0.9.2.43:
[sbcl/lichteblau.git] / src / compiler / srctran.lisp
blobb4214fc5412901b1ab4c1b40cefed998704c02b7
1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; more information.
7 ;;;;
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
14 (in-package "SB!C")
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
17 ;;; negations.
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
28 ;;; arg.
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
36 (lambda (&rest ,rest)
37 (declare (ignore ,rest))
38 ,n-value))))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
45 "open code"
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
48 (cond
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
62 ;;;; list hackery
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
67 (values nil t)
68 (let* ((name (car form))
69 (string (symbol-name
70 (etypecase name
71 (symbol name)
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
74 (res (cadr form)
75 `(,(ecase (char string i)
76 (#\A 'car)
77 (#\D 'cdr))
78 ,res)))
79 ((zerop i) res)))))
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
83 ;;; defined.
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
93 (dotimes (k i)
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
104 ;;; favors it.
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; Translate RPLACx to LET and SETF.
118 (define-source-transform rplaca (x y)
119 (once-only ((n-x x))
120 `(progn
121 (setf (car ,n-x) ,y)
122 ,n-x)))
123 (define-source-transform rplacd (x y)
124 (once-only ((n-x x))
125 `(progn
126 (setf (cdr ,n-x) ,y)
127 ,n-x)))
129 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
131 (defvar *default-nthcdr-open-code-limit* 6)
132 (defvar *extreme-nthcdr-open-code-limit* 20)
134 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
135 "convert NTHCDR to CAxxR"
136 (unless (constant-lvar-p n)
137 (give-up-ir1-transform))
138 (let ((n (lvar-value n)))
139 (when (> n
140 (if (policy node (and (= speed 3) (= space 0)))
141 *extreme-nthcdr-open-code-limit*
142 *default-nthcdr-open-code-limit*))
143 (give-up-ir1-transform))
145 (labels ((frob (n)
146 (if (zerop n)
148 `(cdr ,(frob (1- n))))))
149 (frob n))))
151 ;;;; arithmetic and numerology
153 (define-source-transform plusp (x) `(> ,x 0))
154 (define-source-transform minusp (x) `(< ,x 0))
155 (define-source-transform zerop (x) `(= ,x 0))
157 (define-source-transform 1+ (x) `(+ ,x 1))
158 (define-source-transform 1- (x) `(- ,x 1))
160 (define-source-transform oddp (x) `(not (zerop (logand ,x 1))))
161 (define-source-transform evenp (x) `(zerop (logand ,x 1)))
163 ;;; Note that all the integer division functions are available for
164 ;;; inline expansion.
166 (macrolet ((deffrob (fun)
167 `(define-source-transform ,fun (x &optional (y nil y-p))
168 (declare (ignore y))
169 (if y-p
170 (values nil t)
171 `(,',fun ,x 1)))))
172 (deffrob truncate)
173 (deffrob round)
174 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
175 (deffrob floor)
176 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
177 (deffrob ceiling))
179 (define-source-transform logtest (x y) `(not (zerop (logand ,x ,y))))
181 (deftransform logbitp
182 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
183 (unsigned-byte #.sb!vm:n-word-bits))))
184 `(if (>= index #.sb!vm:n-word-bits)
185 (minusp integer)
186 (not (zerop (logand integer (ash 1 index))))))
188 (define-source-transform byte (size position)
189 `(cons ,size ,position))
190 (define-source-transform byte-size (spec) `(car ,spec))
191 (define-source-transform byte-position (spec) `(cdr ,spec))
192 (define-source-transform ldb-test (bytespec integer)
193 `(not (zerop (mask-field ,bytespec ,integer))))
195 ;;; With the ratio and complex accessors, we pick off the "identity"
196 ;;; case, and use a primitive to handle the cell access case.
197 (define-source-transform numerator (num)
198 (once-only ((n-num `(the rational ,num)))
199 `(if (ratiop ,n-num)
200 (%numerator ,n-num)
201 ,n-num)))
202 (define-source-transform denominator (num)
203 (once-only ((n-num `(the rational ,num)))
204 `(if (ratiop ,n-num)
205 (%denominator ,n-num)
206 1)))
208 ;;;; interval arithmetic for computing bounds
209 ;;;;
210 ;;;; This is a set of routines for operating on intervals. It
211 ;;;; implements a simple interval arithmetic package. Although SBCL
212 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
213 ;;;; for two reasons:
214 ;;;;
215 ;;;; 1. This package is simpler than NUMERIC-TYPE.
216 ;;;;
217 ;;;; 2. It makes debugging much easier because you can just strip
218 ;;;; out these routines and test them independently of SBCL. (This is a
219 ;;;; big win!)
220 ;;;;
221 ;;;; One disadvantage is a probable increase in consing because we
222 ;;;; have to create these new interval structures even though
223 ;;;; numeric-type has everything we want to know. Reason 2 wins for
224 ;;;; now.
226 ;;; Support operations that mimic real arithmetic comparison
227 ;;; operators, but imposing a total order on the floating points such
228 ;;; that negative zeros are strictly less than positive zeros.
229 (macrolet ((def (name op)
230 `(defun ,name (x y)
231 (declare (real x y))
232 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
233 (,op (float-sign x) (float-sign y))
234 (,op x y)))))
235 (def signed-zero->= >=)
236 (def signed-zero-> >)
237 (def signed-zero-= =)
238 (def signed-zero-< <)
239 (def signed-zero-<= <=))
241 ;;; The basic interval type. It can handle open and closed intervals.
242 ;;; A bound is open if it is a list containing a number, just like
243 ;;; Lisp says. NIL means unbounded.
244 (defstruct (interval (:constructor %make-interval)
245 (:copier nil))
246 low high)
248 (defun make-interval (&key low high)
249 (labels ((normalize-bound (val)
250 (cond #-sb-xc-host
251 ((and (floatp val)
252 (float-infinity-p val))
253 ;; Handle infinities.
254 nil)
255 ((or (numberp val)
256 (eq val nil))
257 ;; Handle any closed bounds.
258 val)
259 ((listp val)
260 ;; We have an open bound. Normalize the numeric
261 ;; bound. If the normalized bound is still a number
262 ;; (not nil), keep the bound open. Otherwise, the
263 ;; bound is really unbounded, so drop the openness.
264 (let ((new-val (normalize-bound (first val))))
265 (when new-val
266 ;; The bound exists, so keep it open still.
267 (list new-val))))
269 (error "unknown bound type in MAKE-INTERVAL")))))
270 (%make-interval :low (normalize-bound low)
271 :high (normalize-bound high))))
273 ;;; Given a number X, create a form suitable as a bound for an
274 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
275 #!-sb-fluid (declaim (inline set-bound))
276 (defun set-bound (x open-p)
277 (if (and x open-p) (list x) x))
279 ;;; Apply the function F to a bound X. If X is an open bound, then
280 ;;; the result will be open. IF X is NIL, the result is NIL.
281 (defun bound-func (f x)
282 (declare (type function f))
283 (and x
284 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
285 ;; With these traps masked, we might get things like infinity
286 ;; or negative infinity returned. Check for this and return
287 ;; NIL to indicate unbounded.
288 (let ((y (funcall f (type-bound-number x))))
289 (if (and (floatp y)
290 (float-infinity-p y))
292 (set-bound (funcall f (type-bound-number x)) (consp x)))))))
294 ;;; Apply a binary operator OP to two bounds X and Y. The result is
295 ;;; NIL if either is NIL. Otherwise bound is computed and the result
296 ;;; is open if either X or Y is open.
298 ;;; FIXME: only used in this file, not needed in target runtime
299 (defmacro bound-binop (op x y)
300 `(and ,x ,y
301 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
302 (set-bound (,op (type-bound-number ,x)
303 (type-bound-number ,y))
304 (or (consp ,x) (consp ,y))))))
306 ;;; Convert a numeric-type object to an interval object.
307 (defun numeric-type->interval (x)
308 (declare (type numeric-type x))
309 (make-interval :low (numeric-type-low x)
310 :high (numeric-type-high x)))
312 (defun type-approximate-interval (type)
313 (declare (type ctype type))
314 (let ((types (prepare-arg-for-derive-type type))
315 (result nil))
316 (dolist (type types)
317 (let ((type (if (member-type-p type)
318 (convert-member-type type)
319 type)))
320 (unless (numeric-type-p type)
321 (return-from type-approximate-interval nil))
322 (let ((interval (numeric-type->interval type)))
323 (setq result
324 (if result
325 (interval-approximate-union result interval)
326 interval)))))
327 result))
329 (defun copy-interval-limit (limit)
330 (if (numberp limit)
331 limit
332 (copy-list limit)))
334 (defun copy-interval (x)
335 (declare (type interval x))
336 (make-interval :low (copy-interval-limit (interval-low x))
337 :high (copy-interval-limit (interval-high x))))
339 ;;; Given a point P contained in the interval X, split X into two
340 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
341 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
342 ;;; contains P. You can specify both to be T or NIL.
343 (defun interval-split (p x &optional close-lower close-upper)
344 (declare (type number p)
345 (type interval x))
346 (list (make-interval :low (copy-interval-limit (interval-low x))
347 :high (if close-lower p (list p)))
348 (make-interval :low (if close-upper (list p) p)
349 :high (copy-interval-limit (interval-high x)))))
351 ;;; Return the closure of the interval. That is, convert open bounds
352 ;;; to closed bounds.
353 (defun interval-closure (x)
354 (declare (type interval x))
355 (make-interval :low (type-bound-number (interval-low x))
356 :high (type-bound-number (interval-high x))))
358 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
359 ;;; '-. Otherwise return NIL.
360 (defun interval-range-info (x &optional (point 0))
361 (declare (type interval x))
362 (let ((lo (interval-low x))
363 (hi (interval-high x)))
364 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
366 ((and hi (signed-zero->= point (type-bound-number hi)))
369 nil))))
371 ;;; Test to see whether the interval X is bounded. HOW determines the
372 ;;; test, and should be either ABOVE, BELOW, or BOTH.
373 (defun interval-bounded-p (x how)
374 (declare (type interval x))
375 (ecase how
376 (above
377 (interval-high x))
378 (below
379 (interval-low x))
380 (both
381 (and (interval-low x) (interval-high x)))))
383 ;;; See whether the interval X contains the number P, taking into
384 ;;; account that the interval might not be closed.
385 (defun interval-contains-p (p x)
386 (declare (type number p)
387 (type interval x))
388 ;; Does the interval X contain the number P? This would be a lot
389 ;; easier if all intervals were closed!
390 (let ((lo (interval-low x))
391 (hi (interval-high x)))
392 (cond ((and lo hi)
393 ;; The interval is bounded
394 (if (and (signed-zero-<= (type-bound-number lo) p)
395 (signed-zero-<= p (type-bound-number hi)))
396 ;; P is definitely in the closure of the interval.
397 ;; We just need to check the end points now.
398 (cond ((signed-zero-= p (type-bound-number lo))
399 (numberp lo))
400 ((signed-zero-= p (type-bound-number hi))
401 (numberp hi))
402 (t t))
403 nil))
405 ;; Interval with upper bound
406 (if (signed-zero-< p (type-bound-number hi))
408 (and (numberp hi) (signed-zero-= p hi))))
410 ;; Interval with lower bound
411 (if (signed-zero-> p (type-bound-number lo))
413 (and (numberp lo) (signed-zero-= p lo))))
415 ;; Interval with no bounds
416 t))))
418 ;;; Determine whether two intervals X and Y intersect. Return T if so.
419 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
420 ;;; were closed. Otherwise the intervals are treated as they are.
422 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
423 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
424 ;;; is T, then they do intersect because we use the closure of X = [0,
425 ;;; 1] and Y = [1, 2] to determine intersection.
426 (defun interval-intersect-p (x y &optional closed-intervals-p)
427 (declare (type interval x y))
428 (multiple-value-bind (intersect diff)
429 (interval-intersection/difference (if closed-intervals-p
430 (interval-closure x)
432 (if closed-intervals-p
433 (interval-closure y)
435 (declare (ignore diff))
436 intersect))
438 ;;; Are the two intervals adjacent? That is, is there a number
439 ;;; between the two intervals that is not an element of either
440 ;;; interval? If so, they are not adjacent. For example [0, 1) and
441 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
442 ;;; between both intervals.
443 (defun interval-adjacent-p (x y)
444 (declare (type interval x y))
445 (flet ((adjacent (lo hi)
446 ;; Check to see whether lo and hi are adjacent. If either is
447 ;; nil, they can't be adjacent.
448 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
449 ;; The bounds are equal. They are adjacent if one of
450 ;; them is closed (a number). If both are open (consp),
451 ;; then there is a number that lies between them.
452 (or (numberp lo) (numberp hi)))))
453 (or (adjacent (interval-low y) (interval-high x))
454 (adjacent (interval-low x) (interval-high y)))))
456 ;;; Compute the intersection and difference between two intervals.
457 ;;; Two values are returned: the intersection and the difference.
459 ;;; Let the two intervals be X and Y, and let I and D be the two
460 ;;; values returned by this function. Then I = X intersect Y. If I
461 ;;; is NIL (the empty set), then D is X union Y, represented as the
462 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
463 ;;; - I, which is a list of two intervals.
465 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
466 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
467 (defun interval-intersection/difference (x y)
468 (declare (type interval x y))
469 (let ((x-lo (interval-low x))
470 (x-hi (interval-high x))
471 (y-lo (interval-low y))
472 (y-hi (interval-high y)))
473 (labels
474 ((opposite-bound (p)
475 ;; If p is an open bound, make it closed. If p is a closed
476 ;; bound, make it open.
477 (if (listp p)
478 (first p)
479 (list p)))
480 (test-number (p int)
481 ;; Test whether P is in the interval.
482 (when (interval-contains-p (type-bound-number p)
483 (interval-closure int))
484 (let ((lo (interval-low int))
485 (hi (interval-high int)))
486 ;; Check for endpoints.
487 (cond ((and lo (= (type-bound-number p) (type-bound-number lo)))
488 (not (and (consp p) (numberp lo))))
489 ((and hi (= (type-bound-number p) (type-bound-number hi)))
490 (not (and (numberp p) (consp hi))))
491 (t t)))))
492 (test-lower-bound (p int)
493 ;; P is a lower bound of an interval.
494 (if p
495 (test-number p int)
496 (not (interval-bounded-p int 'below))))
497 (test-upper-bound (p int)
498 ;; P is an upper bound of an interval.
499 (if p
500 (test-number p int)
501 (not (interval-bounded-p int 'above)))))
502 (let ((x-lo-in-y (test-lower-bound x-lo y))
503 (x-hi-in-y (test-upper-bound x-hi y))
504 (y-lo-in-x (test-lower-bound y-lo x))
505 (y-hi-in-x (test-upper-bound y-hi x)))
506 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
507 ;; Intervals intersect. Let's compute the intersection
508 ;; and the difference.
509 (multiple-value-bind (lo left-lo left-hi)
510 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
511 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
512 (multiple-value-bind (hi right-lo right-hi)
513 (cond (x-hi-in-y
514 (values x-hi (opposite-bound x-hi) y-hi))
515 (y-hi-in-x
516 (values y-hi (opposite-bound y-hi) x-hi)))
517 (values (make-interval :low lo :high hi)
518 (list (make-interval :low left-lo
519 :high left-hi)
520 (make-interval :low right-lo
521 :high right-hi))))))
523 (values nil (list x y))))))))
525 ;;; If intervals X and Y intersect, return a new interval that is the
526 ;;; union of the two. If they do not intersect, return NIL.
527 (defun interval-merge-pair (x y)
528 (declare (type interval x y))
529 ;; If x and y intersect or are adjacent, create the union.
530 ;; Otherwise return nil
531 (when (or (interval-intersect-p x y)
532 (interval-adjacent-p x y))
533 (flet ((select-bound (x1 x2 min-op max-op)
534 (let ((x1-val (type-bound-number x1))
535 (x2-val (type-bound-number x2)))
536 (cond ((and x1 x2)
537 ;; Both bounds are finite. Select the right one.
538 (cond ((funcall min-op x1-val x2-val)
539 ;; x1 is definitely better.
541 ((funcall max-op x1-val x2-val)
542 ;; x2 is definitely better.
545 ;; Bounds are equal. Select either
546 ;; value and make it open only if
547 ;; both were open.
548 (set-bound x1-val (and (consp x1) (consp x2))))))
550 ;; At least one bound is not finite. The
551 ;; non-finite bound always wins.
552 nil)))))
553 (let* ((x-lo (copy-interval-limit (interval-low x)))
554 (x-hi (copy-interval-limit (interval-high x)))
555 (y-lo (copy-interval-limit (interval-low y)))
556 (y-hi (copy-interval-limit (interval-high y))))
557 (make-interval :low (select-bound x-lo y-lo #'< #'>)
558 :high (select-bound x-hi y-hi #'> #'<))))))
560 ;;; return the minimal interval, containing X and Y
561 (defun interval-approximate-union (x y)
562 (cond ((interval-merge-pair x y))
563 ((interval-< x y)
564 (make-interval :low (copy-interval-limit (interval-low x))
565 :high (copy-interval-limit (interval-high y))))
567 (make-interval :low (copy-interval-limit (interval-low y))
568 :high (copy-interval-limit (interval-high x))))))
570 ;;; basic arithmetic operations on intervals. We probably should do
571 ;;; true interval arithmetic here, but it's complicated because we
572 ;;; have float and integer types and bounds can be open or closed.
574 ;;; the negative of an interval
575 (defun interval-neg (x)
576 (declare (type interval x))
577 (make-interval :low (bound-func #'- (interval-high x))
578 :high (bound-func #'- (interval-low x))))
580 ;;; Add two intervals.
581 (defun interval-add (x y)
582 (declare (type interval x y))
583 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
584 :high (bound-binop + (interval-high x) (interval-high y))))
586 ;;; Subtract two intervals.
587 (defun interval-sub (x y)
588 (declare (type interval x y))
589 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
590 :high (bound-binop - (interval-high x) (interval-low y))))
592 ;;; Multiply two intervals.
593 (defun interval-mul (x y)
594 (declare (type interval x y))
595 (flet ((bound-mul (x y)
596 (cond ((or (null x) (null y))
597 ;; Multiply by infinity is infinity
598 nil)
599 ((or (and (numberp x) (zerop x))
600 (and (numberp y) (zerop y)))
601 ;; Multiply by closed zero is special. The result
602 ;; is always a closed bound. But don't replace this
603 ;; with zero; we want the multiplication to produce
604 ;; the correct signed zero, if needed.
605 (* (type-bound-number x) (type-bound-number y)))
606 ((or (and (floatp x) (float-infinity-p x))
607 (and (floatp y) (float-infinity-p y)))
608 ;; Infinity times anything is infinity
609 nil)
611 ;; General multiply. The result is open if either is open.
612 (bound-binop * x y)))))
613 (let ((x-range (interval-range-info x))
614 (y-range (interval-range-info y)))
615 (cond ((null x-range)
616 ;; Split x into two and multiply each separately
617 (destructuring-bind (x- x+) (interval-split 0 x t t)
618 (interval-merge-pair (interval-mul x- y)
619 (interval-mul x+ y))))
620 ((null y-range)
621 ;; Split y into two and multiply each separately
622 (destructuring-bind (y- y+) (interval-split 0 y t t)
623 (interval-merge-pair (interval-mul x y-)
624 (interval-mul x y+))))
625 ((eq x-range '-)
626 (interval-neg (interval-mul (interval-neg x) y)))
627 ((eq y-range '-)
628 (interval-neg (interval-mul x (interval-neg y))))
629 ((and (eq x-range '+) (eq y-range '+))
630 ;; If we are here, X and Y are both positive.
631 (make-interval
632 :low (bound-mul (interval-low x) (interval-low y))
633 :high (bound-mul (interval-high x) (interval-high y))))
635 (bug "excluded case in INTERVAL-MUL"))))))
637 ;;; Divide two intervals.
638 (defun interval-div (top bot)
639 (declare (type interval top bot))
640 (flet ((bound-div (x y y-low-p)
641 ;; Compute x/y
642 (cond ((null y)
643 ;; Divide by infinity means result is 0. However,
644 ;; we need to watch out for the sign of the result,
645 ;; to correctly handle signed zeros. We also need
646 ;; to watch out for positive or negative infinity.
647 (if (floatp (type-bound-number x))
648 (if y-low-p
649 (- (float-sign (type-bound-number x) 0.0))
650 (float-sign (type-bound-number x) 0.0))
652 ((zerop (type-bound-number y))
653 ;; Divide by zero means result is infinity
654 nil)
655 ((and (numberp x) (zerop x))
656 ;; Zero divided by anything is zero.
659 (bound-binop / x y)))))
660 (let ((top-range (interval-range-info top))
661 (bot-range (interval-range-info bot)))
662 (cond ((null bot-range)
663 ;; The denominator contains zero, so anything goes!
664 (make-interval :low nil :high nil))
665 ((eq bot-range '-)
666 ;; Denominator is negative so flip the sign, compute the
667 ;; result, and flip it back.
668 (interval-neg (interval-div top (interval-neg bot))))
669 ((null top-range)
670 ;; Split top into two positive and negative parts, and
671 ;; divide each separately
672 (destructuring-bind (top- top+) (interval-split 0 top t t)
673 (interval-merge-pair (interval-div top- bot)
674 (interval-div top+ bot))))
675 ((eq top-range '-)
676 ;; Top is negative so flip the sign, divide, and flip the
677 ;; sign of the result.
678 (interval-neg (interval-div (interval-neg top) bot)))
679 ((and (eq top-range '+) (eq bot-range '+))
680 ;; the easy case
681 (make-interval
682 :low (bound-div (interval-low top) (interval-high bot) t)
683 :high (bound-div (interval-high top) (interval-low bot) nil)))
685 (bug "excluded case in INTERVAL-DIV"))))))
687 ;;; Apply the function F to the interval X. If X = [a, b], then the
688 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
689 ;;; result makes sense. It will if F is monotonic increasing (or
690 ;;; non-decreasing).
691 (defun interval-func (f x)
692 (declare (type function f)
693 (type interval x))
694 (let ((lo (bound-func f (interval-low x)))
695 (hi (bound-func f (interval-high x))))
696 (make-interval :low lo :high hi)))
698 ;;; Return T if X < Y. That is every number in the interval X is
699 ;;; always less than any number in the interval Y.
700 (defun interval-< (x y)
701 (declare (type interval x y))
702 ;; X < Y only if X is bounded above, Y is bounded below, and they
703 ;; don't overlap.
704 (when (and (interval-bounded-p x 'above)
705 (interval-bounded-p y 'below))
706 ;; Intervals are bounded in the appropriate way. Make sure they
707 ;; don't overlap.
708 (let ((left (interval-high x))
709 (right (interval-low y)))
710 (cond ((> (type-bound-number left)
711 (type-bound-number right))
712 ;; The intervals definitely overlap, so result is NIL.
713 nil)
714 ((< (type-bound-number left)
715 (type-bound-number right))
716 ;; The intervals definitely don't touch, so result is T.
719 ;; Limits are equal. Check for open or closed bounds.
720 ;; Don't overlap if one or the other are open.
721 (or (consp left) (consp right)))))))
723 ;;; Return T if X >= Y. That is, every number in the interval X is
724 ;;; always greater than any number in the interval Y.
725 (defun interval->= (x y)
726 (declare (type interval x y))
727 ;; X >= Y if lower bound of X >= upper bound of Y
728 (when (and (interval-bounded-p x 'below)
729 (interval-bounded-p y 'above))
730 (>= (type-bound-number (interval-low x))
731 (type-bound-number (interval-high y)))))
733 ;;; Return an interval that is the absolute value of X. Thus, if
734 ;;; X = [-1 10], the result is [0, 10].
735 (defun interval-abs (x)
736 (declare (type interval x))
737 (case (interval-range-info x)
739 (copy-interval x))
741 (interval-neg x))
743 (destructuring-bind (x- x+) (interval-split 0 x t t)
744 (interval-merge-pair (interval-neg x-) x+)))))
746 ;;; Compute the square of an interval.
747 (defun interval-sqr (x)
748 (declare (type interval x))
749 (interval-func (lambda (x) (* x x))
750 (interval-abs x)))
752 ;;;; numeric DERIVE-TYPE methods
754 ;;; a utility for defining derive-type methods of integer operations. If
755 ;;; the types of both X and Y are integer types, then we compute a new
756 ;;; integer type with bounds determined Fun when applied to X and Y.
757 ;;; Otherwise, we use NUMERIC-CONTAGION.
758 (defun derive-integer-type-aux (x y fun)
759 (declare (type function fun))
760 (if (and (numeric-type-p x) (numeric-type-p y)
761 (eq (numeric-type-class x) 'integer)
762 (eq (numeric-type-class y) 'integer)
763 (eq (numeric-type-complexp x) :real)
764 (eq (numeric-type-complexp y) :real))
765 (multiple-value-bind (low high) (funcall fun x y)
766 (make-numeric-type :class 'integer
767 :complexp :real
768 :low low
769 :high high))
770 (numeric-contagion x y)))
772 (defun derive-integer-type (x y fun)
773 (declare (type lvar x y) (type function fun))
774 (let ((x (lvar-type x))
775 (y (lvar-type y)))
776 (derive-integer-type-aux x y fun)))
778 ;;; simple utility to flatten a list
779 (defun flatten-list (x)
780 (labels ((flatten-and-append (tree list)
781 (cond ((null tree) list)
782 ((atom tree) (cons tree list))
783 (t (flatten-and-append
784 (car tree) (flatten-and-append (cdr tree) list))))))
785 (flatten-and-append x nil)))
787 ;;; Take some type of lvar and massage it so that we get a list of the
788 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
789 ;;; failure.
790 (defun prepare-arg-for-derive-type (arg)
791 (flet ((listify (arg)
792 (typecase arg
793 (numeric-type
794 (list arg))
795 (union-type
796 (union-type-types arg))
798 (list arg)))))
799 (unless (eq arg *empty-type*)
800 ;; Make sure all args are some type of numeric-type. For member
801 ;; types, convert the list of members into a union of equivalent
802 ;; single-element member-type's.
803 (let ((new-args nil))
804 (dolist (arg (listify arg))
805 (if (member-type-p arg)
806 ;; Run down the list of members and convert to a list of
807 ;; member types.
808 (dolist (member (member-type-members arg))
809 (push (if (numberp member)
810 (make-member-type :members (list member))
811 *empty-type*)
812 new-args))
813 (push arg new-args)))
814 (unless (member *empty-type* new-args)
815 new-args)))))
817 ;;; Convert from the standard type convention for which -0.0 and 0.0
818 ;;; are equal to an intermediate convention for which they are
819 ;;; considered different which is more natural for some of the
820 ;;; optimisers.
821 (defun convert-numeric-type (type)
822 (declare (type numeric-type type))
823 ;;; Only convert real float interval delimiters types.
824 (if (eq (numeric-type-complexp type) :real)
825 (let* ((lo (numeric-type-low type))
826 (lo-val (type-bound-number lo))
827 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
828 (hi (numeric-type-high type))
829 (hi-val (type-bound-number hi))
830 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
831 (if (or lo-float-zero-p hi-float-zero-p)
832 (make-numeric-type
833 :class (numeric-type-class type)
834 :format (numeric-type-format type)
835 :complexp :real
836 :low (if lo-float-zero-p
837 (if (consp lo)
838 (list (float 0.0 lo-val))
839 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
841 :high (if hi-float-zero-p
842 (if (consp hi)
843 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
844 (float 0.0 hi-val))
845 hi))
846 type))
847 ;; Not real float.
848 type))
850 ;;; Convert back from the intermediate convention for which -0.0 and
851 ;;; 0.0 are considered different to the standard type convention for
852 ;;; which and equal.
853 (defun convert-back-numeric-type (type)
854 (declare (type numeric-type type))
855 ;;; Only convert real float interval delimiters types.
856 (if (eq (numeric-type-complexp type) :real)
857 (let* ((lo (numeric-type-low type))
858 (lo-val (type-bound-number lo))
859 (lo-float-zero-p
860 (and lo (floatp lo-val) (= lo-val 0.0)
861 (float-sign lo-val)))
862 (hi (numeric-type-high type))
863 (hi-val (type-bound-number hi))
864 (hi-float-zero-p
865 (and hi (floatp hi-val) (= hi-val 0.0)
866 (float-sign hi-val))))
867 (cond
868 ;; (float +0.0 +0.0) => (member 0.0)
869 ;; (float -0.0 -0.0) => (member -0.0)
870 ((and lo-float-zero-p hi-float-zero-p)
871 ;; shouldn't have exclusive bounds here..
872 (aver (and (not (consp lo)) (not (consp hi))))
873 (if (= lo-float-zero-p hi-float-zero-p)
874 ;; (float +0.0 +0.0) => (member 0.0)
875 ;; (float -0.0 -0.0) => (member -0.0)
876 (specifier-type `(member ,lo-val))
877 ;; (float -0.0 +0.0) => (float 0.0 0.0)
878 ;; (float +0.0 -0.0) => (float 0.0 0.0)
879 (make-numeric-type :class (numeric-type-class type)
880 :format (numeric-type-format type)
881 :complexp :real
882 :low hi-val
883 :high hi-val)))
884 (lo-float-zero-p
885 (cond
886 ;; (float -0.0 x) => (float 0.0 x)
887 ((and (not (consp lo)) (minusp lo-float-zero-p))
888 (make-numeric-type :class (numeric-type-class type)
889 :format (numeric-type-format type)
890 :complexp :real
891 :low (float 0.0 lo-val)
892 :high hi))
893 ;; (float (+0.0) x) => (float (0.0) x)
894 ((and (consp lo) (plusp lo-float-zero-p))
895 (make-numeric-type :class (numeric-type-class type)
896 :format (numeric-type-format type)
897 :complexp :real
898 :low (list (float 0.0 lo-val))
899 :high hi))
901 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
902 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
903 (list (make-member-type :members (list (float 0.0 lo-val)))
904 (make-numeric-type :class (numeric-type-class type)
905 :format (numeric-type-format type)
906 :complexp :real
907 :low (list (float 0.0 lo-val))
908 :high hi)))))
909 (hi-float-zero-p
910 (cond
911 ;; (float x +0.0) => (float x 0.0)
912 ((and (not (consp hi)) (plusp hi-float-zero-p))
913 (make-numeric-type :class (numeric-type-class type)
914 :format (numeric-type-format type)
915 :complexp :real
916 :low lo
917 :high (float 0.0 hi-val)))
918 ;; (float x (-0.0)) => (float x (0.0))
919 ((and (consp hi) (minusp hi-float-zero-p))
920 (make-numeric-type :class (numeric-type-class type)
921 :format (numeric-type-format type)
922 :complexp :real
923 :low lo
924 :high (list (float 0.0 hi-val))))
926 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
927 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
928 (list (make-member-type :members (list (float -0.0 hi-val)))
929 (make-numeric-type :class (numeric-type-class type)
930 :format (numeric-type-format type)
931 :complexp :real
932 :low lo
933 :high (list (float 0.0 hi-val)))))))
935 type)))
936 ;; not real float
937 type))
939 ;;; Convert back a possible list of numeric types.
940 (defun convert-back-numeric-type-list (type-list)
941 (typecase type-list
942 (list
943 (let ((results '()))
944 (dolist (type type-list)
945 (if (numeric-type-p type)
946 (let ((result (convert-back-numeric-type type)))
947 (if (listp result)
948 (setf results (append results result))
949 (push result results)))
950 (push type results)))
951 results))
952 (numeric-type
953 (convert-back-numeric-type type-list))
954 (union-type
955 (convert-back-numeric-type-list (union-type-types type-list)))
957 type-list)))
959 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
960 ;;; belong in the kernel's type logic, invoked always, instead of in
961 ;;; the compiler, invoked only during some type optimizations. (In
962 ;;; fact, as of 0.pre8.100 or so they probably are, under
963 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
965 ;;; Take a list of types and return a canonical type specifier,
966 ;;; combining any MEMBER types together. If both positive and negative
967 ;;; MEMBER types are present they are converted to a float type.
968 ;;; XXX This would be far simpler if the type-union methods could handle
969 ;;; member/number unions.
970 (defun make-canonical-union-type (type-list)
971 (let ((members '())
972 (misc-types '()))
973 (dolist (type type-list)
974 (if (member-type-p type)
975 (setf members (union members (member-type-members type)))
976 (push type misc-types)))
977 #!+long-float
978 (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members))
979 (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types)
980 (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0))))
981 (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members))
982 (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types)
983 (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0))))
984 (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members))
985 (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types)
986 (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0))))
987 (if members
988 (apply #'type-union (make-member-type :members members) misc-types)
989 (apply #'type-union misc-types))))
991 ;;; Convert a member type with a single member to a numeric type.
992 (defun convert-member-type (arg)
993 (let* ((members (member-type-members arg))
994 (member (first members))
995 (member-type (type-of member)))
996 (aver (not (rest members)))
997 (specifier-type (cond ((typep member 'integer)
998 `(integer ,member ,member))
999 ((memq member-type '(short-float single-float
1000 double-float long-float))
1001 `(,member-type ,member ,member))
1003 member-type)))))
1005 ;;; This is used in defoptimizers for computing the resulting type of
1006 ;;; a function.
1008 ;;; Given the lvar ARG, derive the resulting type using the
1009 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1010 ;;; "atomic" lvar type like numeric-type or member-type (containing
1011 ;;; just one element). It should return the resulting type, which can
1012 ;;; be a list of types.
1014 ;;; For the case of member types, if a MEMBER-FUN is given it is
1015 ;;; called to compute the result otherwise the member type is first
1016 ;;; converted to a numeric type and the DERIVE-FUN is called.
1017 (defun one-arg-derive-type (arg derive-fun member-fun
1018 &optional (convert-type t))
1019 (declare (type function derive-fun)
1020 (type (or null function) member-fun))
1021 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1022 (when arg-list
1023 (flet ((deriver (x)
1024 (typecase x
1025 (member-type
1026 (if member-fun
1027 (with-float-traps-masked
1028 (:underflow :overflow :divide-by-zero)
1029 (specifier-type
1030 `(eql ,(funcall member-fun
1031 (first (member-type-members x))))))
1032 ;; Otherwise convert to a numeric type.
1033 (let ((result-type-list
1034 (funcall derive-fun (convert-member-type x))))
1035 (if convert-type
1036 (convert-back-numeric-type-list result-type-list)
1037 result-type-list))))
1038 (numeric-type
1039 (if convert-type
1040 (convert-back-numeric-type-list
1041 (funcall derive-fun (convert-numeric-type x)))
1042 (funcall derive-fun x)))
1044 *universal-type*))))
1045 ;; Run down the list of args and derive the type of each one,
1046 ;; saving all of the results in a list.
1047 (let ((results nil))
1048 (dolist (arg arg-list)
1049 (let ((result (deriver arg)))
1050 (if (listp result)
1051 (setf results (append results result))
1052 (push result results))))
1053 (if (rest results)
1054 (make-canonical-union-type results)
1055 (first results)))))))
1057 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1058 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1059 ;;; original args and a third which is T to indicate if the two args
1060 ;;; really represent the same lvar. This is useful for deriving the
1061 ;;; type of things like (* x x), which should always be positive. If
1062 ;;; we didn't do this, we wouldn't be able to tell.
1063 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1064 &optional (convert-type t))
1065 (declare (type function derive-fun fun))
1066 (flet ((deriver (x y same-arg)
1067 (cond ((and (member-type-p x) (member-type-p y))
1068 (let* ((x (first (member-type-members x)))
1069 (y (first (member-type-members y)))
1070 (result (ignore-errors
1071 (with-float-traps-masked
1072 (:underflow :overflow :divide-by-zero
1073 :invalid)
1074 (funcall fun x y)))))
1075 (cond ((null result) *empty-type*)
1076 ((and (floatp result) (float-nan-p result))
1077 (make-numeric-type :class 'float
1078 :format (type-of result)
1079 :complexp :real))
1081 (specifier-type `(eql ,result))))))
1082 ((and (member-type-p x) (numeric-type-p y))
1083 (let* ((x (convert-member-type x))
1084 (y (if convert-type (convert-numeric-type y) y))
1085 (result (funcall derive-fun x y same-arg)))
1086 (if convert-type
1087 (convert-back-numeric-type-list result)
1088 result)))
1089 ((and (numeric-type-p x) (member-type-p y))
1090 (let* ((x (if convert-type (convert-numeric-type x) x))
1091 (y (convert-member-type y))
1092 (result (funcall derive-fun x y same-arg)))
1093 (if convert-type
1094 (convert-back-numeric-type-list result)
1095 result)))
1096 ((and (numeric-type-p x) (numeric-type-p y))
1097 (let* ((x (if convert-type (convert-numeric-type x) x))
1098 (y (if convert-type (convert-numeric-type y) y))
1099 (result (funcall derive-fun x y same-arg)))
1100 (if convert-type
1101 (convert-back-numeric-type-list result)
1102 result)))
1104 *universal-type*))))
1105 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1106 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1107 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1108 (when (and a1 a2)
1109 (let ((results nil))
1110 (if same-arg
1111 ;; Since the args are the same LVARs, just run down the
1112 ;; lists.
1113 (dolist (x a1)
1114 (let ((result (deriver x x same-arg)))
1115 (if (listp result)
1116 (setf results (append results result))
1117 (push result results))))
1118 ;; Try all pairwise combinations.
1119 (dolist (x a1)
1120 (dolist (y a2)
1121 (let ((result (or (deriver x y same-arg)
1122 (numeric-contagion x y))))
1123 (if (listp result)
1124 (setf results (append results result))
1125 (push result results))))))
1126 (if (rest results)
1127 (make-canonical-union-type results)
1128 (first results)))))))
1130 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1131 (progn
1132 (defoptimizer (+ derive-type) ((x y))
1133 (derive-integer-type
1135 #'(lambda (x y)
1136 (flet ((frob (x y)
1137 (if (and x y)
1138 (+ x y)
1139 nil)))
1140 (values (frob (numeric-type-low x) (numeric-type-low y))
1141 (frob (numeric-type-high x) (numeric-type-high y)))))))
1143 (defoptimizer (- derive-type) ((x y))
1144 (derive-integer-type
1146 #'(lambda (x y)
1147 (flet ((frob (x y)
1148 (if (and x y)
1149 (- x y)
1150 nil)))
1151 (values (frob (numeric-type-low x) (numeric-type-high y))
1152 (frob (numeric-type-high x) (numeric-type-low y)))))))
1154 (defoptimizer (* derive-type) ((x y))
1155 (derive-integer-type
1157 #'(lambda (x y)
1158 (let ((x-low (numeric-type-low x))
1159 (x-high (numeric-type-high x))
1160 (y-low (numeric-type-low y))
1161 (y-high (numeric-type-high y)))
1162 (cond ((not (and x-low y-low))
1163 (values nil nil))
1164 ((or (minusp x-low) (minusp y-low))
1165 (if (and x-high y-high)
1166 (let ((max (* (max (abs x-low) (abs x-high))
1167 (max (abs y-low) (abs y-high)))))
1168 (values (- max) max))
1169 (values nil nil)))
1171 (values (* x-low y-low)
1172 (if (and x-high y-high)
1173 (* x-high y-high)
1174 nil))))))))
1176 (defoptimizer (/ derive-type) ((x y))
1177 (numeric-contagion (lvar-type x) (lvar-type y)))
1179 ) ; PROGN
1181 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1182 (progn
1183 (defun +-derive-type-aux (x y same-arg)
1184 (if (and (numeric-type-real-p x)
1185 (numeric-type-real-p y))
1186 (let ((result
1187 (if same-arg
1188 (let ((x-int (numeric-type->interval x)))
1189 (interval-add x-int x-int))
1190 (interval-add (numeric-type->interval x)
1191 (numeric-type->interval y))))
1192 (result-type (numeric-contagion x y)))
1193 ;; If the result type is a float, we need to be sure to coerce
1194 ;; the bounds into the correct type.
1195 (when (eq (numeric-type-class result-type) 'float)
1196 (setf result (interval-func
1197 #'(lambda (x)
1198 (coerce x (or (numeric-type-format result-type)
1199 'float)))
1200 result)))
1201 (make-numeric-type
1202 :class (if (and (eq (numeric-type-class x) 'integer)
1203 (eq (numeric-type-class y) 'integer))
1204 ;; The sum of integers is always an integer.
1205 'integer
1206 (numeric-type-class result-type))
1207 :format (numeric-type-format result-type)
1208 :low (interval-low result)
1209 :high (interval-high result)))
1210 ;; general contagion
1211 (numeric-contagion x y)))
1213 (defoptimizer (+ derive-type) ((x y))
1214 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1216 (defun --derive-type-aux (x y same-arg)
1217 (if (and (numeric-type-real-p x)
1218 (numeric-type-real-p y))
1219 (let ((result
1220 ;; (- X X) is always 0.
1221 (if same-arg
1222 (make-interval :low 0 :high 0)
1223 (interval-sub (numeric-type->interval x)
1224 (numeric-type->interval y))))
1225 (result-type (numeric-contagion x y)))
1226 ;; If the result type is a float, we need to be sure to coerce
1227 ;; the bounds into the correct type.
1228 (when (eq (numeric-type-class result-type) 'float)
1229 (setf result (interval-func
1230 #'(lambda (x)
1231 (coerce x (or (numeric-type-format result-type)
1232 'float)))
1233 result)))
1234 (make-numeric-type
1235 :class (if (and (eq (numeric-type-class x) 'integer)
1236 (eq (numeric-type-class y) 'integer))
1237 ;; The difference of integers is always an integer.
1238 'integer
1239 (numeric-type-class result-type))
1240 :format (numeric-type-format result-type)
1241 :low (interval-low result)
1242 :high (interval-high result)))
1243 ;; general contagion
1244 (numeric-contagion x y)))
1246 (defoptimizer (- derive-type) ((x y))
1247 (two-arg-derive-type x y #'--derive-type-aux #'-))
1249 (defun *-derive-type-aux (x y same-arg)
1250 (if (and (numeric-type-real-p x)
1251 (numeric-type-real-p y))
1252 (let ((result
1253 ;; (* X X) is always positive, so take care to do it right.
1254 (if same-arg
1255 (interval-sqr (numeric-type->interval x))
1256 (interval-mul (numeric-type->interval x)
1257 (numeric-type->interval y))))
1258 (result-type (numeric-contagion x y)))
1259 ;; If the result type is a float, we need to be sure to coerce
1260 ;; the bounds into the correct type.
1261 (when (eq (numeric-type-class result-type) 'float)
1262 (setf result (interval-func
1263 #'(lambda (x)
1264 (coerce x (or (numeric-type-format result-type)
1265 'float)))
1266 result)))
1267 (make-numeric-type
1268 :class (if (and (eq (numeric-type-class x) 'integer)
1269 (eq (numeric-type-class y) 'integer))
1270 ;; The product of integers is always an integer.
1271 'integer
1272 (numeric-type-class result-type))
1273 :format (numeric-type-format result-type)
1274 :low (interval-low result)
1275 :high (interval-high result)))
1276 (numeric-contagion x y)))
1278 (defoptimizer (* derive-type) ((x y))
1279 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1281 (defun /-derive-type-aux (x y same-arg)
1282 (if (and (numeric-type-real-p x)
1283 (numeric-type-real-p y))
1284 (let ((result
1285 ;; (/ X X) is always 1, except if X can contain 0. In
1286 ;; that case, we shouldn't optimize the division away
1287 ;; because we want 0/0 to signal an error.
1288 (if (and same-arg
1289 (not (interval-contains-p
1290 0 (interval-closure (numeric-type->interval y)))))
1291 (make-interval :low 1 :high 1)
1292 (interval-div (numeric-type->interval x)
1293 (numeric-type->interval y))))
1294 (result-type (numeric-contagion x y)))
1295 ;; If the result type is a float, we need to be sure to coerce
1296 ;; the bounds into the correct type.
1297 (when (eq (numeric-type-class result-type) 'float)
1298 (setf result (interval-func
1299 #'(lambda (x)
1300 (coerce x (or (numeric-type-format result-type)
1301 'float)))
1302 result)))
1303 (make-numeric-type :class (numeric-type-class result-type)
1304 :format (numeric-type-format result-type)
1305 :low (interval-low result)
1306 :high (interval-high result)))
1307 (numeric-contagion x y)))
1309 (defoptimizer (/ derive-type) ((x y))
1310 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1312 ) ; PROGN
1314 (defun ash-derive-type-aux (n-type shift same-arg)
1315 (declare (ignore same-arg))
1316 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1317 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1318 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1319 ;; two bignums yielding zero) and it's hard to avoid that
1320 ;; calculation in here.
1321 #+(and cmu sb-xc-host)
1322 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1323 (typep (numeric-type-high n-type) 'bignum))
1324 (or (typep (numeric-type-low shift) 'bignum)
1325 (typep (numeric-type-high shift) 'bignum)))
1326 (return-from ash-derive-type-aux *universal-type*))
1327 (flet ((ash-outer (n s)
1328 (when (and (fixnump s)
1329 (<= s 64)
1330 (> s sb!xc:most-negative-fixnum))
1331 (ash n s)))
1332 ;; KLUDGE: The bare 64's here should be related to
1333 ;; symbolic machine word size values somehow.
1335 (ash-inner (n s)
1336 (if (and (fixnump s)
1337 (> s sb!xc:most-negative-fixnum))
1338 (ash n (min s 64))
1339 (if (minusp n) -1 0))))
1340 (or (and (csubtypep n-type (specifier-type 'integer))
1341 (csubtypep shift (specifier-type 'integer))
1342 (let ((n-low (numeric-type-low n-type))
1343 (n-high (numeric-type-high n-type))
1344 (s-low (numeric-type-low shift))
1345 (s-high (numeric-type-high shift)))
1346 (make-numeric-type :class 'integer :complexp :real
1347 :low (when n-low
1348 (if (minusp n-low)
1349 (ash-outer n-low s-high)
1350 (ash-inner n-low s-low)))
1351 :high (when n-high
1352 (if (minusp n-high)
1353 (ash-inner n-high s-low)
1354 (ash-outer n-high s-high))))))
1355 *universal-type*)))
1357 (defoptimizer (ash derive-type) ((n shift))
1358 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1360 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1361 (macrolet ((frob (fun)
1362 `#'(lambda (type type2)
1363 (declare (ignore type2))
1364 (let ((lo (numeric-type-low type))
1365 (hi (numeric-type-high type)))
1366 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1368 (defoptimizer (%negate derive-type) ((num))
1369 (derive-integer-type num num (frob -))))
1371 (defun lognot-derive-type-aux (int)
1372 (derive-integer-type-aux int int
1373 (lambda (type type2)
1374 (declare (ignore type2))
1375 (let ((lo (numeric-type-low type))
1376 (hi (numeric-type-high type)))
1377 (values (if hi (lognot hi) nil)
1378 (if lo (lognot lo) nil)
1379 (numeric-type-class type)
1380 (numeric-type-format type))))))
1382 (defoptimizer (lognot derive-type) ((int))
1383 (lognot-derive-type-aux (lvar-type int)))
1385 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1386 (defoptimizer (%negate derive-type) ((num))
1387 (flet ((negate-bound (b)
1388 (and b
1389 (set-bound (- (type-bound-number b))
1390 (consp b)))))
1391 (one-arg-derive-type num
1392 (lambda (type)
1393 (modified-numeric-type
1394 type
1395 :low (negate-bound (numeric-type-high type))
1396 :high (negate-bound (numeric-type-low type))))
1397 #'-)))
1399 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1400 (defoptimizer (abs derive-type) ((num))
1401 (let ((type (lvar-type num)))
1402 (if (and (numeric-type-p type)
1403 (eq (numeric-type-class type) 'integer)
1404 (eq (numeric-type-complexp type) :real))
1405 (let ((lo (numeric-type-low type))
1406 (hi (numeric-type-high type)))
1407 (make-numeric-type :class 'integer :complexp :real
1408 :low (cond ((and hi (minusp hi))
1409 (abs hi))
1411 (max 0 lo))
1414 :high (if (and hi lo)
1415 (max (abs hi) (abs lo))
1416 nil)))
1417 (numeric-contagion type type))))
1419 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1420 (defun abs-derive-type-aux (type)
1421 (cond ((eq (numeric-type-complexp type) :complex)
1422 ;; The absolute value of a complex number is always a
1423 ;; non-negative float.
1424 (let* ((format (case (numeric-type-class type)
1425 ((integer rational) 'single-float)
1426 (t (numeric-type-format type))))
1427 (bound-format (or format 'float)))
1428 (make-numeric-type :class 'float
1429 :format format
1430 :complexp :real
1431 :low (coerce 0 bound-format)
1432 :high nil)))
1434 ;; The absolute value of a real number is a non-negative real
1435 ;; of the same type.
1436 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1437 (class (numeric-type-class type))
1438 (format (numeric-type-format type))
1439 (bound-type (or format class 'real)))
1440 (make-numeric-type
1441 :class class
1442 :format format
1443 :complexp :real
1444 :low (coerce-numeric-bound (interval-low abs-bnd) bound-type)
1445 :high (coerce-numeric-bound
1446 (interval-high abs-bnd) bound-type))))))
1448 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1449 (defoptimizer (abs derive-type) ((num))
1450 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1452 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1453 (defoptimizer (truncate derive-type) ((number divisor))
1454 (let ((number-type (lvar-type number))
1455 (divisor-type (lvar-type divisor))
1456 (integer-type (specifier-type 'integer)))
1457 (if (and (numeric-type-p number-type)
1458 (csubtypep number-type integer-type)
1459 (numeric-type-p divisor-type)
1460 (csubtypep divisor-type integer-type))
1461 (let ((number-low (numeric-type-low number-type))
1462 (number-high (numeric-type-high number-type))
1463 (divisor-low (numeric-type-low divisor-type))
1464 (divisor-high (numeric-type-high divisor-type)))
1465 (values-specifier-type
1466 `(values ,(integer-truncate-derive-type number-low number-high
1467 divisor-low divisor-high)
1468 ,(integer-rem-derive-type number-low number-high
1469 divisor-low divisor-high))))
1470 *universal-type*)))
1472 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1473 (progn
1475 (defun rem-result-type (number-type divisor-type)
1476 ;; Figure out what the remainder type is. The remainder is an
1477 ;; integer if both args are integers; a rational if both args are
1478 ;; rational; and a float otherwise.
1479 (cond ((and (csubtypep number-type (specifier-type 'integer))
1480 (csubtypep divisor-type (specifier-type 'integer)))
1481 'integer)
1482 ((and (csubtypep number-type (specifier-type 'rational))
1483 (csubtypep divisor-type (specifier-type 'rational)))
1484 'rational)
1485 ((and (csubtypep number-type (specifier-type 'float))
1486 (csubtypep divisor-type (specifier-type 'float)))
1487 ;; Both are floats so the result is also a float, of
1488 ;; the largest type.
1489 (or (float-format-max (numeric-type-format number-type)
1490 (numeric-type-format divisor-type))
1491 'float))
1492 ((and (csubtypep number-type (specifier-type 'float))
1493 (csubtypep divisor-type (specifier-type 'rational)))
1494 ;; One of the arguments is a float and the other is a
1495 ;; rational. The remainder is a float of the same
1496 ;; type.
1497 (or (numeric-type-format number-type) 'float))
1498 ((and (csubtypep divisor-type (specifier-type 'float))
1499 (csubtypep number-type (specifier-type 'rational)))
1500 ;; One of the arguments is a float and the other is a
1501 ;; rational. The remainder is a float of the same
1502 ;; type.
1503 (or (numeric-type-format divisor-type) 'float))
1505 ;; Some unhandled combination. This usually means both args
1506 ;; are REAL so the result is a REAL.
1507 'real)))
1509 (defun truncate-derive-type-quot (number-type divisor-type)
1510 (let* ((rem-type (rem-result-type number-type divisor-type))
1511 (number-interval (numeric-type->interval number-type))
1512 (divisor-interval (numeric-type->interval divisor-type)))
1513 ;;(declare (type (member '(integer rational float)) rem-type))
1514 ;; We have real numbers now.
1515 (cond ((eq rem-type 'integer)
1516 ;; Since the remainder type is INTEGER, both args are
1517 ;; INTEGERs.
1518 (let* ((res (integer-truncate-derive-type
1519 (interval-low number-interval)
1520 (interval-high number-interval)
1521 (interval-low divisor-interval)
1522 (interval-high divisor-interval))))
1523 (specifier-type (if (listp res) res 'integer))))
1525 (let ((quot (truncate-quotient-bound
1526 (interval-div number-interval
1527 divisor-interval))))
1528 (specifier-type `(integer ,(or (interval-low quot) '*)
1529 ,(or (interval-high quot) '*))))))))
1531 (defun truncate-derive-type-rem (number-type divisor-type)
1532 (let* ((rem-type (rem-result-type number-type divisor-type))
1533 (number-interval (numeric-type->interval number-type))
1534 (divisor-interval (numeric-type->interval divisor-type))
1535 (rem (truncate-rem-bound number-interval divisor-interval)))
1536 ;;(declare (type (member '(integer rational float)) rem-type))
1537 ;; We have real numbers now.
1538 (cond ((eq rem-type 'integer)
1539 ;; Since the remainder type is INTEGER, both args are
1540 ;; INTEGERs.
1541 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1542 ,(or (interval-high rem) '*))))
1544 (multiple-value-bind (class format)
1545 (ecase rem-type
1546 (integer
1547 (values 'integer nil))
1548 (rational
1549 (values 'rational nil))
1550 ((or single-float double-float #!+long-float long-float)
1551 (values 'float rem-type))
1552 (float
1553 (values 'float nil))
1554 (real
1555 (values nil nil)))
1556 (when (member rem-type '(float single-float double-float
1557 #!+long-float long-float))
1558 (setf rem (interval-func #'(lambda (x)
1559 (coerce x rem-type))
1560 rem)))
1561 (make-numeric-type :class class
1562 :format format
1563 :low (interval-low rem)
1564 :high (interval-high rem)))))))
1566 (defun truncate-derive-type-quot-aux (num div same-arg)
1567 (declare (ignore same-arg))
1568 (if (and (numeric-type-real-p num)
1569 (numeric-type-real-p div))
1570 (truncate-derive-type-quot num div)
1571 *empty-type*))
1573 (defun truncate-derive-type-rem-aux (num div same-arg)
1574 (declare (ignore same-arg))
1575 (if (and (numeric-type-real-p num)
1576 (numeric-type-real-p div))
1577 (truncate-derive-type-rem num div)
1578 *empty-type*))
1580 (defoptimizer (truncate derive-type) ((number divisor))
1581 (let ((quot (two-arg-derive-type number divisor
1582 #'truncate-derive-type-quot-aux #'truncate))
1583 (rem (two-arg-derive-type number divisor
1584 #'truncate-derive-type-rem-aux #'rem)))
1585 (when (and quot rem)
1586 (make-values-type :required (list quot rem)))))
1588 (defun ftruncate-derive-type-quot (number-type divisor-type)
1589 ;; The bounds are the same as for truncate. However, the first
1590 ;; result is a float of some type. We need to determine what that
1591 ;; type is. Basically it's the more contagious of the two types.
1592 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1593 (res-type (numeric-contagion number-type divisor-type)))
1594 (make-numeric-type :class 'float
1595 :format (numeric-type-format res-type)
1596 :low (numeric-type-low q-type)
1597 :high (numeric-type-high q-type))))
1599 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1600 (declare (ignore same-arg))
1601 (if (and (numeric-type-real-p n)
1602 (numeric-type-real-p d))
1603 (ftruncate-derive-type-quot n d)
1604 *empty-type*))
1606 (defoptimizer (ftruncate derive-type) ((number divisor))
1607 (let ((quot
1608 (two-arg-derive-type number divisor
1609 #'ftruncate-derive-type-quot-aux #'ftruncate))
1610 (rem (two-arg-derive-type number divisor
1611 #'truncate-derive-type-rem-aux #'rem)))
1612 (when (and quot rem)
1613 (make-values-type :required (list quot rem)))))
1615 (defun %unary-truncate-derive-type-aux (number)
1616 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1618 (defoptimizer (%unary-truncate derive-type) ((number))
1619 (one-arg-derive-type number
1620 #'%unary-truncate-derive-type-aux
1621 #'%unary-truncate))
1623 (defoptimizer (%unary-ftruncate derive-type) ((number))
1624 (let ((divisor (specifier-type '(integer 1 1))))
1625 (one-arg-derive-type number
1626 #'(lambda (n)
1627 (ftruncate-derive-type-quot-aux n divisor nil))
1628 #'%unary-ftruncate)))
1630 ;;; Define optimizers for FLOOR and CEILING.
1631 (macrolet
1632 ((def (name q-name r-name)
1633 (let ((q-aux (symbolicate q-name "-AUX"))
1634 (r-aux (symbolicate r-name "-AUX")))
1635 `(progn
1636 ;; Compute type of quotient (first) result.
1637 (defun ,q-aux (number-type divisor-type)
1638 (let* ((number-interval
1639 (numeric-type->interval number-type))
1640 (divisor-interval
1641 (numeric-type->interval divisor-type))
1642 (quot (,q-name (interval-div number-interval
1643 divisor-interval))))
1644 (specifier-type `(integer ,(or (interval-low quot) '*)
1645 ,(or (interval-high quot) '*)))))
1646 ;; Compute type of remainder.
1647 (defun ,r-aux (number-type divisor-type)
1648 (let* ((divisor-interval
1649 (numeric-type->interval divisor-type))
1650 (rem (,r-name divisor-interval))
1651 (result-type (rem-result-type number-type divisor-type)))
1652 (multiple-value-bind (class format)
1653 (ecase result-type
1654 (integer
1655 (values 'integer nil))
1656 (rational
1657 (values 'rational nil))
1658 ((or single-float double-float #!+long-float long-float)
1659 (values 'float result-type))
1660 (float
1661 (values 'float nil))
1662 (real
1663 (values nil nil)))
1664 (when (member result-type '(float single-float double-float
1665 #!+long-float long-float))
1666 ;; Make sure that the limits on the interval have
1667 ;; the right type.
1668 (setf rem (interval-func (lambda (x)
1669 (coerce x result-type))
1670 rem)))
1671 (make-numeric-type :class class
1672 :format format
1673 :low (interval-low rem)
1674 :high (interval-high rem)))))
1675 ;; the optimizer itself
1676 (defoptimizer (,name derive-type) ((number divisor))
1677 (flet ((derive-q (n d same-arg)
1678 (declare (ignore same-arg))
1679 (if (and (numeric-type-real-p n)
1680 (numeric-type-real-p d))
1681 (,q-aux n d)
1682 *empty-type*))
1683 (derive-r (n d same-arg)
1684 (declare (ignore same-arg))
1685 (if (and (numeric-type-real-p n)
1686 (numeric-type-real-p d))
1687 (,r-aux n d)
1688 *empty-type*)))
1689 (let ((quot (two-arg-derive-type
1690 number divisor #'derive-q #',name))
1691 (rem (two-arg-derive-type
1692 number divisor #'derive-r #'mod)))
1693 (when (and quot rem)
1694 (make-values-type :required (list quot rem))))))))))
1696 (def floor floor-quotient-bound floor-rem-bound)
1697 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1699 ;;; Define optimizers for FFLOOR and FCEILING
1700 (macrolet ((def (name q-name r-name)
1701 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1702 (r-aux (symbolicate r-name "-AUX")))
1703 `(progn
1704 ;; Compute type of quotient (first) result.
1705 (defun ,q-aux (number-type divisor-type)
1706 (let* ((number-interval
1707 (numeric-type->interval number-type))
1708 (divisor-interval
1709 (numeric-type->interval divisor-type))
1710 (quot (,q-name (interval-div number-interval
1711 divisor-interval)))
1712 (res-type (numeric-contagion number-type
1713 divisor-type)))
1714 (make-numeric-type
1715 :class (numeric-type-class res-type)
1716 :format (numeric-type-format res-type)
1717 :low (interval-low quot)
1718 :high (interval-high quot))))
1720 (defoptimizer (,name derive-type) ((number divisor))
1721 (flet ((derive-q (n d same-arg)
1722 (declare (ignore same-arg))
1723 (if (and (numeric-type-real-p n)
1724 (numeric-type-real-p d))
1725 (,q-aux n d)
1726 *empty-type*))
1727 (derive-r (n d same-arg)
1728 (declare (ignore same-arg))
1729 (if (and (numeric-type-real-p n)
1730 (numeric-type-real-p d))
1731 (,r-aux n d)
1732 *empty-type*)))
1733 (let ((quot (two-arg-derive-type
1734 number divisor #'derive-q #',name))
1735 (rem (two-arg-derive-type
1736 number divisor #'derive-r #'mod)))
1737 (when (and quot rem)
1738 (make-values-type :required (list quot rem))))))))))
1740 (def ffloor floor-quotient-bound floor-rem-bound)
1741 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1743 ;;; functions to compute the bounds on the quotient and remainder for
1744 ;;; the FLOOR function
1745 (defun floor-quotient-bound (quot)
1746 ;; Take the floor of the quotient and then massage it into what we
1747 ;; need.
1748 (let ((lo (interval-low quot))
1749 (hi (interval-high quot)))
1750 ;; Take the floor of the lower bound. The result is always a
1751 ;; closed lower bound.
1752 (setf lo (if lo
1753 (floor (type-bound-number lo))
1754 nil))
1755 ;; For the upper bound, we need to be careful.
1756 (setf hi
1757 (cond ((consp hi)
1758 ;; An open bound. We need to be careful here because
1759 ;; the floor of '(10.0) is 9, but the floor of
1760 ;; 10.0 is 10.
1761 (multiple-value-bind (q r) (floor (first hi))
1762 (if (zerop r)
1763 (1- q)
1764 q)))
1766 ;; A closed bound, so the answer is obvious.
1767 (floor hi))
1769 hi)))
1770 (make-interval :low lo :high hi)))
1771 (defun floor-rem-bound (div)
1772 ;; The remainder depends only on the divisor. Try to get the
1773 ;; correct sign for the remainder if we can.
1774 (case (interval-range-info div)
1776 ;; The divisor is always positive.
1777 (let ((rem (interval-abs div)))
1778 (setf (interval-low rem) 0)
1779 (when (and (numberp (interval-high rem))
1780 (not (zerop (interval-high rem))))
1781 ;; The remainder never contains the upper bound. However,
1782 ;; watch out for the case where the high limit is zero!
1783 (setf (interval-high rem) (list (interval-high rem))))
1784 rem))
1786 ;; The divisor is always negative.
1787 (let ((rem (interval-neg (interval-abs div))))
1788 (setf (interval-high rem) 0)
1789 (when (numberp (interval-low rem))
1790 ;; The remainder never contains the lower bound.
1791 (setf (interval-low rem) (list (interval-low rem))))
1792 rem))
1793 (otherwise
1794 ;; The divisor can be positive or negative. All bets off. The
1795 ;; magnitude of remainder is the maximum value of the divisor.
1796 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1797 ;; The bound never reaches the limit, so make the interval open.
1798 (make-interval :low (if limit
1799 (list (- limit))
1800 limit)
1801 :high (list limit))))))
1802 #| Test cases
1803 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1804 => #S(INTERVAL :LOW 0 :HIGH 10)
1805 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1806 => #S(INTERVAL :LOW 0 :HIGH 10)
1807 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1808 => #S(INTERVAL :LOW 0 :HIGH 10)
1809 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1810 => #S(INTERVAL :LOW 0 :HIGH 9)
1811 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1812 => #S(INTERVAL :LOW 0 :HIGH 10)
1813 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1814 => #S(INTERVAL :LOW 0 :HIGH 10)
1815 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1816 => #S(INTERVAL :LOW -2 :HIGH 10)
1817 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1818 => #S(INTERVAL :LOW -1 :HIGH 10)
1819 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1820 => #S(INTERVAL :LOW -1 :HIGH 10)
1822 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1823 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1824 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1825 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1826 (floor-rem-bound (make-interval :low -10 :high -2.3))
1827 #S(INTERVAL :LOW (-10) :HIGH 0)
1828 (floor-rem-bound (make-interval :low 0.3 :high 10))
1829 => #S(INTERVAL :LOW 0 :HIGH '(10))
1830 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
1831 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
1832 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
1833 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1836 ;;; same functions for CEILING
1837 (defun ceiling-quotient-bound (quot)
1838 ;; Take the ceiling of the quotient and then massage it into what we
1839 ;; need.
1840 (let ((lo (interval-low quot))
1841 (hi (interval-high quot)))
1842 ;; Take the ceiling of the upper bound. The result is always a
1843 ;; closed upper bound.
1844 (setf hi (if hi
1845 (ceiling (type-bound-number hi))
1846 nil))
1847 ;; For the lower bound, we need to be careful.
1848 (setf lo
1849 (cond ((consp lo)
1850 ;; An open bound. We need to be careful here because
1851 ;; the ceiling of '(10.0) is 11, but the ceiling of
1852 ;; 10.0 is 10.
1853 (multiple-value-bind (q r) (ceiling (first lo))
1854 (if (zerop r)
1855 (1+ q)
1856 q)))
1858 ;; A closed bound, so the answer is obvious.
1859 (ceiling lo))
1861 lo)))
1862 (make-interval :low lo :high hi)))
1863 (defun ceiling-rem-bound (div)
1864 ;; The remainder depends only on the divisor. Try to get the
1865 ;; correct sign for the remainder if we can.
1866 (case (interval-range-info div)
1868 ;; Divisor is always positive. The remainder is negative.
1869 (let ((rem (interval-neg (interval-abs div))))
1870 (setf (interval-high rem) 0)
1871 (when (and (numberp (interval-low rem))
1872 (not (zerop (interval-low rem))))
1873 ;; The remainder never contains the upper bound. However,
1874 ;; watch out for the case when the upper bound is zero!
1875 (setf (interval-low rem) (list (interval-low rem))))
1876 rem))
1878 ;; Divisor is always negative. The remainder is positive
1879 (let ((rem (interval-abs div)))
1880 (setf (interval-low rem) 0)
1881 (when (numberp (interval-high rem))
1882 ;; The remainder never contains the lower bound.
1883 (setf (interval-high rem) (list (interval-high rem))))
1884 rem))
1885 (otherwise
1886 ;; The divisor can be positive or negative. All bets off. The
1887 ;; magnitude of remainder is the maximum value of the divisor.
1888 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1889 ;; The bound never reaches the limit, so make the interval open.
1890 (make-interval :low (if limit
1891 (list (- limit))
1892 limit)
1893 :high (list limit))))))
1895 #| Test cases
1896 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
1897 => #S(INTERVAL :LOW 1 :HIGH 11)
1898 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1899 => #S(INTERVAL :LOW 1 :HIGH 11)
1900 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
1901 => #S(INTERVAL :LOW 1 :HIGH 10)
1902 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
1903 => #S(INTERVAL :LOW 1 :HIGH 10)
1904 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
1905 => #S(INTERVAL :LOW 1 :HIGH 11)
1906 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
1907 => #S(INTERVAL :LOW 1 :HIGH 11)
1908 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1909 => #S(INTERVAL :LOW -1 :HIGH 11)
1910 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1911 => #S(INTERVAL :LOW 0 :HIGH 11)
1912 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
1913 => #S(INTERVAL :LOW -1 :HIGH 11)
1915 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
1916 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
1917 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
1918 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1919 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
1920 => #S(INTERVAL :LOW 0 :HIGH (10))
1921 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
1922 => #S(INTERVAL :LOW (-10) :HIGH 0)
1923 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
1924 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
1925 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
1926 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1929 (defun truncate-quotient-bound (quot)
1930 ;; For positive quotients, truncate is exactly like floor. For
1931 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
1932 ;; it's the union of the two pieces.
1933 (case (interval-range-info quot)
1935 ;; just like FLOOR
1936 (floor-quotient-bound quot))
1938 ;; just like CEILING
1939 (ceiling-quotient-bound quot))
1940 (otherwise
1941 ;; Split the interval into positive and negative pieces, compute
1942 ;; the result for each piece and put them back together.
1943 (destructuring-bind (neg pos) (interval-split 0 quot t t)
1944 (interval-merge-pair (ceiling-quotient-bound neg)
1945 (floor-quotient-bound pos))))))
1947 (defun truncate-rem-bound (num div)
1948 ;; This is significantly more complicated than FLOOR or CEILING. We
1949 ;; need both the number and the divisor to determine the range. The
1950 ;; basic idea is to split the ranges of NUM and DEN into positive
1951 ;; and negative pieces and deal with each of the four possibilities
1952 ;; in turn.
1953 (case (interval-range-info num)
1955 (case (interval-range-info div)
1957 (floor-rem-bound div))
1959 (ceiling-rem-bound div))
1960 (otherwise
1961 (destructuring-bind (neg pos) (interval-split 0 div t t)
1962 (interval-merge-pair (truncate-rem-bound num neg)
1963 (truncate-rem-bound num pos))))))
1965 (case (interval-range-info div)
1967 (ceiling-rem-bound div))
1969 (floor-rem-bound div))
1970 (otherwise
1971 (destructuring-bind (neg pos) (interval-split 0 div t t)
1972 (interval-merge-pair (truncate-rem-bound num neg)
1973 (truncate-rem-bound num pos))))))
1974 (otherwise
1975 (destructuring-bind (neg pos) (interval-split 0 num t t)
1976 (interval-merge-pair (truncate-rem-bound neg div)
1977 (truncate-rem-bound pos div))))))
1978 ) ; PROGN
1980 ;;; Derive useful information about the range. Returns three values:
1981 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
1982 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
1983 ;;; - The abs of the maximal value if there is one, or nil if it is
1984 ;;; unbounded.
1985 (defun numeric-range-info (low high)
1986 (cond ((and low (not (minusp low)))
1987 (values '+ low high))
1988 ((and high (not (plusp high)))
1989 (values '- (- high) (if low (- low) nil)))
1991 (values nil 0 (and low high (max (- low) high))))))
1993 (defun integer-truncate-derive-type
1994 (number-low number-high divisor-low divisor-high)
1995 ;; The result cannot be larger in magnitude than the number, but the
1996 ;; sign might change. If we can determine the sign of either the
1997 ;; number or the divisor, we can eliminate some of the cases.
1998 (multiple-value-bind (number-sign number-min number-max)
1999 (numeric-range-info number-low number-high)
2000 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2001 (numeric-range-info divisor-low divisor-high)
2002 (when (and divisor-max (zerop divisor-max))
2003 ;; We've got a problem: guaranteed division by zero.
2004 (return-from integer-truncate-derive-type t))
2005 (when (zerop divisor-min)
2006 ;; We'll assume that they aren't going to divide by zero.
2007 (incf divisor-min))
2008 (cond ((and number-sign divisor-sign)
2009 ;; We know the sign of both.
2010 (if (eq number-sign divisor-sign)
2011 ;; Same sign, so the result will be positive.
2012 `(integer ,(if divisor-max
2013 (truncate number-min divisor-max)
2015 ,(if number-max
2016 (truncate number-max divisor-min)
2017 '*))
2018 ;; Different signs, the result will be negative.
2019 `(integer ,(if number-max
2020 (- (truncate number-max divisor-min))
2022 ,(if divisor-max
2023 (- (truncate number-min divisor-max))
2024 0))))
2025 ((eq divisor-sign '+)
2026 ;; The divisor is positive. Therefore, the number will just
2027 ;; become closer to zero.
2028 `(integer ,(if number-low
2029 (truncate number-low divisor-min)
2031 ,(if number-high
2032 (truncate number-high divisor-min)
2033 '*)))
2034 ((eq divisor-sign '-)
2035 ;; The divisor is negative. Therefore, the absolute value of
2036 ;; the number will become closer to zero, but the sign will also
2037 ;; change.
2038 `(integer ,(if number-high
2039 (- (truncate number-high divisor-min))
2041 ,(if number-low
2042 (- (truncate number-low divisor-min))
2043 '*)))
2044 ;; The divisor could be either positive or negative.
2045 (number-max
2046 ;; The number we are dividing has a bound. Divide that by the
2047 ;; smallest posible divisor.
2048 (let ((bound (truncate number-max divisor-min)))
2049 `(integer ,(- bound) ,bound)))
2051 ;; The number we are dividing is unbounded, so we can't tell
2052 ;; anything about the result.
2053 `integer)))))
2055 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2056 (defun integer-rem-derive-type
2057 (number-low number-high divisor-low divisor-high)
2058 (if (and divisor-low divisor-high)
2059 ;; We know the range of the divisor, and the remainder must be
2060 ;; smaller than the divisor. We can tell the sign of the
2061 ;; remainer if we know the sign of the number.
2062 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2063 `(integer ,(if (or (null number-low)
2064 (minusp number-low))
2065 (- divisor-max)
2067 ,(if (or (null number-high)
2068 (plusp number-high))
2069 divisor-max
2070 0)))
2071 ;; The divisor is potentially either very positive or very
2072 ;; negative. Therefore, the remainer is unbounded, but we might
2073 ;; be able to tell something about the sign from the number.
2074 `(integer ,(if (and number-low (not (minusp number-low)))
2075 ;; The number we are dividing is positive.
2076 ;; Therefore, the remainder must be positive.
2079 ,(if (and number-high (not (plusp number-high)))
2080 ;; The number we are dividing is negative.
2081 ;; Therefore, the remainder must be negative.
2083 '*))))
2085 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2086 (defoptimizer (random derive-type) ((bound &optional state))
2087 (let ((type (lvar-type bound)))
2088 (when (numeric-type-p type)
2089 (let ((class (numeric-type-class type))
2090 (high (numeric-type-high type))
2091 (format (numeric-type-format type)))
2092 (make-numeric-type
2093 :class class
2094 :format format
2095 :low (coerce 0 (or format class 'real))
2096 :high (cond ((not high) nil)
2097 ((eq class 'integer) (max (1- high) 0))
2098 ((or (consp high) (zerop high)) high)
2099 (t `(,high))))))))
2101 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2102 (defun random-derive-type-aux (type)
2103 (let ((class (numeric-type-class type))
2104 (high (numeric-type-high type))
2105 (format (numeric-type-format type)))
2106 (make-numeric-type
2107 :class class
2108 :format format
2109 :low (coerce 0 (or format class 'real))
2110 :high (cond ((not high) nil)
2111 ((eq class 'integer) (max (1- high) 0))
2112 ((or (consp high) (zerop high)) high)
2113 (t `(,high))))))
2115 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2116 (defoptimizer (random derive-type) ((bound &optional state))
2117 (one-arg-derive-type bound #'random-derive-type-aux nil))
2119 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2121 ;;; Return the maximum number of bits an integer of the supplied type
2122 ;;; can take up, or NIL if it is unbounded. The second (third) value
2123 ;;; is T if the integer can be positive (negative) and NIL if not.
2124 ;;; Zero counts as positive.
2125 (defun integer-type-length (type)
2126 (if (numeric-type-p type)
2127 (let ((min (numeric-type-low type))
2128 (max (numeric-type-high type)))
2129 (values (and min max (max (integer-length min) (integer-length max)))
2130 (or (null max) (not (minusp max)))
2131 (or (null min) (minusp min))))
2132 (values nil t t)))
2134 ;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an
2135 ;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND.
2136 ;;; Credit also goes to Raymond Toy for writing (and debugging!) similar
2137 ;;; versions in CMUCL, from which these functions copy liberally.
2139 (defun logand-derive-unsigned-low-bound (x y)
2140 (let ((a (numeric-type-low x))
2141 (b (numeric-type-high x))
2142 (c (numeric-type-low y))
2143 (d (numeric-type-high y)))
2144 (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1)
2145 until (zerop m) do
2146 (unless (zerop (logand m (lognot a) (lognot c)))
2147 (let ((temp (logandc2 (logior a m) (1- m))))
2148 (when (<= temp b)
2149 (setf a temp)
2150 (loop-finish))
2151 (setf temp (logandc2 (logior c m) (1- m)))
2152 (when (<= temp d)
2153 (setf c temp)
2154 (loop-finish))))
2155 finally (return (logand a c)))))
2157 (defun logand-derive-unsigned-high-bound (x y)
2158 (let ((a (numeric-type-low x))
2159 (b (numeric-type-high x))
2160 (c (numeric-type-low y))
2161 (d (numeric-type-high y)))
2162 (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1)
2163 until (zerop m) do
2164 (cond
2165 ((not (zerop (logand b (lognot d) m)))
2166 (let ((temp (logior (logandc2 b m) (1- m))))
2167 (when (>= temp a)
2168 (setf b temp)
2169 (loop-finish))))
2170 ((not (zerop (logand (lognot b) d m)))
2171 (let ((temp (logior (logandc2 d m) (1- m))))
2172 (when (>= temp c)
2173 (setf d temp)
2174 (loop-finish)))))
2175 finally (return (logand b d)))))
2177 (defun logand-derive-type-aux (x y &optional same-leaf)
2178 (when same-leaf
2179 (return-from logand-derive-type-aux x))
2180 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2181 (declare (ignore x-pos))
2182 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2183 (declare (ignore y-pos))
2184 (if (not x-neg)
2185 ;; X must be positive.
2186 (if (not y-neg)
2187 ;; They must both be positive.
2188 (cond ((and (null x-len) (null y-len))
2189 (specifier-type 'unsigned-byte))
2190 ((null x-len)
2191 (specifier-type `(unsigned-byte* ,y-len)))
2192 ((null y-len)
2193 (specifier-type `(unsigned-byte* ,x-len)))
2195 (let ((low (logand-derive-unsigned-low-bound x y))
2196 (high (logand-derive-unsigned-high-bound x y)))
2197 (specifier-type `(integer ,low ,high)))))
2198 ;; X is positive, but Y might be negative.
2199 (cond ((null x-len)
2200 (specifier-type 'unsigned-byte))
2202 (specifier-type `(unsigned-byte* ,x-len)))))
2203 ;; X might be negative.
2204 (if (not y-neg)
2205 ;; Y must be positive.
2206 (cond ((null y-len)
2207 (specifier-type 'unsigned-byte))
2208 (t (specifier-type `(unsigned-byte* ,y-len))))
2209 ;; Either might be negative.
2210 (if (and x-len y-len)
2211 ;; The result is bounded.
2212 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2213 ;; We can't tell squat about the result.
2214 (specifier-type 'integer)))))))
2216 (defun logior-derive-unsigned-low-bound (x y)
2217 (let ((a (numeric-type-low x))
2218 (b (numeric-type-high x))
2219 (c (numeric-type-low y))
2220 (d (numeric-type-high y)))
2221 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2222 until (zerop m) do
2223 (cond
2224 ((not (zerop (logandc2 (logand c m) a)))
2225 (let ((temp (logand (logior a m) (1+ (lognot m)))))
2226 (when (<= temp b)
2227 (setf a temp)
2228 (loop-finish))))
2229 ((not (zerop (logandc2 (logand a m) c)))
2230 (let ((temp (logand (logior c m) (1+ (lognot m)))))
2231 (when (<= temp d)
2232 (setf c temp)
2233 (loop-finish)))))
2234 finally (return (logior a c)))))
2236 (defun logior-derive-unsigned-high-bound (x y)
2237 (let ((a (numeric-type-low x))
2238 (b (numeric-type-high x))
2239 (c (numeric-type-low y))
2240 (d (numeric-type-high y)))
2241 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2242 until (zerop m) do
2243 (unless (zerop (logand b d m))
2244 (let ((temp (logior (- b m) (1- m))))
2245 (when (>= temp a)
2246 (setf b temp)
2247 (loop-finish))
2248 (setf temp (logior (- d m) (1- m)))
2249 (when (>= temp c)
2250 (setf d temp)
2251 (loop-finish))))
2252 finally (return (logior b d)))))
2254 (defun logior-derive-type-aux (x y &optional same-leaf)
2255 (when same-leaf
2256 (return-from logior-derive-type-aux x))
2257 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2258 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2259 (cond
2260 ((and (not x-neg) (not y-neg))
2261 ;; Both are positive.
2262 (if (and x-len y-len)
2263 (let ((low (logior-derive-unsigned-low-bound x y))
2264 (high (logior-derive-unsigned-high-bound x y)))
2265 (specifier-type `(integer ,low ,high)))
2266 (specifier-type `(unsigned-byte* *))))
2267 ((not x-pos)
2268 ;; X must be negative.
2269 (if (not y-pos)
2270 ;; Both are negative. The result is going to be negative
2271 ;; and be the same length or shorter than the smaller.
2272 (if (and x-len y-len)
2273 ;; It's bounded.
2274 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2275 ;; It's unbounded.
2276 (specifier-type '(integer * -1)))
2277 ;; X is negative, but we don't know about Y. The result
2278 ;; will be negative, but no more negative than X.
2279 (specifier-type
2280 `(integer ,(or (numeric-type-low x) '*)
2281 -1))))
2283 ;; X might be either positive or negative.
2284 (if (not y-pos)
2285 ;; But Y is negative. The result will be negative.
2286 (specifier-type
2287 `(integer ,(or (numeric-type-low y) '*)
2288 -1))
2289 ;; We don't know squat about either. It won't get any bigger.
2290 (if (and x-len y-len)
2291 ;; Bounded.
2292 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2293 ;; Unbounded.
2294 (specifier-type 'integer))))))))
2296 (defun logxor-derive-unsigned-low-bound (x y)
2297 (let ((a (numeric-type-low x))
2298 (b (numeric-type-high x))
2299 (c (numeric-type-low y))
2300 (d (numeric-type-high y)))
2301 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2302 until (zerop m) do
2303 (cond
2304 ((not (zerop (logandc2 (logand c m) a)))
2305 (let ((temp (logand (logior a m)
2306 (1+ (lognot m)))))
2307 (when (<= temp b)
2308 (setf a temp))))
2309 ((not (zerop (logandc2 (logand a m) c)))
2310 (let ((temp (logand (logior c m)
2311 (1+ (lognot m)))))
2312 (when (<= temp d)
2313 (setf c temp)))))
2314 finally (return (logxor a c)))))
2316 (defun logxor-derive-unsigned-high-bound (x y)
2317 (let ((a (numeric-type-low x))
2318 (b (numeric-type-high x))
2319 (c (numeric-type-low y))
2320 (d (numeric-type-high y)))
2321 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2322 until (zerop m) do
2323 (unless (zerop (logand b d m))
2324 (let ((temp (logior (- b m) (1- m))))
2325 (cond
2326 ((>= temp a) (setf b temp))
2327 (t (let ((temp (logior (- d m) (1- m))))
2328 (when (>= temp c)
2329 (setf d temp)))))))
2330 finally (return (logxor b d)))))
2332 (defun logxor-derive-type-aux (x y &optional same-leaf)
2333 (when same-leaf
2334 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2335 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2336 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2337 (cond
2338 ((and (not x-neg) (not y-neg))
2339 ;; Both are positive
2340 (if (and x-len y-len)
2341 (let ((low (logxor-derive-unsigned-low-bound x y))
2342 (high (logxor-derive-unsigned-high-bound x y)))
2343 (specifier-type `(integer ,low ,high)))
2344 (specifier-type '(unsigned-byte* *))))
2345 ((and (not x-pos) (not y-pos))
2346 ;; Both are negative. The result will be positive, and as long
2347 ;; as the longer.
2348 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2349 (max x-len y-len)
2350 '*))))
2351 ((or (and (not x-pos) (not y-neg))
2352 (and (not y-pos) (not x-neg)))
2353 ;; Either X is negative and Y is positive or vice-versa. The
2354 ;; result will be negative.
2355 (specifier-type `(integer ,(if (and x-len y-len)
2356 (ash -1 (max x-len y-len))
2358 -1)))
2359 ;; We can't tell what the sign of the result is going to be.
2360 ;; All we know is that we don't create new bits.
2361 ((and x-len y-len)
2362 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2364 (specifier-type 'integer))))))
2366 (macrolet ((deffrob (logfun)
2367 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2368 `(defoptimizer (,logfun derive-type) ((x y))
2369 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2370 (deffrob logand)
2371 (deffrob logior)
2372 (deffrob logxor))
2374 (defoptimizer (logeqv derive-type) ((x y))
2375 (two-arg-derive-type x y (lambda (x y same-leaf)
2376 (lognot-derive-type-aux
2377 (logxor-derive-type-aux x y same-leaf)))
2378 #'logeqv))
2379 (defoptimizer (lognand derive-type) ((x y))
2380 (two-arg-derive-type x y (lambda (x y same-leaf)
2381 (lognot-derive-type-aux
2382 (logand-derive-type-aux x y same-leaf)))
2383 #'lognand))
2384 (defoptimizer (lognor derive-type) ((x y))
2385 (two-arg-derive-type x y (lambda (x y same-leaf)
2386 (lognot-derive-type-aux
2387 (logior-derive-type-aux x y same-leaf)))
2388 #'lognor))
2389 (defoptimizer (logandc1 derive-type) ((x y))
2390 (two-arg-derive-type x y (lambda (x y same-leaf)
2391 (if same-leaf
2392 (specifier-type '(eql 0))
2393 (logand-derive-type-aux
2394 (lognot-derive-type-aux x) y nil)))
2395 #'logandc1))
2396 (defoptimizer (logandc2 derive-type) ((x y))
2397 (two-arg-derive-type x y (lambda (x y same-leaf)
2398 (if same-leaf
2399 (specifier-type '(eql 0))
2400 (logand-derive-type-aux
2401 x (lognot-derive-type-aux y) nil)))
2402 #'logandc2))
2403 (defoptimizer (logorc1 derive-type) ((x y))
2404 (two-arg-derive-type x y (lambda (x y same-leaf)
2405 (if same-leaf
2406 (specifier-type '(eql -1))
2407 (logior-derive-type-aux
2408 (lognot-derive-type-aux x) y nil)))
2409 #'logorc1))
2410 (defoptimizer (logorc2 derive-type) ((x y))
2411 (two-arg-derive-type x y (lambda (x y same-leaf)
2412 (if same-leaf
2413 (specifier-type '(eql -1))
2414 (logior-derive-type-aux
2415 x (lognot-derive-type-aux y) nil)))
2416 #'logorc2))
2418 ;;;; miscellaneous derive-type methods
2420 (defoptimizer (integer-length derive-type) ((x))
2421 (let ((x-type (lvar-type x)))
2422 (when (numeric-type-p x-type)
2423 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2424 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2425 ;; careful about LO or HI being NIL, though. Also, if 0 is
2426 ;; contained in X, the lower bound is obviously 0.
2427 (flet ((null-or-min (a b)
2428 (and a b (min (integer-length a)
2429 (integer-length b))))
2430 (null-or-max (a b)
2431 (and a b (max (integer-length a)
2432 (integer-length b)))))
2433 (let* ((min (numeric-type-low x-type))
2434 (max (numeric-type-high x-type))
2435 (min-len (null-or-min min max))
2436 (max-len (null-or-max min max)))
2437 (when (ctypep 0 x-type)
2438 (setf min-len 0))
2439 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2441 (defoptimizer (isqrt derive-type) ((x))
2442 (let ((x-type (lvar-type x)))
2443 (when (numeric-type-p x-type)
2444 (let* ((lo (numeric-type-low x-type))
2445 (hi (numeric-type-high x-type))
2446 (lo-res (if lo (isqrt lo) '*))
2447 (hi-res (if hi (isqrt hi) '*)))
2448 (specifier-type `(integer ,lo-res ,hi-res))))))
2450 (defoptimizer (code-char derive-type) ((code))
2451 (let ((type (lvar-type code)))
2452 ;; FIXME: unions of integral ranges? It ought to be easier to do
2453 ;; this, given that CHARACTER-SET is basically an integral range
2454 ;; type. -- CSR, 2004-10-04
2455 (when (numeric-type-p type)
2456 (let* ((lo (numeric-type-low type))
2457 (hi (numeric-type-high type))
2458 (type (specifier-type `(character-set ((,lo . ,hi))))))
2459 (cond
2460 ;; KLUDGE: when running on the host, we lose a slight amount
2461 ;; of precision so that we don't have to "unparse" types
2462 ;; that formally we can't, such as (CHARACTER-SET ((0
2463 ;; . 0))). -- CSR, 2004-10-06
2464 #+sb-xc-host
2465 ((csubtypep type (specifier-type 'standard-char)) type)
2466 #+sb-xc-host
2467 ((csubtypep type (specifier-type 'base-char))
2468 (specifier-type 'base-char))
2469 #+sb-xc-host
2470 ((csubtypep type (specifier-type 'extended-char))
2471 (specifier-type 'extended-char))
2472 (t #+sb-xc-host (specifier-type 'character)
2473 #-sb-xc-host type))))))
2475 (defoptimizer (values derive-type) ((&rest values))
2476 (make-values-type :required (mapcar #'lvar-type values)))
2478 (defun signum-derive-type-aux (type)
2479 (if (eq (numeric-type-complexp type) :complex)
2480 (let* ((format (case (numeric-type-class type)
2481 ((integer rational) 'single-float)
2482 (t (numeric-type-format type))))
2483 (bound-format (or format 'float)))
2484 (make-numeric-type :class 'float
2485 :format format
2486 :complexp :complex
2487 :low (coerce -1 bound-format)
2488 :high (coerce 1 bound-format)))
2489 (let* ((interval (numeric-type->interval type))
2490 (range-info (interval-range-info interval))
2491 (contains-0-p (interval-contains-p 0 interval))
2492 (class (numeric-type-class type))
2493 (format (numeric-type-format type))
2494 (one (coerce 1 (or format class 'real)))
2495 (zero (coerce 0 (or format class 'real)))
2496 (minus-one (coerce -1 (or format class 'real)))
2497 (plus (make-numeric-type :class class :format format
2498 :low one :high one))
2499 (minus (make-numeric-type :class class :format format
2500 :low minus-one :high minus-one))
2501 ;; KLUDGE: here we have a fairly horrible hack to deal
2502 ;; with the schizophrenia in the type derivation engine.
2503 ;; The problem is that the type derivers reinterpret
2504 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2505 ;; 0d0) within the derivation mechanism doesn't include
2506 ;; -0d0. Ugh. So force it in here, instead.
2507 (zero (make-numeric-type :class class :format format
2508 :low (- zero) :high zero)))
2509 (case range-info
2510 (+ (if contains-0-p (type-union plus zero) plus))
2511 (- (if contains-0-p (type-union minus zero) minus))
2512 (t (type-union minus zero plus))))))
2514 (defoptimizer (signum derive-type) ((num))
2515 (one-arg-derive-type num #'signum-derive-type-aux nil))
2517 ;;;; byte operations
2518 ;;;;
2519 ;;;; We try to turn byte operations into simple logical operations.
2520 ;;;; First, we convert byte specifiers into separate size and position
2521 ;;;; arguments passed to internal %FOO functions. We then attempt to
2522 ;;;; transform the %FOO functions into boolean operations when the
2523 ;;;; size and position are constant and the operands are fixnums.
2525 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2526 ;; expressions that evaluate to the SIZE and POSITION of
2527 ;; the byte-specifier form SPEC. We may wrap a let around
2528 ;; the result of the body to bind some variables.
2530 ;; If the spec is a BYTE form, then bind the vars to the
2531 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2532 ;; and BYTE-POSITION. The goal of this transformation is to
2533 ;; avoid consing up byte specifiers and then immediately
2534 ;; throwing them away.
2535 (with-byte-specifier ((size-var pos-var spec) &body body)
2536 (once-only ((spec `(macroexpand ,spec))
2537 (temp '(gensym)))
2538 `(if (and (consp ,spec)
2539 (eq (car ,spec) 'byte)
2540 (= (length ,spec) 3))
2541 (let ((,size-var (second ,spec))
2542 (,pos-var (third ,spec)))
2543 ,@body)
2544 (let ((,size-var `(byte-size ,,temp))
2545 (,pos-var `(byte-position ,,temp)))
2546 `(let ((,,temp ,,spec))
2547 ,,@body))))))
2549 (define-source-transform ldb (spec int)
2550 (with-byte-specifier (size pos spec)
2551 `(%ldb ,size ,pos ,int)))
2553 (define-source-transform dpb (newbyte spec int)
2554 (with-byte-specifier (size pos spec)
2555 `(%dpb ,newbyte ,size ,pos ,int)))
2557 (define-source-transform mask-field (spec int)
2558 (with-byte-specifier (size pos spec)
2559 `(%mask-field ,size ,pos ,int)))
2561 (define-source-transform deposit-field (newbyte spec int)
2562 (with-byte-specifier (size pos spec)
2563 `(%deposit-field ,newbyte ,size ,pos ,int))))
2565 (defoptimizer (%ldb derive-type) ((size posn num))
2566 (let ((size (lvar-type size)))
2567 (if (and (numeric-type-p size)
2568 (csubtypep size (specifier-type 'integer)))
2569 (let ((size-high (numeric-type-high size)))
2570 (if (and size-high (<= size-high sb!vm:n-word-bits))
2571 (specifier-type `(unsigned-byte* ,size-high))
2572 (specifier-type 'unsigned-byte)))
2573 *universal-type*)))
2575 (defoptimizer (%mask-field derive-type) ((size posn num))
2576 (let ((size (lvar-type size))
2577 (posn (lvar-type posn)))
2578 (if (and (numeric-type-p size)
2579 (csubtypep size (specifier-type 'integer))
2580 (numeric-type-p posn)
2581 (csubtypep posn (specifier-type 'integer)))
2582 (let ((size-high (numeric-type-high size))
2583 (posn-high (numeric-type-high posn)))
2584 (if (and size-high posn-high
2585 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2586 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2587 (specifier-type 'unsigned-byte)))
2588 *universal-type*)))
2590 (defun %deposit-field-derive-type-aux (size posn int)
2591 (let ((size (lvar-type size))
2592 (posn (lvar-type posn))
2593 (int (lvar-type int)))
2594 (when (and (numeric-type-p size)
2595 (numeric-type-p posn)
2596 (numeric-type-p int))
2597 (let ((size-high (numeric-type-high size))
2598 (posn-high (numeric-type-high posn))
2599 (high (numeric-type-high int))
2600 (low (numeric-type-low int)))
2601 (when (and size-high posn-high high low
2602 ;; KLUDGE: we need this cutoff here, otherwise we
2603 ;; will merrily derive the type of %DPB as
2604 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2605 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2606 ;; 1073741822))), with hilarious consequences. We
2607 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2608 ;; over a reasonable amount of shifting, even on
2609 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2610 ;; machine integers are 64-bits. -- CSR,
2611 ;; 2003-09-12
2612 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2613 (let ((raw-bit-count (max (integer-length high)
2614 (integer-length low)
2615 (+ size-high posn-high))))
2616 (specifier-type
2617 (if (minusp low)
2618 `(signed-byte ,(1+ raw-bit-count))
2619 `(unsigned-byte* ,raw-bit-count)))))))))
2621 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2622 (%deposit-field-derive-type-aux size posn int))
2624 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2625 (%deposit-field-derive-type-aux size posn int))
2627 (deftransform %ldb ((size posn int)
2628 (fixnum fixnum integer)
2629 (unsigned-byte #.sb!vm:n-word-bits))
2630 "convert to inline logical operations"
2631 `(logand (ash int (- posn))
2632 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2633 (- size ,sb!vm:n-word-bits))))
2635 (deftransform %mask-field ((size posn int)
2636 (fixnum fixnum integer)
2637 (unsigned-byte #.sb!vm:n-word-bits))
2638 "convert to inline logical operations"
2639 `(logand int
2640 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2641 (- size ,sb!vm:n-word-bits))
2642 posn)))
2644 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2645 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2646 ;;; as the result type, as that would allow result types that cover
2647 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2648 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2650 (deftransform %dpb ((new size posn int)
2652 (unsigned-byte #.sb!vm:n-word-bits))
2653 "convert to inline logical operations"
2654 `(let ((mask (ldb (byte size 0) -1)))
2655 (logior (ash (logand new mask) posn)
2656 (logand int (lognot (ash mask posn))))))
2658 (deftransform %dpb ((new size posn int)
2660 (signed-byte #.sb!vm:n-word-bits))
2661 "convert to inline logical operations"
2662 `(let ((mask (ldb (byte size 0) -1)))
2663 (logior (ash (logand new mask) posn)
2664 (logand int (lognot (ash mask posn))))))
2666 (deftransform %deposit-field ((new size posn int)
2668 (unsigned-byte #.sb!vm:n-word-bits))
2669 "convert to inline logical operations"
2670 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2671 (logior (logand new mask)
2672 (logand int (lognot mask)))))
2674 (deftransform %deposit-field ((new size posn int)
2676 (signed-byte #.sb!vm:n-word-bits))
2677 "convert to inline logical operations"
2678 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2679 (logior (logand new mask)
2680 (logand int (lognot mask)))))
2682 (defoptimizer (mask-signed-field derive-type) ((size x))
2683 (let ((size (lvar-type size)))
2684 (if (numeric-type-p size)
2685 (let ((size-high (numeric-type-high size)))
2686 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2687 (specifier-type `(signed-byte ,size-high))
2688 *universal-type*))
2689 *universal-type*)))
2692 ;;; Modular functions
2694 ;;; (ldb (byte s 0) (foo x y ...)) =
2695 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2697 ;;; and similar for other arguments.
2699 (defun make-modular-fun-type-deriver (prototype class width)
2700 #!-sb-fluid
2701 (binding* ((info (info :function :info prototype) :exit-if-null)
2702 (fun (fun-info-derive-type info) :exit-if-null)
2703 (mask-type (specifier-type
2704 (ecase class
2705 (:unsigned (let ((mask (1- (ash 1 width))))
2706 `(integer ,mask ,mask)))
2707 (:signed `(signed-byte ,width))))))
2708 (lambda (call)
2709 (let ((res (funcall fun call)))
2710 (when res
2711 (if (eq class :unsigned)
2712 (logand-derive-type-aux res mask-type))))))
2713 #!+sb-fluid
2714 (lambda (call)
2715 (binding* ((info (info :function :info prototype) :exit-if-null)
2716 (fun (fun-info-derive-type info) :exit-if-null)
2717 (res (funcall fun call) :exit-if-null)
2718 (mask-type (specifier-type
2719 (ecase class
2720 (:unsigned (let ((mask (1- (ash 1 width))))
2721 `(integer ,mask ,mask)))
2722 (:signed `(signed-byte ,width))))))
2723 (if (eq class :unsigned)
2724 (logand-derive-type-aux res mask-type)))))
2726 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2728 ;;; For good functions, we just recursively cut arguments; their
2729 ;;; "goodness" means that the result will not increase (in the
2730 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2731 ;;; replaced with the version, cutting its result to WIDTH or more
2732 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2733 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2734 ;;; arguments (maybe to a different width) and returning the name of a
2735 ;;; modular version, if it exists, or NIL. If we have changed
2736 ;;; anything, we need to flush old derived types, because they have
2737 ;;; nothing in common with the new code.
2738 (defun cut-to-width (lvar class width)
2739 (declare (type lvar lvar) (type (integer 0) width))
2740 (let ((type (specifier-type (if (zerop width)
2741 '(eql 0)
2742 `(,(ecase class (:unsigned 'unsigned-byte)
2743 (:signed 'signed-byte))
2744 ,width)))))
2745 (labels ((reoptimize-node (node name)
2746 (setf (node-derived-type node)
2747 (fun-type-returns
2748 (info :function :type name)))
2749 (setf (lvar-%derived-type (node-lvar node)) nil)
2750 (setf (node-reoptimize node) t)
2751 (setf (block-reoptimize (node-block node)) t)
2752 (reoptimize-component (node-component node) :maybe))
2753 (cut-node (node &aux did-something)
2754 (when (and (not (block-delete-p (node-block node)))
2755 (combination-p node)
2756 (eq (basic-combination-kind node) :known))
2757 (let* ((fun-ref (lvar-use (combination-fun node)))
2758 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2759 (modular-fun (find-modular-version fun-name class width)))
2760 (when (and modular-fun
2761 (not (and (eq fun-name 'logand)
2762 (csubtypep
2763 (single-value-type (node-derived-type node))
2764 type))))
2765 (binding* ((name (etypecase modular-fun
2766 ((eql :good) fun-name)
2767 (modular-fun-info
2768 (modular-fun-info-name modular-fun))
2769 (function
2770 (funcall modular-fun node width)))
2771 :exit-if-null))
2772 (unless (eql modular-fun :good)
2773 (setq did-something t)
2774 (change-ref-leaf
2775 fun-ref
2776 (find-free-fun name "in a strange place"))
2777 (setf (combination-kind node) :full))
2778 (unless (functionp modular-fun)
2779 (dolist (arg (basic-combination-args node))
2780 (when (cut-lvar arg)
2781 (setq did-something t))))
2782 (when did-something
2783 (reoptimize-node node name))
2784 did-something)))))
2785 (cut-lvar (lvar &aux did-something)
2786 (do-uses (node lvar)
2787 (when (cut-node node)
2788 (setq did-something t)))
2789 did-something))
2790 (cut-lvar lvar))))
2792 (defoptimizer (logand optimizer) ((x y) node)
2793 (let ((result-type (single-value-type (node-derived-type node))))
2794 (when (numeric-type-p result-type)
2795 (let ((low (numeric-type-low result-type))
2796 (high (numeric-type-high result-type)))
2797 (when (and (numberp low)
2798 (numberp high)
2799 (>= low 0))
2800 (let ((width (integer-length high)))
2801 (when (some (lambda (x) (<= width x))
2802 (modular-class-widths *unsigned-modular-class*))
2803 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2804 (cut-to-width x :unsigned width)
2805 (cut-to-width y :unsigned width)
2806 nil ; After fixing above, replace with T.
2807 )))))))
2809 (defoptimizer (mask-signed-field optimizer) ((width x) node)
2810 (let ((result-type (single-value-type (node-derived-type node))))
2811 (when (numeric-type-p result-type)
2812 (let ((low (numeric-type-low result-type))
2813 (high (numeric-type-high result-type)))
2814 (when (and (numberp low) (numberp high))
2815 (let ((width (max (integer-length high) (integer-length low))))
2816 (when (some (lambda (x) (<= width x))
2817 (modular-class-widths *signed-modular-class*))
2818 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2819 (cut-to-width x :signed width)
2820 nil ; After fixing above, replace with T.
2821 )))))))
2823 ;;; miscellanous numeric transforms
2825 ;;; If a constant appears as the first arg, swap the args.
2826 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
2827 (if (and (constant-lvar-p x)
2828 (not (constant-lvar-p y)))
2829 `(,(lvar-fun-name (basic-combination-fun node))
2831 ,(lvar-value x))
2832 (give-up-ir1-transform)))
2834 (dolist (x '(= char= + * logior logand logxor))
2835 (%deftransform x '(function * *) #'commutative-arg-swap
2836 "place constant arg last"))
2838 ;;; Handle the case of a constant BOOLE-CODE.
2839 (deftransform boole ((op x y) * *)
2840 "convert to inline logical operations"
2841 (unless (constant-lvar-p op)
2842 (give-up-ir1-transform "BOOLE code is not a constant."))
2843 (let ((control (lvar-value op)))
2844 (case control
2845 (#.sb!xc:boole-clr 0)
2846 (#.sb!xc:boole-set -1)
2847 (#.sb!xc:boole-1 'x)
2848 (#.sb!xc:boole-2 'y)
2849 (#.sb!xc:boole-c1 '(lognot x))
2850 (#.sb!xc:boole-c2 '(lognot y))
2851 (#.sb!xc:boole-and '(logand x y))
2852 (#.sb!xc:boole-ior '(logior x y))
2853 (#.sb!xc:boole-xor '(logxor x y))
2854 (#.sb!xc:boole-eqv '(logeqv x y))
2855 (#.sb!xc:boole-nand '(lognand x y))
2856 (#.sb!xc:boole-nor '(lognor x y))
2857 (#.sb!xc:boole-andc1 '(logandc1 x y))
2858 (#.sb!xc:boole-andc2 '(logandc2 x y))
2859 (#.sb!xc:boole-orc1 '(logorc1 x y))
2860 (#.sb!xc:boole-orc2 '(logorc2 x y))
2862 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
2863 control)))))
2865 ;;;; converting special case multiply/divide to shifts
2867 ;;; If arg is a constant power of two, turn * into a shift.
2868 (deftransform * ((x y) (integer integer) *)
2869 "convert x*2^k to shift"
2870 (unless (constant-lvar-p y)
2871 (give-up-ir1-transform))
2872 (let* ((y (lvar-value y))
2873 (y-abs (abs y))
2874 (len (1- (integer-length y-abs))))
2875 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2876 (give-up-ir1-transform))
2877 (if (minusp y)
2878 `(- (ash x ,len))
2879 `(ash x ,len))))
2881 ;;; If arg is a constant power of two, turn FLOOR into a shift and
2882 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
2883 ;;; remainder.
2884 (flet ((frob (y ceil-p)
2885 (unless (constant-lvar-p y)
2886 (give-up-ir1-transform))
2887 (let* ((y (lvar-value y))
2888 (y-abs (abs y))
2889 (len (1- (integer-length y-abs))))
2890 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2891 (give-up-ir1-transform))
2892 (let ((shift (- len))
2893 (mask (1- y-abs))
2894 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
2895 `(let ((x (+ x ,delta)))
2896 ,(if (minusp y)
2897 `(values (ash (- x) ,shift)
2898 (- (- (logand (- x) ,mask)) ,delta))
2899 `(values (ash x ,shift)
2900 (- (logand x ,mask) ,delta))))))))
2901 (deftransform floor ((x y) (integer integer) *)
2902 "convert division by 2^k to shift"
2903 (frob y nil))
2904 (deftransform ceiling ((x y) (integer integer) *)
2905 "convert division by 2^k to shift"
2906 (frob y t)))
2908 ;;; Do the same for MOD.
2909 (deftransform mod ((x y) (integer integer) *)
2910 "convert remainder mod 2^k to LOGAND"
2911 (unless (constant-lvar-p y)
2912 (give-up-ir1-transform))
2913 (let* ((y (lvar-value y))
2914 (y-abs (abs y))
2915 (len (1- (integer-length y-abs))))
2916 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2917 (give-up-ir1-transform))
2918 (let ((mask (1- y-abs)))
2919 (if (minusp y)
2920 `(- (logand (- x) ,mask))
2921 `(logand x ,mask)))))
2923 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
2924 (deftransform truncate ((x y) (integer integer))
2925 "convert division by 2^k to shift"
2926 (unless (constant-lvar-p y)
2927 (give-up-ir1-transform))
2928 (let* ((y (lvar-value y))
2929 (y-abs (abs y))
2930 (len (1- (integer-length y-abs))))
2931 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2932 (give-up-ir1-transform))
2933 (let* ((shift (- len))
2934 (mask (1- y-abs)))
2935 `(if (minusp x)
2936 (values ,(if (minusp y)
2937 `(ash (- x) ,shift)
2938 `(- (ash (- x) ,shift)))
2939 (- (logand (- x) ,mask)))
2940 (values ,(if (minusp y)
2941 `(ash (- ,mask x) ,shift)
2942 `(ash x ,shift))
2943 (logand x ,mask))))))
2945 ;;; And the same for REM.
2946 (deftransform rem ((x y) (integer integer) *)
2947 "convert remainder mod 2^k to LOGAND"
2948 (unless (constant-lvar-p y)
2949 (give-up-ir1-transform))
2950 (let* ((y (lvar-value y))
2951 (y-abs (abs y))
2952 (len (1- (integer-length y-abs))))
2953 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2954 (give-up-ir1-transform))
2955 (let ((mask (1- y-abs)))
2956 `(if (minusp x)
2957 (- (logand (- x) ,mask))
2958 (logand x ,mask)))))
2960 ;;;; arithmetic and logical identity operation elimination
2962 ;;; Flush calls to various arith functions that convert to the
2963 ;;; identity function or a constant.
2964 (macrolet ((def (name identity result)
2965 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
2966 "fold identity operations"
2967 ',result)))
2968 (def ash 0 x)
2969 (def logand -1 x)
2970 (def logand 0 0)
2971 (def logior 0 x)
2972 (def logior -1 -1)
2973 (def logxor -1 (lognot x))
2974 (def logxor 0 x))
2976 (deftransform logand ((x y) (* (constant-arg t)) *)
2977 "fold identity operation"
2978 (let ((y (lvar-value y)))
2979 (unless (and (plusp y)
2980 (= y (1- (ash 1 (integer-length y)))))
2981 (give-up-ir1-transform))
2982 (unless (csubtypep (lvar-type x)
2983 (specifier-type `(integer 0 ,y)))
2984 (give-up-ir1-transform))
2985 'x))
2987 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
2988 "fold identity operation"
2989 (let ((size (lvar-value size)))
2990 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
2991 (give-up-ir1-transform))
2992 'x))
2994 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
2995 ;;; (* 0 -4.0) is -0.0.
2996 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
2997 "convert (- 0 x) to negate"
2998 '(%negate y))
2999 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3000 "convert (* x 0) to 0"
3003 ;;; Return T if in an arithmetic op including lvars X and Y, the
3004 ;;; result type is not affected by the type of X. That is, Y is at
3005 ;;; least as contagious as X.
3006 #+nil
3007 (defun not-more-contagious (x y)
3008 (declare (type continuation x y))
3009 (let ((x (lvar-type x))
3010 (y (lvar-type y)))
3011 (values (type= (numeric-contagion x y)
3012 (numeric-contagion y y)))))
3013 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3014 ;;; XXX needs more work as valid transforms are missed; some cases are
3015 ;;; specific to particular transform functions so the use of this
3016 ;;; function may need a re-think.
3017 (defun not-more-contagious (x y)
3018 (declare (type lvar x y))
3019 (flet ((simple-numeric-type (num)
3020 (and (numeric-type-p num)
3021 ;; Return non-NIL if NUM is integer, rational, or a float
3022 ;; of some type (but not FLOAT)
3023 (case (numeric-type-class num)
3024 ((integer rational)
3026 (float
3027 (numeric-type-format num))
3029 nil)))))
3030 (let ((x (lvar-type x))
3031 (y (lvar-type y)))
3032 (if (and (simple-numeric-type x)
3033 (simple-numeric-type y))
3034 (values (type= (numeric-contagion x y)
3035 (numeric-contagion y y)))))))
3037 ;;; Fold (+ x 0).
3039 ;;; If y is not constant, not zerop, or is contagious, or a positive
3040 ;;; float +0.0 then give up.
3041 (deftransform + ((x y) (t (constant-arg t)) *)
3042 "fold zero arg"
3043 (let ((val (lvar-value y)))
3044 (unless (and (zerop val)
3045 (not (and (floatp val) (plusp (float-sign val))))
3046 (not-more-contagious y x))
3047 (give-up-ir1-transform)))
3050 ;;; Fold (- x 0).
3052 ;;; If y is not constant, not zerop, or is contagious, or a negative
3053 ;;; float -0.0 then give up.
3054 (deftransform - ((x y) (t (constant-arg t)) *)
3055 "fold zero arg"
3056 (let ((val (lvar-value y)))
3057 (unless (and (zerop val)
3058 (not (and (floatp val) (minusp (float-sign val))))
3059 (not-more-contagious y x))
3060 (give-up-ir1-transform)))
3063 ;;; Fold (OP x +/-1)
3064 (macrolet ((def (name result minus-result)
3065 `(deftransform ,name ((x y) (t (constant-arg real)) *)
3066 "fold identity operations"
3067 (let ((val (lvar-value y)))
3068 (unless (and (= (abs val) 1)
3069 (not-more-contagious y x))
3070 (give-up-ir1-transform))
3071 (if (minusp val) ',minus-result ',result)))))
3072 (def * x (%negate x))
3073 (def / x (%negate x))
3074 (def expt x (/ 1 x)))
3076 ;;; Fold (expt x n) into multiplications for small integral values of
3077 ;;; N; convert (expt x 1/2) to sqrt.
3078 (deftransform expt ((x y) (t (constant-arg real)) *)
3079 "recode as multiplication or sqrt"
3080 (let ((val (lvar-value y)))
3081 ;; If Y would cause the result to be promoted to the same type as
3082 ;; Y, we give up. If not, then the result will be the same type
3083 ;; as X, so we can replace the exponentiation with simple
3084 ;; multiplication and division for small integral powers.
3085 (unless (not-more-contagious y x)
3086 (give-up-ir1-transform))
3087 (cond ((zerop val)
3088 (let ((x-type (lvar-type x)))
3089 (cond ((csubtypep x-type (specifier-type '(or rational
3090 (complex rational))))
3092 ((csubtypep x-type (specifier-type 'real))
3093 `(if (rationalp x)
3095 (float 1 x)))
3096 ((csubtypep x-type (specifier-type 'complex))
3097 ;; both parts are float
3098 `(1+ (* x ,val)))
3099 (t (give-up-ir1-transform)))))
3100 ((= val 2) '(* x x))
3101 ((= val -2) '(/ (* x x)))
3102 ((= val 3) '(* x x x))
3103 ((= val -3) '(/ (* x x x)))
3104 ((= val 1/2) '(sqrt x))
3105 ((= val -1/2) '(/ (sqrt x)))
3106 (t (give-up-ir1-transform)))))
3108 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3109 ;;; transformations?
3110 ;;; Perhaps we should have to prove that the denominator is nonzero before
3111 ;;; doing them? -- WHN 19990917
3112 (macrolet ((def (name)
3113 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3115 "fold zero arg"
3116 0)))
3117 (def ash)
3118 (def /))
3120 (macrolet ((def (name)
3121 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3123 "fold zero arg"
3124 '(values 0 0))))
3125 (def truncate)
3126 (def round)
3127 (def floor)
3128 (def ceiling))
3130 ;;;; character operations
3132 (deftransform char-equal ((a b) (base-char base-char))
3133 "open code"
3134 '(let* ((ac (char-code a))
3135 (bc (char-code b))
3136 (sum (logxor ac bc)))
3137 (or (zerop sum)
3138 (when (eql sum #x20)
3139 (let ((sum (+ ac bc)))
3140 (or (and (> sum 161) (< sum 213))
3141 (and (> sum 415) (< sum 461))
3142 (and (> sum 463) (< sum 477))))))))
3144 (deftransform char-upcase ((x) (base-char))
3145 "open code"
3146 '(let ((n-code (char-code x)))
3147 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3148 (< n-code #o173)) ; Octal 172 is #\z.
3149 (and (> n-code #o337)
3150 (< n-code #o367))
3151 (and (> n-code #o367)
3152 (< n-code #o377)))
3153 (code-char (logxor #x20 n-code))
3154 x)))
3156 (deftransform char-downcase ((x) (base-char))
3157 "open code"
3158 '(let ((n-code (char-code x)))
3159 (if (or (and (> n-code 64) ; 65 is #\A.
3160 (< n-code 91)) ; 90 is #\Z.
3161 (and (> n-code 191)
3162 (< n-code 215))
3163 (and (> n-code 215)
3164 (< n-code 223)))
3165 (code-char (logxor #x20 n-code))
3166 x)))
3168 ;;;; equality predicate transforms
3170 ;;; Return true if X and Y are lvars whose only use is a
3171 ;;; reference to the same leaf, and the value of the leaf cannot
3172 ;;; change.
3173 (defun same-leaf-ref-p (x y)
3174 (declare (type lvar x y))
3175 (let ((x-use (principal-lvar-use x))
3176 (y-use (principal-lvar-use y)))
3177 (and (ref-p x-use)
3178 (ref-p y-use)
3179 (eq (ref-leaf x-use) (ref-leaf y-use))
3180 (constant-reference-p x-use))))
3182 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3183 ;;; if there is no intersection between the types of the arguments,
3184 ;;; then the result is definitely false.
3185 (deftransform simple-equality-transform ((x y) * *
3186 :defun-only t)
3187 (cond
3188 ((same-leaf-ref-p x y) t)
3189 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3190 nil)
3191 (t (give-up-ir1-transform))))
3193 (macrolet ((def (x)
3194 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3195 (def eq)
3196 (def char=))
3198 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3199 ;;; try to convert to a type-specific predicate or EQ:
3200 ;;; -- If both args are characters, convert to CHAR=. This is better than
3201 ;;; just converting to EQ, since CHAR= may have special compilation
3202 ;;; strategies for non-standard representations, etc.
3203 ;;; -- If either arg is definitely a fixnum we punt and let the backend
3204 ;;; deal with it.
3205 ;;; -- If either arg is definitely not a number or a fixnum, then we
3206 ;;; can compare with EQ.
3207 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3208 ;;; is constant then we put it second. If X is a subtype of Y, we put
3209 ;;; it second. These rules make it easier for the back end to match
3210 ;;; these interesting cases.
3211 (deftransform eql ((x y) * *)
3212 "convert to simpler equality predicate"
3213 (let ((x-type (lvar-type x))
3214 (y-type (lvar-type y))
3215 (char-type (specifier-type 'character)))
3216 (flet ((simple-type-p (type)
3217 (csubtypep type (specifier-type '(or fixnum (not number)))))
3218 (fixnum-type-p (type)
3219 (csubtypep type (specifier-type 'fixnum))))
3220 (cond
3221 ((same-leaf-ref-p x y) t)
3222 ((not (types-equal-or-intersect x-type y-type))
3223 nil)
3224 ((and (csubtypep x-type char-type)
3225 (csubtypep y-type char-type))
3226 '(char= x y))
3227 ((or (fixnum-type-p x-type) (fixnum-type-p y-type))
3228 (give-up-ir1-transform))
3229 ((or (simple-type-p x-type) (simple-type-p y-type))
3230 '(eq x y))
3231 ((and (not (constant-lvar-p y))
3232 (or (constant-lvar-p x)
3233 (and (csubtypep x-type y-type)
3234 (not (csubtypep y-type x-type)))))
3235 '(eql y x))
3237 (give-up-ir1-transform))))))
3239 ;;; similarly to the EQL transform above, we attempt to constant-fold
3240 ;;; or convert to a simpler predicate: mostly we have to be careful
3241 ;;; with strings and bit-vectors.
3242 (deftransform equal ((x y) * *)
3243 "convert to simpler equality predicate"
3244 (let ((x-type (lvar-type x))
3245 (y-type (lvar-type y))
3246 (string-type (specifier-type 'string))
3247 (bit-vector-type (specifier-type 'bit-vector)))
3248 (cond
3249 ((same-leaf-ref-p x y) t)
3250 ((and (csubtypep x-type string-type)
3251 (csubtypep y-type string-type))
3252 '(string= x y))
3253 ((and (csubtypep x-type bit-vector-type)
3254 (csubtypep y-type bit-vector-type))
3255 '(bit-vector-= x y))
3256 ;; if at least one is not a string, and at least one is not a
3257 ;; bit-vector, then we can reason from types.
3258 ((and (not (and (types-equal-or-intersect x-type string-type)
3259 (types-equal-or-intersect y-type string-type)))
3260 (not (and (types-equal-or-intersect x-type bit-vector-type)
3261 (types-equal-or-intersect y-type bit-vector-type)))
3262 (not (types-equal-or-intersect x-type y-type)))
3263 nil)
3264 (t (give-up-ir1-transform)))))
3266 ;;; Convert to EQL if both args are rational and complexp is specified
3267 ;;; and the same for both.
3268 (deftransform = ((x y) * *)
3269 "open code"
3270 (let ((x-type (lvar-type x))
3271 (y-type (lvar-type y)))
3272 (if (and (csubtypep x-type (specifier-type 'number))
3273 (csubtypep y-type (specifier-type 'number)))
3274 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3275 (csubtypep y-type (specifier-type 'float)))
3276 (and (csubtypep x-type (specifier-type '(complex float)))
3277 (csubtypep y-type (specifier-type '(complex float)))))
3278 ;; They are both floats. Leave as = so that -0.0 is
3279 ;; handled correctly.
3280 (give-up-ir1-transform))
3281 ((or (and (csubtypep x-type (specifier-type 'rational))
3282 (csubtypep y-type (specifier-type 'rational)))
3283 (and (csubtypep x-type
3284 (specifier-type '(complex rational)))
3285 (csubtypep y-type
3286 (specifier-type '(complex rational)))))
3287 ;; They are both rationals and complexp is the same.
3288 ;; Convert to EQL.
3289 '(eql x y))
3291 (give-up-ir1-transform
3292 "The operands might not be the same type.")))
3293 (give-up-ir1-transform
3294 "The operands might not be the same type."))))
3296 ;;; If LVAR's type is a numeric type, then return the type, otherwise
3297 ;;; GIVE-UP-IR1-TRANSFORM.
3298 (defun numeric-type-or-lose (lvar)
3299 (declare (type lvar lvar))
3300 (let ((res (lvar-type lvar)))
3301 (unless (numeric-type-p res) (give-up-ir1-transform))
3302 res))
3304 ;;; See whether we can statically determine (< X Y) using type
3305 ;;; information. If X's high bound is < Y's low, then X < Y.
3306 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3307 ;;; NIL). If not, at least make sure any constant arg is second.
3308 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3309 `(deftransform ,name ((x y))
3310 (if (same-leaf-ref-p x y)
3311 ,reflexive-p
3312 (let ((ix (or (type-approximate-interval (lvar-type x))
3313 (give-up-ir1-transform)))
3314 (iy (or (type-approximate-interval (lvar-type y))
3315 (give-up-ir1-transform))))
3316 (cond (,surely-true
3318 (,surely-false
3319 nil)
3320 ((and (constant-lvar-p x)
3321 (not (constant-lvar-p y)))
3322 `(,',inverse y x))
3324 (give-up-ir1-transform))))))))
3325 (def < > nil (interval-< ix iy) (interval->= ix iy))
3326 (def > < nil (interval-< iy ix) (interval->= iy ix))
3327 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3328 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3330 (defun ir1-transform-char< (x y first second inverse)
3331 (cond
3332 ((same-leaf-ref-p x y) nil)
3333 ;; If we had interval representation of character types, as we
3334 ;; might eventually have to to support 2^21 characters, then here
3335 ;; we could do some compile-time computation as in transforms for
3336 ;; < above. -- CSR, 2003-07-01
3337 ((and (constant-lvar-p first)
3338 (not (constant-lvar-p second)))
3339 `(,inverse y x))
3340 (t (give-up-ir1-transform))))
3342 (deftransform char< ((x y) (character character) *)
3343 (ir1-transform-char< x y x y 'char>))
3345 (deftransform char> ((x y) (character character) *)
3346 (ir1-transform-char< y x x y 'char<))
3348 ;;;; converting N-arg comparisons
3349 ;;;;
3350 ;;;; We convert calls to N-arg comparison functions such as < into
3351 ;;;; two-arg calls. This transformation is enabled for all such
3352 ;;;; comparisons in this file. If any of these predicates are not
3353 ;;;; open-coded, then the transformation should be removed at some
3354 ;;;; point to avoid pessimization.
3356 ;;; This function is used for source transformation of N-arg
3357 ;;; comparison functions other than inequality. We deal both with
3358 ;;; converting to two-arg calls and inverting the sense of the test,
3359 ;;; if necessary. If the call has two args, then we pass or return a
3360 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3361 ;;; then we transform to code that returns true. Otherwise, we bind
3362 ;;; all the arguments and expand into a bunch of IFs.
3363 (declaim (ftype (function (symbol list boolean t) *) multi-compare))
3364 (defun multi-compare (predicate args not-p type)
3365 (let ((nargs (length args)))
3366 (cond ((< nargs 1) (values nil t))
3367 ((= nargs 1) `(progn (the ,type ,@args) t))
3368 ((= nargs 2)
3369 (if not-p
3370 `(if (,predicate ,(first args) ,(second args)) nil t)
3371 (values nil t)))
3373 (do* ((i (1- nargs) (1- i))
3374 (last nil current)
3375 (current (gensym) (gensym))
3376 (vars (list current) (cons current vars))
3377 (result t (if not-p
3378 `(if (,predicate ,current ,last)
3379 nil ,result)
3380 `(if (,predicate ,current ,last)
3381 ,result nil))))
3382 ((zerop i)
3383 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3384 ,@args)))))))
3386 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3387 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3388 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3389 (define-source-transform <= (&rest args) (multi-compare '> args t 'real))
3390 (define-source-transform >= (&rest args) (multi-compare '< args t 'real))
3392 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3393 'character))
3394 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3395 'character))
3396 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3397 'character))
3398 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3399 'character))
3400 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3401 'character))
3403 (define-source-transform char-equal (&rest args)
3404 (multi-compare 'char-equal args nil 'character))
3405 (define-source-transform char-lessp (&rest args)
3406 (multi-compare 'char-lessp args nil 'character))
3407 (define-source-transform char-greaterp (&rest args)
3408 (multi-compare 'char-greaterp args nil 'character))
3409 (define-source-transform char-not-greaterp (&rest args)
3410 (multi-compare 'char-greaterp args t 'character))
3411 (define-source-transform char-not-lessp (&rest args)
3412 (multi-compare 'char-lessp args t 'character))
3414 ;;; This function does source transformation of N-arg inequality
3415 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3416 ;;; arg cases. If there are more than two args, then we expand into
3417 ;;; the appropriate n^2 comparisons only when speed is important.
3418 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3419 (defun multi-not-equal (predicate args type)
3420 (let ((nargs (length args)))
3421 (cond ((< nargs 1) (values nil t))
3422 ((= nargs 1) `(progn (the ,type ,@args) t))
3423 ((= nargs 2)
3424 `(if (,predicate ,(first args) ,(second args)) nil t))
3425 ((not (policy *lexenv*
3426 (and (>= speed space)
3427 (>= speed compilation-speed))))
3428 (values nil t))
3430 (let ((vars (make-gensym-list nargs)))
3431 (do ((var vars next)
3432 (next (cdr vars) (cdr next))
3433 (result t))
3434 ((null next)
3435 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3436 ,@args))
3437 (let ((v1 (first var)))
3438 (dolist (v2 next)
3439 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3441 (define-source-transform /= (&rest args)
3442 (multi-not-equal '= args 'number))
3443 (define-source-transform char/= (&rest args)
3444 (multi-not-equal 'char= args 'character))
3445 (define-source-transform char-not-equal (&rest args)
3446 (multi-not-equal 'char-equal args 'character))
3448 ;;; Expand MAX and MIN into the obvious comparisons.
3449 (define-source-transform max (arg0 &rest rest)
3450 (once-only ((arg0 arg0))
3451 (if (null rest)
3452 `(values (the real ,arg0))
3453 `(let ((maxrest (max ,@rest)))
3454 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3455 (define-source-transform min (arg0 &rest rest)
3456 (once-only ((arg0 arg0))
3457 (if (null rest)
3458 `(values (the real ,arg0))
3459 `(let ((minrest (min ,@rest)))
3460 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3462 ;;;; converting N-arg arithmetic functions
3463 ;;;;
3464 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3465 ;;;; versions, and degenerate cases are flushed.
3467 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3468 (declaim (ftype (function (symbol t list) list) associate-args))
3469 (defun associate-args (function first-arg more-args)
3470 (let ((next (rest more-args))
3471 (arg (first more-args)))
3472 (if (null next)
3473 `(,function ,first-arg ,arg)
3474 (associate-args function `(,function ,first-arg ,arg) next))))
3476 ;;; Do source transformations for transitive functions such as +.
3477 ;;; One-arg cases are replaced with the arg and zero arg cases with
3478 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3479 ;;; ensure (with THE) that the argument in one-argument calls is.
3480 (defun source-transform-transitive (fun args identity
3481 &optional one-arg-result-type)
3482 (declare (symbol fun) (list args))
3483 (case (length args)
3484 (0 identity)
3485 (1 (if one-arg-result-type
3486 `(values (the ,one-arg-result-type ,(first args)))
3487 `(values ,(first args))))
3488 (2 (values nil t))
3490 (associate-args fun (first args) (rest args)))))
3492 (define-source-transform + (&rest args)
3493 (source-transform-transitive '+ args 0 'number))
3494 (define-source-transform * (&rest args)
3495 (source-transform-transitive '* args 1 'number))
3496 (define-source-transform logior (&rest args)
3497 (source-transform-transitive 'logior args 0 'integer))
3498 (define-source-transform logxor (&rest args)
3499 (source-transform-transitive 'logxor args 0 'integer))
3500 (define-source-transform logand (&rest args)
3501 (source-transform-transitive 'logand args -1 'integer))
3502 (define-source-transform logeqv (&rest args)
3503 (source-transform-transitive 'logeqv args -1 'integer))
3505 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3506 ;;; because when they are given one argument, they return its absolute
3507 ;;; value.
3509 (define-source-transform gcd (&rest args)
3510 (case (length args)
3511 (0 0)
3512 (1 `(abs (the integer ,(first args))))
3513 (2 (values nil t))
3514 (t (associate-args 'gcd (first args) (rest args)))))
3516 (define-source-transform lcm (&rest args)
3517 (case (length args)
3518 (0 1)
3519 (1 `(abs (the integer ,(first args))))
3520 (2 (values nil t))
3521 (t (associate-args 'lcm (first args) (rest args)))))
3523 ;;; Do source transformations for intransitive n-arg functions such as
3524 ;;; /. With one arg, we form the inverse. With two args we pass.
3525 ;;; Otherwise we associate into two-arg calls.
3526 (declaim (ftype (function (symbol list t)
3527 (values list &optional (member nil t)))
3528 source-transform-intransitive))
3529 (defun source-transform-intransitive (function args inverse)
3530 (case (length args)
3531 ((0 2) (values nil t))
3532 (1 `(,@inverse ,(first args)))
3533 (t (associate-args function (first args) (rest args)))))
3535 (define-source-transform - (&rest args)
3536 (source-transform-intransitive '- args '(%negate)))
3537 (define-source-transform / (&rest args)
3538 (source-transform-intransitive '/ args '(/ 1)))
3540 ;;;; transforming APPLY
3542 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3543 ;;; only needs to understand one kind of variable-argument call. It is
3544 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3545 (define-source-transform apply (fun arg &rest more-args)
3546 (let ((args (cons arg more-args)))
3547 `(multiple-value-call ,fun
3548 ,@(mapcar (lambda (x)
3549 `(values ,x))
3550 (butlast args))
3551 (values-list ,(car (last args))))))
3553 ;;;; transforming FORMAT
3554 ;;;;
3555 ;;;; If the control string is a compile-time constant, then replace it
3556 ;;;; with a use of the FORMATTER macro so that the control string is
3557 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3558 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3559 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3561 ;;; for compile-time argument count checking.
3563 ;;; FIXME II: In some cases, type information could be correlated; for
3564 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3565 ;;; of a corresponding argument is known and does not intersect the
3566 ;;; list type, a warning could be signalled.
3567 (defun check-format-args (string args fun)
3568 (declare (type string string))
3569 (unless (typep string 'simple-string)
3570 (setq string (coerce string 'simple-string)))
3571 (multiple-value-bind (min max)
3572 (handler-case (sb!format:%compiler-walk-format-string string args)
3573 (sb!format:format-error (c)
3574 (compiler-warn "~A" c)))
3575 (when min
3576 (let ((nargs (length args)))
3577 (cond
3578 ((< nargs min)
3579 (warn 'format-too-few-args-warning
3580 :format-control
3581 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3582 :format-arguments (list nargs fun string min)))
3583 ((> nargs max)
3584 (warn 'format-too-many-args-warning
3585 :format-control
3586 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3587 :format-arguments (list nargs fun string max))))))))
3589 (defoptimizer (format optimizer) ((dest control &rest args))
3590 (when (constant-lvar-p control)
3591 (let ((x (lvar-value control)))
3592 (when (stringp x)
3593 (check-format-args x args 'format)))))
3595 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3596 :policy (> speed space))
3597 (unless (constant-lvar-p control)
3598 (give-up-ir1-transform "The control string is not a constant."))
3599 (let ((arg-names (make-gensym-list (length args))))
3600 `(lambda (dest control ,@arg-names)
3601 (declare (ignore control))
3602 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3604 (deftransform format ((stream control &rest args) (stream function &rest t) *
3605 :policy (> speed space))
3606 (let ((arg-names (make-gensym-list (length args))))
3607 `(lambda (stream control ,@arg-names)
3608 (funcall control stream ,@arg-names)
3609 nil)))
3611 (deftransform format ((tee control &rest args) ((member t) function &rest t) *
3612 :policy (> speed space))
3613 (let ((arg-names (make-gensym-list (length args))))
3614 `(lambda (tee control ,@arg-names)
3615 (declare (ignore tee))
3616 (funcall control *standard-output* ,@arg-names)
3617 nil)))
3619 (macrolet
3620 ((def (name)
3621 `(defoptimizer (,name optimizer) ((control &rest args))
3622 (when (constant-lvar-p control)
3623 (let ((x (lvar-value control)))
3624 (when (stringp x)
3625 (check-format-args x args ',name)))))))
3626 (def error)
3627 (def warn)
3628 #+sb-xc-host ; Only we should be using these
3629 (progn
3630 (def style-warn)
3631 (def compiler-abort)
3632 (def compiler-error)
3633 (def compiler-warn)
3634 (def compiler-style-warn)
3635 (def compiler-notify)
3636 (def maybe-compiler-notify)
3637 (def bug)))
3639 (defoptimizer (cerror optimizer) ((report control &rest args))
3640 (when (and (constant-lvar-p control)
3641 (constant-lvar-p report))
3642 (let ((x (lvar-value control))
3643 (y (lvar-value report)))
3644 (when (and (stringp x) (stringp y))
3645 (multiple-value-bind (min1 max1)
3646 (handler-case
3647 (sb!format:%compiler-walk-format-string x args)
3648 (sb!format:format-error (c)
3649 (compiler-warn "~A" c)))
3650 (when min1
3651 (multiple-value-bind (min2 max2)
3652 (handler-case
3653 (sb!format:%compiler-walk-format-string y args)
3654 (sb!format:format-error (c)
3655 (compiler-warn "~A" c)))
3656 (when min2
3657 (let ((nargs (length args)))
3658 (cond
3659 ((< nargs (min min1 min2))
3660 (warn 'format-too-few-args-warning
3661 :format-control
3662 "Too few arguments (~D) to ~S ~S ~S: ~
3663 requires at least ~D."
3664 :format-arguments
3665 (list nargs 'cerror y x (min min1 min2))))
3666 ((> nargs (max max1 max2))
3667 (warn 'format-too-many-args-warning
3668 :format-control
3669 "Too many arguments (~D) to ~S ~S ~S: ~
3670 uses at most ~D."
3671 :format-arguments
3672 (list nargs 'cerror y x (max max1 max2))))))))))))))
3674 (defoptimizer (coerce derive-type) ((value type))
3675 (cond
3676 ((constant-lvar-p type)
3677 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3678 ;; but dealing with the niggle that complex canonicalization gets
3679 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3680 ;; type COMPLEX.
3681 (let* ((specifier (lvar-value type))
3682 (result-typeoid (careful-specifier-type specifier)))
3683 (cond
3684 ((null result-typeoid) nil)
3685 ((csubtypep result-typeoid (specifier-type 'number))
3686 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3687 ;; Rule of Canonical Representation for Complex Rationals,
3688 ;; which is a truly nasty delivery to field.
3689 (cond
3690 ((csubtypep result-typeoid (specifier-type 'real))
3691 ;; cleverness required here: it would be nice to deduce
3692 ;; that something of type (INTEGER 2 3) coerced to type
3693 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3694 ;; FLOAT gets its own clause because it's implemented as
3695 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3696 ;; logic below.
3697 result-typeoid)
3698 ((and (numeric-type-p result-typeoid)
3699 (eq (numeric-type-complexp result-typeoid) :real))
3700 ;; FIXME: is this clause (a) necessary or (b) useful?
3701 result-typeoid)
3702 ((or (csubtypep result-typeoid
3703 (specifier-type '(complex single-float)))
3704 (csubtypep result-typeoid
3705 (specifier-type '(complex double-float)))
3706 #!+long-float
3707 (csubtypep result-typeoid
3708 (specifier-type '(complex long-float))))
3709 ;; float complex types are never canonicalized.
3710 result-typeoid)
3712 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3713 ;; probably just a COMPLEX or equivalent. So, in that
3714 ;; case, we will return a complex or an object of the
3715 ;; provided type if it's rational:
3716 (type-union result-typeoid
3717 (type-intersection (lvar-type value)
3718 (specifier-type 'rational))))))
3719 (t result-typeoid))))
3721 ;; OK, the result-type argument isn't constant. However, there
3722 ;; are common uses where we can still do better than just
3723 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3724 ;; where Y is of a known type. See messages on cmucl-imp
3725 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3726 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3727 ;; the basis that it's unlikely that other uses are both
3728 ;; time-critical and get to this branch of the COND (non-constant
3729 ;; second argument to COERCE). -- CSR, 2002-12-16
3730 (let ((value-type (lvar-type value))
3731 (type-type (lvar-type type)))
3732 (labels
3733 ((good-cons-type-p (cons-type)
3734 ;; Make sure the cons-type we're looking at is something
3735 ;; we're prepared to handle which is basically something
3736 ;; that array-element-type can return.
3737 (or (and (member-type-p cons-type)
3738 (null (rest (member-type-members cons-type)))
3739 (null (first (member-type-members cons-type))))
3740 (let ((car-type (cons-type-car-type cons-type)))
3741 (and (member-type-p car-type)
3742 (null (rest (member-type-members car-type)))
3743 (or (symbolp (first (member-type-members car-type)))
3744 (numberp (first (member-type-members car-type)))
3745 (and (listp (first (member-type-members
3746 car-type)))
3747 (numberp (first (first (member-type-members
3748 car-type))))))
3749 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3750 (unconsify-type (good-cons-type)
3751 ;; Convert the "printed" respresentation of a cons
3752 ;; specifier into a type specifier. That is, the
3753 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
3754 ;; NULL)) is converted to (SIGNED-BYTE 16).
3755 (cond ((or (null good-cons-type)
3756 (eq good-cons-type 'null))
3757 nil)
3758 ((and (eq (first good-cons-type) 'cons)
3759 (eq (first (second good-cons-type)) 'member))
3760 `(,(second (second good-cons-type))
3761 ,@(unconsify-type (caddr good-cons-type))))))
3762 (coerceable-p (c-type)
3763 ;; Can the value be coerced to the given type? Coerce is
3764 ;; complicated, so we don't handle every possible case
3765 ;; here---just the most common and easiest cases:
3767 ;; * Any REAL can be coerced to a FLOAT type.
3768 ;; * Any NUMBER can be coerced to a (COMPLEX
3769 ;; SINGLE/DOUBLE-FLOAT).
3771 ;; FIXME I: we should also be able to deal with characters
3772 ;; here.
3774 ;; FIXME II: I'm not sure that anything is necessary
3775 ;; here, at least while COMPLEX is not a specialized
3776 ;; array element type in the system. Reasoning: if
3777 ;; something cannot be coerced to the requested type, an
3778 ;; error will be raised (and so any downstream compiled
3779 ;; code on the assumption of the returned type is
3780 ;; unreachable). If something can, then it will be of
3781 ;; the requested type, because (by assumption) COMPLEX
3782 ;; (and other difficult types like (COMPLEX INTEGER)
3783 ;; aren't specialized types.
3784 (let ((coerced-type c-type))
3785 (or (and (subtypep coerced-type 'float)
3786 (csubtypep value-type (specifier-type 'real)))
3787 (and (subtypep coerced-type
3788 '(or (complex single-float)
3789 (complex double-float)))
3790 (csubtypep value-type (specifier-type 'number))))))
3791 (process-types (type)
3792 ;; FIXME: This needs some work because we should be able
3793 ;; to derive the resulting type better than just the
3794 ;; type arg of coerce. That is, if X is (INTEGER 10
3795 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
3796 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
3797 ;; double-float.
3798 (cond ((member-type-p type)
3799 (let ((members (member-type-members type)))
3800 (if (every #'coerceable-p members)
3801 (specifier-type `(or ,@members))
3802 *universal-type*)))
3803 ((and (cons-type-p type)
3804 (good-cons-type-p type))
3805 (let ((c-type (unconsify-type (type-specifier type))))
3806 (if (coerceable-p c-type)
3807 (specifier-type c-type)
3808 *universal-type*)))
3810 *universal-type*))))
3811 (cond ((union-type-p type-type)
3812 (apply #'type-union (mapcar #'process-types
3813 (union-type-types type-type))))
3814 ((or (member-type-p type-type)
3815 (cons-type-p type-type))
3816 (process-types type-type))
3818 *universal-type*)))))))
3820 (defoptimizer (compile derive-type) ((nameoid function))
3821 (when (csubtypep (lvar-type nameoid)
3822 (specifier-type 'null))
3823 (values-specifier-type '(values function boolean boolean))))
3825 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
3826 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
3827 ;;; optimizer, above).
3828 (defoptimizer (array-element-type derive-type) ((array))
3829 (let ((array-type (lvar-type array)))
3830 (labels ((consify (list)
3831 (if (endp list)
3832 '(eql nil)
3833 `(cons (eql ,(car list)) ,(consify (rest list)))))
3834 (get-element-type (a)
3835 (let ((element-type
3836 (type-specifier (array-type-specialized-element-type a))))
3837 (cond ((eq element-type '*)
3838 (specifier-type 'type-specifier))
3839 ((symbolp element-type)
3840 (make-member-type :members (list element-type)))
3841 ((consp element-type)
3842 (specifier-type (consify element-type)))
3844 (error "can't understand type ~S~%" element-type))))))
3845 (cond ((array-type-p array-type)
3846 (get-element-type array-type))
3847 ((union-type-p array-type)
3848 (apply #'type-union
3849 (mapcar #'get-element-type (union-type-types array-type))))
3851 *universal-type*)))))
3853 ;;; Like CMU CL, we use HEAPSORT. However, other than that, this code
3854 ;;; isn't really related to the CMU CL code, since instead of trying
3855 ;;; to generalize the CMU CL code to allow START and END values, this
3856 ;;; code has been written from scratch following Chapter 7 of
3857 ;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
3858 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
3859 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
3860 ;; isn't really related to the CMU CL code, since instead of trying
3861 ;; to generalize the CMU CL code to allow START and END values, this
3862 ;; code has been written from scratch following Chapter 7 of
3863 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
3864 `(macrolet ((%index (x) `(truly-the index ,x))
3865 (%parent (i) `(ash ,i -1))
3866 (%left (i) `(%index (ash ,i 1)))
3867 (%right (i) `(%index (1+ (ash ,i 1))))
3868 (%heapify (i)
3869 `(do* ((i ,i)
3870 (left (%left i) (%left i)))
3871 ((> left current-heap-size))
3872 (declare (type index i left))
3873 (let* ((i-elt (%elt i))
3874 (i-key (funcall keyfun i-elt))
3875 (left-elt (%elt left))
3876 (left-key (funcall keyfun left-elt)))
3877 (multiple-value-bind (large large-elt large-key)
3878 (if (funcall ,',predicate i-key left-key)
3879 (values left left-elt left-key)
3880 (values i i-elt i-key))
3881 (let ((right (%right i)))
3882 (multiple-value-bind (largest largest-elt)
3883 (if (> right current-heap-size)
3884 (values large large-elt)
3885 (let* ((right-elt (%elt right))
3886 (right-key (funcall keyfun right-elt)))
3887 (if (funcall ,',predicate large-key right-key)
3888 (values right right-elt)
3889 (values large large-elt))))
3890 (cond ((= largest i)
3891 (return))
3893 (setf (%elt i) largest-elt
3894 (%elt largest) i-elt
3895 i largest)))))))))
3896 (%sort-vector (keyfun &optional (vtype 'vector))
3897 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
3898 ;; trouble getting type inference to
3899 ;; propagate all the way through this
3900 ;; tangled mess of inlining. The TRULY-THE
3901 ;; here works around that. -- WHN
3902 (%elt (i)
3903 `(aref (truly-the ,',vtype ,',',vector)
3904 (%index (+ (%index ,i) start-1)))))
3905 (let (;; Heaps prefer 1-based addressing.
3906 (start-1 (1- ,',start))
3907 (current-heap-size (- ,',end ,',start))
3908 (keyfun ,keyfun))
3909 (declare (type (integer -1 #.(1- most-positive-fixnum))
3910 start-1))
3911 (declare (type index current-heap-size))
3912 (declare (type function keyfun))
3913 (loop for i of-type index
3914 from (ash current-heap-size -1) downto 1 do
3915 (%heapify i))
3916 (loop
3917 (when (< current-heap-size 2)
3918 (return))
3919 (rotatef (%elt 1) (%elt current-heap-size))
3920 (decf current-heap-size)
3921 (%heapify 1))))))
3922 (if (typep ,vector 'simple-vector)
3923 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
3924 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
3925 (if (null ,key)
3926 ;; Special-casing the KEY=NIL case lets us avoid some
3927 ;; function calls.
3928 (%sort-vector #'identity simple-vector)
3929 (%sort-vector ,key simple-vector))
3930 ;; It's hard to anticipate many speed-critical applications for
3931 ;; sorting vector types other than (VECTOR T), so we just lump
3932 ;; them all together in one slow dynamically typed mess.
3933 (locally
3934 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
3935 (%sort-vector (or ,key #'identity))))))
3937 ;;;; debuggers' little helpers
3939 ;;; for debugging when transforms are behaving mysteriously,
3940 ;;; e.g. when debugging a problem with an ASH transform
3941 ;;; (defun foo (&optional s)
3942 ;;; (sb-c::/report-lvar s "S outside WHEN")
3943 ;;; (when (and (integerp s) (> s 3))
3944 ;;; (sb-c::/report-lvar s "S inside WHEN")
3945 ;;; (let ((bound (ash 1 (1- s))))
3946 ;;; (sb-c::/report-lvar bound "BOUND")
3947 ;;; (let ((x (- bound))
3948 ;;; (y (1- bound)))
3949 ;;; (sb-c::/report-lvar x "X")
3950 ;;; (sb-c::/report-lvar x "Y"))
3951 ;;; `(integer ,(- bound) ,(1- bound)))))
3952 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
3953 ;;; and the function doesn't do anything at all.)
3954 #!+sb-show
3955 (progn
3956 (defknown /report-lvar (t t) null)
3957 (deftransform /report-lvar ((x message) (t t))
3958 (format t "~%/in /REPORT-LVAR~%")
3959 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
3960 (when (constant-lvar-p x)
3961 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
3962 (format t "/MESSAGE=~S~%" (lvar-value message))
3963 (give-up-ir1-transform "not a real transform"))
3964 (defun /report-lvar (x message)
3965 (declare (ignore x message))))