0.9.15.29:
[sbcl/lichteblau.git] / src / compiler / ir1tran-lambda.lisp
blob2a92b9894a4957c0cfb60931fdc1e845d1a400fe
1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
3 ;;;; (IR1).
5 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; more information.
7 ;;;;
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
14 (in-package "SB!C")
16 ;;;; LAMBDA hackery
18 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
19 ;;;; function representation" before you seriously mess with this
20 ;;;; stuff.
22 ;;; Verify that the NAME is a legal name for a variable and return a
23 ;;; VAR structure for it, filling in info if it is globally special.
24 ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
25 ;;; list of names which have previously been bound. If the NAME is in
26 ;;; this list, then we error out.
27 (declaim (ftype (sfunction (t list) lambda-var) varify-lambda-arg))
28 (defun varify-lambda-arg (name names-so-far)
29 (declare (inline member))
30 (unless (symbolp name)
31 (compiler-error "The lambda variable ~S is not a symbol." name))
32 (when (member name names-so-far :test #'eq)
33 (compiler-error "The variable ~S occurs more than once in the lambda list."
34 name))
35 (let ((kind (info :variable :kind name)))
36 (when (or (keywordp name) (eq kind :constant))
37 (compiler-error "The name of the lambda variable ~S is already in use to name a constant."
38 name))
39 (cond ((eq kind :special)
40 (let ((specvar (find-free-var name)))
41 (make-lambda-var :%source-name name
42 :type (leaf-type specvar)
43 :where-from (leaf-where-from specvar)
44 :specvar specvar)))
46 (make-lambda-var :%source-name name)))))
48 ;;; Make the default keyword for a &KEY arg, checking that the keyword
49 ;;; isn't already used by one of the VARS.
50 (declaim (ftype (sfunction (symbol list t) symbol) make-keyword-for-arg))
51 (defun make-keyword-for-arg (symbol vars keywordify)
52 (let ((key (if (and keywordify (not (keywordp symbol)))
53 (keywordicate symbol)
54 symbol)))
55 (dolist (var vars)
56 (let ((info (lambda-var-arg-info var)))
57 (when (and info
58 (eq (arg-info-kind info) :keyword)
59 (eq (arg-info-key info) key))
60 (compiler-error
61 "The keyword ~S appears more than once in the lambda list."
62 key))))
63 key))
65 ;;; Parse a lambda list into a list of VAR structures, stripping off
66 ;;; any &AUX bindings. Each arg name is checked for legality, and
67 ;;; duplicate names are checked for. If an arg is globally special,
68 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
69 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
70 ;;; which contains the extra information. If we hit something losing,
71 ;;; we bug out with COMPILER-ERROR. These values are returned:
72 ;;; 1. a list of the var structures for each top level argument;
73 ;;; 2. a flag indicating whether &KEY was specified;
74 ;;; 3. a flag indicating whether other &KEY args are allowed;
75 ;;; 4. a list of the &AUX variables; and
76 ;;; 5. a list of the &AUX values.
77 (declaim (ftype (sfunction (list) (values list boolean boolean list list))
78 make-lambda-vars))
79 (defun make-lambda-vars (list)
80 (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
81 morep more-context more-count)
82 (parse-lambda-list list)
83 (declare (ignore auxp)) ; since we just iterate over AUX regardless
84 (collect ((vars)
85 (names-so-far)
86 (aux-vars)
87 (aux-vals))
88 (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
89 ;; for optionals and keywords args.
90 (parse-default (spec info)
91 (when (consp (cdr spec))
92 (setf (arg-info-default info) (second spec))
93 (when (consp (cddr spec))
94 (let* ((supplied-p (third spec))
95 (supplied-var (varify-lambda-arg supplied-p
96 (names-so-far))))
97 (setf (arg-info-supplied-p info) supplied-var)
98 (names-so-far supplied-p)
99 (when (> (length (the list spec)) 3)
100 (compiler-error
101 "The list ~S is too long to be an arg specifier."
102 spec)))))))
104 (dolist (name required)
105 (let ((var (varify-lambda-arg name (names-so-far))))
106 (vars var)
107 (names-so-far name)))
109 (dolist (spec optional)
110 (if (atom spec)
111 (let ((var (varify-lambda-arg spec (names-so-far))))
112 (setf (lambda-var-arg-info var)
113 (make-arg-info :kind :optional))
114 (vars var)
115 (names-so-far spec))
116 (let* ((name (first spec))
117 (var (varify-lambda-arg name (names-so-far)))
118 (info (make-arg-info :kind :optional)))
119 (setf (lambda-var-arg-info var) info)
120 (vars var)
121 (names-so-far name)
122 (parse-default spec info))))
124 (when restp
125 (let ((var (varify-lambda-arg rest (names-so-far))))
126 (setf (lambda-var-arg-info var) (make-arg-info :kind :rest))
127 (vars var)
128 (names-so-far rest)))
130 (when morep
131 (let ((var (varify-lambda-arg more-context (names-so-far))))
132 (setf (lambda-var-arg-info var)
133 (make-arg-info :kind :more-context))
134 (vars var)
135 (names-so-far more-context))
136 (let ((var (varify-lambda-arg more-count (names-so-far))))
137 (setf (lambda-var-arg-info var)
138 (make-arg-info :kind :more-count))
139 (vars var)
140 (names-so-far more-count)))
142 (dolist (spec keys)
143 (cond
144 ((atom spec)
145 (let ((var (varify-lambda-arg spec (names-so-far))))
146 (setf (lambda-var-arg-info var)
147 (make-arg-info :kind :keyword
148 :key (make-keyword-for-arg spec
149 (vars)
150 t)))
151 (vars var)
152 (names-so-far spec)))
153 ((atom (first spec))
154 (let* ((name (first spec))
155 (var (varify-lambda-arg name (names-so-far)))
156 (info (make-arg-info
157 :kind :keyword
158 :key (make-keyword-for-arg name (vars) t))))
159 (setf (lambda-var-arg-info var) info)
160 (vars var)
161 (names-so-far name)
162 (parse-default spec info)))
164 (let ((head (first spec)))
165 (unless (proper-list-of-length-p head 2)
166 (error "malformed &KEY argument specifier: ~S" spec))
167 (let* ((name (second head))
168 (var (varify-lambda-arg name (names-so-far)))
169 (info (make-arg-info
170 :kind :keyword
171 :key (make-keyword-for-arg (first head)
172 (vars)
173 nil))))
174 (setf (lambda-var-arg-info var) info)
175 (vars var)
176 (names-so-far name)
177 (parse-default spec info))))))
179 (dolist (spec aux)
180 (cond ((atom spec)
181 (let ((var (varify-lambda-arg spec nil)))
182 (aux-vars var)
183 (aux-vals nil)
184 (names-so-far spec)))
186 (unless (proper-list-of-length-p spec 1 2)
187 (compiler-error "malformed &AUX binding specifier: ~S"
188 spec))
189 (let* ((name (first spec))
190 (var (varify-lambda-arg name nil)))
191 (aux-vars var)
192 (aux-vals (second spec))
193 (names-so-far name)))))
195 (values (vars) keyp allowp (aux-vars) (aux-vals))))))
197 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
198 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
199 ;;; converting the body. If there are no bindings, just convert the
200 ;;; body, otherwise do one binding and recurse on the rest.
202 ;;; FIXME: This could and probably should be converted to use
203 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
204 ;;; so I'm not motivated. Patches will be accepted...
205 (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals
206 post-binding-lexenv)
207 (declare (type ctran start next) (type (or lvar null) result)
208 (list body aux-vars aux-vals))
209 (if (null aux-vars)
210 (let ((*lexenv* (make-lexenv :vars (copy-list post-binding-lexenv))))
211 (ir1-convert-progn-body start next result body))
212 (let ((ctran (make-ctran))
213 (fun-lvar (make-lvar))
214 (fun (ir1-convert-lambda-body body
215 (list (first aux-vars))
216 :aux-vars (rest aux-vars)
217 :aux-vals (rest aux-vals)
218 :post-binding-lexenv post-binding-lexenv
219 :debug-name (debug-name
220 '&aux-bindings
221 aux-vars))))
222 (reference-leaf start ctran fun-lvar fun)
223 (ir1-convert-combination-args fun-lvar ctran next result
224 (list (first aux-vals)))))
225 (values))
227 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
228 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
229 ;;; around the body. If there are no special bindings, we just convert
230 ;;; the body, otherwise we do one special binding and recurse on the
231 ;;; rest.
233 ;;; We make a cleanup and introduce it into the lexical
234 ;;; environment. If there are multiple special bindings, the cleanup
235 ;;; for the blocks will end up being the innermost one. We force NEXT
236 ;;; to start a block outside of this cleanup, causing cleanup code to
237 ;;; be emitted when the scope is exited.
238 (defun ir1-convert-special-bindings
239 (start next result body aux-vars aux-vals svars post-binding-lexenv)
240 (declare (type ctran start next) (type (or lvar null) result)
241 (list body aux-vars aux-vals svars))
242 (cond
243 ((null svars)
244 (ir1-convert-aux-bindings start next result body aux-vars aux-vals
245 post-binding-lexenv))
247 (ctran-starts-block next)
248 (let ((cleanup (make-cleanup :kind :special-bind))
249 (var (first svars))
250 (bind-ctran (make-ctran))
251 (cleanup-ctran (make-ctran)))
252 (ir1-convert start bind-ctran nil
253 `(%special-bind ',(lambda-var-specvar var) ,var))
254 (setf (cleanup-mess-up cleanup) (ctran-use bind-ctran))
255 (let ((*lexenv* (make-lexenv :cleanup cleanup)))
256 (ir1-convert bind-ctran cleanup-ctran nil '(%cleanup-point))
257 (ir1-convert-special-bindings cleanup-ctran next result
258 body aux-vars aux-vals
259 (rest svars)
260 post-binding-lexenv)))))
261 (values))
263 ;;; Create a lambda node out of some code, returning the result. The
264 ;;; bindings are specified by the list of VAR structures VARS. We deal
265 ;;; with adding the names to the LEXENV-VARS for the conversion. The
266 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
267 ;;; and linked to the component head and tail.
269 ;;; We detect special bindings here, replacing the original VAR in the
270 ;;; lambda list with a temporary variable. We then pass a list of the
271 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
272 ;;; the special binding code.
274 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
275 ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT.
277 ;;; AUX-VARS is a list of VAR structures for variables that are to be
278 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
279 ;;; to get the initial value for the corresponding AUX-VAR.
280 (defun ir1-convert-lambda-body (body
281 vars
282 &key
283 aux-vars
284 aux-vals
285 (source-name '.anonymous.)
286 debug-name
287 (note-lexical-bindings t)
288 post-binding-lexenv)
289 (declare (list body vars aux-vars aux-vals))
291 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
292 (aver-live-component *current-component*)
294 (let* ((bind (make-bind))
295 (lambda (make-lambda :vars vars
296 :bind bind
297 :%source-name source-name
298 :%debug-name debug-name))
299 (result-ctran (make-ctran))
300 (result-lvar (make-lvar)))
302 (awhen (lexenv-lambda *lexenv*)
303 (push lambda (lambda-children it))
304 (setf (lambda-parent lambda) it))
306 ;; just to check: This function should fail internal assertions if
307 ;; we didn't set up a valid debug name above.
309 ;; (In SBCL we try to make everything have a debug name, since we
310 ;; lack the omniscient perspective the original implementors used
311 ;; to decide which things didn't need one.)
312 (functional-debug-name lambda)
314 (setf (lambda-home lambda) lambda)
315 (collect ((svars)
316 (new-venv nil cons))
318 (dolist (var vars)
319 ;; As far as I can see, LAMBDA-VAR-HOME should never have
320 ;; been set before. Let's make sure. -- WHN 2001-09-29
321 (aver (not (lambda-var-home var)))
322 (setf (lambda-var-home var) lambda)
323 (let ((specvar (lambda-var-specvar var)))
324 (cond (specvar
325 (svars var)
326 (new-venv (cons (leaf-source-name specvar) specvar)))
328 (when note-lexical-bindings
329 (note-lexical-binding (leaf-source-name var)))
330 (new-venv (cons (leaf-source-name var) var))))))
332 (let ((*lexenv* (make-lexenv :vars (new-venv)
333 :lambda lambda
334 :cleanup nil)))
335 (setf (bind-lambda bind) lambda)
336 (setf (node-lexenv bind) *lexenv*)
338 (let ((block (ctran-starts-block result-ctran)))
339 (let ((return (make-return :result result-lvar :lambda lambda))
340 (tail-set (make-tail-set :funs (list lambda))))
341 (setf (lambda-tail-set lambda) tail-set)
342 (setf (lambda-return lambda) return)
343 (setf (lvar-dest result-lvar) return)
344 (link-node-to-previous-ctran return result-ctran)
345 (setf (block-last block) return))
346 (link-blocks block (component-tail *current-component*)))
348 (with-component-last-block (*current-component*
349 (ctran-block result-ctran))
350 (let ((prebind-ctran (make-ctran))
351 (postbind-ctran (make-ctran)))
352 (ctran-starts-block prebind-ctran)
353 (link-node-to-previous-ctran bind prebind-ctran)
354 (use-ctran bind postbind-ctran)
355 (ir1-convert-special-bindings postbind-ctran result-ctran
356 result-lvar body
357 aux-vars aux-vals (svars)
358 post-binding-lexenv)))))
360 (link-blocks (component-head *current-component*) (node-block bind))
361 (push lambda (component-new-functionals *current-component*))
363 lambda))
365 ;;; Entry point CLAMBDAs have a special kind
366 (defun register-entry-point (entry dispatcher)
367 (declare (type clambda entry)
368 (type optional-dispatch dispatcher))
369 (setf (functional-kind entry) :optional)
370 (setf (leaf-ever-used entry) t)
371 (setf (lambda-optional-dispatch entry) dispatcher)
372 entry)
374 ;;; Create the actual entry-point function for an optional entry
375 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
376 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
377 ;;; to the VARS by name. The VALS are passed in the reverse order.
379 ;;; If any of the copies of the vars are referenced more than once,
380 ;;; then we mark the corresponding var as EVER-USED to inhibit
381 ;;; "defined but not read" warnings for arguments that are only used
382 ;;; by default forms.
383 (defun convert-optional-entry (fun vars vals defaults name)
384 (declare (type clambda fun) (list vars vals defaults))
385 (let* ((fvars (reverse vars))
386 (arg-vars (mapcar (lambda (var)
387 (make-lambda-var
388 :%source-name (leaf-source-name var)
389 :type (leaf-type var)
390 :where-from (leaf-where-from var)
391 :specvar (lambda-var-specvar var)))
392 fvars))
393 (fun (collect ((default-bindings)
394 (default-vals))
395 (dolist (default defaults)
396 (if (constantp default)
397 (default-vals default)
398 (let ((var (gensym)))
399 (default-bindings `(,var ,default))
400 (default-vals var))))
401 (ir1-convert-lambda-body `((let (,@(default-bindings))
402 (%funcall ,fun
403 ,@(reverse vals)
404 ,@(default-vals))))
405 arg-vars
406 ;; FIXME: Would be nice to
407 ;; share these names instead
408 ;; of consing up several
409 ;; identical ones. Oh well.
410 :debug-name (debug-name
411 '&optional-processor
412 name)
413 :note-lexical-bindings nil))))
414 (mapc (lambda (var arg-var)
415 (when (cdr (leaf-refs arg-var))
416 (setf (leaf-ever-used var) t)))
417 fvars arg-vars)
418 fun))
420 ;;; This function deals with supplied-p vars in optional arguments. If
421 ;;; the there is no supplied-p arg, then we just call
422 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
423 ;;; optional entry that calls the result. If there is a supplied-p
424 ;;; var, then we add it into the default vars and throw a T into the
425 ;;; entry values. The resulting entry point function is returned.
426 (defun generate-optional-default-entry (res default-vars default-vals
427 entry-vars entry-vals
428 vars supplied-p-p body
429 aux-vars aux-vals
430 source-name debug-name
431 force post-binding-lexenv)
432 (declare (type optional-dispatch res)
433 (list default-vars default-vals entry-vars entry-vals vars body
434 aux-vars aux-vals))
435 (let* ((arg (first vars))
436 (arg-name (leaf-source-name arg))
437 (info (lambda-var-arg-info arg))
438 (default (arg-info-default info))
439 (supplied-p (arg-info-supplied-p info))
440 (force (or force
441 (not (sb!xc:constantp (arg-info-default info)))))
442 (ep (if supplied-p
443 (ir1-convert-hairy-args
445 (list* supplied-p arg default-vars)
446 (list* (leaf-source-name supplied-p) arg-name default-vals)
447 (cons arg entry-vars)
448 (list* t arg-name entry-vals)
449 (rest vars) t body aux-vars aux-vals
450 source-name debug-name
451 force post-binding-lexenv)
452 (ir1-convert-hairy-args
454 (cons arg default-vars)
455 (cons arg-name default-vals)
456 (cons arg entry-vars)
457 (cons arg-name entry-vals)
458 (rest vars) supplied-p-p body aux-vars aux-vals
459 source-name debug-name
460 force post-binding-lexenv))))
462 ;; We want to delay converting the entry, but there exist
463 ;; problems: hidden references should not be established to
464 ;; lambdas of kind NIL should not have (otherwise the compiler
465 ;; might let-convert or delete them) and to variables.
466 (let ((name (or debug-name source-name)))
467 (if (or force
468 supplied-p-p ; this entry will be of kind NIL
469 (and (lambda-p ep) (eq (lambda-kind ep) nil)))
470 (convert-optional-entry ep
471 default-vars default-vals
472 (if supplied-p (list default nil) (list default))
473 name)
474 (let* ((default `',(constant-form-value default))
475 (defaults (if supplied-p (list default nil) (list default))))
476 ;; DEFAULT can contain a reference to a
477 ;; to-be-optimized-away function/block/tag, so better to
478 ;; reduce code now (but we possibly lose syntax checking
479 ;; in an unreachable code).
480 (delay
481 (register-entry-point
482 (convert-optional-entry (force ep)
483 default-vars default-vals
484 defaults
485 name)
486 res)))))))
488 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
489 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
490 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
492 ;;; The most interesting thing that we do is parse keywords. We create
493 ;;; a bunch of temporary variables to hold the result of the parse,
494 ;;; and then loop over the supplied arguments, setting the appropriate
495 ;;; temps for the supplied keyword. Note that it is significant that
496 ;;; we iterate over the keywords in reverse order --- this implements
497 ;;; the CL requirement that (when a keyword appears more than once)
498 ;;; the first value is used.
500 ;;; If there is no supplied-p var, then we initialize the temp to the
501 ;;; default and just pass the temp into the main entry. Since
502 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
503 ;;; know that the default is constant, and thus safe to evaluate out
504 ;;; of order.
506 ;;; If there is a supplied-p var, then we create temps for both the
507 ;;; value and the supplied-p, and pass them into the main entry,
508 ;;; letting it worry about defaulting.
510 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
511 ;;; until we have scanned all the keywords.
512 (defun convert-more-entry (res entry-vars entry-vals rest morep keys name)
513 (declare (type optional-dispatch res) (list entry-vars entry-vals keys))
514 (collect ((arg-vars)
515 (arg-vals (reverse entry-vals))
516 (temps)
517 (body))
519 (dolist (var (reverse entry-vars))
520 (arg-vars (make-lambda-var :%source-name (leaf-source-name var)
521 :type (leaf-type var)
522 :where-from (leaf-where-from var))))
524 (let* ((*allow-instrumenting* nil)
525 (n-context (gensym "N-CONTEXT-"))
526 (context-temp (make-lambda-var :%source-name n-context))
527 (n-count (gensym "N-COUNT-"))
528 (count-temp (make-lambda-var :%source-name n-count
529 :type (specifier-type 'index))))
531 (arg-vars context-temp count-temp)
533 (when rest
534 (arg-vals `(%listify-rest-args
535 ,n-context ,n-count)))
536 (when morep
537 (arg-vals n-context)
538 (arg-vals n-count))
540 (when (optional-dispatch-keyp res)
541 (let ((n-index (gensym "N-INDEX-"))
542 (n-key (gensym "N-KEY-"))
543 (n-value-temp (gensym "N-VALUE-TEMP-"))
544 (n-allowp (gensym "N-ALLOWP-"))
545 (n-losep (gensym "N-LOSEP-"))
546 (allowp (or (optional-dispatch-allowp res)
547 (policy *lexenv* (zerop safety))))
548 (found-allow-p nil))
550 (temps `(,n-index (1- ,n-count)) n-key n-value-temp)
551 (body `(declare (fixnum ,n-index) (ignorable ,n-key ,n-value-temp)))
553 (collect ((tests))
554 (dolist (key keys)
555 (let* ((info (lambda-var-arg-info key))
556 (default (arg-info-default info))
557 (keyword (arg-info-key info))
558 (supplied-p (arg-info-supplied-p info))
559 (n-value (gensym "N-VALUE-"))
560 (clause (cond (supplied-p
561 (let ((n-supplied (gensym "N-SUPPLIED-")))
562 (temps n-supplied)
563 (arg-vals n-value n-supplied)
564 `((eq ,n-key ',keyword)
565 (setq ,n-supplied t)
566 (setq ,n-value ,n-value-temp))))
568 (arg-vals n-value)
569 `((eq ,n-key ',keyword)
570 (setq ,n-value ,n-value-temp))))))
571 (when (and (not allowp) (eq keyword :allow-other-keys))
572 (setq found-allow-p t)
573 (setq clause
574 (append clause `((setq ,n-allowp ,n-value-temp)))))
576 (temps `(,n-value ,default))
577 (tests clause)))
579 (unless allowp
580 (temps n-allowp n-losep)
581 (unless found-allow-p
582 (tests `((eq ,n-key :allow-other-keys)
583 (setq ,n-allowp ,n-value-temp))))
584 (tests `(t
585 (setq ,n-losep (list ,n-key)))))
587 (body
588 `(when (oddp ,n-count)
589 (%odd-key-args-error)))
591 (body
592 `(locally
593 (declare (optimize (safety 0)))
594 (loop
595 (when (minusp ,n-index) (return))
596 (setf ,n-value-temp (%more-arg ,n-context ,n-index))
597 (decf ,n-index)
598 (setq ,n-key (%more-arg ,n-context ,n-index))
599 (decf ,n-index)
600 (cond ,@(tests)))))
602 (unless allowp
603 (body `(when (and ,n-losep (not ,n-allowp))
604 (%unknown-key-arg-error (car ,n-losep))))))))
606 (let ((ep (ir1-convert-lambda-body
607 `((let ,(temps)
608 ,@(body)
609 (%funcall ,(optional-dispatch-main-entry res)
610 ,@(arg-vals))))
611 (arg-vars)
612 :debug-name (debug-name '&more-processor name)
613 :note-lexical-bindings nil)))
614 (setf (optional-dispatch-more-entry res)
615 (register-entry-point ep res)))))
617 (values))
619 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
620 ;;; or &KEY arg. The arguments are similar to that function, but we
621 ;;; split off any &REST arg and pass it in separately. REST is the
622 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
623 ;;; the &KEY argument vars.
625 ;;; When there are &KEY arguments, we introduce temporary gensym
626 ;;; variables to hold the values while keyword defaulting is in
627 ;;; progress to get the required sequential binding semantics.
629 ;;; This gets interesting mainly when there are &KEY arguments with
630 ;;; supplied-p vars or non-constant defaults. In either case, pass in
631 ;;; a supplied-p var. If the default is non-constant, we introduce an
632 ;;; IF in the main entry that tests the supplied-p var and decides
633 ;;; whether to evaluate the default or not. In this case, the real
634 ;;; incoming value is NIL, so we must union NULL with the declared
635 ;;; type when computing the type for the main entry's argument.
636 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
637 rest more-context more-count keys supplied-p-p
638 body aux-vars aux-vals
639 source-name debug-name post-binding-lexenv)
640 (declare (type optional-dispatch res)
641 (list default-vars default-vals entry-vars entry-vals keys body
642 aux-vars aux-vals))
643 (collect ((main-vars (reverse default-vars))
644 (main-vals default-vals cons)
645 (bind-vars)
646 (bind-vals))
647 (when rest
648 (main-vars rest)
649 (main-vals '()))
650 (when more-context
651 (main-vars more-context)
652 (main-vals nil)
653 (main-vars more-count)
654 (main-vals 0))
656 (dolist (key keys)
657 (let* ((info (lambda-var-arg-info key))
658 (default (arg-info-default info))
659 (hairy-default (not (sb!xc:constantp default)))
660 (supplied-p (arg-info-supplied-p info))
661 (n-val (make-symbol (format nil
662 "~A-DEFAULTING-TEMP"
663 (leaf-source-name key))))
664 (val-temp (make-lambda-var :%source-name n-val)))
665 (main-vars val-temp)
666 (bind-vars key)
667 (cond ((or hairy-default supplied-p)
668 (let* ((n-supplied (gensym "N-SUPPLIED-"))
669 (supplied-temp (make-lambda-var
670 :%source-name n-supplied)))
671 (unless supplied-p
672 (setf (arg-info-supplied-p info) supplied-temp))
673 (when hairy-default
674 (setf (arg-info-default info) nil))
675 (main-vars supplied-temp)
676 (cond (hairy-default
677 (main-vals nil nil)
678 (bind-vals `(if ,n-supplied ,n-val ,default)))
680 (main-vals default nil)
681 (bind-vals n-val)))
682 (when supplied-p
683 (bind-vars supplied-p)
684 (bind-vals n-supplied))))
686 (main-vals (arg-info-default info))
687 (bind-vals n-val)))))
689 (let* ((name (or debug-name source-name))
690 (main-entry (ir1-convert-lambda-body
691 body (main-vars)
692 :aux-vars (append (bind-vars) aux-vars)
693 :aux-vals (append (bind-vals) aux-vals)
694 :post-binding-lexenv post-binding-lexenv
695 :debug-name (debug-name 'varargs-entry name)))
696 (last-entry (convert-optional-entry main-entry default-vars
697 (main-vals) () name)))
698 (setf (optional-dispatch-main-entry res)
699 (register-entry-point main-entry res))
700 (convert-more-entry res entry-vars entry-vals rest more-context keys
701 name)
703 (push (register-entry-point
704 (if supplied-p-p
705 (convert-optional-entry last-entry entry-vars entry-vals
706 () name)
707 last-entry)
708 res)
709 (optional-dispatch-entry-points res))
710 last-entry)))
712 ;;; This function generates the entry point functions for the
713 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
714 ;;; of arguments, analyzing the arglist on the way down and generating
715 ;;; entry points on the way up.
717 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
718 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
719 ;;; names of the DEFAULT-VARS.
721 ;;; ENTRY-VARS is a reversed list of processed argument vars,
722 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
723 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
724 ;;; It has the var name for each required or optional arg, and has T
725 ;;; for each supplied-p arg.
727 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
728 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
729 ;;; argument has already been processed; only in this case are the
730 ;;; DEFAULT-XXX and ENTRY-XXX different.
732 ;;; The result at each point is a lambda which should be called by the
733 ;;; above level to default the remaining arguments and evaluate the
734 ;;; body. We cause the body to be evaluated by converting it and
735 ;;; returning it as the result when the recursion bottoms out.
737 ;;; Each level in the recursion also adds its entry point function to
738 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
739 ;;; function and the entry point function will be the same, but when
740 ;;; SUPPLIED-P args are present they may be different.
742 ;;; When we run into a &REST or &KEY arg, we punt out to
743 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
744 (defun ir1-convert-hairy-args (res default-vars default-vals
745 entry-vars entry-vals
746 vars supplied-p-p body aux-vars
747 aux-vals
748 source-name debug-name
749 force post-binding-lexenv)
750 (declare (type optional-dispatch res)
751 (list default-vars default-vals entry-vars entry-vals vars body
752 aux-vars aux-vals))
753 (cond ((not vars)
754 (if (optional-dispatch-keyp res)
755 ;; Handle &KEY with no keys...
756 (ir1-convert-more res default-vars default-vals
757 entry-vars entry-vals
758 nil nil nil vars supplied-p-p body aux-vars
759 aux-vals source-name debug-name
760 post-binding-lexenv)
761 (let* ((name (or debug-name source-name))
762 (fun (ir1-convert-lambda-body
763 body (reverse default-vars)
764 :aux-vars aux-vars
765 :aux-vals aux-vals
766 :post-binding-lexenv post-binding-lexenv
767 :debug-name (debug-name 'hairy-arg-processor name))))
769 (setf (optional-dispatch-main-entry res) fun)
770 (register-entry-point fun res)
771 (push (if supplied-p-p
772 (register-entry-point
773 (convert-optional-entry fun entry-vars entry-vals ()
774 name)
775 res)
776 fun)
777 (optional-dispatch-entry-points res))
778 fun)))
779 ((not (lambda-var-arg-info (first vars)))
780 (let* ((arg (first vars))
781 (nvars (cons arg default-vars))
782 (nvals (cons (leaf-source-name arg) default-vals)))
783 (ir1-convert-hairy-args res nvars nvals nvars nvals
784 (rest vars) nil body aux-vars aux-vals
785 source-name debug-name
786 nil post-binding-lexenv)))
788 (let* ((arg (first vars))
789 (info (lambda-var-arg-info arg))
790 (kind (arg-info-kind info)))
791 (ecase kind
792 (:optional
793 (let ((ep (generate-optional-default-entry
794 res default-vars default-vals
795 entry-vars entry-vals vars supplied-p-p body
796 aux-vars aux-vals
797 source-name debug-name
798 force post-binding-lexenv)))
799 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
800 (push (if (lambda-p ep)
801 (register-entry-point
802 (if supplied-p-p
803 (convert-optional-entry
804 ep entry-vars entry-vals nil
805 (or debug-name source-name))
807 res)
808 (progn (aver (not supplied-p-p))
809 ep))
810 (optional-dispatch-entry-points res))
811 ep))
812 (:rest
813 (ir1-convert-more res default-vars default-vals
814 entry-vars entry-vals
815 arg nil nil (rest vars) supplied-p-p body
816 aux-vars aux-vals
817 source-name debug-name
818 post-binding-lexenv))
819 (:more-context
820 (ir1-convert-more res default-vars default-vals
821 entry-vars entry-vals
822 nil arg (second vars) (cddr vars) supplied-p-p
823 body aux-vars aux-vals
824 source-name debug-name
825 post-binding-lexenv))
826 (:keyword
827 (ir1-convert-more res default-vars default-vals
828 entry-vars entry-vals
829 nil nil nil vars supplied-p-p body aux-vars
830 aux-vals source-name debug-name
831 post-binding-lexenv)))))))
833 ;;; This function deals with the case where we have to make an
834 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
835 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
836 ;;; figure out the MIN-ARGS and MAX-ARGS.
837 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
838 &key
839 post-binding-lexenv
840 (source-name '.anonymous.)
841 (debug-name
842 (debug-name '&optional-dispatch vars)))
843 (declare (list body vars aux-vars aux-vals))
844 (let ((res (make-optional-dispatch :arglist vars
845 :allowp allowp
846 :keyp keyp
847 :%source-name source-name
848 :%debug-name debug-name
849 :plist `(:ir1-environment
850 (,*lexenv*
851 ,*current-path*))))
852 (min (or (position-if #'lambda-var-arg-info vars) (length vars))))
853 (aver-live-component *current-component*)
854 (push res (component-new-functionals *current-component*))
855 (ir1-convert-hairy-args res () () () () vars nil body aux-vars aux-vals
856 source-name debug-name nil post-binding-lexenv)
857 (setf (optional-dispatch-min-args res) min)
858 (setf (optional-dispatch-max-args res)
859 (+ (1- (length (optional-dispatch-entry-points res))) min))
861 res))
863 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
864 (defun ir1-convert-lambda (form &key (source-name '.anonymous.)
865 debug-name)
866 (unless (consp form)
867 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
868 (type-of form)
869 form))
870 (unless (eq (car form) 'lambda)
871 (compiler-error "~S was expected but ~S was found:~% ~S"
872 'lambda
873 (car form)
874 form))
875 (unless (and (consp (cdr form)) (listp (cadr form)))
876 (compiler-error
877 "The lambda expression has a missing or non-list lambda list:~% ~S"
878 form))
880 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals)
881 (make-lambda-vars (cadr form))
882 (multiple-value-bind (forms decls) (parse-body (cddr form))
883 (binding* (((*lexenv* result-type post-binding-lexenv)
884 (process-decls decls (append aux-vars vars) nil
885 :binding-form-p t))
886 (forms (if (and *allow-instrumenting*
887 (policy *lexenv* (>= insert-debug-catch 2)))
888 `((catch (locally
889 (declare (optimize (insert-step-conditions 0)))
890 ;; Using MAKE-SYMBOL would lead
891 ;; to recursive disaster.
892 (%make-symbol "SB-DEBUG-CATCH-TAG"))
893 ,@forms))
894 forms))
895 (forms (if (eq result-type *wild-type*)
896 forms
897 `((the ,result-type (progn ,@forms)))))
898 (res (if (or (find-if #'lambda-var-arg-info vars) keyp)
899 (ir1-convert-hairy-lambda forms vars keyp
900 allow-other-keys
901 aux-vars aux-vals
902 :post-binding-lexenv post-binding-lexenv
903 :source-name source-name
904 :debug-name debug-name)
905 (ir1-convert-lambda-body forms vars
906 :aux-vars aux-vars
907 :aux-vals aux-vals
908 :post-binding-lexenv post-binding-lexenv
909 :source-name source-name
910 :debug-name debug-name))))
911 (setf (functional-inline-expansion res) form)
912 (setf (functional-arg-documentation res) (cadr form))
913 res))))
915 ;;; helper for LAMBDA-like things, to massage them into a form
916 ;;; suitable for IR1-CONVERT-LAMBDA.
917 (defun ir1-convert-lambdalike (thing
918 &key
919 (source-name '.anonymous.)
920 debug-name)
921 (ecase (car thing)
922 ((lambda)
923 (ir1-convert-lambda thing
924 :source-name source-name
925 :debug-name debug-name))
926 ((instance-lambda)
927 (deprecation-warning 'instance-lambda 'lambda)
928 (ir1-convert-lambda `(lambda ,@(cdr thing))
929 :source-name source-name
930 :debug-name debug-name))
931 ((named-lambda)
932 (let ((name (cadr thing))
933 (lambda-expression `(lambda ,@(cddr thing))))
934 (if (legal-fun-name-p name)
935 (let ((defined-fun-res (get-defined-fun name))
936 (res (ir1-convert-lambda lambda-expression
937 :source-name name)))
938 (assert-global-function-definition-type name res)
939 (setf (defined-fun-functional defined-fun-res) res)
940 (unless (eq (defined-fun-inlinep defined-fun-res) :notinline)
941 (substitute-leaf-if
942 (lambda (ref)
943 (policy ref (> recognize-self-calls 0)))
944 res defined-fun-res))
945 res)
946 (ir1-convert-lambda lambda-expression :debug-name name))))
947 ((lambda-with-lexenv)
948 (ir1-convert-inline-lambda thing
949 :source-name source-name
950 :debug-name debug-name))))
952 ;;;; defining global functions
954 ;;; Convert FUN as a lambda in the null environment, but use the
955 ;;; current compilation policy. Note that FUN may be a
956 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
957 ;;; reflect the state at the definition site.
958 (defun ir1-convert-inline-lambda (fun
959 &key
960 (source-name '.anonymous.)
961 debug-name
962 system-lambda)
963 (destructuring-bind (decls macros symbol-macros &rest body)
964 (if (eq (car fun) 'lambda-with-lexenv)
965 (cdr fun)
966 `(() () () . ,(cdr fun)))
967 (let ((*lexenv* (make-lexenv
968 :default (process-decls decls nil nil
969 :lexenv (make-null-lexenv))
970 :vars (copy-list symbol-macros)
971 :funs (mapcar (lambda (x)
972 `(,(car x) .
973 (macro . ,(coerce (cdr x) 'function))))
974 macros)
975 :policy (lexenv-policy *lexenv*)))
976 (*allow-instrumenting* (and (not system-lambda) *allow-instrumenting*)))
977 (ir1-convert-lambda `(lambda ,@body)
978 :source-name source-name
979 :debug-name debug-name))))
981 ;;; Get a DEFINED-FUN object for a function we are about to define. If
982 ;;; the function has been forward referenced, then substitute for the
983 ;;; previous references.
984 (defun get-defined-fun (name)
985 (proclaim-as-fun-name name)
986 (let ((found (find-free-fun name "shouldn't happen! (defined-fun)")))
987 (note-name-defined name :function)
988 (cond ((not (defined-fun-p found))
989 (aver (not (info :function :inlinep name)))
990 (let* ((where-from (leaf-where-from found))
991 (res (make-defined-fun
992 :%source-name name
993 :where-from (if (eq where-from :declared)
994 :declared :defined)
995 :type (leaf-type found))))
996 (substitute-leaf res found)
997 (setf (gethash name *free-funs*) res)))
998 ;; If *FREE-FUNS* has a previously converted definition
999 ;; for this name, then blow it away and try again.
1000 ((defined-fun-functional found)
1001 (remhash name *free-funs*)
1002 (get-defined-fun name))
1003 (t found))))
1005 ;;; Check a new global function definition for consistency with
1006 ;;; previous declaration or definition, and assert argument/result
1007 ;;; types if appropriate. This assertion is suppressed by the
1008 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
1009 ;;; check their argument types as a consequence of type dispatching.
1010 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
1011 (defun assert-new-definition (var fun)
1012 (let ((type (leaf-type var))
1013 (for-real (eq (leaf-where-from var) :declared))
1014 (info (info :function :info (leaf-source-name var))))
1015 (assert-definition-type
1016 fun type
1017 ;; KLUDGE: Common Lisp is such a dynamic language that in general
1018 ;; all we can do here in general is issue a STYLE-WARNING. It
1019 ;; would be nice to issue a full WARNING in the special case of
1020 ;; of type mismatches within a compilation unit (as in section
1021 ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't
1022 ;; keep track of whether the mismatched data came from the same
1023 ;; compilation unit, so we can't do that. -- WHN 2001-02-11
1024 :lossage-fun #'compiler-style-warn
1025 :unwinnage-fun (cond (info #'compiler-style-warn)
1026 (for-real #'compiler-notify)
1027 (t nil))
1028 :really-assert
1029 (and for-real
1030 (not (and info
1031 (ir1-attributep (fun-info-attributes info)
1032 explicit-check))))
1033 :where (if for-real
1034 "previous declaration"
1035 "previous definition"))))
1037 ;;; Used for global inline expansion. Earlier something like this was
1038 ;;; used by %DEFUN too. FIXME: And now it's probably worth rethinking
1039 ;;; whether this function is a good idea at all.
1040 (defun ir1-convert-inline-expansion (name expansion var inlinep info)
1041 ;; Unless a :INLINE function, we temporarily clobber the inline
1042 ;; expansion. This prevents recursive inline expansion of
1043 ;; opportunistic pseudo-inlines.
1044 (unless (eq inlinep :inline)
1045 (setf (defined-fun-inline-expansion var) nil))
1046 (let ((fun (ir1-convert-inline-lambda expansion
1047 :source-name name
1048 ;; prevent instrumentation of
1049 ;; known function expansions
1050 :system-lambda (and info t))))
1051 (setf (functional-inlinep fun) inlinep)
1052 (assert-new-definition var fun)
1053 (setf (defined-fun-inline-expansion var) expansion)
1054 ;; substitute for any old references
1055 (unless (or (not *block-compile*)
1056 (and info
1057 (or (fun-info-transforms info)
1058 (fun-info-templates info)
1059 (fun-info-ir2-convert info))))
1060 (substitute-leaf fun var))
1061 fun))
1063 ;;; the even-at-compile-time part of DEFUN
1065 ;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is
1066 ;;; no inline expansion.
1067 (defun %compiler-defun (name lambda-with-lexenv compile-toplevel)
1068 (let ((defined-fun nil)) ; will be set below if we're in the compiler
1069 (when compile-toplevel
1070 ;; better be in the compiler
1071 (aver (boundp '*lexenv*))
1072 (remhash name *free-funs*)
1073 (setf defined-fun (get-defined-fun name))
1074 (aver (fasl-output-p *compile-object*))
1075 (if (member name *fun-names-in-this-file* :test #'equal)
1076 (warn 'duplicate-definition :name name)
1077 (push name *fun-names-in-this-file*)))
1079 (become-defined-fun-name name)
1081 (cond (lambda-with-lexenv
1082 (setf (info :function :inline-expansion-designator name)
1083 lambda-with-lexenv)
1084 (when defined-fun
1085 (setf (defined-fun-inline-expansion defined-fun)
1086 lambda-with-lexenv)))
1088 (clear-info :function :inline-expansion-designator name)))
1090 ;; old CMU CL comment:
1091 ;; If there is a type from a previous definition, blast it,
1092 ;; since it is obsolete.
1093 (when (and defined-fun
1094 (eq (leaf-where-from defined-fun) :defined))
1095 (setf (leaf-type defined-fun)
1096 ;; FIXME: If this is a block compilation thing, shouldn't
1097 ;; we be setting the type to the full derived type for the
1098 ;; definition, instead of this most general function type?
1099 (specifier-type 'function))))
1101 (values))
1104 ;;; Entry point utilities
1106 ;;; Return a function for the Nth entry point.
1107 (defun optional-dispatch-entry-point-fun (dispatcher n)
1108 (declare (type optional-dispatch dispatcher)
1109 (type unsigned-byte n))
1110 (let* ((env (getf (optional-dispatch-plist dispatcher) :ir1-environment))
1111 (*lexenv* (first env))
1112 (*current-path* (second env)))
1113 (force (nth n (optional-dispatch-entry-points dispatcher)))))