object stream)))
393 (check-it (stream)
394 (multiple-value-bind (marker initiate)
395 (check-for-circularity object t)
396 ;; initialization of the circulation detect noise ...
397 (if (eq initiate :initiate)
398 (let ((*circularity-hash-table*
399 (make-hash-table :test 'eq)))
400 (check-it (make-broadcast-stream))
401 (let ((*circularity-counter* 0))
402 (check-it stream)))
403 ;; otherwise
404 (if marker
405 (when (handle-circularity marker stream)
406 (print-it stream))
407 (print-it stream))))))
408 (cond (;; Maybe we don't need to bother with circularity detection.
409 (or (not *print-circle*)
410 (uniquely-identified-by-print-p object))
411 (print-it stream))
412 (;; If we have already started circularity detection, this
413 ;; object might be a shared reference. If we have not, then
414 ;; if it is a compound object it might contain a circular
415 ;; reference to itself or multiple shared references.
416 (or *circularity-hash-table*
417 (compound-object-p object))
418 (check-it stream))
420 (print-it stream)))))
422 ;;; a hack to work around recurring gotchas with printing while
423 ;;; DEFGENERIC PRINT-OBJECT is being built
425 ;;; (hopefully will go away naturally when CLOS moves into cold init)
426 (defvar *print-object-is-disabled-p*)
428 ;;; Output OBJECT to STREAM observing all printer control variables
429 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
430 ;;; then the pretty printer will be used for any components of OBJECT,
431 ;;; just not for OBJECT itself.
432 (defun output-ugly-object (object stream)
433 (typecase object
434 ;; KLUDGE: The TYPECASE approach here is non-ANSI; the ANSI definition of
435 ;; PRINT-OBJECT says it provides printing and we're supposed to provide
436 ;; PRINT-OBJECT methods covering all classes. We deviate from this
437 ;; by using PRINT-OBJECT only when we print instance values. However,
438 ;; ANSI makes it hard to tell that we're deviating from this:
439 ;; (1) ANSI specifies that the user isn't supposed to call PRINT-OBJECT
440 ;; directly.
441 ;; (2) ANSI (section 11.1.2.1.2) says it's undefined to define
442 ;; a method on an external symbol in the CL package which is
443 ;; applicable to arg lists containing only direct instances of
444 ;; standardized classes.
445 ;; Thus, in order for the user to detect our sleaziness in conforming
446 ;; code, he has to do something relatively obscure like
447 ;; (1) actually use tools like FIND-METHOD to look for PRINT-OBJECT
448 ;; methods, or
449 ;; (2) define a PRINT-OBJECT method which is specialized on the stream
450 ;; value (e.g. a Gray stream object).
451 ;; As long as no one comes up with a non-obscure way of detecting this
452 ;; sleaziness, fixing this nonconformity will probably have a low
453 ;; priority. -- WHN 2001-11-25
454 (fixnum
455 (output-integer object stream))
456 (list
457 (if (null object)
458 (output-symbol object stream)
459 (output-list object stream)))
460 (instance
461 (cond ((not (and (boundp '*print-object-is-disabled-p*)
462 *print-object-is-disabled-p*))
463 (print-object object stream))
464 ((typep object 'structure-object)
465 (default-structure-print object stream *current-level-in-print*))
467 (write-string "#<INSTANCE but not STRUCTURE-OBJECT>" stream))))
468 (function
469 (unless (and (funcallable-instance-p object)
470 (printed-as-funcallable-standard-class object stream))
471 (output-fun object stream)))
472 (symbol
473 (output-symbol object stream))
474 (number
475 (etypecase object
476 (integer
477 (output-integer object stream))
478 (float
479 (output-float object stream))
480 (ratio
481 (output-ratio object stream))
482 (ratio
483 (output-ratio object stream))
484 (complex
485 (output-complex object stream))))
486 (character
487 (output-character object stream))
488 (vector
489 (output-vector object stream))
490 (array
491 (output-array object stream))
492 (system-area-pointer
493 (output-sap object stream))
494 (weak-pointer
495 (output-weak-pointer object stream))
496 (lra
497 (output-lra object stream))
498 (code-component
499 (output-code-component object stream))
500 (fdefn
501 (output-fdefn object stream))
503 (output-random object stream))))
505 ;;;; symbols
507 ;;; values of *PRINT-CASE* and (READTABLE-CASE *READTABLE*) the last
508 ;;; time the printer was called
509 (defvar *previous-case* nil)
510 (defvar *previous-readtable-case* nil)
512 ;;; This variable contains the current definition of one of three
513 ;;; symbol printers. SETUP-PRINTER-STATE sets this variable.
514 (defvar *internal-symbol-output-fun* nil)
516 ;;; This function sets the internal global symbol
517 ;;; *INTERNAL-SYMBOL-OUTPUT-FUN* to the right function depending on
518 ;;; the value of *PRINT-CASE*. See the manual for details. The print
519 ;;; buffer stream is also reset.
520 (defun setup-printer-state ()
521 (unless (and (eq *print-case* *previous-case*)
522 (eq (readtable-case *readtable*) *previous-readtable-case*))
523 (setq *previous-case* *print-case*)
524 (setq *previous-readtable-case* (readtable-case *readtable*))
525 (unless (member *print-case* '(:upcase :downcase :capitalize))
526 (setq *print-case* :upcase)
527 (error "invalid *PRINT-CASE* value: ~S" *previous-case*))
528 (unless (member *previous-readtable-case*
529 '(:upcase :downcase :invert :preserve))
530 (setf (readtable-case *readtable*) :upcase)
531 (error "invalid READTABLE-CASE value: ~S" *previous-readtable-case*))
533 (setq *internal-symbol-output-fun*
534 (case *previous-readtable-case*
535 (:upcase
536 (case *print-case*
537 (:upcase #'output-preserve-symbol)
538 (:downcase #'output-lowercase-symbol)
539 (:capitalize #'output-capitalize-symbol)))
540 (:downcase
541 (case *print-case*
542 (:upcase #'output-uppercase-symbol)
543 (:downcase #'output-preserve-symbol)
544 (:capitalize #'output-capitalize-symbol)))
545 (:preserve #'output-preserve-symbol)
546 (:invert #'output-invert-symbol)))))
548 ;;; Output PNAME (a symbol-name or package-name) surrounded with |'s,
549 ;;; and with any embedded |'s or \'s escaped.
550 (defun output-quoted-symbol-name (pname stream)
551 (write-char #\| stream)
552 (dotimes (index (length pname))
553 (let ((char (schar pname index)))
554 (when (or (char= char #\\) (char= char #\|))
555 (write-char #\\ stream))
556 (write-char char stream)))
557 (write-char #\| stream))
559 (defun output-symbol (object stream)
560 (if (or *print-escape* *print-readably*)
561 (let ((package (symbol-package object))
562 (name (symbol-name object)))
563 (cond
564 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
565 ;; requires that keywords be printed with preceding colons
566 ;; always, regardless of the value of *PACKAGE*.
567 ((eq package *keyword-package*)
568 (write-char #\: stream))
569 ;; Otherwise, if the symbol's home package is the current
570 ;; one, then a prefix is never necessary.
571 ((eq package (sane-package)))
572 ;; Uninterned symbols print with a leading #:.
573 ((null package)
574 (when (or *print-gensym* *print-readably*)
575 (write-string "#:" stream)))
577 (multiple-value-bind (symbol accessible)
578 (find-symbol name (sane-package))
579 ;; If we can find the symbol by looking it up, it need not
580 ;; be qualified. This can happen if the symbol has been
581 ;; inherited from a package other than its home package.
582 (unless (and accessible (eq symbol object))
583 (output-symbol-name (package-name package) stream)
584 (multiple-value-bind (symbol externalp)
585 (find-external-symbol name package)
586 (declare (ignore symbol))
587 (if externalp
588 (write-char #\: stream)
589 (write-string "::" stream)))))))
590 (output-symbol-name name stream))
591 (output-symbol-name (symbol-name object) stream nil)))
593 ;;; Output the string NAME as if it were a symbol name. In other
594 ;;; words, diddle its case according to *PRINT-CASE* and
595 ;;; READTABLE-CASE.
596 (defun output-symbol-name (name stream &optional (maybe-quote t))
597 (declare (type simple-base-string name))
598 (setup-printer-state)
599 (if (and maybe-quote (symbol-quotep name))
600 (output-quoted-symbol-name name stream)
601 (funcall *internal-symbol-output-fun* name stream)))
603 ;;;; escaping symbols
605 ;;; When we print symbols we have to figure out if they need to be
606 ;;; printed with escape characters. This isn't a whole lot easier than
607 ;;; reading symbols in the first place.
609 ;;; For each character, the value of the corresponding element is a
610 ;;; fixnum with bits set corresponding to attributes that the
611 ;;; character has. At characters have at least one bit set, so we can
612 ;;; search for any character with a positive test.
613 (defvar *character-attributes*
614 (make-array char-code-limit
615 :element-type '(unsigned-byte 16)
616 :initial-element 0))
617 (declaim (type (simple-array (unsigned-byte 16) (#.char-code-limit))
618 *character-attributes*))
620 ;;; constants which are a bit-mask for each interesting character attribute
621 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
622 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
623 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
624 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
625 (defconstant sign-attribute (ash 1 4)) ; +-
626 (defconstant extension-attribute (ash 1 5)) ; ^_
627 (defconstant dot-attribute (ash 1 6)) ; .
628 (defconstant slash-attribute (ash 1 7)) ; /
629 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
631 (eval-when (:compile-toplevel :load-toplevel :execute)
633 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
634 ;;; that don't need to be escaped (according to READTABLE-CASE.)
635 (defparameter *attribute-names*
636 `((number . number-attribute) (lowercase . lowercase-attribute)
637 (uppercase . uppercase-attribute) (letter . letter-attribute)
638 (sign . sign-attribute) (extension . extension-attribute)
639 (dot . dot-attribute) (slash . slash-attribute)
640 (other . other-attribute) (funny . funny-attribute)))
642 ) ; EVAL-WHEN
644 (flet ((set-bit (char bit)
645 (let ((code (char-code char)))
646 (setf (aref *character-attributes* code)
647 (logior bit (aref *character-attributes* code))))))
649 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
650 #\? #\< #\>))
651 (set-bit char other-attribute))
653 (dotimes (i 10)
654 (set-bit (digit-char i) number-attribute))
656 (do ((code (char-code #\A) (1+ code))
657 (end (char-code #\Z)))
658 ((> code end))
659 (declare (fixnum code end))
660 (set-bit (code-char code) uppercase-attribute)
661 (set-bit (char-downcase (code-char code)) lowercase-attribute))
663 (set-bit #\- sign-attribute)
664 (set-bit #\+ sign-attribute)
665 (set-bit #\^ extension-attribute)
666 (set-bit #\_ extension-attribute)
667 (set-bit #\. dot-attribute)
668 (set-bit #\/ slash-attribute)
670 ;; Mark anything not explicitly allowed as funny.
671 (dotimes (i char-code-limit)
672 (when (zerop (aref *character-attributes* i))
673 (setf (aref *character-attributes* i) funny-attribute))))
675 ;;; For each character, the value of the corresponding element is the
676 ;;; lowest base in which that character is a digit.
677 (defvar *digit-bases*
678 (make-array char-code-limit
679 :element-type '(unsigned-byte 8)
680 :initial-element 36))
681 (declaim (type (simple-array (unsigned-byte 8) (#.char-code-limit))
682 *digit-bases*))
684 (dotimes (i 36)
685 (let ((char (digit-char i 36)))
686 (setf (aref *digit-bases* (char-code char)) i)))
688 ;;; A FSM-like thingie that determines whether a symbol is a potential
689 ;;; number or has evil characters in it.
690 (defun symbol-quotep (name)
691 (declare (simple-string name))
692 (macrolet ((advance (tag &optional (at-end t))
693 `(progn
694 (when (= index len)
695 ,(if at-end '(go TEST-SIGN) '(return nil)))
696 (setq current (schar name index)
697 code (char-code current)
698 bits (aref attributes code))
699 (incf index)
700 (go ,tag)))
701 (test (&rest attributes)
702 `(not (zerop
703 (the fixnum
704 (logand
705 (logior ,@(mapcar
706 (lambda (x)
707 (or (cdr (assoc x
708 *attribute-names*))
709 (error "Blast!")))
710 attributes))
711 bits)))))
712 (digitp ()
713 `(< (the fixnum (aref bases code)) base)))
715 (prog ((len (length name))
716 (attributes *character-attributes*)
717 (bases *digit-bases*)
718 (base *print-base*)
719 (letter-attribute
720 (case (readtable-case *readtable*)
721 (:upcase uppercase-attribute)
722 (:downcase lowercase-attribute)
723 (t (logior lowercase-attribute uppercase-attribute))))
724 (index 0)
725 (bits 0)
726 (code 0)
727 current)
728 (declare (fixnum len base index bits code))
729 (advance START t)
731 TEST-SIGN ; At end, see whether it is a sign...
732 (return (not (test sign)))
734 OTHER ; not potential number, see whether funny chars...
735 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
736 funny-attribute)
737 letter-attribute)))
738 (do ((i (1- index) (1+ i)))
739 ((= i len) (return-from symbol-quotep nil))
740 (unless (zerop (logand (aref attributes (char-code (schar name i)))
741 mask))
742 (return-from symbol-quotep t))))
744 START
745 (when (digitp)
746 (if (test letter)
747 (advance LAST-DIGIT-ALPHA)
748 (advance DIGIT)))
749 (when (test letter number other slash) (advance OTHER nil))
750 (when (char= current #\.) (advance DOT-FOUND))
751 (when (test sign extension) (advance START-STUFF nil))
752 (return t)
754 DOT-FOUND ; leading dots...
755 (when (test letter) (advance START-DOT-MARKER nil))
756 (when (digitp) (advance DOT-DIGIT))
757 (when (test number other) (advance OTHER nil))
758 (when (test extension slash sign) (advance START-DOT-STUFF nil))
759 (when (char= current #\.) (advance DOT-FOUND))
760 (return t)
762 START-STUFF ; leading stuff before any dot or digit
763 (when (digitp)
764 (if (test letter)
765 (advance LAST-DIGIT-ALPHA)
766 (advance DIGIT)))
767 (when (test number other) (advance OTHER nil))
768 (when (test letter) (advance START-MARKER nil))
769 (when (char= current #\.) (advance START-DOT-STUFF nil))
770 (when (test sign extension slash) (advance START-STUFF nil))
771 (return t)
773 START-MARKER ; number marker in leading stuff...
774 (when (test letter) (advance OTHER nil))
775 (go START-STUFF)
777 START-DOT-STUFF ; leading stuff containing dot without digit...
778 (when (test letter) (advance START-DOT-STUFF nil))
779 (when (digitp) (advance DOT-DIGIT))
780 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
781 (when (test number other) (advance OTHER nil))
782 (return t)
784 START-DOT-MARKER ; number marker in leading stuff with dot..
785 ;; leading stuff containing dot without digit followed by letter...
786 (when (test letter) (advance OTHER nil))
787 (go START-DOT-STUFF)
789 DOT-DIGIT ; in a thing with dots...
790 (when (test letter) (advance DOT-MARKER))
791 (when (digitp) (advance DOT-DIGIT))
792 (when (test number other) (advance OTHER nil))
793 (when (test sign extension dot slash) (advance DOT-DIGIT))
794 (return t)
796 DOT-MARKER ; number marker in number with dot...
797 (when (test letter) (advance OTHER nil))
798 (go DOT-DIGIT)
800 LAST-DIGIT-ALPHA ; previous char is a letter digit...
801 (when (or (digitp) (test sign slash))
802 (advance ALPHA-DIGIT))
803 (when (test letter number other dot) (advance OTHER nil))
804 (return t)
806 ALPHA-DIGIT ; seen a digit which is a letter...
807 (when (or (digitp) (test sign slash))
808 (if (test letter)
809 (advance LAST-DIGIT-ALPHA)
810 (advance ALPHA-DIGIT)))
811 (when (test letter) (advance ALPHA-MARKER))
812 (when (test number other dot) (advance OTHER nil))
813 (return t)
815 ALPHA-MARKER ; number marker in number with alpha digit...
816 (when (test letter) (advance OTHER nil))
817 (go ALPHA-DIGIT)
819 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
820 (when (digitp)
821 (if (test letter)
822 (advance ALPHA-DIGIT)
823 (advance DIGIT)))
824 (when (test number other) (advance OTHER nil))
825 (when (test letter) (advance MARKER))
826 (when (test extension slash sign) (advance DIGIT))
827 (when (char= current #\.) (advance DOT-DIGIT))
828 (return t)
830 MARKER ; number marker in a numeric number...
831 (when (test letter) (advance OTHER nil))
832 (go DIGIT))))
834 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN*
835 ;;;;
836 ;;;; case hackery: These functions are stored in
837 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN* according to the values of
838 ;;;; *PRINT-CASE* and READTABLE-CASE.
840 ;;; called when:
841 ;;; READTABLE-CASE *PRINT-CASE*
842 ;;; :UPCASE :UPCASE
843 ;;; :DOWNCASE :DOWNCASE
844 ;;; :PRESERVE any
845 (defun output-preserve-symbol (pname stream)
846 (declare (simple-string pname))
847 (write-string pname stream))
849 ;;; called when:
850 ;;; READTABLE-CASE *PRINT-CASE*
851 ;;; :UPCASE :DOWNCASE
852 (defun output-lowercase-symbol (pname stream)
853 (declare (simple-string pname))
854 (dotimes (index (length pname))
855 (let ((char (schar pname index)))
856 (write-char (char-downcase char) stream))))
858 ;;; called when:
859 ;;; READTABLE-CASE *PRINT-CASE*
860 ;;; :DOWNCASE :UPCASE
861 (defun output-uppercase-symbol (pname stream)
862 (declare (simple-string pname))
863 (dotimes (index (length pname))
864 (let ((char (schar pname index)))
865 (write-char (char-upcase char) stream))))
867 ;;; called when:
868 ;;; READTABLE-CASE *PRINT-CASE*
869 ;;; :UPCASE :CAPITALIZE
870 ;;; :DOWNCASE :CAPITALIZE
871 (defun output-capitalize-symbol (pname stream)
872 (declare (simple-string pname))
873 (let ((prev-not-alpha t)
874 (up (eq (readtable-case *readtable*) :upcase)))
875 (dotimes (i (length pname))
876 (let ((char (char pname i)))
877 (write-char (if up
878 (if (or prev-not-alpha (lower-case-p char))
879 char
880 (char-downcase char))
881 (if prev-not-alpha
882 (char-upcase char)
883 char))
884 stream)
885 (setq prev-not-alpha (not (alpha-char-p char)))))))
887 ;;; called when:
888 ;;; READTABLE-CASE *PRINT-CASE*
889 ;;; :INVERT any
890 (defun output-invert-symbol (pname stream)
891 (declare (simple-string pname))
892 (let ((all-upper t)
893 (all-lower t))
894 (dotimes (i (length pname))
895 (let ((ch (schar pname i)))
896 (when (both-case-p ch)
897 (if (upper-case-p ch)
898 (setq all-lower nil)
899 (setq all-upper nil)))))
900 (cond (all-upper (output-lowercase-symbol pname stream))
901 (all-lower (output-uppercase-symbol pname stream))
903 (write-string pname stream)))))
906 (defun test1 ()
907 (let ((*readtable* (copy-readtable nil)))
908 (format t "READTABLE-CASE Input Symbol-name~@
909 ----------------------------------~%")
910 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
911 (setf (readtable-case *readtable*) readtable-case)
912 (dolist (input '("ZEBRA" "Zebra" "zebra"))
913 (format t "~&:~A~16T~A~24T~A"
914 (string-upcase readtable-case)
915 input
916 (symbol-name (read-from-string input)))))))
918 (defun test2 ()
919 (let ((*readtable* (copy-readtable nil)))
920 (format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output Princ~@
921 --------------------------------------------------------~%")
922 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
923 (setf (readtable-case *readtable*) readtable-case)
924 (dolist (*print-case* '(:upcase :downcase :capitalize))
925 (dolist (symbol '(|ZEBRA| |Zebra| |zebra|))
926 (format t "~&:~A~15T:~A~29T~A~42T~A~50T~A"
927 (string-upcase readtable-case)
928 (string-upcase *print-case*)
929 (symbol-name symbol)
930 (prin1-to-string symbol)
931 (princ-to-string symbol)))))))
934 ;;;; recursive objects
936 (defun output-list (list stream)
937 (descend-into (stream)
938 (write-char #\( stream)
939 (let ((length 0)
940 (list list))
941 (loop
942 (punt-print-if-too-long length stream)
943 (output-object (pop list) stream)
944 (unless list
945 (return))
946 (when (or (atom list)
947 (check-for-circularity list))
948 (write-string " . " stream)
949 (output-object list stream)
950 (return))
951 (write-char #\space stream)
952 (incf length)))
953 (write-char #\) stream)))
955 (defun output-vector (vector stream)
956 (declare (vector vector))
957 (cond ((stringp vector)
958 (cond ((or *print-escape* *print-readably*)
959 (write-char #\" stream)
960 (quote-string vector stream)
961 (write-char #\" stream))
963 (write-string vector stream))))
964 ((not (or *print-array* *print-readably*))
965 (output-terse-array vector stream))
966 ((bit-vector-p vector)
967 (write-string "#*" stream)
968 (dovector (bit vector)
969 ;; (Don't use OUTPUT-OBJECT here, since this code
970 ;; has to work for all possible *PRINT-BASE* values.)
971 (write-char (if (zerop bit) #\0 #\1) stream)))
973 (when (and *print-readably*
974 (not (eq (array-element-type vector) t)))
975 (error 'print-not-readable :object vector))
976 (descend-into (stream)
977 (write-string "#(" stream)
978 (dotimes (i (length vector))
979 (unless (zerop i)
980 (write-char #\space stream))
981 (punt-print-if-too-long i stream)
982 (output-object (aref vector i) stream))
983 (write-string ")" stream)))))
985 ;;; This function outputs a string quoting characters sufficiently
986 ;;; so that someone can read it in again. Basically, put a slash in
987 ;;; front of an character satisfying NEEDS-SLASH-P.
988 (defun quote-string (string stream)
989 (macrolet ((needs-slash-p (char)
990 ;; KLUDGE: We probably should look at the readtable, but just do
991 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
992 `(or (char= ,char #\\)
993 (char= ,char #\"))))
994 (with-array-data ((data string) (start) (end (length string)))
995 (do ((index start (1+ index)))
996 ((>= index end))
997 (let ((char (schar data index)))
998 (when (needs-slash-p char) (write-char #\\ stream))
999 (write-char char stream))))))
1001 ;;; Output the printed representation of any array in either the #< or #A
1002 ;;; form.
1003 (defun output-array (array stream)
1004 (if (or *print-array* *print-readably*)
1005 (output-array-guts array stream)
1006 (output-terse-array array stream)))
1008 ;;; Output the abbreviated #< form of an array.
1009 (defun output-terse-array (array stream)
1010 (let ((*print-level* nil)
1011 (*print-length* nil))
1012 (print-unreadable-object (array stream :type t :identity t))))
1014 ;;; Output the readable #A form of an array.
1015 (defun output-array-guts (array stream)
1016 (when (and *print-readably*
1017 (not (eq (array-element-type array) t)))
1018 (error 'print-not-readable :object array))
1019 (write-char #\# stream)
1020 (let ((*print-base* 10))
1021 (output-integer (array-rank array) stream))
1022 (write-char #\A stream)
1023 (with-array-data ((data array) (start) (end))
1024 (declare (ignore end))
1025 (sub-output-array-guts data (array-dimensions array) stream start)))
1027 (defun sub-output-array-guts (array dimensions stream index)
1028 (declare (type (simple-array * (*)) array) (fixnum index))
1029 (cond ((null dimensions)
1030 (output-object (aref array index) stream))
1032 (descend-into (stream)
1033 (write-char #\( stream)
1034 (let* ((dimension (car dimensions))
1035 (dimensions (cdr dimensions))
1036 (count (reduce #'* dimensions)))
1037 (dotimes (i dimension)
1038 (unless (zerop i)
1039 (write-char #\space stream))
1040 (punt-print-if-too-long i stream)
1041 (sub-output-array-guts array dimensions stream index)
1042 (incf index count)))
1043 (write-char #\) stream)))))
1045 ;;; a trivial non-generic-function placeholder for PRINT-OBJECT, for
1046 ;;; use until CLOS is set up (at which time it will be replaced with
1047 ;;; the real generic function implementation)
1048 (defun print-object (instance stream)
1049 (default-structure-print instance stream *current-level-in-print*))
1051 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
1053 (defun output-integer (integer stream)
1054 ;; FIXME: This UNLESS form should be pulled out into something like
1055 ;; (SANE-PRINT-BASE), along the lines of (SANE-PACKAGE) for the
1056 ;; *PACKAGE* variable.
1057 (unless (and (fixnump *print-base*)
1058 (< 1 *print-base* 37))
1059 (let ((obase *print-base*))
1060 (setq *print-base* 10.)
1061 (error "~A is not a reasonable value for *PRINT-BASE*." obase)))
1062 (when (and (not (= *print-base* 10.))
1063 *print-radix*)
1064 ;; First print leading base information, if any.
1065 (write-char #\# stream)
1066 (write-char (case *print-base*
1067 (2. #\b)
1068 (8. #\o)
1069 (16. #\x)
1070 (T (let ((fixbase *print-base*)
1071 (*print-base* 10.)
1072 (*print-radix* ()))
1073 (sub-output-integer fixbase stream))
1074 #\r))
1075 stream))
1076 ;; Then output a minus sign if the number is negative, then output
1077 ;; the absolute value of the number.
1078 (cond ((bignump integer) (print-bignum integer stream))
1079 ((< integer 0)
1080 (write-char #\- stream)
1081 (sub-output-integer (- integer) stream))
1083 (sub-output-integer integer stream)))
1084 ;; Print any trailing base information, if any.
1085 (if (and (= *print-base* 10.) *print-radix*)
1086 (write-char #\. stream)))
1088 (defun sub-output-integer (integer stream)
1089 (let ((quotient ())
1090 (remainder ()))
1091 ;; Recurse until you have all the digits pushed on the stack.
1092 (if (not (zerop (multiple-value-setq (quotient remainder)
1093 (truncate integer *print-base*))))
1094 (sub-output-integer quotient stream))
1095 ;; Then as each recursive call unwinds, turn the digit (in remainder)
1096 ;; into a character and output the character.
1097 (write-char (code-char (if (and (> remainder 9.)
1098 (> *print-base* 10.))
1099 (+ (char-code #\A) (- remainder 10.))
1100 (+ (char-code #\0) remainder)))
1101 stream)))
1103 ;;;; bignum printing
1105 ;;; *BASE-POWER* holds the number that we keep dividing into the
1106 ;;; bignum for each *print-base*. We want this number as close to
1107 ;;; *most-positive-fixnum* as possible, i.e. (floor (log
1108 ;;; most-positive-fixnum *print-base*)).
1109 (defparameter *base-power* (make-array 37 :initial-element nil))
1111 ;;; *FIXNUM-POWER--1* holds the number of digits for each *PRINT-BASE*
1112 ;;; that fit in the corresponding *base-power*.
1113 (defparameter *fixnum-power--1* (make-array 37 :initial-element nil))
1115 ;;; Print the bignum to the stream. We first generate the correct
1116 ;;; value for *base-power* and *fixnum-power--1* if we have not
1117 ;;; already. Then we call bignum-print-aux to do the printing.
1118 (defun print-bignum (big stream)
1119 (unless (aref *base-power* *print-base*)
1120 (do ((power-1 -1 (1+ power-1))
1121 (new-divisor *print-base* (* new-divisor *print-base*))
1122 (divisor 1 new-divisor))
1123 ((not (fixnump new-divisor))
1124 (setf (aref *base-power* *print-base*) divisor)
1125 (setf (aref *fixnum-power--1* *print-base*) power-1))))
1126 (bignum-print-aux (cond ((minusp big)
1127 (write-char #\- stream)
1128 (- big))
1129 (t big))
1130 (aref *base-power* *print-base*)
1131 (aref *fixnum-power--1* *print-base*)
1132 stream)
1133 big)
1135 (defun bignum-print-aux (big divisor power-1 stream)
1136 (multiple-value-bind (newbig fix) (truncate big divisor)
1137 (if (fixnump newbig)
1138 (sub-output-integer newbig stream)
1139 (bignum-print-aux newbig divisor power-1 stream))
1140 (do ((zeros power-1 (1- zeros))
1141 (base-power *print-base* (* base-power *print-base*)))
1142 ((> base-power fix)
1143 (dotimes (i zeros) (write-char #\0 stream))
1144 (sub-output-integer fix stream)))))
1146 (defun output-ratio (ratio stream)
1147 (when *print-radix*
1148 (write-char #\# stream)
1149 (case *print-base*
1150 (2 (write-char #\b stream))
1151 (8 (write-char #\o stream))
1152 (16 (write-char #\x stream))
1153 (t (write *print-base* :stream stream :radix nil :base 10)))
1154 (write-char #\r stream))
1155 (let ((*print-radix* nil))
1156 (output-integer (numerator ratio) stream)
1157 (write-char #\/ stream)
1158 (output-integer (denominator ratio) stream)))
1160 (defun output-complex (complex stream)
1161 (write-string "#C(" stream)
1162 (output-object (realpart complex) stream)
1163 (write-char #\space stream)
1164 (output-object (imagpart complex) stream)
1165 (write-char #\) stream))
1167 ;;;; float printing
1169 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1170 ;;; most of the work for all printing of floating point numbers in the
1171 ;;; printer and in FORMAT. It converts a floating point number to a
1172 ;;; string in a free or fixed format with no exponent. The
1173 ;;; interpretation of the arguments is as follows:
1175 ;;; X - The floating point number to convert, which must not be
1176 ;;; negative.
1177 ;;; WIDTH - The preferred field width, used to determine the number
1178 ;;; of fraction digits to produce if the FDIGITS parameter
1179 ;;; is unspecified or NIL. If the non-fraction digits and the
1180 ;;; decimal point alone exceed this width, no fraction digits
1181 ;;; will be produced unless a non-NIL value of FDIGITS has been
1182 ;;; specified. Field overflow is not considerd an error at this
1183 ;;; level.
1184 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1185 ;;; trailing zeroes may be introduced as needed. May be
1186 ;;; unspecified or NIL, in which case as many digits as possible
1187 ;;; are generated, subject to the constraint that there are no
1188 ;;; trailing zeroes.
1189 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1190 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1191 ;;; and cannot lose precision.
1192 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1193 ;;; number of fraction digits which will be produced, regardless
1194 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1195 ;;; the ~E format directive to prevent complete loss of
1196 ;;; significance in the printed value due to a bogus choice of
1197 ;;; scale factor.
1199 ;;; Most of the optional arguments are for the benefit for FORMAT and are not
1200 ;;; used by the printer.
1202 ;;; Returns:
1203 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1204 ;;; where the results have the following interpretation:
1206 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1207 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1208 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1209 ;;; decimal point.
1210 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1211 ;;; decimal point.
1212 ;;; POINT-POS - The position of the digit preceding the decimal
1213 ;;; point. Zero indicates point before first digit.
1215 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1216 ;;; accuracy. Specifically, the decimal number printed is the closest
1217 ;;; possible approximation to the true value of the binary number to
1218 ;;; be printed from among all decimal representations with the same
1219 ;;; number of digits. In free-format output, i.e. with the number of
1220 ;;; digits unconstrained, it is guaranteed that all the information is
1221 ;;; preserved, so that a properly- rounding reader can reconstruct the
1222 ;;; original binary number, bit-for-bit, from its printed decimal
1223 ;;; representation. Furthermore, only as many digits as necessary to
1224 ;;; satisfy this condition will be printed.
1226 ;;; FLOAT-STRING actually generates the digits for positive numbers.
1227 ;;; The algorithm is essentially that of algorithm Dragon4 in "How to
1228 ;;; Print Floating-Point Numbers Accurately" by Steele and White. The
1229 ;;; current (draft) version of this paper may be found in
1230 ;;; [CMUC]<steele>tradix.press. DO NOT EVEN THINK OF ATTEMPTING TO
1231 ;;; UNDERSTAND THIS CODE WITHOUT READING THE PAPER!
1233 (defvar *digits* "0123456789")
1235 (defun flonum-to-string (x &optional width fdigits scale fmin)
1236 (cond ((zerop x)
1237 ;; Zero is a special case which FLOAT-STRING cannot handle.
1238 (if fdigits
1239 (let ((s (make-string (1+ fdigits) :initial-element #\0)))
1240 (setf (schar s 0) #\.)
1241 (values s (length s) t (zerop fdigits) 0))
1242 (values "." 1 t t 0)))
1244 (multiple-value-bind (sig exp) (integer-decode-float x)
1245 (let* ((precision (float-precision x))
1246 (digits (float-digits x))
1247 (fudge (- digits precision))
1248 (width (if width (max width 1) nil)))
1249 (float-string (ash sig (- fudge)) (+ exp fudge) precision width
1250 fdigits scale fmin))))))
1252 (defun float-string (fraction exponent precision width fdigits scale fmin)
1253 (let ((r fraction) (s 1) (m- 1) (m+ 1) (k 0)
1254 (digits 0) (decpnt 0) (cutoff nil) (roundup nil) u low high
1255 (digit-string (make-array 50
1256 :element-type 'base-char
1257 :fill-pointer 0
1258 :adjustable t)))
1259 ;; Represent fraction as r/s, error bounds as m+/s and m-/s.
1260 ;; Rational arithmetic avoids loss of precision in subsequent
1261 ;; calculations.
1262 (cond ((> exponent 0)
1263 (setq r (ash fraction exponent))
1264 (setq m- (ash 1 exponent))
1265 (setq m+ m-))
1266 ((< exponent 0)
1267 (setq s (ash 1 (- exponent)))))
1268 ;; Adjust the error bounds m+ and m- for unequal gaps.
1269 (when (= fraction (ash 1 precision))
1270 (setq m+ (ash m+ 1))
1271 (setq r (ash r 1))
1272 (setq s (ash s 1)))
1273 ;; Scale value by requested amount, and update error bounds.
1274 (when scale
1275 (if (minusp scale)
1276 (let ((scale-factor (expt 10 (- scale))))
1277 (setq s (* s scale-factor)))
1278 (let ((scale-factor (expt 10 scale)))
1279 (setq r (* r scale-factor))
1280 (setq m+ (* m+ scale-factor))
1281 (setq m- (* m- scale-factor)))))
1282 ;; Scale r and s and compute initial k, the base 10 logarithm of r.
1283 (do ()
1284 ((>= r (ceiling s 10)))
1285 (decf k)
1286 (setq r (* r 10))
1287 (setq m- (* m- 10))
1288 (setq m+ (* m+ 10)))
1289 (do ()(nil)
1290 (do ()
1291 ((< (+ (ash r 1) m+) (ash s 1)))
1292 (setq s (* s 10))
1293 (incf k))
1294 ;; Determine number of fraction digits to generate.
1295 (cond (fdigits
1296 ;; Use specified number of fraction digits.
1297 (setq cutoff (- fdigits))
1298 ;;don't allow less than fmin fraction digits
1299 (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin))))
1300 (width
1301 ;; Use as many fraction digits as width will permit but
1302 ;; force at least fmin digits even if width will be
1303 ;; exceeded.
1304 (if (< k 0)
1305 (setq cutoff (- 1 width))
1306 (setq cutoff (1+ (- k width))))
1307 (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin)))))
1308 ;; If we decided to cut off digit generation before precision
1309 ;; has been exhausted, rounding the last digit may cause a carry
1310 ;; propagation. We can prevent this, preserving left-to-right
1311 ;; digit generation, with a few magical adjustments to m- and
1312 ;; m+. Of course, correct rounding is also preserved.
1313 (when (or fdigits width)
1314 (let ((a (- cutoff k))
1315 (y s))
1316 (if (>= a 0)
1317 (dotimes (i a) (setq y (* y 10)))
1318 (dotimes (i (- a)) (setq y (ceiling y 10))))
1319 (setq m- (max y m-))
1320 (setq m+ (max y m+))
1321 (when (= m+ y) (setq roundup t))))
1322 (when (< (+ (ash r 1) m+) (ash s 1)) (return)))
1323 ;; Zero-fill before fraction if no integer part.
1324 (when (< k 0)
1325 (setq decpnt digits)
1326 (vector-push-extend #\. digit-string)
1327 (dotimes (i (- k))
1328 (incf digits) (vector-push-extend #\0 digit-string)))
1329 ;; Generate the significant digits.
1330 (do ()(nil)
1331 (decf k)
1332 (when (= k -1)
1333 (vector-push-extend #\. digit-string)
1334 (setq decpnt digits))
1335 (multiple-value-setq (u r) (truncate (* r 10) s))
1336 (setq m- (* m- 10))
1337 (setq m+ (* m+ 10))
1338 (setq low (< (ash r 1) m-))
1339 (if roundup
1340 (setq high (>= (ash r 1) (- (ash s 1) m+)))
1341 (setq high (> (ash r 1) (- (ash s 1) m+))))
1342 ;; Stop when either precision is exhausted or we have printed as
1343 ;; many fraction digits as permitted.
1344 (when (or low high (and cutoff (<= k cutoff))) (return))
1345 (vector-push-extend (char *digits* u) digit-string)
1346 (incf digits))
1347 ;; If cutoff occurred before first digit, then no digits are
1348 ;; generated at all.
1349 (when (or (not cutoff) (>= k cutoff))
1350 ;; Last digit may need rounding
1351 (vector-push-extend (char *digits*
1352 (cond ((and low (not high)) u)
1353 ((and high (not low)) (1+ u))
1354 (t (if (<= (ash r 1) s) u (1+ u)))))
1355 digit-string)
1356 (incf digits))
1357 ;; Zero-fill after integer part if no fraction.
1358 (when (>= k 0)
1359 (dotimes (i k) (incf digits) (vector-push-extend #\0 digit-string))
1360 (vector-push-extend #\. digit-string)
1361 (setq decpnt digits))
1362 ;; Add trailing zeroes to pad fraction if fdigits specified.
1363 (when fdigits
1364 (dotimes (i (- fdigits (- digits decpnt)))
1365 (incf digits)
1366 (vector-push-extend #\0 digit-string)))
1367 ;; all done
1368 (values digit-string (1+ digits) (= decpnt 0) (= decpnt digits) decpnt)))
1370 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1371 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1372 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1373 ;;; original number. There may be some loss of precision due the
1374 ;;; floating point representation. The scaling is always done with
1375 ;;; long float arithmetic, which helps printing of lesser precisions
1376 ;;; as well as avoiding generic arithmetic.
1378 ;;; When computing our initial scale factor using EXPT, we pull out
1379 ;;; part of the computation to avoid over/under flow. When
1380 ;;; denormalized, we must pull out a large factor, since there is more
1381 ;;; negative exponent range than positive range.
1382 (defun scale-exponent (original-x)
1383 (let* ((x (coerce original-x 'long-float)))
1384 (multiple-value-bind (sig exponent) (decode-float x)
1385 (declare (ignore sig))
1386 (if (= x 0.0l0)
1387 (values (float 0.0l0 original-x) 1)
1388 (let* ((ex (round (* exponent (log 2l0 10))))
1389 (x (if (minusp ex)
1390 (if (float-denormalized-p x)
1391 #!-long-float
1392 (* x 1.0l16 (expt 10.0l0 (- (- ex) 16)))
1393 #!+long-float
1394 (* x 1.0l18 (expt 10.0l0 (- (- ex) 18)))
1395 (* x 10.0l0 (expt 10.0l0 (- (- ex) 1))))
1396 (/ x 10.0l0 (expt 10.0l0 (1- ex))))))
1397 (do ((d 10.0l0 (* d 10.0l0))
1398 (y x (/ x d))
1399 (ex ex (1+ ex)))
1400 ((< y 1.0l0)
1401 (do ((m 10.0l0 (* m 10.0l0))
1402 (z y (* y m))
1403 (ex ex (1- ex)))
1404 ((>= z 0.1l0)
1405 (values (float z original-x) ex))))))))))
1407 ;;;; entry point for the float printer
1409 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1410 ;;; argument is printed free-format, in either exponential or
1411 ;;; non-exponential notation, depending on its magnitude.
1413 ;;; NOTE: When a number is to be printed in exponential format, it is
1414 ;;; scaled in floating point. Since precision may be lost in this
1415 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1416 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1417 ;;; extensive computations with integers of similar magnitude to that
1418 ;;; of the number being printed. For large exponents, the bignums
1419 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1420 ;;; fast and the exponent range is not too large, then it might become
1421 ;;; attractive to handle exponential notation with the same accuracy
1422 ;;; as non-exponential notation, using the method described in the
1423 ;;; Steele and White paper.
1425 ;;; Print the appropriate exponent marker for X and the specified exponent.
1426 (defun print-float-exponent (x exp stream)
1427 (declare (type float x) (type integer exp) (type stream stream))
1428 (let ((*print-radix* nil)
1429 (plusp (plusp exp)))
1430 (if (typep x *read-default-float-format*)
1431 (unless (eql exp 0)
1432 (format stream "e~:[~;+~]~D" plusp exp))
1433 (format stream "~C~:[~;+~]~D"
1434 (etypecase x
1435 (single-float #\f)
1436 (double-float #\d)
1437 (short-float #\s)
1438 (long-float #\L))
1439 plusp exp))))
1441 (defun output-float-infinity (x stream)
1442 (declare (float x) (stream stream))
1443 (cond (*read-eval*
1444 (write-string "#." stream))
1445 (*print-readably*
1446 (error 'print-not-readable :object x))
1448 (write-string "#<" stream)))
1449 (write-string "SB-EXT:" stream)
1450 (write-string (symbol-name (float-format-name x)) stream)
1451 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1452 stream)
1453 (write-string "INFINITY" stream)
1454 (unless *read-eval*
1455 (write-string ">" stream)))
1457 (defun output-float-nan (x stream)
1458 (print-unreadable-object (x stream)
1459 (princ (float-format-name x) stream)
1460 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1461 (write-string " NaN" stream)))
1463 ;;; the function called by OUTPUT-OBJECT to handle floats
1464 (defun output-float (x stream)
1465 (cond
1466 ((float-infinity-p x)
1467 (output-float-infinity x stream))
1468 ((float-nan-p x)
1469 (output-float-nan x stream))
1471 (let ((x (cond ((minusp (float-sign x))
1472 (write-char #\- stream)
1473 (- x))
1475 x))))
1476 (cond
1477 ((zerop x)
1478 (write-string "0.0" stream)
1479 (print-float-exponent x 0 stream))
1481 (output-float-aux x stream (float 1/1000 x) (float 10000000 x))))))))
1482 (defun output-float-aux (x stream e-min e-max)
1483 (if (and (>= x e-min) (< x e-max))
1484 ;; free format
1485 (multiple-value-bind (str len lpoint tpoint) (flonum-to-string x)
1486 (declare (ignore len))
1487 (when lpoint (write-char #\0 stream))
1488 (write-string str stream)
1489 (when tpoint (write-char #\0 stream))
1490 (print-float-exponent x 0 stream))
1491 ;; exponential format
1492 (multiple-value-bind (f ex) (scale-exponent x)
1493 (multiple-value-bind (str len lpoint tpoint)
1494 (flonum-to-string f nil nil 1)
1495 (declare (ignore len))
1496 (when lpoint (write-char #\0 stream))
1497 (write-string str stream)
1498 (when tpoint (write-char #\0 stream))
1499 ;; Subtract out scale factor of 1 passed to FLONUM-TO-STRING.
1500 (print-float-exponent x (1- ex) stream)))))
1502 ;;;; other leaf objects
1504 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1505 ;;; the character name or the character in the #\char format.
1506 (defun output-character (char stream)
1507 (if (or *print-escape* *print-readably*)
1508 (let ((name (char-name char)))
1509 (write-string "#\\" stream)
1510 (if name
1511 (quote-string name stream)
1512 (write-char char stream)))
1513 (write-char char stream)))
1515 (defun output-sap (sap stream)
1516 (declare (type system-area-pointer sap))
1517 (cond (*read-eval*
1518 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1520 (print-unreadable-object (sap stream)
1521 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1523 (defun output-weak-pointer (weak-pointer stream)
1524 (declare (type weak-pointer weak-pointer))
1525 (print-unreadable-object (weak-pointer stream)
1526 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1527 (cond (validp
1528 (write-string "weak pointer: " stream)
1529 (write value :stream stream))
1531 (write-string "broken weak pointer" stream))))))
1533 (defun output-code-component (component stream)
1534 (print-unreadable-object (component stream :identity t)
1535 (let ((dinfo (%code-debug-info component)))
1536 (cond ((eq dinfo :bogus-lra)
1537 (write-string "bogus code object" stream))
1539 (write-string "code object" stream)
1540 (when dinfo
1541 (write-char #\space stream)
1542 (output-object (sb!c::debug-info-name dinfo) stream)))))))
1544 (defun output-lra (lra stream)
1545 (print-unreadable-object (lra stream :identity t)
1546 (write-string "return PC object" stream)))
1548 (defun output-fdefn (fdefn stream)
1549 (print-unreadable-object (fdefn stream)
1550 (write-string "FDEFINITION object for " stream)
1551 (output-object (fdefn-name fdefn) stream)))
1553 ;;;; functions
1555 ;;; Output OBJECT as using PRINT-OBJECT if it's a
1556 ;;; FUNCALLABLE-STANDARD-CLASS, or return NIL otherwise.
1558 ;;; The definition here is a simple temporary placeholder. It will be
1559 ;;; overwritten by a smarter version (capable of calling generic
1560 ;;; PRINT-OBJECT when appropriate) when CLOS is installed.
1561 (defun printed-as-clos-funcallable-standard-class (object stream)
1562 (declare (ignore object stream))
1563 nil)
1565 (defun output-fun (object stream)
1566 (let* ((*print-length* 3) ; in case we have to..
1567 (*print-level* 3) ; ..print an interpreted function definition
1568 ;; FIXME: This find-the-function-name idiom ought to be
1569 ;; encapsulated in a function somewhere.
1570 (name (case (fun-subtype object)
1571 (#.sb!vm:closure-header-widetag "CLOSURE")
1572 (#.sb!vm:simple-fun-header-widetag (%simple-fun-name object))
1573 (t 'no-name-available)))
1574 (identified-by-name-p (and (symbolp name)
1575 (fboundp name)
1576 (eq (fdefinition name) object))))
1577 (print-unreadable-object (object
1578 stream
1579 :identity (not identified-by-name-p))
1580 (prin1 'function stream)
1581 (unless (eq name 'no-name-available)
1582 (format stream " ~S" name)))))
1584 ;;;; catch-all for unknown things
1586 (defun output-random (object stream)
1587 (print-unreadable-object (object stream :identity t)
1588 (let ((lowtag (lowtag-of object)))
1589 (case lowtag
1590 (#.sb!vm:other-pointer-lowtag
1591 (let ((widetag (widetag-of object)))
1592 (case widetag
1593 (#.sb!vm:value-cell-header-widetag
1594 (write-string "value cell " stream)
1595 (output-object (value-cell-ref object) stream))
1597 (write-string "unknown pointer object, widetag=" stream)
1598 (let ((*print-base* 16) (*print-radix* t))
1599 (output-integer widetag stream))))))
1600 ((#.sb!vm:fun-pointer-lowtag
1601 #.sb!vm:instance-pointer-lowtag
1602 #.sb!vm:list-pointer-lowtag)
1603 (write-string "unknown pointer object, lowtag=" stream)
1604 (let ((*print-base* 16) (*print-radix* t))
1605 (output-integer lowtag stream)))
1607 (case (widetag-of object)
1608 (#.sb!vm:unbound-marker-widetag
1609 (write-string "unbound marker" stream))
1611 (write-string "unknown immediate object, lowtag=" stream)
1612 (let ((*print-base* 2) (*print-radix* t))
1613 (output-integer lowtag stream))
1614 (write-string ", widetag=" stream)
1615 (let ((*print-base* 16) (*print-radix* t))
1616 (output-integer (widetag-of object) stream)))))))))