0.8.3.1
[sbcl/lichteblau.git] / src / runtime / interrupt.c
bloba2ad72ab99142556b1b70acf682b130781cbc017
1 /*
2 * interrupt-handling magic
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <signal.h>
49 #include "runtime.h"
50 #include "arch.h"
51 #include "sbcl.h"
52 #include "os.h"
53 #include "interrupt.h"
54 #include "globals.h"
55 #include "lispregs.h"
56 #include "validate.h"
57 #include "monitor.h"
58 #include "gc.h"
59 #include "alloc.h"
60 #include "dynbind.h"
61 #include "interr.h"
62 #include "genesis/fdefn.h"
63 #include "genesis/simple-fun.h"
65 void run_deferred_handler(struct interrupt_data *data, void *v_context) ;
66 static void store_signal_data_for_later (struct interrupt_data *data,
67 void *handler, int signal,
68 siginfo_t *info,
69 os_context_t *context);
70 boolean interrupt_maybe_gc_int(int signal, siginfo_t *info, void *v_context);
72 extern lispobj all_threads_lock;
73 extern int countdown_to_gc;
76 * This is a workaround for some slightly silly Linux/GNU Libc
77 * behaviour: glibc defines sigset_t to support 1024 signals, which is
78 * more than the kernel. This is usually not a problem, but becomes
79 * one when we want to save a signal mask from a ucontext, and restore
80 * it later into another ucontext: the ucontext is allocated on the
81 * stack by the kernel, so copying a libc-sized sigset_t into it will
82 * overflow and cause other data on the stack to be corrupted */
84 #define REAL_SIGSET_SIZE_BYTES ((NSIG/8))
86 void sigaddset_blockable(sigset_t *s)
88 sigaddset(s, SIGHUP);
89 sigaddset(s, SIGINT);
90 sigaddset(s, SIGQUIT);
91 sigaddset(s, SIGPIPE);
92 sigaddset(s, SIGALRM);
93 sigaddset(s, SIGURG);
94 sigaddset(s, SIGFPE);
95 sigaddset(s, SIGTSTP);
96 sigaddset(s, SIGCHLD);
97 sigaddset(s, SIGIO);
98 sigaddset(s, SIGXCPU);
99 sigaddset(s, SIGXFSZ);
100 sigaddset(s, SIGVTALRM);
101 sigaddset(s, SIGPROF);
102 sigaddset(s, SIGWINCH);
103 sigaddset(s, SIGUSR1);
104 sigaddset(s, SIGUSR2);
105 #ifdef LISP_FEATURE_SB_THREAD
106 /* don't block STOP_FOR_GC, we need to be able to interrupt threads
107 * for GC purposes even when they are blocked on queues etc */
108 sigaddset(s, SIG_INTERRUPT_THREAD);
109 #endif
112 /* When we catch an internal error, should we pass it back to Lisp to
113 * be handled in a high-level way? (Early in cold init, the answer is
114 * 'no', because Lisp is still too brain-dead to handle anything.
115 * After sufficient initialization has been completed, the answer
116 * becomes 'yes'.) */
117 boolean internal_errors_enabled = 0;
119 struct interrupt_data * global_interrupt_data;
123 * utility routines used by various signal handlers
126 void
127 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
129 #ifndef LISP_FEATURE_X86
131 lispobj oldcont;
133 /* Build a fake stack frame or frames */
135 current_control_frame_pointer =
136 (lispobj *)(*os_context_register_addr(context, reg_CSP));
137 if ((lispobj *)(*os_context_register_addr(context, reg_CFP))
138 == current_control_frame_pointer) {
139 /* There is a small window during call where the callee's
140 * frame isn't built yet. */
141 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
142 == FUN_POINTER_LOWTAG) {
143 /* We have called, but not built the new frame, so
144 * build it for them. */
145 current_control_frame_pointer[0] =
146 *os_context_register_addr(context, reg_OCFP);
147 current_control_frame_pointer[1] =
148 *os_context_register_addr(context, reg_LRA);
149 current_control_frame_pointer += 8;
150 /* Build our frame on top of it. */
151 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
153 else {
154 /* We haven't yet called, build our frame as if the
155 * partial frame wasn't there. */
156 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
159 /* We can't tell whether we are still in the caller if it had to
160 * allocate a stack frame due to stack arguments. */
161 /* This observation provoked some past CMUCL maintainer to ask
162 * "Can anything strange happen during return?" */
163 else {
164 /* normal case */
165 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
168 current_control_stack_pointer = current_control_frame_pointer + 8;
170 current_control_frame_pointer[0] = oldcont;
171 current_control_frame_pointer[1] = NIL;
172 current_control_frame_pointer[2] =
173 (lispobj)(*os_context_register_addr(context, reg_CODE));
174 #endif
177 void
178 fake_foreign_function_call(os_context_t *context)
180 int context_index;
181 struct thread *thread=arch_os_get_current_thread();
183 /* Get current Lisp state from context. */
184 #ifdef reg_ALLOC
185 dynamic_space_free_pointer =
186 (lispobj *)(*os_context_register_addr(context, reg_ALLOC));
187 #ifdef alpha
188 if ((long)dynamic_space_free_pointer & 1) {
189 lose("dead in fake_foreign_function_call, context = %x", context);
191 #endif
192 #endif
193 #ifdef reg_BSP
194 current_binding_stack_pointer =
195 (lispobj *)(*os_context_register_addr(context, reg_BSP));
196 #endif
198 build_fake_control_stack_frames(thread,context);
200 /* Do dynamic binding of the active interrupt context index
201 * and save the context in the context array. */
202 context_index =
203 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
205 if (context_index >= MAX_INTERRUPTS) {
206 lose("maximum interrupt nesting depth (%d) exceeded", MAX_INTERRUPTS);
209 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
210 make_fixnum(context_index + 1),thread);
212 thread->interrupt_contexts[context_index] = context;
214 /* no longer in Lisp now */
215 foreign_function_call_active = 1;
218 /* blocks all blockable signals. If you are calling from a signal handler,
219 * the usual signal mask will be restored from the context when the handler
220 * finishes. Otherwise, be careful */
222 void
223 undo_fake_foreign_function_call(os_context_t *context)
225 struct thread *thread=arch_os_get_current_thread();
226 /* Block all blockable signals. */
227 sigset_t block;
228 sigemptyset(&block);
229 sigaddset_blockable(&block);
230 sigprocmask(SIG_BLOCK, &block, 0);
232 /* going back into Lisp */
233 foreign_function_call_active = 0;
235 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
236 unbind(thread);
238 #ifdef reg_ALLOC
239 /* Put the dynamic space free pointer back into the context. */
240 *os_context_register_addr(context, reg_ALLOC) =
241 (unsigned long) dynamic_space_free_pointer;
242 #endif
245 /* a handler for the signal caused by execution of a trap opcode
246 * signalling an internal error */
247 void
248 interrupt_internal_error(int signal, siginfo_t *info, os_context_t *context,
249 boolean continuable)
251 lispobj context_sap = 0;
253 fake_foreign_function_call(context);
255 /* Allocate the SAP object while the interrupts are still
256 * disabled. */
257 if (internal_errors_enabled) {
258 context_sap = alloc_sap(context);
261 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
263 if (internal_errors_enabled) {
264 SHOW("in interrupt_internal_error");
265 #if QSHOW
266 /* Display some rudimentary debugging information about the
267 * error, so that even if the Lisp error handler gets badly
268 * confused, we have a chance to determine what's going on. */
269 describe_internal_error(context);
270 #endif
271 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
272 continuable ? T : NIL);
273 } else {
274 describe_internal_error(context);
275 /* There's no good way to recover from an internal error
276 * before the Lisp error handling mechanism is set up. */
277 lose("internal error too early in init, can't recover");
279 undo_fake_foreign_function_call(context);
280 if (continuable) {
281 arch_skip_instruction(context);
285 void
286 interrupt_handle_pending(os_context_t *context)
288 struct thread *thread;
289 struct interrupt_data *data;
291 thread=arch_os_get_current_thread();
292 data=thread->interrupt_data;
293 SetSymbolValue(INTERRUPT_PENDING, NIL,thread);
295 /* restore the saved signal mask from the original signal (the
296 * one that interrupted us during the critical section) into the
297 * os_context for the signal we're currently in the handler for.
298 * This should ensure that when we return from the handler the
299 * blocked signals are unblocked */
301 memcpy(os_context_sigmask_addr(context), &data->pending_mask,
302 REAL_SIGSET_SIZE_BYTES);
304 sigemptyset(&data->pending_mask);
305 /* This will break on sparc linux: the deferred handler really wants
306 * to be called with a void_context */
307 run_deferred_handler(data,(void *)context);
311 * the two main signal handlers:
312 * interrupt_handle_now(..)
313 * maybe_now_maybe_later(..)
315 * to which we have added interrupt_handle_now_handler(..). Why?
316 * Well, mostly because the SPARC/Linux platform doesn't quite do
317 * signals the way we want them done. The third argument in the
318 * handler isn't filled in by the kernel properly, so we fix it up
319 * ourselves in the arch_os_get_context(..) function; however, we only
320 * want to do this when we first hit the handler, and not when
321 * interrupt_handle_now(..) is being called from some other handler
322 * (when the fixup will already have been done). -- CSR, 2002-07-23
325 void
326 interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
328 os_context_t *context = (os_context_t*)void_context;
329 struct thread *thread=arch_os_get_current_thread();
330 #ifndef __i386__
331 boolean were_in_lisp;
332 #endif
333 union interrupt_handler handler;
335 #ifdef LISP_FEATURE_LINUX
336 /* Under Linux on some architectures, we appear to have to restore
337 the FPU control word from the context, as after the signal is
338 delivered we appear to have a null FPU control word. */
339 os_restore_fp_control(context);
340 #endif
341 handler = thread->interrupt_data->interrupt_handlers[signal];
343 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
344 return;
347 #ifndef __i386__
348 were_in_lisp = !foreign_function_call_active;
349 if (were_in_lisp)
350 #endif
352 fake_foreign_function_call(context);
355 #ifdef QSHOW_SIGNALS
356 FSHOW((stderr,
357 "/entering interrupt_handle_now(%d, info, context)\n",
358 signal));
359 #endif
361 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
363 /* This can happen if someone tries to ignore or default one
364 * of the signals we need for runtime support, and the runtime
365 * support decides to pass on it. */
366 lose("no handler for signal %d in interrupt_handle_now(..)", signal);
368 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
369 /* Once we've decided what to do about contexts in a
370 * return-elsewhere world (the original context will no longer
371 * be available; should we copy it or was nobody using it anyway?)
372 * then we should convert this to return-elsewhere */
374 /* CMUCL comment said "Allocate the SAPs while the interrupts
375 * are still disabled.". I (dan, 2003.08.21) assume this is
376 * because we're not in pseudoatomic and allocation shouldn't
377 * be interrupted. In which case it's no longer an issue as
378 * all our allocation from C now goes through a PA wrapper,
379 * but still, doesn't hurt */
381 lispobj info_sap,context_sap = alloc_sap(context);
382 info_sap = alloc_sap(info);
383 /* Allow signals again. */
384 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
386 #ifdef QSHOW_SIGNALS
387 SHOW("calling Lisp-level handler");
388 #endif
390 funcall3(handler.lisp,
391 make_fixnum(signal),
392 info_sap,
393 context_sap);
394 } else {
396 #ifdef QSHOW_SIGNALS
397 SHOW("calling C-level handler");
398 #endif
400 /* Allow signals again. */
401 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
403 (*handler.c)(signal, info, void_context);
406 #ifndef __i386__
407 if (were_in_lisp)
408 #endif
410 undo_fake_foreign_function_call(context);
413 #ifdef QSHOW_SIGNALS
414 FSHOW((stderr,
415 "/returning from interrupt_handle_now(%d, info, context)\n",
416 signal));
417 #endif
420 /* This is called at the end of a critical section if the indications
421 * are that some signal was deferred during the section. Note that as
422 * far as C or the kernel is concerned we dealt with the signal
423 * already; we're just doing the Lisp-level processing now that we
424 * put off then */
426 void
427 run_deferred_handler(struct interrupt_data *data, void *v_context) {
428 (*(data->pending_handler))
429 (data->pending_signal,&(data->pending_info), v_context);
432 boolean
433 maybe_defer_handler(void *handler, struct interrupt_data *data,
434 int signal, siginfo_t *info, os_context_t *context)
436 struct thread *thread=arch_os_get_current_thread();
437 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
438 store_signal_data_for_later(data,handler,signal,info,context);
439 SetSymbolValue(INTERRUPT_PENDING, T,thread);
440 return 1;
442 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
443 * actually use its argument for anything on x86, so this branch
444 * may succeed even when context is null (gencgc alloc()) */
445 if (
446 #ifndef __i386__
447 (!foreign_function_call_active) &&
448 #endif
449 arch_pseudo_atomic_atomic(context)) {
450 store_signal_data_for_later(data,handler,signal,info,context);
451 arch_set_pseudo_atomic_interrupted(context);
452 return 1;
454 return 0;
456 static void
457 store_signal_data_for_later (struct interrupt_data *data, void *handler,
458 int signal,
459 siginfo_t *info, os_context_t *context)
461 data->pending_handler = handler;
462 data->pending_signal = signal;
463 if(info)
464 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
465 if(context) {
466 /* the signal mask in the context (from before we were
467 * interrupted) is copied to be restored when
468 * run_deferred_handler happens. Then the usually-blocked
469 * signals are added to the mask in the context so that we are
470 * running with blocked signals when the handler returns */
471 sigemptyset(&(data->pending_mask));
472 memcpy(&(data->pending_mask),
473 os_context_sigmask_addr(context),
474 REAL_SIGSET_SIZE_BYTES);
475 sigaddset_blockable(os_context_sigmask_addr(context));
476 } else {
477 /* this is also called from gencgc alloc(), in which case
478 * there has been no signal and is therefore no context. */
479 sigset_t new;
480 sigemptyset(&new);
481 sigaddset_blockable(&new);
482 sigprocmask(SIG_BLOCK,&new,&(data->pending_mask));
487 static void
488 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
490 os_context_t *context = arch_os_get_context(&void_context);
491 struct thread *thread=arch_os_get_current_thread();
492 struct interrupt_data *data=thread->interrupt_data;
493 #ifdef LISP_FEATURE_LINUX
494 os_restore_fp_control(context);
495 #endif
496 if(maybe_defer_handler(interrupt_handle_now,data,
497 signal,info,context))
498 return;
499 interrupt_handle_now(signal, info, context);
502 void
503 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
505 os_context_t *context = arch_os_get_context(&void_context);
506 struct thread *thread=arch_os_get_current_thread();
507 struct interrupt_data *data=thread->interrupt_data;
508 sigset_t block;
510 if(maybe_defer_handler(sig_stop_for_gc_handler,data,
511 signal,info,context)){
512 return;
514 sigemptyset(&block);
515 sigaddset_blockable(&block);
516 sigprocmask(SIG_BLOCK, &block, 0);
517 get_spinlock(&all_threads_lock,thread->pid);
518 countdown_to_gc--;
519 release_spinlock(&all_threads_lock);
520 /* need the context stored so it can have registers scavenged */
521 fake_foreign_function_call(context);
522 kill(getpid(),SIGSTOP);
523 undo_fake_foreign_function_call(context);
526 void
527 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
529 os_context_t *context = arch_os_get_context(&void_context);
530 interrupt_handle_now(signal, info, context);
534 * stuff to detect and handle hitting the GC trigger
537 #ifndef LISP_FEATURE_GENCGC
538 /* since GENCGC has its own way to record trigger */
539 static boolean
540 gc_trigger_hit(int signal, siginfo_t *info, os_context_t *context)
542 if (current_auto_gc_trigger == NULL)
543 return 0;
544 else{
545 void *badaddr=arch_get_bad_addr(signal,info,context);
546 return (badaddr >= (void *)current_auto_gc_trigger &&
547 badaddr <((void *)current_dynamic_space + DYNAMIC_SPACE_SIZE));
550 #endif
552 /* manipulate the signal context and stack such that when the handler
553 * returns, it will call function instead of whatever it was doing
554 * previously
557 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
558 extern void post_signal_tramp(void);
559 void arrange_return_to_lisp_function(os_context_t *context, lispobj function)
561 void * fun=native_pointer(function);
562 char *code = &(((struct simple_fun *) fun)->code);
564 /* Build a stack frame showing `interrupted' so that the
565 * user's backtrace makes (as much) sense (as usual) */
566 #ifdef LISP_FEATURE_X86
567 /* Suppose the existence of some function that saved all
568 * registers, called call_into_lisp, then restored GP registers and
569 * returned. We shortcut this: fake the stack that call_into_lisp
570 * would see, then arrange to have it called directly. post_signal_tramp
571 * is the second half of this function
573 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
575 *(sp-14) = post_signal_tramp; /* return address for call_into_lisp */
576 *(sp-13) = function; /* args for call_into_lisp : function*/
577 *(sp-12) = 0; /* arg array */
578 *(sp-11) = 0; /* no. args */
579 /* this order matches that used in POPAD */
580 *(sp-10)=*os_context_register_addr(context,reg_EDI);
581 *(sp-9)=*os_context_register_addr(context,reg_ESI);
582 /* this gets overwritten again before it's used, anyway */
583 *(sp-8)=*os_context_register_addr(context,reg_EBP);
584 *(sp-7)=0 ; /* POPAD doesn't set ESP, but expects a gap for it anyway */
585 *(sp-6)=*os_context_register_addr(context,reg_EBX);
587 *(sp-5)=*os_context_register_addr(context,reg_EDX);
588 *(sp-4)=*os_context_register_addr(context,reg_ECX);
589 *(sp-3)=*os_context_register_addr(context,reg_EAX);
590 *(sp-2)=*os_context_register_addr(context,reg_EBP);
591 *(sp-1)=*os_context_pc_addr(context);
593 #else
594 struct thread *th=arch_os_get_current_thread();
595 build_fake_control_stack_frames(th,context);
596 #endif
598 #ifdef LISP_FEATURE_X86
599 *os_context_pc_addr(context) = call_into_lisp;
600 *os_context_register_addr(context,reg_ECX) = 0;
601 *os_context_register_addr(context,reg_EBP) = sp-2;
602 *os_context_register_addr(context,reg_ESP) = sp-14;
603 #else
604 /* this much of the calling convention is common to all
605 non-x86 ports */
606 *os_context_pc_addr(context) = code;
607 *os_context_register_addr(context,reg_NARGS) = 0;
608 *os_context_register_addr(context,reg_LIP) = code;
609 *os_context_register_addr(context,reg_CFP) =
610 current_control_frame_pointer;
611 #endif
612 #ifdef ARCH_HAS_NPC_REGISTER
613 *os_context_npc_addr(context) =
614 4 + *os_context_pc_addr(context);
615 #endif
616 #ifdef LISP_FEATURE_SPARC
617 *os_context_register_addr(context,reg_CODE) =
618 fun + FUN_POINTER_LOWTAG;
619 #endif
622 #ifdef LISP_FEATURE_SB_THREAD
623 void handle_rt_signal(int num, siginfo_t *info, void *v_context)
625 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
626 struct thread *th=arch_os_get_current_thread();
627 struct interrupt_data *data=
628 th ? th->interrupt_data : global_interrupt_data;
629 if(maybe_defer_handler(handle_rt_signal,data,num,info,context)){
630 return ;
632 arrange_return_to_lisp_function(context,info->si_value.sival_int);
634 #endif
636 boolean handle_control_stack_guard_triggered(os_context_t *context,void *addr){
637 struct thread *th=arch_os_get_current_thread();
638 /* note the os_context hackery here. When the signal handler returns,
639 * it won't go back to what it was doing ... */
640 if(addr>=(void *)CONTROL_STACK_GUARD_PAGE(th) &&
641 addr<(void *)(CONTROL_STACK_GUARD_PAGE(th)+os_vm_page_size)) {
642 /* we hit the end of the control stack. disable protection
643 * temporarily so the error handler has some headroom */
644 protect_control_stack_guard_page(th->pid,0L);
646 arrange_return_to_lisp_function
647 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
648 return 1;
650 else return 0;
653 #ifndef LISP_FEATURE_GENCGC
654 /* This function gets called from the SIGSEGV (for e.g. Linux or
655 * OpenBSD) or SIGBUS (for e.g. FreeBSD) handler. Here we check
656 * whether the signal was due to treading on the mprotect()ed zone -
657 * and if so, arrange for a GC to happen. */
658 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
660 boolean
661 interrupt_maybe_gc(int signal, siginfo_t *info, void *void_context)
663 os_context_t *context=(os_context_t *) void_context;
664 struct thread *th=arch_os_get_current_thread();
665 struct interrupt_data *data=
666 th ? th->interrupt_data : global_interrupt_data;
668 if(!foreign_function_call_active && gc_trigger_hit(signal, info, context)){
669 clear_auto_gc_trigger();
670 if(!maybe_defer_handler
671 (interrupt_maybe_gc_int,data,signal,info,void_context))
672 interrupt_maybe_gc_int(signal,info,void_context);
673 return 1;
675 return 0;
678 #endif
680 /* this is also used by from gencgc.c alloc() */
681 boolean
682 interrupt_maybe_gc_int(int signal, siginfo_t *info, void *void_context)
684 os_context_t *context=(os_context_t *) void_context;
685 fake_foreign_function_call(context);
686 /* SUB-GC may return without GCing if *GC-INHIBIT* is set, in
687 * which case we will be running with no gc trigger barrier
688 * thing for a while. But it shouldn't be long until the end
689 * of WITHOUT-GCING. */
690 funcall0(SymbolFunction(SUB_GC));
691 undo_fake_foreign_function_call(context);
692 return 1;
697 * noise to install handlers
700 void
701 undoably_install_low_level_interrupt_handler (int signal,
702 void handler(int,
703 siginfo_t*,
704 void*))
706 struct sigaction sa;
707 struct thread *th=arch_os_get_current_thread();
708 struct interrupt_data *data=
709 th ? th->interrupt_data : global_interrupt_data;
711 if (0 > signal || signal >= NSIG) {
712 lose("bad signal number %d", signal);
715 sa.sa_sigaction = handler;
716 sigemptyset(&sa.sa_mask);
717 sigaddset_blockable(&sa.sa_mask);
718 sa.sa_flags = SA_SIGINFO | SA_RESTART;
719 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
720 if((signal==SIG_MEMORY_FAULT)
721 #ifdef SIG_INTERRUPT_THREAD
722 || (signal==SIG_INTERRUPT_THREAD)
723 #endif
725 sa.sa_flags|= SA_ONSTACK;
726 #endif
728 sigaction(signal, &sa, NULL);
729 data->interrupt_low_level_handlers[signal] =
730 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
733 /* This is called from Lisp. */
734 unsigned long
735 install_handler(int signal, void handler(int, siginfo_t*, void*))
737 struct sigaction sa;
738 sigset_t old, new;
739 union interrupt_handler oldhandler;
740 struct thread *th=arch_os_get_current_thread();
741 struct interrupt_data *data=
742 th ? th->interrupt_data : global_interrupt_data;
744 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
746 sigemptyset(&new);
747 sigaddset(&new, signal);
748 sigprocmask(SIG_BLOCK, &new, &old);
750 sigemptyset(&new);
751 sigaddset_blockable(&new);
753 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%d\n",
754 interrupt_low_level_handlers[signal]));
755 if (data->interrupt_low_level_handlers[signal]==0) {
756 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
757 ARE_SAME_HANDLER(handler, SIG_IGN)) {
758 sa.sa_sigaction = handler;
759 } else if (sigismember(&new, signal)) {
760 sa.sa_sigaction = maybe_now_maybe_later;
761 } else {
762 sa.sa_sigaction = interrupt_handle_now_handler;
765 sigemptyset(&sa.sa_mask);
766 sigaddset_blockable(&sa.sa_mask);
767 sa.sa_flags = SA_SIGINFO | SA_RESTART;
768 sigaction(signal, &sa, NULL);
771 oldhandler = data->interrupt_handlers[signal];
772 data->interrupt_handlers[signal].c = handler;
774 sigprocmask(SIG_SETMASK, &old, 0);
776 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
778 return (unsigned long)oldhandler.lisp;
781 void
782 interrupt_init()
784 int i;
785 SHOW("entering interrupt_init()");
786 global_interrupt_data=calloc(sizeof(struct interrupt_data), 1);
788 /* Set up high level handler information. */
789 for (i = 0; i < NSIG; i++) {
790 global_interrupt_data->interrupt_handlers[i].c =
791 /* (The cast here blasts away the distinction between
792 * SA_SIGACTION-style three-argument handlers and
793 * signal(..)-style one-argument handlers, which is OK
794 * because it works to call the 1-argument form where the
795 * 3-argument form is expected.) */
796 (void (*)(int, siginfo_t*, void*))SIG_DFL;
799 SHOW("returning from interrupt_init()");