1.0.4.34: return true from GET-SPINLOCK
[sbcl/lichteblau.git] / src / code / sort.lisp
blobd73ed34ab102b1cb28be4178f1c024da8077ea0c
1 ;;;; SORT and friends
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 (defun sort-vector (vector start end predicate-fun key-fun-or-nil)
15 (sort-vector vector start end predicate-fun key-fun-or-nil))
17 ;;; This is MAYBE-INLINE because it's not too hard to have an
18 ;;; application where sorting is a major bottleneck, and inlining it
19 ;;; allows the compiler to make enough optimizations that it might be
20 ;;; worth the (large) cost in space.
21 (declaim (maybe-inline sort))
22 (defun sort (sequence predicate &rest args &key key)
23 #!+sb-doc
24 "Destructively sort SEQUENCE. PREDICATE should return non-NIL if
25 ARG1 is to precede ARG2."
26 (declare (dynamic-extent args))
27 (let ((predicate-fun (%coerce-callable-to-fun predicate)))
28 (seq-dispatch sequence
29 (stable-sort-list sequence
30 predicate-fun
31 (if key (%coerce-callable-to-fun key) #'identity))
32 (let ((key-fun-or-nil (and key (%coerce-callable-to-fun key))))
33 (with-array-data ((vector (the vector sequence))
34 (start 0)
35 (end (length sequence)))
36 (sort-vector vector start end predicate-fun key-fun-or-nil))
37 sequence)
38 (apply #'sb!sequence:sort sequence predicate args))))
40 ;;;; stable sorting
41 (defun stable-sort (sequence predicate &rest args &key key)
42 #!+sb-doc
43 "Destructively sort SEQUENCE. PREDICATE should return non-NIL if
44 ARG1 is to precede ARG2."
45 (declare (dynamic-extent args))
46 (let ((predicate-fun (%coerce-callable-to-fun predicate)))
47 (seq-dispatch sequence
48 (stable-sort-list sequence
49 predicate-fun
50 (if key (%coerce-callable-to-fun key) #'identity))
51 (if (typep sequence 'simple-vector)
52 (stable-sort-simple-vector sequence
53 predicate-fun
54 (and key (%coerce-callable-to-fun key)))
55 (stable-sort-vector sequence
56 predicate-fun
57 (and key (%coerce-callable-to-fun key))))
58 (apply #'sb!sequence:stable-sort sequence predicate args))))
60 ;;; FUNCALL-USING-KEY saves us a function call sometimes.
61 (eval-when (:compile-toplevel :execute)
62 (sb!xc:defmacro funcall2-using-key (pred key one two)
63 `(if ,key
64 (funcall ,pred (funcall ,key ,one)
65 (funcall ,key ,two))
66 (funcall ,pred ,one ,two)))
67 ) ; EVAL-WHEN
69 ;;;; stable sort of lists
71 (defun last-cons-of (list)
72 (loop (let ((rest (rest list)))
73 (if rest
74 (setf list rest)
75 (return list)))))
77 ;;; Destructively merge LIST-1 with LIST-2 (given that they're already
78 ;;; sorted w.r.t. PRED-FUN on KEY-FUN, giving output sorted the same
79 ;;; way). In the resulting list, elements of LIST-1 are guaranteed to
80 ;;; come before equal elements of LIST-2.
81 ;;;
82 ;;; Return (VALUES HEAD TAILTAIL), where HEAD is the same value you'd
83 ;;; expect from MERGE, and TAILTAIL is the last cons in the list (i.e.
84 ;;; the last cons in the list which NRECONC calls TAIL).
85 (defun merge-lists* (list-1 list-2 pred-fun key-fun)
86 (declare (type list list-1 list-2))
87 (declare (type function pred-fun key-fun))
88 (cond ((null list-1) (values list-2 (last-cons-of list-2)))
89 ((null list-2) (values list-1 (last-cons-of list-1)))
90 (t (let* ((reversed-result-so-far nil)
91 (key-1 (funcall key-fun (car list-1)))
92 (key-2 (funcall key-fun (car list-2))))
93 (loop
94 (macrolet ((frob (list-i key-i other-list)
95 `(progn
96 ;; basically
97 ;; (PUSH (POP ,LIST-I) REVERSED-RESULT-SO-FAR),
98 ;; except doing some fancy footwork to
99 ;; reuse the cons cell:
100 (psetf (cdr ,list-i) reversed-result-so-far
101 reversed-result-so-far ,list-i
102 ,list-i (cdr ,list-i))
103 ;; Now maybe we're done.
104 (if (endp ,list-i)
105 (return (values (nreconc
106 reversed-result-so-far
107 ,other-list)
108 (last-cons-of
109 ,other-list)))
110 (setf ,key-i
111 (funcall key-fun (car ,list-i)))))))
112 ;; Note that by making KEY-2 the first arg to
113 ;; PRED-FUN, we arrange that if PRED-FUN is a function
114 ;; in the #'< style, the outcome is stably sorted.
115 (if (funcall pred-fun key-2 key-1)
116 (frob list-2 key-2 list-1)
117 (frob list-1 key-1 list-2))))))))
119 ;;; STABLE-SORT-LIST uses a bottom-up merge sort. First a pass is made
120 ;;; over the list grabbing one element at a time and merging it with
121 ;;; the next one to form pairs of sorted elements. Then N is doubled,
122 ;;; and elements are taken in runs of two, merging one run with the
123 ;;; next to form quadruples of sorted elements. This continues until N
124 ;;; is large enough that the inner loop only runs for one iteration;
125 ;;; that is, there are only two runs that can be merged, the first run
126 ;;; starting at the beginning of the list, and the second being the
127 ;;; remaining elements.
128 (defun stable-sort-list (list pred-fun key-fun)
129 (let ((head (cons :header list)) ; head holds on to everything
130 (n 1) ; bottom-up size of lists to be merged
131 unsorted ; unsorted is the remaining list to be
132 ; broken into n size lists and merged
133 list-1 ; list-1 is one length n list to be merged
134 last) ; last points to the last visited cell
135 (declare (type function pred-fun key-fun)
136 (type fixnum n))
137 (loop
138 ;; Start collecting runs of N at the first element.
139 (setf unsorted (cdr head))
140 ;; Tack on the first merge of two N-runs to the head holder.
141 (setf last head)
142 (let ((n-1 (1- n)))
143 (declare (fixnum n-1))
144 (loop
145 (setf list-1 unsorted)
146 (let ((temp (nthcdr n-1 list-1))
147 list-2)
148 (cond (temp
149 ;; There are enough elements for a second run.
150 (setf list-2 (cdr temp))
151 (setf (cdr temp) nil)
152 (setf temp (nthcdr n-1 list-2))
153 (cond (temp
154 (setf unsorted (cdr temp))
155 (setf (cdr temp) nil))
156 ;; The second run goes off the end of the list.
157 (t (setf unsorted nil)))
158 (multiple-value-bind (merged-head merged-last)
159 (merge-lists* list-1 list-2 pred-fun key-fun)
160 (setf (cdr last) merged-head
161 last merged-last))
162 (if (null unsorted) (return)))
163 ;; If there is only one run, then tack it on to the end.
164 (t (setf (cdr last) list-1)
165 (return)))))
166 (setf n (ash n 1)) ; (+ n n)
167 ;; If the inner loop only executed once, then there were only
168 ;; enough elements for two runs given n, so all the elements
169 ;; have been merged into one list. This may waste one outer
170 ;; iteration to realize.
171 (if (eq list-1 (cdr head))
172 (return list-1))))))
174 ;;;; stable sort of vectors
176 ;;; Stable sorting vectors is done with the same algorithm used for
177 ;;; lists, using a temporary vector to merge back and forth between it
178 ;;; and the given vector to sort.
180 (eval-when (:compile-toplevel :execute)
182 ;;; STABLE-SORT-MERGE-VECTORS* takes a source vector with subsequences,
183 ;;; start-1 (inclusive) ... end-1 (exclusive) and
184 ;;; end-1 (inclusive) ... end-2 (exclusive),
185 ;;; and merges them into a target vector starting at index start-1.
187 (sb!xc:defmacro stable-sort-merge-vectors* (source target start-1 end-1 end-2
188 pred key source-ref
189 target-ref)
190 (let ((i (gensym))
191 (j (gensym))
192 (target-i (gensym)))
193 `(let ((,i ,start-1)
194 (,j ,end-1) ; start-2
195 (,target-i ,start-1))
196 (declare (fixnum ,i ,j ,target-i))
197 (loop
198 (cond ((= ,i ,end-1)
199 (loop (if (= ,j ,end-2) (return))
200 (setf (,target-ref ,target ,target-i)
201 (,source-ref ,source ,j))
202 (incf ,target-i)
203 (incf ,j))
204 (return))
205 ((= ,j ,end-2)
206 (loop (if (= ,i ,end-1) (return))
207 (setf (,target-ref ,target ,target-i)
208 (,source-ref ,source ,i))
209 (incf ,target-i)
210 (incf ,i))
211 (return))
212 ((funcall2-using-key ,pred ,key
213 (,source-ref ,source ,j)
214 (,source-ref ,source ,i))
215 (setf (,target-ref ,target ,target-i)
216 (,source-ref ,source ,j))
217 (incf ,j))
218 (t (setf (,target-ref ,target ,target-i)
219 (,source-ref ,source ,i))
220 (incf ,i)))
221 (incf ,target-i)))))
223 ;;; VECTOR-MERGE-SORT is the same algorithm used to stable sort lists,
224 ;;; but it uses a temporary vector. DIRECTION determines whether we
225 ;;; are merging into the temporary (T) or back into the given vector
226 ;;; (NIL).
227 (sb!xc:defmacro vector-merge-sort (vector pred key vector-ref)
228 (with-unique-names
229 (vector-len n direction unsorted start-1 end-1 end-2 temp temp-len i)
230 `(let* ((,vector-len (length (the vector ,vector)))
231 (,n 1) ; bottom-up size of contiguous runs to be merged
232 (,direction t) ; t vector --> temp nil temp --> vector
233 (,temp *merge-sort-temp-vector*)
234 (,temp-len (length ,temp))
235 (,unsorted 0) ; unsorted..vector-len are the elements that need
236 ; to be merged for a given n
237 (,start-1 0)) ; one n-len subsequence to be merged with the next
238 (declare (fixnum ,vector-len ,n ,temp-len ,unsorted ,start-1)
239 (simple-vector ,temp))
240 (if (> ,vector-len ,temp-len)
241 (setf ,temp (make-array (max ,vector-len
242 (min most-positive-fixnum
243 (+ ,temp-len ,temp-len))))
244 *merge-sort-temp-vector* ,temp))
245 ;; rebind, in case PRED or KEY calls STABLE-SORT
246 (let ((*merge-sort-temp-vector* (vector)))
247 (loop
248 ;; for each n, we start taking n-runs from the start of the vector
249 (setf ,unsorted 0)
250 (loop
251 (setf ,start-1 ,unsorted)
252 (let ((,end-1 (+ ,start-1 ,n)))
253 (declare (fixnum ,end-1))
254 (cond ((< ,end-1 ,vector-len)
255 ;; there are enough elements for a second run
256 (let ((,end-2 (+ ,end-1 ,n)))
257 (declare (fixnum ,end-2))
258 (if (> ,end-2 ,vector-len) (setf ,end-2 ,vector-len))
259 (setf ,unsorted ,end-2)
260 (if ,direction
261 (stable-sort-merge-vectors*
262 ,vector ,temp
263 ,start-1 ,end-1 ,end-2 ,pred ,key ,vector-ref svref)
264 (stable-sort-merge-vectors*
265 ,temp ,vector
266 ,start-1 ,end-1 ,end-2 ,pred ,key svref ,vector-ref))
267 (if (= ,unsorted ,vector-len) (return))))
268 ;; if there is only one run, copy those elements to the end
269 (t (if ,direction
270 (do ((,i ,start-1 (1+ ,i)))
271 ((= ,i ,vector-len))
272 (declare (fixnum ,i))
273 (setf (svref ,temp ,i)
274 (,vector-ref ,vector ,i)))
275 (do ((,i ,start-1 (1+ ,i)))
276 ((= ,i ,vector-len))
277 (declare (fixnum ,i))
278 (setf (,vector-ref ,vector ,i)
279 (svref ,temp ,i))))
280 (return)))))
281 ;; If the inner loop only executed once, then there were only enough
282 ;; elements for two subsequences given n, so all the elements have
283 ;; been merged into one list. Start-1 will have remained 0 upon exit.
284 (when (zerop ,start-1)
285 (if ,direction
286 ;; if we just merged into the temporary, copy it all back
287 ;; to the given vector.
288 (dotimes (,i ,vector-len)
289 (setf (,vector-ref ,vector ,i)
290 (svref ,temp ,i))))
291 (return ,vector))
292 (setf ,n (ash ,n 1)) ; (* 2 n)
293 (setf ,direction (not ,direction)))))))
295 ) ; EVAL-when
297 ;;; temporary vector for stable sorting vectors, allocated for each new thread
298 (defvar *merge-sort-temp-vector* (make-array 50))
300 (declaim (simple-vector *merge-sort-temp-vector*))
302 (defun stable-sort-simple-vector (vector pred key)
303 (declare (type simple-vector vector)
304 (type function pred)
305 (type (or null function) key))
306 (vector-merge-sort vector pred key svref))
308 (defun stable-sort-vector (vector pred key)
309 (declare (type function pred)
310 (type (or null function) key))
311 (vector-merge-sort vector pred key aref))
313 ;;;; merging
315 (eval-when (:compile-toplevel :execute)
317 ;;; MERGE-VECTORS returns a new vector which contains an interleaving
318 ;;; of the elements of VECTOR-1 and VECTOR-2. Elements from VECTOR-2
319 ;;; are chosen only if they are strictly less than elements of
320 ;;; VECTOR-1, (PRED ELT-2 ELT-1), as specified in the manual.
321 (sb!xc:defmacro merge-vectors (vector-1 length-1 vector-2 length-2
322 result-vector pred key access)
323 (let ((result-i (gensym))
324 (i (gensym))
325 (j (gensym)))
326 `(let* ((,result-i 0)
327 (,i 0)
328 (,j 0))
329 (declare (fixnum ,result-i ,i ,j))
330 (loop
331 (cond ((= ,i ,length-1)
332 (loop (if (= ,j ,length-2) (return))
333 (setf (,access ,result-vector ,result-i)
334 (,access ,vector-2 ,j))
335 (incf ,result-i)
336 (incf ,j))
337 (return ,result-vector))
338 ((= ,j ,length-2)
339 (loop (if (= ,i ,length-1) (return))
340 (setf (,access ,result-vector ,result-i)
341 (,access ,vector-1 ,i))
342 (incf ,result-i)
343 (incf ,i))
344 (return ,result-vector))
345 ((funcall2-using-key ,pred ,key
346 (,access ,vector-2 ,j) (,access ,vector-1 ,i))
347 (setf (,access ,result-vector ,result-i)
348 (,access ,vector-2 ,j))
349 (incf ,j))
350 (t (setf (,access ,result-vector ,result-i)
351 (,access ,vector-1 ,i))
352 (incf ,i)))
353 (incf ,result-i)))))
355 ) ; EVAL-WHEN
357 (defun merge (result-type sequence1 sequence2 predicate &key key)
358 #!+sb-doc
359 "Merge the sequences SEQUENCE1 and SEQUENCE2 destructively into a
360 sequence of type RESULT-TYPE using PREDICATE to order the elements."
361 ;; FIXME: This implementation is remarkably inefficient in various
362 ;; ways. In decreasing order of estimated user astonishment, I note:
363 ;; full calls to SPECIFIER-TYPE at runtime; copying input vectors
364 ;; to lists before doing MERGE-LISTS*; and walking input lists
365 ;; (because of the call to MERGE-LISTS*, which walks the list to
366 ;; find the last element for its second return value) even in cases
367 ;; like (MERGE 'LIST (LIST 1) (LIST 2 3 4 5 ... 1000)) where one list
368 ;; can be largely ignored. -- WHN 2003-01-05
369 (let ((type (specifier-type result-type)))
370 (cond
371 ((csubtypep type (specifier-type 'list))
372 ;; the VECTOR clause, below, goes through MAKE-SEQUENCE, so
373 ;; benefits from the error checking there. Short of
374 ;; reimplementing everything, we can't do the same for the LIST
375 ;; case, so do relevant length checking here:
376 (let ((s1 (coerce sequence1 'list))
377 (s2 (coerce sequence2 'list))
378 (pred-fun (%coerce-callable-to-fun predicate))
379 (key-fun (if key
380 (%coerce-callable-to-fun key)
381 #'identity)))
382 (when (type= type (specifier-type 'list))
383 (return-from merge (values (merge-lists* s1 s2 pred-fun key-fun))))
384 (when (eq type *empty-type*)
385 (bad-sequence-type-error nil))
386 (when (type= type (specifier-type 'null))
387 (if (and (null s1) (null s2))
388 (return-from merge 'nil)
389 ;; FIXME: This will break on circular lists (as,
390 ;; indeed, will the whole MERGE function).
391 (sequence-type-length-mismatch-error type
392 (+ (length s1)
393 (length s2)))))
394 (if (cons-type-p type)
395 (multiple-value-bind (min exactp)
396 (sb!kernel::cons-type-length-info type)
397 (let ((length (+ (length s1) (length s2))))
398 (if exactp
399 (unless (= length min)
400 (sequence-type-length-mismatch-error type length))
401 (unless (>= length min)
402 (sequence-type-length-mismatch-error type length)))
403 (values (merge-lists* s1 s2 pred-fun key-fun))))
404 (sequence-type-too-hairy result-type))))
405 ((csubtypep type (specifier-type 'vector))
406 (let* ((vector-1 (coerce sequence1 'vector))
407 (vector-2 (coerce sequence2 'vector))
408 (length-1 (length vector-1))
409 (length-2 (length vector-2))
410 (result (make-sequence result-type (+ length-1 length-2))))
411 (declare (vector vector-1 vector-2)
412 (fixnum length-1 length-2))
413 (if (and (simple-vector-p result)
414 (simple-vector-p vector-1)
415 (simple-vector-p vector-2))
416 (merge-vectors vector-1 length-1 vector-2 length-2
417 result predicate key svref)
418 (merge-vectors vector-1 length-1 vector-2 length-2
419 result predicate key aref))))
420 ((and (csubtypep type (specifier-type 'sequence))
421 (find-class result-type nil))
422 (let* ((vector-1 (coerce sequence1 'vector))
423 (vector-2 (coerce sequence2 'vector))
424 (length-1 (length vector-1))
425 (length-2 (length vector-2))
426 (temp (make-array (+ length-1 length-2)))
427 (result (make-sequence result-type (+ length-1 length-2))))
428 (declare (vector vector-1 vector-2) (fixnum length-1 length-2))
429 (merge-vectors vector-1 length-1 vector-2 length-2
430 temp predicate key aref)
431 (replace result temp)
432 result))
433 (t (bad-sequence-type-error result-type)))))