0.8.18.33:
[sbcl/lichteblau.git] / src / compiler / ir1tran-lambda.lisp
blob75c81eab4868abc519bf7146e68080befb34c646
1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
3 ;;;; (IR1).
5 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; more information.
7 ;;;;
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
14 (in-package "SB!C")
16 ;;;; LAMBDA hackery
18 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
19 ;;;; function representation" before you seriously mess with this
20 ;;;; stuff.
22 ;;; Verify that the NAME is a legal name for a variable and return a
23 ;;; VAR structure for it, filling in info if it is globally special.
24 ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
25 ;;; list of names which have previously been bound. If the NAME is in
26 ;;; this list, then we error out.
27 (declaim (ftype (sfunction (t list) lambda-var) varify-lambda-arg))
28 (defun varify-lambda-arg (name names-so-far)
29 (declare (inline member))
30 (unless (symbolp name)
31 (compiler-error "The lambda variable ~S is not a symbol." name))
32 (when (member name names-so-far :test #'eq)
33 (compiler-error "The variable ~S occurs more than once in the lambda list."
34 name))
35 (let ((kind (info :variable :kind name)))
36 (when (or (keywordp name) (eq kind :constant))
37 (compiler-error "The name of the lambda variable ~S is already in use to name a constant."
38 name))
39 (cond ((eq kind :special)
40 (let ((specvar (find-free-var name)))
41 (make-lambda-var :%source-name name
42 :type (leaf-type specvar)
43 :where-from (leaf-where-from specvar)
44 :specvar specvar)))
46 (make-lambda-var :%source-name name)))))
48 ;;; Make the default keyword for a &KEY arg, checking that the keyword
49 ;;; isn't already used by one of the VARS.
50 (declaim (ftype (sfunction (symbol list t) symbol) make-keyword-for-arg))
51 (defun make-keyword-for-arg (symbol vars keywordify)
52 (let ((key (if (and keywordify (not (keywordp symbol)))
53 (keywordicate symbol)
54 symbol)))
55 (dolist (var vars)
56 (let ((info (lambda-var-arg-info var)))
57 (when (and info
58 (eq (arg-info-kind info) :keyword)
59 (eq (arg-info-key info) key))
60 (compiler-error
61 "The keyword ~S appears more than once in the lambda list."
62 key))))
63 key))
65 ;;; Parse a lambda list into a list of VAR structures, stripping off
66 ;;; any &AUX bindings. Each arg name is checked for legality, and
67 ;;; duplicate names are checked for. If an arg is globally special,
68 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
69 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
70 ;;; which contains the extra information. If we hit something losing,
71 ;;; we bug out with COMPILER-ERROR. These values are returned:
72 ;;; 1. a list of the var structures for each top level argument;
73 ;;; 2. a flag indicating whether &KEY was specified;
74 ;;; 3. a flag indicating whether other &KEY args are allowed;
75 ;;; 4. a list of the &AUX variables; and
76 ;;; 5. a list of the &AUX values.
77 (declaim (ftype (sfunction (list) (values list boolean boolean list list))
78 make-lambda-vars))
79 (defun make-lambda-vars (list)
80 (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
81 morep more-context more-count)
82 (parse-lambda-list list)
83 (declare (ignore auxp)) ; since we just iterate over AUX regardless
84 (collect ((vars)
85 (names-so-far)
86 (aux-vars)
87 (aux-vals))
88 (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
89 ;; for optionals and keywords args.
90 (parse-default (spec info)
91 (when (consp (cdr spec))
92 (setf (arg-info-default info) (second spec))
93 (when (consp (cddr spec))
94 (let* ((supplied-p (third spec))
95 (supplied-var (varify-lambda-arg supplied-p
96 (names-so-far))))
97 (setf (arg-info-supplied-p info) supplied-var)
98 (names-so-far supplied-p)
99 (when (> (length (the list spec)) 3)
100 (compiler-error
101 "The list ~S is too long to be an arg specifier."
102 spec)))))))
104 (dolist (name required)
105 (let ((var (varify-lambda-arg name (names-so-far))))
106 (vars var)
107 (names-so-far name)))
109 (dolist (spec optional)
110 (if (atom spec)
111 (let ((var (varify-lambda-arg spec (names-so-far))))
112 (setf (lambda-var-arg-info var)
113 (make-arg-info :kind :optional))
114 (vars var)
115 (names-so-far spec))
116 (let* ((name (first spec))
117 (var (varify-lambda-arg name (names-so-far)))
118 (info (make-arg-info :kind :optional)))
119 (setf (lambda-var-arg-info var) info)
120 (vars var)
121 (names-so-far name)
122 (parse-default spec info))))
124 (when restp
125 (let ((var (varify-lambda-arg rest (names-so-far))))
126 (setf (lambda-var-arg-info var) (make-arg-info :kind :rest))
127 (vars var)
128 (names-so-far rest)))
130 (when morep
131 (let ((var (varify-lambda-arg more-context (names-so-far))))
132 (setf (lambda-var-arg-info var)
133 (make-arg-info :kind :more-context))
134 (vars var)
135 (names-so-far more-context))
136 (let ((var (varify-lambda-arg more-count (names-so-far))))
137 (setf (lambda-var-arg-info var)
138 (make-arg-info :kind :more-count))
139 (vars var)
140 (names-so-far more-count)))
142 (dolist (spec keys)
143 (cond
144 ((atom spec)
145 (let ((var (varify-lambda-arg spec (names-so-far))))
146 (setf (lambda-var-arg-info var)
147 (make-arg-info :kind :keyword
148 :key (make-keyword-for-arg spec
149 (vars)
150 t)))
151 (vars var)
152 (names-so-far spec)))
153 ((atom (first spec))
154 (let* ((name (first spec))
155 (var (varify-lambda-arg name (names-so-far)))
156 (info (make-arg-info
157 :kind :keyword
158 :key (make-keyword-for-arg name (vars) t))))
159 (setf (lambda-var-arg-info var) info)
160 (vars var)
161 (names-so-far name)
162 (parse-default spec info)))
164 (let ((head (first spec)))
165 (unless (proper-list-of-length-p head 2)
166 (error "malformed &KEY argument specifier: ~S" spec))
167 (let* ((name (second head))
168 (var (varify-lambda-arg name (names-so-far)))
169 (info (make-arg-info
170 :kind :keyword
171 :key (make-keyword-for-arg (first head)
172 (vars)
173 nil))))
174 (setf (lambda-var-arg-info var) info)
175 (vars var)
176 (names-so-far name)
177 (parse-default spec info))))))
179 (dolist (spec aux)
180 (cond ((atom spec)
181 (let ((var (varify-lambda-arg spec nil)))
182 (aux-vars var)
183 (aux-vals nil)
184 (names-so-far spec)))
186 (unless (proper-list-of-length-p spec 1 2)
187 (compiler-error "malformed &AUX binding specifier: ~S"
188 spec))
189 (let* ((name (first spec))
190 (var (varify-lambda-arg name nil)))
191 (aux-vars var)
192 (aux-vals (second spec))
193 (names-so-far name)))))
195 (values (vars) keyp allowp (aux-vars) (aux-vals))))))
197 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
198 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
199 ;;; converting the body. If there are no bindings, just convert the
200 ;;; body, otherwise do one binding and recurse on the rest.
202 ;;; FIXME: This could and probably should be converted to use
203 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
204 ;;; so I'm not motivated. Patches will be accepted...
205 (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals)
206 (declare (type ctran start next) (type (or lvar null) result)
207 (list body aux-vars aux-vals))
208 (if (null aux-vars)
209 (ir1-convert-progn-body start next result body)
210 (let ((ctran (make-ctran))
211 (fun-lvar (make-lvar))
212 (fun (ir1-convert-lambda-body body
213 (list (first aux-vars))
214 :aux-vars (rest aux-vars)
215 :aux-vals (rest aux-vals)
216 :debug-name (debug-namify
217 "&AUX bindings "
218 aux-vars))))
219 (reference-leaf start ctran fun-lvar fun)
220 (ir1-convert-combination-args fun-lvar ctran next result
221 (list (first aux-vals)))))
222 (values))
224 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
225 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
226 ;;; around the body. If there are no special bindings, we just convert
227 ;;; the body, otherwise we do one special binding and recurse on the
228 ;;; rest.
230 ;;; We make a cleanup and introduce it into the lexical
231 ;;; environment. If there are multiple special bindings, the cleanup
232 ;;; for the blocks will end up being the innermost one. We force NEXT
233 ;;; to start a block outside of this cleanup, causing cleanup code to
234 ;;; be emitted when the scope is exited.
235 (defun ir1-convert-special-bindings
236 (start next result body aux-vars aux-vals svars)
237 (declare (type ctran start next) (type (or lvar null) result)
238 (list body aux-vars aux-vals svars))
239 (cond
240 ((null svars)
241 (ir1-convert-aux-bindings start next result body aux-vars aux-vals))
243 (ctran-starts-block next)
244 (let ((cleanup (make-cleanup :kind :special-bind))
245 (var (first svars))
246 (bind-ctran (make-ctran))
247 (cleanup-ctran (make-ctran)))
248 (ir1-convert start bind-ctran nil
249 `(%special-bind ',(lambda-var-specvar var) ,var))
250 (setf (cleanup-mess-up cleanup) (ctran-use bind-ctran))
251 (let ((*lexenv* (make-lexenv :cleanup cleanup)))
252 (ir1-convert bind-ctran cleanup-ctran nil '(%cleanup-point))
253 (ir1-convert-special-bindings cleanup-ctran next result
254 body aux-vars aux-vals
255 (rest svars))))))
256 (values))
258 ;;; Create a lambda node out of some code, returning the result. The
259 ;;; bindings are specified by the list of VAR structures VARS. We deal
260 ;;; with adding the names to the LEXENV-VARS for the conversion. The
261 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
262 ;;; and linked to the component head and tail.
264 ;;; We detect special bindings here, replacing the original VAR in the
265 ;;; lambda list with a temporary variable. We then pass a list of the
266 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
267 ;;; the special binding code.
269 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
270 ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT.
272 ;;; AUX-VARS is a list of VAR structures for variables that are to be
273 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
274 ;;; to get the initial value for the corresponding AUX-VAR.
275 (defun ir1-convert-lambda-body (body
276 vars
277 &key
278 aux-vars
279 aux-vals
280 (source-name '.anonymous.)
281 debug-name
282 (note-lexical-bindings t))
283 (declare (list body vars aux-vars aux-vals))
285 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
286 (aver-live-component *current-component*)
288 (let* ((bind (make-bind))
289 (lambda (make-lambda :vars vars
290 :bind bind
291 :%source-name source-name
292 :%debug-name debug-name))
293 (result-ctran (make-ctran))
294 (result-lvar (make-lvar)))
296 (awhen (lexenv-lambda *lexenv*)
297 (push lambda (lambda-children it))
298 (setf (lambda-parent lambda) it))
300 ;; just to check: This function should fail internal assertions if
301 ;; we didn't set up a valid debug name above.
303 ;; (In SBCL we try to make everything have a debug name, since we
304 ;; lack the omniscient perspective the original implementors used
305 ;; to decide which things didn't need one.)
306 (functional-debug-name lambda)
308 (setf (lambda-home lambda) lambda)
309 (collect ((svars)
310 (new-venv nil cons))
312 (dolist (var vars)
313 ;; As far as I can see, LAMBDA-VAR-HOME should never have
314 ;; been set before. Let's make sure. -- WHN 2001-09-29
315 (aver (not (lambda-var-home var)))
316 (setf (lambda-var-home var) lambda)
317 (let ((specvar (lambda-var-specvar var)))
318 (cond (specvar
319 (svars var)
320 (new-venv (cons (leaf-source-name specvar) specvar)))
322 (when note-lexical-bindings
323 (note-lexical-binding (leaf-source-name var)))
324 (new-venv (cons (leaf-source-name var) var))))))
326 (let ((*lexenv* (make-lexenv :vars (new-venv)
327 :lambda lambda
328 :cleanup nil)))
329 (setf (bind-lambda bind) lambda)
330 (setf (node-lexenv bind) *lexenv*)
332 (let ((block (ctran-starts-block result-ctran)))
333 (let ((return (make-return :result result-lvar :lambda lambda))
334 (tail-set (make-tail-set :funs (list lambda))))
335 (setf (lambda-tail-set lambda) tail-set)
336 (setf (lambda-return lambda) return)
337 (setf (lvar-dest result-lvar) return)
338 (link-node-to-previous-ctran return result-ctran)
339 (setf (block-last block) return))
340 (link-blocks block (component-tail *current-component*)))
342 (with-component-last-block (*current-component*
343 (ctran-block result-ctran))
344 (let ((prebind-ctran (make-ctran))
345 (postbind-ctran (make-ctran)))
346 (ctran-starts-block prebind-ctran)
347 (link-node-to-previous-ctran bind prebind-ctran)
348 (use-ctran bind postbind-ctran)
349 (ir1-convert-special-bindings postbind-ctran result-ctran
350 result-lvar body
351 aux-vars aux-vals (svars))))))
353 (link-blocks (component-head *current-component*) (node-block bind))
354 (push lambda (component-new-functionals *current-component*))
356 lambda))
358 ;;; Entry point CLAMBDAs have a special kind
359 (defun register-entry-point (entry dispatcher)
360 (declare (type clambda entry)
361 (type optional-dispatch dispatcher))
362 (setf (functional-kind entry) :optional)
363 (setf (leaf-ever-used entry) t)
364 (setf (lambda-optional-dispatch entry) dispatcher)
365 entry)
367 ;;; Create the actual entry-point function for an optional entry
368 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
369 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
370 ;;; to the VARS by name. The VALS are passed in the reverse order.
372 ;;; If any of the copies of the vars are referenced more than once,
373 ;;; then we mark the corresponding var as EVER-USED to inhibit
374 ;;; "defined but not read" warnings for arguments that are only used
375 ;;; by default forms.
376 (defun convert-optional-entry (fun vars vals defaults)
377 (declare (type clambda fun) (list vars vals defaults))
378 (let* ((fvars (reverse vars))
379 (arg-vars (mapcar (lambda (var)
380 (make-lambda-var
381 :%source-name (leaf-source-name var)
382 :type (leaf-type var)
383 :where-from (leaf-where-from var)
384 :specvar (lambda-var-specvar var)))
385 fvars))
386 (fun (collect ((default-bindings)
387 (default-vals))
388 (dolist (default defaults)
389 (if (constantp default)
390 (default-vals default)
391 (let ((var (gensym)))
392 (default-bindings `(,var ,default))
393 (default-vals var))))
394 (ir1-convert-lambda-body `((let (,@(default-bindings))
395 (%funcall ,fun
396 ,@(reverse vals)
397 ,@(default-vals))))
398 arg-vars
399 :debug-name
400 (debug-namify "&OPTIONAL processor "
401 (gensym))
402 :note-lexical-bindings nil))))
403 (mapc (lambda (var arg-var)
404 (when (cdr (leaf-refs arg-var))
405 (setf (leaf-ever-used var) t)))
406 fvars arg-vars)
407 fun))
409 ;;; This function deals with supplied-p vars in optional arguments. If
410 ;;; the there is no supplied-p arg, then we just call
411 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
412 ;;; optional entry that calls the result. If there is a supplied-p
413 ;;; var, then we add it into the default vars and throw a T into the
414 ;;; entry values. The resulting entry point function is returned.
415 (defun generate-optional-default-entry (res default-vars default-vals
416 entry-vars entry-vals
417 vars supplied-p-p body
418 aux-vars aux-vals
419 source-name debug-name
420 force)
421 (declare (type optional-dispatch res)
422 (list default-vars default-vals entry-vars entry-vals vars body
423 aux-vars aux-vals))
424 (let* ((arg (first vars))
425 (arg-name (leaf-source-name arg))
426 (info (lambda-var-arg-info arg))
427 (default (arg-info-default info))
428 (supplied-p (arg-info-supplied-p info))
429 (force (or force
430 (not (sb!xc:constantp (arg-info-default info)))))
431 (ep (if supplied-p
432 (ir1-convert-hairy-args
434 (list* supplied-p arg default-vars)
435 (list* (leaf-source-name supplied-p) arg-name default-vals)
436 (cons arg entry-vars)
437 (list* t arg-name entry-vals)
438 (rest vars) t body aux-vars aux-vals
439 source-name debug-name
440 force)
441 (ir1-convert-hairy-args
443 (cons arg default-vars)
444 (cons arg-name default-vals)
445 (cons arg entry-vars)
446 (cons arg-name entry-vals)
447 (rest vars) supplied-p-p body aux-vars aux-vals
448 source-name debug-name
449 force))))
451 ;; We want to delay converting the entry, but there exist
452 ;; problems: hidden references should not be established to
453 ;; lambdas of kind NIL should not have (otherwise the compiler
454 ;; might let-convert or delete them) and to variables.
455 (if (or force
456 supplied-p-p ; this entry will be of kind NIL
457 (and (lambda-p ep) (eq (lambda-kind ep) nil)))
458 (convert-optional-entry ep
459 default-vars default-vals
460 (if supplied-p
461 (list default nil)
462 (list default)))
463 (delay
464 (register-entry-point
465 (convert-optional-entry (force ep)
466 default-vars default-vals
467 (if supplied-p
468 (list default nil)
469 (list default)))
470 res)))))
472 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
473 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
474 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
476 ;;; The most interesting thing that we do is parse keywords. We create
477 ;;; a bunch of temporary variables to hold the result of the parse,
478 ;;; and then loop over the supplied arguments, setting the appropriate
479 ;;; temps for the supplied keyword. Note that it is significant that
480 ;;; we iterate over the keywords in reverse order --- this implements
481 ;;; the CL requirement that (when a keyword appears more than once)
482 ;;; the first value is used.
484 ;;; If there is no supplied-p var, then we initialize the temp to the
485 ;;; default and just pass the temp into the main entry. Since
486 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
487 ;;; know that the default is constant, and thus safe to evaluate out
488 ;;; of order.
490 ;;; If there is a supplied-p var, then we create temps for both the
491 ;;; value and the supplied-p, and pass them into the main entry,
492 ;;; letting it worry about defaulting.
494 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
495 ;;; until we have scanned all the keywords.
496 (defun convert-more-entry (res entry-vars entry-vals rest morep keys)
497 (declare (type optional-dispatch res) (list entry-vars entry-vals keys))
498 (collect ((arg-vars)
499 (arg-vals (reverse entry-vals))
500 (temps)
501 (body))
503 (dolist (var (reverse entry-vars))
504 (arg-vars (make-lambda-var :%source-name (leaf-source-name var)
505 :type (leaf-type var)
506 :where-from (leaf-where-from var))))
508 (let* ((*allow-instrumenting* nil)
509 (n-context (gensym "N-CONTEXT-"))
510 (context-temp (make-lambda-var :%source-name n-context))
511 (n-count (gensym "N-COUNT-"))
512 (count-temp (make-lambda-var :%source-name n-count
513 :type (specifier-type 'index))))
515 (arg-vars context-temp count-temp)
517 (when rest
518 (arg-vals `(%listify-rest-args
519 ,n-context ,n-count)))
520 (when morep
521 (arg-vals n-context)
522 (arg-vals n-count))
524 (when (optional-dispatch-keyp res)
525 (let ((n-index (gensym "N-INDEX-"))
526 (n-key (gensym "N-KEY-"))
527 (n-value-temp (gensym "N-VALUE-TEMP-"))
528 (n-allowp (gensym "N-ALLOWP-"))
529 (n-losep (gensym "N-LOSEP-"))
530 (allowp (or (optional-dispatch-allowp res)
531 (policy *lexenv* (zerop safety))))
532 (found-allow-p nil))
534 (temps `(,n-index (1- ,n-count)) n-key n-value-temp)
535 (body `(declare (fixnum ,n-index) (ignorable ,n-key ,n-value-temp)))
537 (collect ((tests))
538 (dolist (key keys)
539 (let* ((info (lambda-var-arg-info key))
540 (default (arg-info-default info))
541 (keyword (arg-info-key info))
542 (supplied-p (arg-info-supplied-p info))
543 (n-value (gensym "N-VALUE-"))
544 (clause (cond (supplied-p
545 (let ((n-supplied (gensym "N-SUPPLIED-")))
546 (temps n-supplied)
547 (arg-vals n-value n-supplied)
548 `((eq ,n-key ',keyword)
549 (setq ,n-supplied t)
550 (setq ,n-value ,n-value-temp))))
552 (arg-vals n-value)
553 `((eq ,n-key ',keyword)
554 (setq ,n-value ,n-value-temp))))))
555 (when (and (not allowp) (eq keyword :allow-other-keys))
556 (setq found-allow-p t)
557 (setq clause
558 (append clause `((setq ,n-allowp ,n-value-temp)))))
560 (temps `(,n-value ,default))
561 (tests clause)))
563 (unless allowp
564 (temps n-allowp n-losep)
565 (unless found-allow-p
566 (tests `((eq ,n-key :allow-other-keys)
567 (setq ,n-allowp ,n-value-temp))))
568 (tests `(t
569 (setq ,n-losep (list ,n-key)))))
571 (body
572 `(when (oddp ,n-count)
573 (%odd-key-args-error)))
575 (body
576 `(locally
577 (declare (optimize (safety 0)))
578 (loop
579 (when (minusp ,n-index) (return))
580 (setf ,n-value-temp (%more-arg ,n-context ,n-index))
581 (decf ,n-index)
582 (setq ,n-key (%more-arg ,n-context ,n-index))
583 (decf ,n-index)
584 (cond ,@(tests)))))
586 (unless allowp
587 (body `(when (and ,n-losep (not ,n-allowp))
588 (%unknown-key-arg-error (car ,n-losep))))))))
590 (let ((ep (ir1-convert-lambda-body
591 `((let ,(temps)
592 ,@(body)
593 (%funcall ,(optional-dispatch-main-entry res)
594 ,@(arg-vals))))
595 (arg-vars)
596 :debug-name "&MORE processing"
597 :note-lexical-bindings nil)))
598 (setf (optional-dispatch-more-entry res)
599 (register-entry-point ep res)))))
601 (values))
603 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
604 ;;; or &KEY arg. The arguments are similar to that function, but we
605 ;;; split off any &REST arg and pass it in separately. REST is the
606 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
607 ;;; the &KEY argument vars.
609 ;;; When there are &KEY arguments, we introduce temporary gensym
610 ;;; variables to hold the values while keyword defaulting is in
611 ;;; progress to get the required sequential binding semantics.
613 ;;; This gets interesting mainly when there are &KEY arguments with
614 ;;; supplied-p vars or non-constant defaults. In either case, pass in
615 ;;; a supplied-p var. If the default is non-constant, we introduce an
616 ;;; IF in the main entry that tests the supplied-p var and decides
617 ;;; whether to evaluate the default or not. In this case, the real
618 ;;; incoming value is NIL, so we must union NULL with the declared
619 ;;; type when computing the type for the main entry's argument.
620 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
621 rest more-context more-count keys supplied-p-p
622 body aux-vars aux-vals
623 source-name debug-name)
624 (declare (type optional-dispatch res)
625 (list default-vars default-vals entry-vars entry-vals keys body
626 aux-vars aux-vals))
627 (collect ((main-vars (reverse default-vars))
628 (main-vals default-vals cons)
629 (bind-vars)
630 (bind-vals))
631 (when rest
632 (main-vars rest)
633 (main-vals '()))
634 (when more-context
635 (main-vars more-context)
636 (main-vals nil)
637 (main-vars more-count)
638 (main-vals 0))
640 (dolist (key keys)
641 (let* ((info (lambda-var-arg-info key))
642 (default (arg-info-default info))
643 (hairy-default (not (sb!xc:constantp default)))
644 (supplied-p (arg-info-supplied-p info))
645 (n-val (make-symbol (format nil
646 "~A-DEFAULTING-TEMP"
647 (leaf-source-name key))))
648 (key-type (leaf-type key))
649 (val-temp (make-lambda-var
650 :%source-name n-val
651 :type (if hairy-default
652 (type-union key-type (specifier-type 'null))
653 key-type))))
654 (main-vars val-temp)
655 (bind-vars key)
656 (cond ((or hairy-default supplied-p)
657 (let* ((n-supplied (gensym "N-SUPPLIED-"))
658 (supplied-temp (make-lambda-var
659 :%source-name n-supplied)))
660 (unless supplied-p
661 (setf (arg-info-supplied-p info) supplied-temp))
662 (when hairy-default
663 (setf (arg-info-default info) nil))
664 (main-vars supplied-temp)
665 (cond (hairy-default
666 (main-vals nil nil)
667 (bind-vals `(if ,n-supplied ,n-val ,default)))
669 (main-vals default nil)
670 (bind-vals n-val)))
671 (when supplied-p
672 (bind-vars supplied-p)
673 (bind-vals n-supplied))))
675 (main-vals (arg-info-default info))
676 (bind-vals n-val)))))
678 (let* ((main-entry (ir1-convert-lambda-body
679 body (main-vars)
680 :aux-vars (append (bind-vars) aux-vars)
681 :aux-vals (append (bind-vals) aux-vals)
682 :debug-name (debug-namify
683 "varargs entry for " source-name debug-name)))
684 (last-entry (convert-optional-entry main-entry default-vars
685 (main-vals) ())))
686 (setf (optional-dispatch-main-entry res)
687 (register-entry-point main-entry res))
688 (convert-more-entry res entry-vars entry-vals rest more-context keys)
690 (push (register-entry-point
691 (if supplied-p-p
692 (convert-optional-entry last-entry entry-vars entry-vals ())
693 last-entry)
694 res)
695 (optional-dispatch-entry-points res))
696 last-entry)))
698 ;;; This function generates the entry point functions for the
699 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
700 ;;; of arguments, analyzing the arglist on the way down and generating
701 ;;; entry points on the way up.
703 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
704 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
705 ;;; names of the DEFAULT-VARS.
707 ;;; ENTRY-VARS is a reversed list of processed argument vars,
708 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
709 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
710 ;;; It has the var name for each required or optional arg, and has T
711 ;;; for each supplied-p arg.
713 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
714 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
715 ;;; argument has already been processed; only in this case are the
716 ;;; DEFAULT-XXX and ENTRY-XXX different.
718 ;;; The result at each point is a lambda which should be called by the
719 ;;; above level to default the remaining arguments and evaluate the
720 ;;; body. We cause the body to be evaluated by converting it and
721 ;;; returning it as the result when the recursion bottoms out.
723 ;;; Each level in the recursion also adds its entry point function to
724 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
725 ;;; function and the entry point function will be the same, but when
726 ;;; SUPPLIED-P args are present they may be different.
728 ;;; When we run into a &REST or &KEY arg, we punt out to
729 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
730 (defun ir1-convert-hairy-args (res default-vars default-vals
731 entry-vars entry-vals
732 vars supplied-p-p body aux-vars
733 aux-vals
734 source-name debug-name
735 force)
736 (declare (type optional-dispatch res)
737 (list default-vars default-vals entry-vars entry-vals vars body
738 aux-vars aux-vals))
739 (cond ((not vars)
740 (if (optional-dispatch-keyp res)
741 ;; Handle &KEY with no keys...
742 (ir1-convert-more res default-vars default-vals
743 entry-vars entry-vals
744 nil nil nil vars supplied-p-p body aux-vars
745 aux-vals source-name debug-name)
746 (let ((fun (ir1-convert-lambda-body
747 body (reverse default-vars)
748 :aux-vars aux-vars
749 :aux-vals aux-vals
750 :debug-name (debug-namify
751 "hairy arg processor for "
752 source-name
753 debug-name))))
754 (setf (optional-dispatch-main-entry res) fun)
755 (register-entry-point fun res)
756 (push (if supplied-p-p
757 (register-entry-point
758 (convert-optional-entry fun entry-vars entry-vals ())
759 res)
760 fun)
761 (optional-dispatch-entry-points res))
762 fun)))
763 ((not (lambda-var-arg-info (first vars)))
764 (let* ((arg (first vars))
765 (nvars (cons arg default-vars))
766 (nvals (cons (leaf-source-name arg) default-vals)))
767 (ir1-convert-hairy-args res nvars nvals nvars nvals
768 (rest vars) nil body aux-vars aux-vals
769 source-name debug-name
770 nil)))
772 (let* ((arg (first vars))
773 (info (lambda-var-arg-info arg))
774 (kind (arg-info-kind info)))
775 (ecase kind
776 (:optional
777 (let ((ep (generate-optional-default-entry
778 res default-vars default-vals
779 entry-vars entry-vals vars supplied-p-p body
780 aux-vars aux-vals
781 source-name debug-name
782 force)))
783 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
784 (push (if (lambda-p ep)
785 (register-entry-point
786 (if supplied-p-p
787 (convert-optional-entry ep entry-vars entry-vals ())
789 res)
790 (progn (aver (not supplied-p-p))
791 ep))
792 (optional-dispatch-entry-points res))
793 ep))
794 (:rest
795 (ir1-convert-more res default-vars default-vals
796 entry-vars entry-vals
797 arg nil nil (rest vars) supplied-p-p body
798 aux-vars aux-vals
799 source-name debug-name))
800 (:more-context
801 (ir1-convert-more res default-vars default-vals
802 entry-vars entry-vals
803 nil arg (second vars) (cddr vars) supplied-p-p
804 body aux-vars aux-vals
805 source-name debug-name))
806 (:keyword
807 (ir1-convert-more res default-vars default-vals
808 entry-vars entry-vals
809 nil nil nil vars supplied-p-p body aux-vars
810 aux-vals source-name debug-name)))))))
812 ;;; This function deals with the case where we have to make an
813 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
814 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
815 ;;; figure out the MIN-ARGS and MAX-ARGS.
816 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
817 &key
818 (source-name '.anonymous.)
819 (debug-name (debug-namify
820 "OPTIONAL-DISPATCH "
821 vars)))
822 (declare (list body vars aux-vars aux-vals))
823 (let ((res (make-optional-dispatch :arglist vars
824 :allowp allowp
825 :keyp keyp
826 :%source-name source-name
827 :%debug-name debug-name
828 :plist `(:ir1-environment
829 (,*lexenv*
830 ,*current-path*))))
831 (min (or (position-if #'lambda-var-arg-info vars) (length vars))))
832 (aver-live-component *current-component*)
833 (push res (component-new-functionals *current-component*))
834 (ir1-convert-hairy-args res () () () () vars nil body aux-vars aux-vals
835 source-name debug-name nil)
836 (setf (optional-dispatch-min-args res) min)
837 (setf (optional-dispatch-max-args res)
838 (+ (1- (length (optional-dispatch-entry-points res))) min))
840 res))
842 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
843 (defun ir1-convert-lambda (form &key (source-name '.anonymous.)
844 debug-name)
846 (unless (consp form)
847 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
848 (type-of form)
849 form))
850 (unless (eq (car form) 'lambda)
851 (compiler-error "~S was expected but ~S was found:~% ~S"
852 'lambda
853 (car form)
854 form))
855 (unless (and (consp (cdr form)) (listp (cadr form)))
856 (compiler-error
857 "The lambda expression has a missing or non-list lambda list:~% ~S"
858 form))
860 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals)
861 (make-lambda-vars (cadr form))
862 (multiple-value-bind (forms decls) (parse-body (cddr form))
863 (binding* (((*lexenv* result-type)
864 (process-decls decls (append aux-vars vars) nil))
865 (forms (if (and *allow-instrumenting*
866 (policy *lexenv* (>= insert-debug-catch 2)))
867 `((catch (locally (declare (optimize (insert-step-conditions 0)))
868 (make-symbol "SB-DEBUG-CATCH-TAG"))
869 ,@forms))
870 forms))
871 (forms (if (eq result-type *wild-type*)
872 forms
873 `((the ,result-type (progn ,@forms)))))
874 (res (if (or (find-if #'lambda-var-arg-info vars) keyp)
875 (ir1-convert-hairy-lambda forms vars keyp
876 allow-other-keys
877 aux-vars aux-vals
878 :source-name source-name
879 :debug-name debug-name)
880 (ir1-convert-lambda-body forms vars
881 :aux-vars aux-vars
882 :aux-vals aux-vals
883 :source-name source-name
884 :debug-name debug-name))))
885 (setf (functional-inline-expansion res) form)
886 (setf (functional-arg-documentation res) (cadr form))
887 res))))
889 ;;; helper for LAMBDA-like things, to massage them into a form
890 ;;; suitable for IR1-CONVERT-LAMBDA.
892 ;;; KLUDGE: We cons up a &REST list here, maybe for no particularly
893 ;;; good reason. It's probably lost in the noise of all the other
894 ;;; consing, but it's still inelegant. And we force our called
895 ;;; functions to do full runtime keyword parsing, ugh. -- CSR,
896 ;;; 2003-01-25
897 (defun ir1-convert-lambdalike (thing &rest args
898 &key (source-name '.anonymous.)
899 debug-name)
900 (declare (ignorable source-name debug-name))
901 (ecase (car thing)
902 ((lambda) (apply #'ir1-convert-lambda thing args))
903 ((instance-lambda)
904 (let ((res (apply #'ir1-convert-lambda
905 `(lambda ,@(cdr thing)) args)))
906 (setf (getf (functional-plist res) :fin-function) t)
907 res))
908 ((named-lambda)
909 (let ((name (cadr thing)))
910 (if (legal-fun-name-p name)
911 (let ((defined-fun-res (get-defined-fun name))
912 (res (apply #'ir1-convert-lambda `(lambda ,@(cddr thing))
913 :source-name name
914 :debug-name nil
915 args)))
916 (assert-global-function-definition-type name res)
917 (setf (defined-fun-functional defined-fun-res)
918 res)
919 (unless (eq (defined-fun-inlinep defined-fun-res) :notinline)
920 (substitute-leaf-if
921 (lambda (ref)
922 (policy ref (> recognize-self-calls 0)))
923 res defined-fun-res))
924 res)
925 (apply #'ir1-convert-lambda `(lambda ,@(cddr thing))
926 :debug-name name args))))
927 ((lambda-with-lexenv) (apply #'ir1-convert-inline-lambda thing args))))
929 ;;;; defining global functions
931 ;;; Convert FUN as a lambda in the null environment, but use the
932 ;;; current compilation policy. Note that FUN may be a
933 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
934 ;;; reflect the state at the definition site.
935 (defun ir1-convert-inline-lambda (fun &key
936 (source-name '.anonymous.)
937 debug-name)
938 (destructuring-bind (decls macros symbol-macros &rest body)
939 (if (eq (car fun) 'lambda-with-lexenv)
940 (cdr fun)
941 `(() () () . ,(cdr fun)))
942 (let ((*lexenv* (make-lexenv
943 :default (process-decls decls nil nil
944 (make-null-lexenv))
945 :vars (copy-list symbol-macros)
946 :funs (mapcar (lambda (x)
947 `(,(car x) .
948 (macro . ,(coerce (cdr x) 'function))))
949 macros)
950 :policy (lexenv-policy *lexenv*))))
951 (ir1-convert-lambda `(lambda ,@body)
952 :source-name source-name
953 :debug-name debug-name))))
955 ;;; Get a DEFINED-FUN object for a function we are about to define. If
956 ;;; the function has been forward referenced, then substitute for the
957 ;;; previous references.
958 (defun get-defined-fun (name)
959 (proclaim-as-fun-name name)
960 (let ((found (find-free-fun name "shouldn't happen! (defined-fun)")))
961 (note-name-defined name :function)
962 (cond ((not (defined-fun-p found))
963 (aver (not (info :function :inlinep name)))
964 (let* ((where-from (leaf-where-from found))
965 (res (make-defined-fun
966 :%source-name name
967 :where-from (if (eq where-from :declared)
968 :declared :defined)
969 :type (leaf-type found))))
970 (substitute-leaf res found)
971 (setf (gethash name *free-funs*) res)))
972 ;; If *FREE-FUNS* has a previously converted definition
973 ;; for this name, then blow it away and try again.
974 ((defined-fun-functional found)
975 (remhash name *free-funs*)
976 (get-defined-fun name))
977 (t found))))
979 ;;; Check a new global function definition for consistency with
980 ;;; previous declaration or definition, and assert argument/result
981 ;;; types if appropriate. This assertion is suppressed by the
982 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
983 ;;; check their argument types as a consequence of type dispatching.
984 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
985 (defun assert-new-definition (var fun)
986 (let ((type (leaf-type var))
987 (for-real (eq (leaf-where-from var) :declared))
988 (info (info :function :info (leaf-source-name var))))
989 (assert-definition-type
990 fun type
991 ;; KLUDGE: Common Lisp is such a dynamic language that in general
992 ;; all we can do here in general is issue a STYLE-WARNING. It
993 ;; would be nice to issue a full WARNING in the special case of
994 ;; of type mismatches within a compilation unit (as in section
995 ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't
996 ;; keep track of whether the mismatched data came from the same
997 ;; compilation unit, so we can't do that. -- WHN 2001-02-11
998 :lossage-fun #'compiler-style-warn
999 :unwinnage-fun (cond (info #'compiler-style-warn)
1000 (for-real #'compiler-notify)
1001 (t nil))
1002 :really-assert
1003 (and for-real
1004 (not (and info
1005 (ir1-attributep (fun-info-attributes info)
1006 explicit-check))))
1007 :where (if for-real
1008 "previous declaration"
1009 "previous definition"))))
1011 ;;; Convert a lambda doing all the basic stuff we would do if we were
1012 ;;; converting a DEFUN. In the old CMU CL system, this was used both
1013 ;;; by the %DEFUN translator and for global inline expansion, but
1014 ;;; since sbcl-0.pre7.something %DEFUN does things differently.
1015 ;;; FIXME: And now it's probably worth rethinking whether this
1016 ;;; function is a good idea.
1018 ;;; Unless a :INLINE function, we temporarily clobber the inline
1019 ;;; expansion. This prevents recursive inline expansion of
1020 ;;; opportunistic pseudo-inlines.
1021 (defun ir1-convert-lambda-for-defun (lambda var expansion converter)
1022 (declare (cons lambda) (function converter) (type defined-fun var))
1023 (let ((var-expansion (defined-fun-inline-expansion var)))
1024 (unless (eq (defined-fun-inlinep var) :inline)
1025 (setf (defined-fun-inline-expansion var) nil))
1026 (let* ((name (leaf-source-name var))
1027 (fun (funcall converter lambda
1028 :source-name name))
1029 (fun-info (info :function :info name)))
1030 (setf (functional-inlinep fun) (defined-fun-inlinep var))
1031 (assert-new-definition var fun)
1032 (setf (defined-fun-inline-expansion var) var-expansion)
1033 ;; If definitely not an interpreter stub, then substitute for
1034 ;; any old references.
1035 (unless (or (eq (defined-fun-inlinep var) :notinline)
1036 (not *block-compile*)
1037 (and fun-info
1038 (or (fun-info-transforms fun-info)
1039 (fun-info-templates fun-info)
1040 (fun-info-ir2-convert fun-info))))
1041 (substitute-leaf fun var)
1042 ;; If in a simple environment, then we can allow backward
1043 ;; references to this function from following top level forms.
1044 (when expansion (setf (defined-fun-functional var) fun)))
1045 fun)))
1047 ;;; the even-at-compile-time part of DEFUN
1049 ;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is
1050 ;;; no inline expansion.
1051 (defun %compiler-defun (name lambda-with-lexenv compile-toplevel)
1053 (let ((defined-fun nil)) ; will be set below if we're in the compiler
1055 (when compile-toplevel
1056 ;; better be in the compiler
1057 (aver (boundp '*lexenv*))
1058 (when sb!xc:*compile-print*
1059 (compiler-mumble "~&; recognizing DEFUN ~S~%" name))
1060 (remhash name *free-funs*)
1061 (setf defined-fun (get-defined-fun name))
1063 (aver (fasl-output-p *compile-object*))
1064 (if (member name *fun-names-in-this-file* :test #'equal)
1065 (warn 'duplicate-definition :name name)
1066 (push name *fun-names-in-this-file*)))
1068 (become-defined-fun-name name)
1070 (cond (lambda-with-lexenv
1071 (setf (info :function :inline-expansion-designator name)
1072 lambda-with-lexenv)
1073 (when defined-fun
1074 (setf (defined-fun-inline-expansion defined-fun)
1075 lambda-with-lexenv)))
1077 (clear-info :function :inline-expansion-designator name)))
1079 ;; old CMU CL comment:
1080 ;; If there is a type from a previous definition, blast it,
1081 ;; since it is obsolete.
1082 (when (and defined-fun
1083 (eq (leaf-where-from defined-fun) :defined))
1084 (setf (leaf-type defined-fun)
1085 ;; FIXME: If this is a block compilation thing, shouldn't
1086 ;; we be setting the type to the full derived type for the
1087 ;; definition, instead of this most general function type?
1088 (specifier-type 'function))))
1090 (values))
1093 ;;; Entry point utilities
1095 ;;; Return a function for the Nth entry point.
1096 (defun optional-dispatch-entry-point-fun (dispatcher n)
1097 (declare (type optional-dispatch dispatcher)
1098 (type unsigned-byte n))
1099 (let* ((env (getf (optional-dispatch-plist dispatcher) :ir1-environment))
1100 (*lexenv* (first env))
1101 (*current-path* (second env)))
1102 (force (nth n (optional-dispatch-entry-points dispatcher)))))