1 ;;;; This file contains floating-point-specific transforms, and may be
2 ;;;; somewhat implementation-dependent in its assumptions of what the
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 (defknown %single-float
(real) single-float
(movable foldable flushable
))
19 (defknown %double-float
(real) double-float
(movable foldable flushable
))
21 (deftransform float
((n f
) (* single-float
) *)
24 (deftransform float
((n f
) (* double-float
) *)
27 (deftransform float
((n) *)
32 (deftransform %single-float
((n) (single-float) *)
35 (deftransform %double-float
((n) (double-float) *)
39 (macrolet ((frob (fun type
)
40 `(deftransform random
((num &optional state
)
41 (,type
&optional
*) *)
42 "Use inline float operations."
43 '(,fun num
(or state
*random-state
*)))))
44 (frob %random-single-float single-float
)
45 (frob %random-double-float double-float
))
47 ;;; Mersenne Twister RNG
49 ;;; FIXME: It's unpleasant to have RANDOM functionality scattered
50 ;;; through the code this way. It would be nice to move this into the
51 ;;; same file as the other RANDOM definitions.
52 (deftransform random
((num &optional state
)
53 ((integer 1 #.
(expt 2 sb
!vm
::n-word-bits
)) &optional
*))
54 ;; FIXME: I almost conditionalized this as #!+sb-doc. Find some way
55 ;; of automatically finding #!+sb-doc in proximity to DEFTRANSFORM
56 ;; to let me scan for places that I made this mistake and didn't
58 "use inline (UNSIGNED-BYTE 32) operations"
59 (let ((type (lvar-type num
))
60 (limit (expt 2 sb
!vm
::n-word-bits
))
61 (random-chunk (ecase sb
!vm
::n-word-bits
63 (64 'sb
!kernel
::big-random-chunk
))))
64 (if (numeric-type-p type
)
65 (let ((num-high (numeric-type-high (lvar-type num
))))
67 (cond ((constant-lvar-p num
)
68 ;; Check the worst case sum absolute error for the
69 ;; random number expectations.
70 (let ((rem (rem limit num-high
)))
71 (unless (< (/ (* 2 rem
(- num-high rem
))
73 (expt 2 (- sb
!kernel
::random-integer-extra-bits
)))
74 (give-up-ir1-transform
75 "The random number expectations are inaccurate."))
76 (if (= num-high limit
)
77 `(,random-chunk
(or state
*random-state
*))
79 `(rem (,random-chunk
(or state
*random-state
*)) num
)
81 ;; Use multiplication, which is faster.
82 `(values (sb!bignum
::%multiply
83 (,random-chunk
(or state
*random-state
*))
85 ((> num-high random-fixnum-max
)
86 (give-up-ir1-transform
87 "The range is too large to ensure an accurate result."))
90 `(values (sb!bignum
::%multiply
91 (,random-chunk
(or state
*random-state
*))
94 `(rem (,random-chunk
(or state
*random-state
*)) num
))))
95 ;; KLUDGE: a relatively conservative treatment, but better
96 ;; than a bug (reported by PFD sbcl-devel towards the end of
98 '(rem (random-chunk (or state
*random-state
*)) num
))))
102 (defknown make-single-float
((signed-byte 32)) single-float
103 (movable foldable flushable
))
105 (defknown make-double-float
((signed-byte 32) (unsigned-byte 32)) double-float
106 (movable foldable flushable
))
108 (defknown single-float-bits
(single-float) (signed-byte 32)
109 (movable foldable flushable
))
111 (defknown double-float-high-bits
(double-float) (signed-byte 32)
112 (movable foldable flushable
))
114 (defknown double-float-low-bits
(double-float) (unsigned-byte 32)
115 (movable foldable flushable
))
117 (deftransform float-sign
((float &optional float2
)
118 (single-float &optional single-float
) *)
120 (let ((temp (gensym)))
121 `(let ((,temp
(abs float2
)))
122 (if (minusp (single-float-bits float
)) (- ,temp
) ,temp
)))
123 '(if (minusp (single-float-bits float
)) -
1f0
1f0
)))
125 (deftransform float-sign
((float &optional float2
)
126 (double-float &optional double-float
) *)
128 (let ((temp (gensym)))
129 `(let ((,temp
(abs float2
)))
130 (if (minusp (double-float-high-bits float
)) (- ,temp
) ,temp
)))
131 '(if (minusp (double-float-high-bits float
)) -
1d0
1d0
)))
133 ;;;; DECODE-FLOAT, INTEGER-DECODE-FLOAT, and SCALE-FLOAT
135 (defknown decode-single-float
(single-float)
136 (values single-float single-float-exponent
(single-float -
1f0
1f0
))
137 (movable foldable flushable
))
139 (defknown decode-double-float
(double-float)
140 (values double-float double-float-exponent
(double-float -
1d0
1d0
))
141 (movable foldable flushable
))
143 (defknown integer-decode-single-float
(single-float)
144 (values single-float-significand single-float-int-exponent
(integer -
1 1))
145 (movable foldable flushable
))
147 (defknown integer-decode-double-float
(double-float)
148 (values double-float-significand double-float-int-exponent
(integer -
1 1))
149 (movable foldable flushable
))
151 (defknown scale-single-float
(single-float integer
) single-float
152 (movable foldable flushable
))
154 (defknown scale-double-float
(double-float integer
) double-float
155 (movable foldable flushable
))
157 (deftransform decode-float
((x) (single-float) *)
158 '(decode-single-float x
))
160 (deftransform decode-float
((x) (double-float) *)
161 '(decode-double-float x
))
163 (deftransform integer-decode-float
((x) (single-float) *)
164 '(integer-decode-single-float x
))
166 (deftransform integer-decode-float
((x) (double-float) *)
167 '(integer-decode-double-float x
))
169 (deftransform scale-float
((f ex
) (single-float *) *)
170 (if (and #!+x86 t
#!-x86 nil
171 (csubtypep (lvar-type ex
)
172 (specifier-type '(signed-byte 32))))
173 '(coerce (%scalbn
(coerce f
'double-float
) ex
) 'single-float
)
174 '(scale-single-float f ex
)))
176 (deftransform scale-float
((f ex
) (double-float *) *)
177 (if (and #!+x86 t
#!-x86 nil
178 (csubtypep (lvar-type ex
)
179 (specifier-type '(signed-byte 32))))
181 '(scale-double-float f ex
)))
183 ;;; What is the CROSS-FLOAT-INFINITY-KLUDGE?
185 ;;; SBCL's own implementation of floating point supports floating
186 ;;; point infinities. Some of the old CMU CL :PROPAGATE-FLOAT-TYPE and
187 ;;; :PROPAGATE-FUN-TYPE code, like the DEFOPTIMIZERs below, uses this
188 ;;; floating point support. Thus, we have to avoid running it on the
189 ;;; cross-compilation host, since we're not guaranteed that the
190 ;;; cross-compilation host will support floating point infinities.
192 ;;; If we wanted to live dangerously, we could conditionalize the code
193 ;;; with #+(OR SBCL SB-XC) instead. That way, if the cross-compilation
194 ;;; host happened to be SBCL, we'd be able to run the infinity-using
196 ;;; * SBCL itself gets built with more complete optimization.
198 ;;; * You get a different SBCL depending on what your cross-compilation
200 ;;; So far the pros and cons seem seem to be mostly academic, since
201 ;;; AFAIK (WHN 2001-08-28) the propagate-foo-type optimizations aren't
202 ;;; actually important in compiling SBCL itself. If this changes, then
203 ;;; we have to decide:
204 ;;; * Go for simplicity, leaving things as they are.
205 ;;; * Go for performance at the expense of conceptual clarity,
206 ;;; using #+(OR SBCL SB-XC) and otherwise leaving the build
208 ;;; * Go for performance at the expense of build time, using
209 ;;; #+(OR SBCL SB-XC) and also making SBCL do not just
210 ;;; make-host-1.sh and make-host-2.sh, but a third step
211 ;;; make-host-3.sh where it builds itself under itself. (Such a
212 ;;; 3-step build process could also help with other things, e.g.
213 ;;; using specialized arrays to represent debug information.)
214 ;;; * Rewrite the code so that it doesn't depend on unportable
215 ;;; floating point infinities.
217 ;;; optimizers for SCALE-FLOAT. If the float has bounds, new bounds
218 ;;; are computed for the result, if possible.
219 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
222 (defun scale-float-derive-type-aux (f ex same-arg
)
223 (declare (ignore same-arg
))
224 (flet ((scale-bound (x n
)
225 ;; We need to be a bit careful here and catch any overflows
226 ;; that might occur. We can ignore underflows which become
230 (scale-float (type-bound-number x
) n
)
231 (floating-point-overflow ()
234 (when (and (numeric-type-p f
) (numeric-type-p ex
))
235 (let ((f-lo (numeric-type-low f
))
236 (f-hi (numeric-type-high f
))
237 (ex-lo (numeric-type-low ex
))
238 (ex-hi (numeric-type-high ex
))
242 (if (< (float-sign (type-bound-number f-hi
)) 0.0)
244 (setf new-hi
(scale-bound f-hi ex-lo
)))
246 (setf new-hi
(scale-bound f-hi ex-hi
)))))
248 (if (< (float-sign (type-bound-number f-lo
)) 0.0)
250 (setf new-lo
(scale-bound f-lo ex-hi
)))
252 (setf new-lo
(scale-bound f-lo ex-lo
)))))
253 (make-numeric-type :class
(numeric-type-class f
)
254 :format
(numeric-type-format f
)
258 (defoptimizer (scale-single-float derive-type
) ((f ex
))
259 (two-arg-derive-type f ex
#'scale-float-derive-type-aux
260 #'scale-single-float t
))
261 (defoptimizer (scale-double-float derive-type
) ((f ex
))
262 (two-arg-derive-type f ex
#'scale-float-derive-type-aux
263 #'scale-double-float t
))
265 ;;; DEFOPTIMIZERs for %SINGLE-FLOAT and %DOUBLE-FLOAT. This makes the
266 ;;; FLOAT function return the correct ranges if the input has some
267 ;;; defined range. Quite useful if we want to convert some type of
268 ;;; bounded integer into a float.
270 ((frob (fun type most-negative most-positive
)
271 (let ((aux-name (symbolicate fun
"-DERIVE-TYPE-AUX")))
273 (defun ,aux-name
(num)
274 ;; When converting a number to a float, the limits are
276 (let* ((lo (bound-func (lambda (x)
277 (if (< x
,most-negative
)
280 (numeric-type-low num
)))
281 (hi (bound-func (lambda (x)
282 (if (< ,most-positive x
)
285 (numeric-type-high num
))))
286 (specifier-type `(,',type
,(or lo
'*) ,(or hi
'*)))))
288 (defoptimizer (,fun derive-type
) ((num))
289 (one-arg-derive-type num
#',aux-name
#',fun
))))))
290 (frob %single-float single-float
291 most-negative-single-float most-positive-single-float
)
292 (frob %double-float double-float
293 most-negative-double-float most-positive-double-float
))
298 ;;; Do some stuff to recognize when the loser is doing mixed float and
299 ;;; rational arithmetic, or different float types, and fix it up. If
300 ;;; we don't, he won't even get so much as an efficiency note.
301 (deftransform float-contagion-arg1
((x y
) * * :defun-only t
:node node
)
302 `(,(lvar-fun-name (basic-combination-fun node
))
304 (deftransform float-contagion-arg2
((x y
) * * :defun-only t
:node node
)
305 `(,(lvar-fun-name (basic-combination-fun node
))
308 (dolist (x '(+ * / -
))
309 (%deftransform x
'(function (rational float
) *) #'float-contagion-arg1
)
310 (%deftransform x
'(function (float rational
) *) #'float-contagion-arg2
))
312 (dolist (x '(= < > + * / -
))
313 (%deftransform x
'(function (single-float double-float
) *)
314 #'float-contagion-arg1
)
315 (%deftransform x
'(function (double-float single-float
) *)
316 #'float-contagion-arg2
))
318 ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in
319 ;;; general float rational args to comparison, since Common Lisp
320 ;;; semantics says we are supposed to compare as rationals, but we can
321 ;;; do it for any rational that has a precise representation as a
322 ;;; float (such as 0).
323 (macrolet ((frob (op)
324 `(deftransform ,op
((x y
) (float rational
) *)
325 "open-code FLOAT to RATIONAL comparison"
326 (unless (constant-lvar-p y
)
327 (give-up-ir1-transform
328 "The RATIONAL value isn't known at compile time."))
329 (let ((val (lvar-value y
)))
330 (unless (eql (rational (float val
)) val
)
331 (give-up-ir1-transform
332 "~S doesn't have a precise float representation."
334 `(,',op x
(float y x
)))))
339 ;;;; irrational derive-type methods
341 ;;; Derive the result to be float for argument types in the
342 ;;; appropriate domain.
343 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
344 (dolist (stuff '((asin (real -
1.0 1.0))
345 (acos (real -
1.0 1.0))
347 (atanh (real -
1.0 1.0))
349 (destructuring-bind (name type
) stuff
350 (let ((type (specifier-type type
)))
351 (setf (fun-info-derive-type (fun-info-or-lose name
))
353 (declare (type combination call
))
354 (when (csubtypep (lvar-type
355 (first (combination-args call
)))
357 (specifier-type 'float
)))))))
359 #+sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
360 (defoptimizer (log derive-type
) ((x &optional y
))
361 (when (and (csubtypep (lvar-type x
)
362 (specifier-type '(real 0.0)))
364 (csubtypep (lvar-type y
)
365 (specifier-type '(real 0.0)))))
366 (specifier-type 'float
)))
368 ;;;; irrational transforms
370 (defknown (%tan %sinh %asinh %atanh %log %logb %log10 %tan-quick
)
371 (double-float) double-float
372 (movable foldable flushable
))
374 (defknown (%sin %cos %tanh %sin-quick %cos-quick
)
375 (double-float) (double-float -
1.0d0
1.0d0
)
376 (movable foldable flushable
))
378 (defknown (%asin %atan
)
380 (double-float #.
(coerce (- (/ pi
2)) 'double-float
)
381 #.
(coerce (/ pi
2) 'double-float
))
382 (movable foldable flushable
))
385 (double-float) (double-float 0.0d0
#.
(coerce pi
'double-float
))
386 (movable foldable flushable
))
389 (double-float) (double-float 1.0d0
)
390 (movable foldable flushable
))
392 (defknown (%acosh %exp %sqrt
)
393 (double-float) (double-float 0.0d0
)
394 (movable foldable flushable
))
397 (double-float) (double-float -
1d0
)
398 (movable foldable flushable
))
401 (double-float double-float
) (double-float 0d0
)
402 (movable foldable flushable
))
405 (double-float double-float
) double-float
406 (movable foldable flushable
))
409 (double-float double-float
)
410 (double-float #.
(coerce (- pi
) 'double-float
)
411 #.
(coerce pi
'double-float
))
412 (movable foldable flushable
))
415 (double-float double-float
) double-float
416 (movable foldable flushable
))
419 (double-float (signed-byte 32)) double-float
420 (movable foldable flushable
))
423 (double-float) double-float
424 (movable foldable flushable
))
426 (macrolet ((def (name prim rtype
)
428 (deftransform ,name
((x) (single-float) ,rtype
)
429 `(coerce (,',prim
(coerce x
'double-float
)) 'single-float
))
430 (deftransform ,name
((x) (double-float) ,rtype
)
434 (def sqrt %sqrt float
)
435 (def asin %asin float
)
436 (def acos %acos float
)
442 (def acosh %acosh float
)
443 (def atanh %atanh float
))
445 ;;; The argument range is limited on the x86 FP trig. functions. A
446 ;;; post-test can detect a failure (and load a suitable result), but
447 ;;; this test is avoided if possible.
448 (macrolet ((def (name prim prim-quick
)
449 (declare (ignorable prim-quick
))
451 (deftransform ,name
((x) (single-float) *)
452 #!+x86
(cond ((csubtypep (lvar-type x
)
453 (specifier-type '(single-float
454 (#.
(- (expt 2f0
64)))
456 `(coerce (,',prim-quick
(coerce x
'double-float
))
460 "unable to avoid inline argument range check~@
461 because the argument range (~S) was not within 2^64"
462 (type-specifier (lvar-type x
)))
463 `(coerce (,',prim
(coerce x
'double-float
)) 'single-float
)))
464 #!-x86
`(coerce (,',prim
(coerce x
'double-float
)) 'single-float
))
465 (deftransform ,name
((x) (double-float) *)
466 #!+x86
(cond ((csubtypep (lvar-type x
)
467 (specifier-type '(double-float
468 (#.
(- (expt 2d0
64)))
473 "unable to avoid inline argument range check~@
474 because the argument range (~S) was not within 2^64"
475 (type-specifier (lvar-type x
)))
477 #!-x86
`(,',prim x
)))))
478 (def sin %sin %sin-quick
)
479 (def cos %cos %cos-quick
)
480 (def tan %tan %tan-quick
))
482 (deftransform atan
((x y
) (single-float single-float
) *)
483 `(coerce (%atan2
(coerce x
'double-float
) (coerce y
'double-float
))
485 (deftransform atan
((x y
) (double-float double-float
) *)
488 (deftransform expt
((x y
) ((single-float 0f0
) single-float
) *)
489 `(coerce (%pow
(coerce x
'double-float
) (coerce y
'double-float
))
491 (deftransform expt
((x y
) ((double-float 0d0
) double-float
) *)
493 (deftransform expt
((x y
) ((single-float 0f0
) (signed-byte 32)) *)
494 `(coerce (%pow
(coerce x
'double-float
) (coerce y
'double-float
))
496 (deftransform expt
((x y
) ((double-float 0d0
) (signed-byte 32)) *)
497 `(%pow x
(coerce y
'double-float
)))
499 ;;; ANSI says log with base zero returns zero.
500 (deftransform log
((x y
) (float float
) float
)
501 '(if (zerop y
) y
(/ (log x
) (log y
))))
503 ;;; Handle some simple transformations.
505 (deftransform abs
((x) ((complex double-float
)) double-float
)
506 '(%hypot
(realpart x
) (imagpart x
)))
508 (deftransform abs
((x) ((complex single-float
)) single-float
)
509 '(coerce (%hypot
(coerce (realpart x
) 'double-float
)
510 (coerce (imagpart x
) 'double-float
))
513 (deftransform phase
((x) ((complex double-float
)) double-float
)
514 '(%atan2
(imagpart x
) (realpart x
)))
516 (deftransform phase
((x) ((complex single-float
)) single-float
)
517 '(coerce (%atan2
(coerce (imagpart x
) 'double-float
)
518 (coerce (realpart x
) 'double-float
))
521 (deftransform phase
((x) ((float)) float
)
522 '(if (minusp (float-sign x
))
526 ;;; The number is of type REAL.
527 (defun numeric-type-real-p (type)
528 (and (numeric-type-p type
)
529 (eq (numeric-type-complexp type
) :real
)))
531 ;;; Coerce a numeric type bound to the given type while handling
532 ;;; exclusive bounds.
533 (defun coerce-numeric-bound (bound type
)
536 (list (coerce (car bound
) type
))
537 (coerce bound type
))))
539 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
542 ;;;; optimizers for elementary functions
544 ;;;; These optimizers compute the output range of the elementary
545 ;;;; function, based on the domain of the input.
547 ;;; Generate a specifier for a complex type specialized to the same
548 ;;; type as the argument.
549 (defun complex-float-type (arg)
550 (declare (type numeric-type arg
))
551 (let* ((format (case (numeric-type-class arg
)
552 ((integer rational
) 'single-float
)
553 (t (numeric-type-format arg
))))
554 (float-type (or format
'float
)))
555 (specifier-type `(complex ,float-type
))))
557 ;;; Compute a specifier like '(OR FLOAT (COMPLEX FLOAT)), except float
558 ;;; should be the right kind of float. Allow bounds for the float
560 (defun float-or-complex-float-type (arg &optional lo hi
)
561 (declare (type numeric-type arg
))
562 (let* ((format (case (numeric-type-class arg
)
563 ((integer rational
) 'single-float
)
564 (t (numeric-type-format arg
))))
565 (float-type (or format
'float
))
566 (lo (coerce-numeric-bound lo float-type
))
567 (hi (coerce-numeric-bound hi float-type
)))
568 (specifier-type `(or (,float-type
,(or lo
'*) ,(or hi
'*))
569 (complex ,float-type
)))))
573 (eval-when (:compile-toplevel
:execute
)
574 ;; So the problem with this hack is that it's actually broken. If
575 ;; the host does not have long floats, then setting *R-D-F-F* to
576 ;; LONG-FLOAT doesn't actually buy us anything. FIXME.
577 (setf *read-default-float-format
*
578 #!+long-float
'long-float
#!-long-float
'double-float
))
579 ;;; Test whether the numeric-type ARG is within in domain specified by
580 ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to
582 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
583 (defun domain-subtypep (arg domain-low domain-high
)
584 (declare (type numeric-type arg
)
585 (type (or real null
) domain-low domain-high
))
586 (let* ((arg-lo (numeric-type-low arg
))
587 (arg-lo-val (type-bound-number arg-lo
))
588 (arg-hi (numeric-type-high arg
))
589 (arg-hi-val (type-bound-number arg-hi
)))
590 ;; Check that the ARG bounds are correctly canonicalized.
591 (when (and arg-lo
(floatp arg-lo-val
) (zerop arg-lo-val
) (consp arg-lo
)
592 (minusp (float-sign arg-lo-val
)))
593 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-lo
)
594 (setq arg-lo
0e0 arg-lo-val arg-lo
))
595 (when (and arg-hi
(zerop arg-hi-val
) (floatp arg-hi-val
) (consp arg-hi
)
596 (plusp (float-sign arg-hi-val
)))
597 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-hi
)
598 (setq arg-hi
(ecase *read-default-float-format
*
599 (double-float (load-time-value (make-unportable-float :double-float-negative-zero
)))
601 (long-float (load-time-value (make-unportable-float :long-float-negative-zero
))))
603 (flet ((fp-neg-zero-p (f) ; Is F -0.0?
604 (and (floatp f
) (zerop f
) (minusp (float-sign f
))))
605 (fp-pos-zero-p (f) ; Is F +0.0?
606 (and (floatp f
) (zerop f
) (plusp (float-sign f
)))))
607 (and (or (null domain-low
)
608 (and arg-lo
(>= arg-lo-val domain-low
)
609 (not (and (fp-pos-zero-p domain-low
)
610 (fp-neg-zero-p arg-lo
)))))
611 (or (null domain-high
)
612 (and arg-hi
(<= arg-hi-val domain-high
)
613 (not (and (fp-neg-zero-p domain-high
)
614 (fp-pos-zero-p arg-hi
)))))))))
615 (eval-when (:compile-toplevel
:execute
)
616 (setf *read-default-float-format
* 'single-float
))
618 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
621 ;;; Handle monotonic functions of a single variable whose domain is
622 ;;; possibly part of the real line. ARG is the variable, FCN is the
623 ;;; function, and DOMAIN is a specifier that gives the (real) domain
624 ;;; of the function. If ARG is a subset of the DOMAIN, we compute the
625 ;;; bounds directly. Otherwise, we compute the bounds for the
626 ;;; intersection between ARG and DOMAIN, and then append a complex
627 ;;; result, which occurs for the parts of ARG not in the DOMAIN.
629 ;;; Negative and positive zero are considered distinct within
630 ;;; DOMAIN-LOW and DOMAIN-HIGH.
632 ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we
633 ;;; can't compute the bounds using FCN.
634 (defun elfun-derive-type-simple (arg fcn domain-low domain-high
635 default-low default-high
636 &optional
(increasingp t
))
637 (declare (type (or null real
) domain-low domain-high
))
640 (cond ((eq (numeric-type-complexp arg
) :complex
)
641 (complex-float-type arg
))
642 ((numeric-type-real-p arg
)
643 ;; The argument is real, so let's find the intersection
644 ;; between the argument and the domain of the function.
645 ;; We compute the bounds on the intersection, and for
646 ;; everything else, we return a complex number of the
648 (multiple-value-bind (intersection difference
)
649 (interval-intersection/difference
(numeric-type->interval arg
)
655 ;; Process the intersection.
656 (let* ((low (interval-low intersection
))
657 (high (interval-high intersection
))
658 (res-lo (or (bound-func fcn
(if increasingp low high
))
660 (res-hi (or (bound-func fcn
(if increasingp high low
))
662 (format (case (numeric-type-class arg
)
663 ((integer rational
) 'single-float
)
664 (t (numeric-type-format arg
))))
665 (bound-type (or format
'float
))
670 :low
(coerce-numeric-bound res-lo bound-type
)
671 :high
(coerce-numeric-bound res-hi bound-type
))))
672 ;; If the ARG is a subset of the domain, we don't
673 ;; have to worry about the difference, because that
675 (if (or (null difference
)
676 ;; Check whether the arg is within the domain.
677 (domain-subtypep arg domain-low domain-high
))
680 (specifier-type `(complex ,bound-type
))))))
682 ;; No intersection so the result must be purely complex.
683 (complex-float-type arg
)))))
685 (float-or-complex-float-type arg default-low default-high
))))))
688 ((frob (name domain-low domain-high def-low-bnd def-high-bnd
689 &key
(increasingp t
))
690 (let ((num (gensym)))
691 `(defoptimizer (,name derive-type
) ((,num
))
695 (elfun-derive-type-simple arg
#',name
696 ,domain-low
,domain-high
697 ,def-low-bnd
,def-high-bnd
700 ;; These functions are easy because they are defined for the whole
702 (frob exp nil nil
0 nil
)
703 (frob sinh nil nil nil nil
)
704 (frob tanh nil nil -
1 1)
705 (frob asinh nil nil nil nil
)
707 ;; These functions are only defined for part of the real line. The
708 ;; condition selects the desired part of the line.
709 (frob asin -
1d0
1d0
(- (/ pi
2)) (/ pi
2))
710 ;; Acos is monotonic decreasing, so we need to swap the function
711 ;; values at the lower and upper bounds of the input domain.
712 (frob acos -
1d0
1d0
0 pi
:increasingp nil
)
713 (frob acosh
1d0 nil nil nil
)
714 (frob atanh -
1d0
1d0 -
1 1)
715 ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that
717 (frob sqrt
(load-time-value (make-unportable-float :double-float-negative-zero
)) nil
0 nil
))
719 ;;; Compute bounds for (expt x y). This should be easy since (expt x
720 ;;; y) = (exp (* y (log x))). However, computations done this way
721 ;;; have too much roundoff. Thus we have to do it the hard way.
722 (defun safe-expt (x y
)
724 (when (< (abs y
) 10000)
729 ;;; Handle the case when x >= 1.
730 (defun interval-expt-> (x y
)
731 (case (sb!c
::interval-range-info y
0d0
)
733 ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is
734 ;; obviously non-negative. We just have to be careful for
735 ;; infinite bounds (given by nil).
736 (let ((lo (safe-expt (type-bound-number (sb!c
::interval-low x
))
737 (type-bound-number (sb!c
::interval-low y
))))
738 (hi (safe-expt (type-bound-number (sb!c
::interval-high x
))
739 (type-bound-number (sb!c
::interval-high y
)))))
740 (list (sb!c
::make-interval
:low
(or lo
1) :high hi
))))
742 ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is
743 ;; obviously [0, 1]. However, underflow (nil) means 0 is the
745 (let ((lo (safe-expt (type-bound-number (sb!c
::interval-high x
))
746 (type-bound-number (sb!c
::interval-low y
))))
747 (hi (safe-expt (type-bound-number (sb!c
::interval-low x
))
748 (type-bound-number (sb!c
::interval-high y
)))))
749 (list (sb!c
::make-interval
:low
(or lo
0) :high
(or hi
1)))))
751 ;; Split the interval in half.
752 (destructuring-bind (y- y
+)
753 (sb!c
::interval-split
0 y t
)
754 (list (interval-expt-> x y-
)
755 (interval-expt-> x y
+))))))
757 ;;; Handle the case when x <= 1
758 (defun interval-expt-< (x y
)
759 (case (sb!c
::interval-range-info x
0d0
)
761 ;; The case of 0 <= x <= 1 is easy
762 (case (sb!c
::interval-range-info y
)
764 ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is
765 ;; obviously [0, 1]. We just have to be careful for infinite bounds
767 (let ((lo (safe-expt (type-bound-number (sb!c
::interval-low x
))
768 (type-bound-number (sb!c
::interval-high y
))))
769 (hi (safe-expt (type-bound-number (sb!c
::interval-high x
))
770 (type-bound-number (sb!c
::interval-low y
)))))
771 (list (sb!c
::make-interval
:low
(or lo
0) :high
(or hi
1)))))
773 ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is
774 ;; obviously [1, inf].
775 (let ((hi (safe-expt (type-bound-number (sb!c
::interval-low x
))
776 (type-bound-number (sb!c
::interval-low y
))))
777 (lo (safe-expt (type-bound-number (sb!c
::interval-high x
))
778 (type-bound-number (sb!c
::interval-high y
)))))
779 (list (sb!c
::make-interval
:low
(or lo
1) :high hi
))))
781 ;; Split the interval in half
782 (destructuring-bind (y- y
+)
783 (sb!c
::interval-split
0 y t
)
784 (list (interval-expt-< x y-
)
785 (interval-expt-< x y
+))))))
787 ;; The case where x <= 0. Y MUST be an INTEGER for this to work!
788 ;; The calling function must insure this! For now we'll just
789 ;; return the appropriate unbounded float type.
790 (list (sb!c
::make-interval
:low nil
:high nil
)))
792 (destructuring-bind (neg pos
)
793 (interval-split 0 x t t
)
794 (list (interval-expt-< neg y
)
795 (interval-expt-< pos y
))))))
797 ;;; Compute bounds for (expt x y).
798 (defun interval-expt (x y
)
799 (case (interval-range-info x
1)
802 (interval-expt-> x y
))
805 (interval-expt-< x y
))
807 (destructuring-bind (left right
)
808 (interval-split 1 x t t
)
809 (list (interval-expt left y
)
810 (interval-expt right y
))))))
812 (defun fixup-interval-expt (bnd x-int y-int x-type y-type
)
813 (declare (ignore x-int
))
814 ;; Figure out what the return type should be, given the argument
815 ;; types and bounds and the result type and bounds.
816 (cond ((csubtypep x-type
(specifier-type 'integer
))
817 ;; an integer to some power
818 (case (numeric-type-class y-type
)
820 ;; Positive integer to an integer power is either an
821 ;; integer or a rational.
822 (let ((lo (or (interval-low bnd
) '*))
823 (hi (or (interval-high bnd
) '*)))
824 (if (and (interval-low y-int
)
825 (>= (type-bound-number (interval-low y-int
)) 0))
826 (specifier-type `(integer ,lo
,hi
))
827 (specifier-type `(rational ,lo
,hi
)))))
829 ;; Positive integer to rational power is either a rational
830 ;; or a single-float.
831 (let* ((lo (interval-low bnd
))
832 (hi (interval-high bnd
))
834 (floor (type-bound-number lo
))
837 (ceiling (type-bound-number hi
))
840 (bound-func #'float lo
)
843 (bound-func #'float hi
)
845 (specifier-type `(or (rational ,int-lo
,int-hi
)
846 (single-float ,f-lo
, f-hi
)))))
848 ;; A positive integer to a float power is a float.
849 (modified-numeric-type y-type
850 :low
(interval-low bnd
)
851 :high
(interval-high bnd
)))
853 ;; A positive integer to a number is a number (for now).
854 (specifier-type 'number
))))
855 ((csubtypep x-type
(specifier-type 'rational
))
856 ;; a rational to some power
857 (case (numeric-type-class y-type
)
859 ;; A positive rational to an integer power is always a rational.
860 (specifier-type `(rational ,(or (interval-low bnd
) '*)
861 ,(or (interval-high bnd
) '*))))
863 ;; A positive rational to rational power is either a rational
864 ;; or a single-float.
865 (let* ((lo (interval-low bnd
))
866 (hi (interval-high bnd
))
868 (floor (type-bound-number lo
))
871 (ceiling (type-bound-number hi
))
874 (bound-func #'float lo
)
877 (bound-func #'float hi
)
879 (specifier-type `(or (rational ,int-lo
,int-hi
)
880 (single-float ,f-lo
, f-hi
)))))
882 ;; A positive rational to a float power is a float.
883 (modified-numeric-type y-type
884 :low
(interval-low bnd
)
885 :high
(interval-high bnd
)))
887 ;; A positive rational to a number is a number (for now).
888 (specifier-type 'number
))))
889 ((csubtypep x-type
(specifier-type 'float
))
890 ;; a float to some power
891 (case (numeric-type-class y-type
)
892 ((or integer rational
)
893 ;; A positive float to an integer or rational power is
897 :format
(numeric-type-format x-type
)
898 :low
(interval-low bnd
)
899 :high
(interval-high bnd
)))
901 ;; A positive float to a float power is a float of the
905 :format
(float-format-max (numeric-type-format x-type
)
906 (numeric-type-format y-type
))
907 :low
(interval-low bnd
)
908 :high
(interval-high bnd
)))
910 ;; A positive float to a number is a number (for now)
911 (specifier-type 'number
))))
913 ;; A number to some power is a number.
914 (specifier-type 'number
))))
916 (defun merged-interval-expt (x y
)
917 (let* ((x-int (numeric-type->interval x
))
918 (y-int (numeric-type->interval y
)))
919 (mapcar (lambda (type)
920 (fixup-interval-expt type x-int y-int x y
))
921 (flatten-list (interval-expt x-int y-int
)))))
923 (defun expt-derive-type-aux (x y same-arg
)
924 (declare (ignore same-arg
))
925 (cond ((or (not (numeric-type-real-p x
))
926 (not (numeric-type-real-p y
)))
927 ;; Use numeric contagion if either is not real.
928 (numeric-contagion x y
))
929 ((csubtypep y
(specifier-type 'integer
))
930 ;; A real raised to an integer power is well-defined.
931 (merged-interval-expt x y
))
932 ;; A real raised to a non-integral power can be a float or a
934 ((or (csubtypep x
(specifier-type '(rational 0)))
935 (csubtypep x
(specifier-type '(float (0d0)))))
936 ;; But a positive real to any power is well-defined.
937 (merged-interval-expt x y
))
938 ((and (csubtypep x
(specifier-type 'rational
))
939 (csubtypep x
(specifier-type 'rational
)))
940 ;; A rational to the power of a rational could be a rational
941 ;; or a possibly-complex single float
942 (specifier-type '(or rational single-float
(complex single-float
))))
944 ;; a real to some power. The result could be a real or a
946 (float-or-complex-float-type (numeric-contagion x y
)))))
948 (defoptimizer (expt derive-type
) ((x y
))
949 (two-arg-derive-type x y
#'expt-derive-type-aux
#'expt
))
951 ;;; Note we must assume that a type including 0.0 may also include
952 ;;; -0.0 and thus the result may be complex -infinity + i*pi.
953 (defun log-derive-type-aux-1 (x)
954 (elfun-derive-type-simple x
#'log
0d0 nil nil nil
))
956 (defun log-derive-type-aux-2 (x y same-arg
)
957 (let ((log-x (log-derive-type-aux-1 x
))
958 (log-y (log-derive-type-aux-1 y
))
959 (accumulated-list nil
))
960 ;; LOG-X or LOG-Y might be union types. We need to run through
961 ;; the union types ourselves because /-DERIVE-TYPE-AUX doesn't.
962 (dolist (x-type (prepare-arg-for-derive-type log-x
))
963 (dolist (y-type (prepare-arg-for-derive-type log-y
))
964 (push (/-derive-type-aux x-type y-type same-arg
) accumulated-list
)))
965 (apply #'type-union
(flatten-list accumulated-list
))))
967 (defoptimizer (log derive-type
) ((x &optional y
))
969 (two-arg-derive-type x y
#'log-derive-type-aux-2
#'log
)
970 (one-arg-derive-type x
#'log-derive-type-aux-1
#'log
)))
972 (defun atan-derive-type-aux-1 (y)
973 (elfun-derive-type-simple y
#'atan nil nil
(- (/ pi
2)) (/ pi
2)))
975 (defun atan-derive-type-aux-2 (y x same-arg
)
976 (declare (ignore same-arg
))
977 ;; The hard case with two args. We just return the max bounds.
978 (let ((result-type (numeric-contagion y x
)))
979 (cond ((and (numeric-type-real-p x
)
980 (numeric-type-real-p y
))
981 (let* (;; FIXME: This expression for FORMAT seems to
982 ;; appear multiple times, and should be factored out.
983 (format (case (numeric-type-class result-type
)
984 ((integer rational
) 'single-float
)
985 (t (numeric-type-format result-type
))))
986 (bound-format (or format
'float
)))
987 (make-numeric-type :class
'float
990 :low
(coerce (- pi
) bound-format
)
991 :high
(coerce pi bound-format
))))
993 ;; The result is a float or a complex number
994 (float-or-complex-float-type result-type
)))))
996 (defoptimizer (atan derive-type
) ((y &optional x
))
998 (two-arg-derive-type y x
#'atan-derive-type-aux-2
#'atan
)
999 (one-arg-derive-type y
#'atan-derive-type-aux-1
#'atan
)))
1001 (defun cosh-derive-type-aux (x)
1002 ;; We note that cosh x = cosh |x| for all real x.
1003 (elfun-derive-type-simple
1004 (if (numeric-type-real-p x
)
1005 (abs-derive-type-aux x
)
1007 #'cosh nil nil
0 nil
))
1009 (defoptimizer (cosh derive-type
) ((num))
1010 (one-arg-derive-type num
#'cosh-derive-type-aux
#'cosh
))
1012 (defun phase-derive-type-aux (arg)
1013 (let* ((format (case (numeric-type-class arg
)
1014 ((integer rational
) 'single-float
)
1015 (t (numeric-type-format arg
))))
1016 (bound-type (or format
'float
)))
1017 (cond ((numeric-type-real-p arg
)
1018 (case (interval-range-info (numeric-type->interval arg
) 0.0)
1020 ;; The number is positive, so the phase is 0.
1021 (make-numeric-type :class
'float
1024 :low
(coerce 0 bound-type
)
1025 :high
(coerce 0 bound-type
)))
1027 ;; The number is always negative, so the phase is pi.
1028 (make-numeric-type :class
'float
1031 :low
(coerce pi bound-type
)
1032 :high
(coerce pi bound-type
)))
1034 ;; We can't tell. The result is 0 or pi. Use a union
1037 (make-numeric-type :class
'float
1040 :low
(coerce 0 bound-type
)
1041 :high
(coerce 0 bound-type
))
1042 (make-numeric-type :class
'float
1045 :low
(coerce pi bound-type
)
1046 :high
(coerce pi bound-type
))))))
1048 ;; We have a complex number. The answer is the range -pi
1049 ;; to pi. (-pi is included because we have -0.)
1050 (make-numeric-type :class
'float
1053 :low
(coerce (- pi
) bound-type
)
1054 :high
(coerce pi bound-type
))))))
1056 (defoptimizer (phase derive-type
) ((num))
1057 (one-arg-derive-type num
#'phase-derive-type-aux
#'phase
))
1061 (deftransform realpart
((x) ((complex rational
)) *)
1062 '(sb!kernel
:%realpart x
))
1063 (deftransform imagpart
((x) ((complex rational
)) *)
1064 '(sb!kernel
:%imagpart x
))
1066 ;;; Make REALPART and IMAGPART return the appropriate types. This
1067 ;;; should help a lot in optimized code.
1068 (defun realpart-derive-type-aux (type)
1069 (let ((class (numeric-type-class type
))
1070 (format (numeric-type-format type
)))
1071 (cond ((numeric-type-real-p type
)
1072 ;; The realpart of a real has the same type and range as
1074 (make-numeric-type :class class
1077 :low
(numeric-type-low type
)
1078 :high
(numeric-type-high type
)))
1080 ;; We have a complex number. The result has the same type
1081 ;; as the real part, except that it's real, not complex,
1083 (make-numeric-type :class class
1086 :low
(numeric-type-low type
)
1087 :high
(numeric-type-high type
))))))
1088 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1089 (defoptimizer (realpart derive-type
) ((num))
1090 (one-arg-derive-type num
#'realpart-derive-type-aux
#'realpart
))
1091 (defun imagpart-derive-type-aux (type)
1092 (let ((class (numeric-type-class type
))
1093 (format (numeric-type-format type
)))
1094 (cond ((numeric-type-real-p type
)
1095 ;; The imagpart of a real has the same type as the input,
1096 ;; except that it's zero.
1097 (let ((bound-format (or format class
'real
)))
1098 (make-numeric-type :class class
1101 :low
(coerce 0 bound-format
)
1102 :high
(coerce 0 bound-format
))))
1104 ;; We have a complex number. The result has the same type as
1105 ;; the imaginary part, except that it's real, not complex,
1107 (make-numeric-type :class class
1110 :low
(numeric-type-low type
)
1111 :high
(numeric-type-high type
))))))
1112 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1113 (defoptimizer (imagpart derive-type
) ((num))
1114 (one-arg-derive-type num
#'imagpart-derive-type-aux
#'imagpart
))
1116 (defun complex-derive-type-aux-1 (re-type)
1117 (if (numeric-type-p re-type
)
1118 (make-numeric-type :class
(numeric-type-class re-type
)
1119 :format
(numeric-type-format re-type
)
1120 :complexp
(if (csubtypep re-type
1121 (specifier-type 'rational
))
1124 :low
(numeric-type-low re-type
)
1125 :high
(numeric-type-high re-type
))
1126 (specifier-type 'complex
)))
1128 (defun complex-derive-type-aux-2 (re-type im-type same-arg
)
1129 (declare (ignore same-arg
))
1130 (if (and (numeric-type-p re-type
)
1131 (numeric-type-p im-type
))
1132 ;; Need to check to make sure numeric-contagion returns the
1133 ;; right type for what we want here.
1135 ;; Also, what about rational canonicalization, like (complex 5 0)
1136 ;; is 5? So, if the result must be complex, we make it so.
1137 ;; If the result might be complex, which happens only if the
1138 ;; arguments are rational, we make it a union type of (or
1139 ;; rational (complex rational)).
1140 (let* ((element-type (numeric-contagion re-type im-type
))
1141 (rat-result-p (csubtypep element-type
1142 (specifier-type 'rational
))))
1144 (type-union element-type
1146 `(complex ,(numeric-type-class element-type
))))
1147 (make-numeric-type :class
(numeric-type-class element-type
)
1148 :format
(numeric-type-format element-type
)
1149 :complexp
(if rat-result-p
1152 (specifier-type 'complex
)))
1154 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1155 (defoptimizer (complex derive-type
) ((re &optional im
))
1157 (two-arg-derive-type re im
#'complex-derive-type-aux-2
#'complex
)
1158 (one-arg-derive-type re
#'complex-derive-type-aux-1
#'complex
)))
1160 ;;; Define some transforms for complex operations. We do this in lieu
1161 ;;; of complex operation VOPs.
1162 (macrolet ((frob (type)
1165 (deftransform %negate
((z) ((complex ,type
)) *)
1166 '(complex (%negate
(realpart z
)) (%negate
(imagpart z
))))
1167 ;; complex addition and subtraction
1168 (deftransform + ((w z
) ((complex ,type
) (complex ,type
)) *)
1169 '(complex (+ (realpart w
) (realpart z
))
1170 (+ (imagpart w
) (imagpart z
))))
1171 (deftransform -
((w z
) ((complex ,type
) (complex ,type
)) *)
1172 '(complex (- (realpart w
) (realpart z
))
1173 (- (imagpart w
) (imagpart z
))))
1174 ;; Add and subtract a complex and a real.
1175 (deftransform + ((w z
) ((complex ,type
) real
) *)
1176 '(complex (+ (realpart w
) z
) (imagpart w
)))
1177 (deftransform + ((z w
) (real (complex ,type
)) *)
1178 '(complex (+ (realpart w
) z
) (imagpart w
)))
1179 ;; Add and subtract a real and a complex number.
1180 (deftransform -
((w z
) ((complex ,type
) real
) *)
1181 '(complex (- (realpart w
) z
) (imagpart w
)))
1182 (deftransform -
((z w
) (real (complex ,type
)) *)
1183 '(complex (- z
(realpart w
)) (- (imagpart w
))))
1184 ;; Multiply and divide two complex numbers.
1185 (deftransform * ((x y
) ((complex ,type
) (complex ,type
)) *)
1186 '(let* ((rx (realpart x
))
1190 (complex (- (* rx ry
) (* ix iy
))
1191 (+ (* rx iy
) (* ix ry
)))))
1192 (deftransform / ((x y
) ((complex ,type
) (complex ,type
)) *)
1193 '(let* ((rx (realpart x
))
1197 (if (> (abs ry
) (abs iy
))
1198 (let* ((r (/ iy ry
))
1199 (dn (* ry
(+ 1 (* r r
)))))
1200 (complex (/ (+ rx
(* ix r
)) dn
)
1201 (/ (- ix
(* rx r
)) dn
)))
1202 (let* ((r (/ ry iy
))
1203 (dn (* iy
(+ 1 (* r r
)))))
1204 (complex (/ (+ (* rx r
) ix
) dn
)
1205 (/ (- (* ix r
) rx
) dn
))))))
1206 ;; Multiply a complex by a real or vice versa.
1207 (deftransform * ((w z
) ((complex ,type
) real
) *)
1208 '(complex (* (realpart w
) z
) (* (imagpart w
) z
)))
1209 (deftransform * ((z w
) (real (complex ,type
)) *)
1210 '(complex (* (realpart w
) z
) (* (imagpart w
) z
)))
1211 ;; Divide a complex by a real.
1212 (deftransform / ((w z
) ((complex ,type
) real
) *)
1213 '(complex (/ (realpart w
) z
) (/ (imagpart w
) z
)))
1214 ;; conjugate of complex number
1215 (deftransform conjugate
((z) ((complex ,type
)) *)
1216 '(complex (realpart z
) (- (imagpart z
))))
1218 (deftransform cis
((z) ((,type
)) *)
1219 '(complex (cos z
) (sin z
)))
1221 (deftransform = ((w z
) ((complex ,type
) (complex ,type
)) *)
1222 '(and (= (realpart w
) (realpart z
))
1223 (= (imagpart w
) (imagpart z
))))
1224 (deftransform = ((w z
) ((complex ,type
) real
) *)
1225 '(and (= (realpart w
) z
) (zerop (imagpart w
))))
1226 (deftransform = ((w z
) (real (complex ,type
)) *)
1227 '(and (= (realpart z
) w
) (zerop (imagpart z
)))))))
1230 (frob double-float
))
1232 ;;; Here are simple optimizers for SIN, COS, and TAN. They do not
1233 ;;; produce a minimal range for the result; the result is the widest
1234 ;;; possible answer. This gets around the problem of doing range
1235 ;;; reduction correctly but still provides useful results when the
1236 ;;; inputs are union types.
1237 #-sb-xc-host
; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1239 (defun trig-derive-type-aux (arg domain fcn
1240 &optional def-lo def-hi
(increasingp t
))
1243 (cond ((eq (numeric-type-complexp arg
) :complex
)
1244 (make-numeric-type :class
(numeric-type-class arg
)
1245 :format
(numeric-type-format arg
)
1246 :complexp
:complex
))
1247 ((numeric-type-real-p arg
)
1248 (let* ((format (case (numeric-type-class arg
)
1249 ((integer rational
) 'single-float
)
1250 (t (numeric-type-format arg
))))
1251 (bound-type (or format
'float
)))
1252 ;; If the argument is a subset of the "principal" domain
1253 ;; of the function, we can compute the bounds because
1254 ;; the function is monotonic. We can't do this in
1255 ;; general for these periodic functions because we can't
1256 ;; (and don't want to) do the argument reduction in
1257 ;; exactly the same way as the functions themselves do
1259 (if (csubtypep arg domain
)
1260 (let ((res-lo (bound-func fcn
(numeric-type-low arg
)))
1261 (res-hi (bound-func fcn
(numeric-type-high arg
))))
1263 (rotatef res-lo res-hi
))
1267 :low
(coerce-numeric-bound res-lo bound-type
)
1268 :high
(coerce-numeric-bound res-hi bound-type
)))
1272 :low
(and def-lo
(coerce def-lo bound-type
))
1273 :high
(and def-hi
(coerce def-hi bound-type
))))))
1275 (float-or-complex-float-type arg def-lo def-hi
))))))
1277 (defoptimizer (sin derive-type
) ((num))
1278 (one-arg-derive-type
1281 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1282 (trig-derive-type-aux
1284 (specifier-type `(float ,(- (/ pi
2)) ,(/ pi
2)))
1289 (defoptimizer (cos derive-type
) ((num))
1290 (one-arg-derive-type
1293 ;; Derive the bounds if the arg is in [0, pi].
1294 (trig-derive-type-aux arg
1295 (specifier-type `(float 0d0
,pi
))
1301 (defoptimizer (tan derive-type
) ((num))
1302 (one-arg-derive-type
1305 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1306 (trig-derive-type-aux arg
1307 (specifier-type `(float ,(- (/ pi
2)) ,(/ pi
2)))
1312 (defoptimizer (conjugate derive-type
) ((num))
1313 (one-arg-derive-type num
1315 (flet ((most-negative-bound (l h
)
1317 (if (< (type-bound-number l
) (- (type-bound-number h
)))
1319 (set-bound (- (type-bound-number h
)) (consp h
)))))
1320 (most-positive-bound (l h
)
1322 (if (> (type-bound-number h
) (- (type-bound-number l
)))
1324 (set-bound (- (type-bound-number l
)) (consp l
))))))
1325 (if (numeric-type-real-p arg
)
1327 (let ((low (numeric-type-low arg
))
1328 (high (numeric-type-high arg
)))
1329 (let ((new-low (most-negative-bound low high
))
1330 (new-high (most-positive-bound low high
)))
1331 (modified-numeric-type arg
:low new-low
:high new-high
))))))
1334 (defoptimizer (cis derive-type
) ((num))
1335 (one-arg-derive-type num
1337 (sb!c
::specifier-type
1338 `(complex ,(or (numeric-type-format arg
) 'float
))))
1343 ;;;; TRUNCATE, FLOOR, CEILING, and ROUND
1345 (macrolet ((define-frobs (fun ufun
)
1347 (defknown ,ufun
(real) integer
(movable foldable flushable
))
1348 (deftransform ,fun
((x &optional by
)
1350 (constant-arg (member 1))))
1351 '(let ((res (,ufun x
)))
1352 (values res
(- x res
)))))))
1353 (define-frobs truncate %unary-truncate
)
1354 (define-frobs round %unary-round
))
1356 ;;; Convert (TRUNCATE x y) to the obvious implementation. We only want
1357 ;;; this when under certain conditions and let the generic TRUNCATE
1358 ;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y
1359 ;;; should be removed by other DEFTRANSFORMs.)
1360 (deftransform truncate
((x &optional y
)
1361 (float &optional
(or float integer
)))
1362 (let ((defaulted-y (if y
'y
1)))
1363 `(let ((res (%unary-truncate
(/ x
,defaulted-y
))))
1364 (values res
(- x
(* ,defaulted-y res
))))))
1366 (deftransform floor
((number &optional divisor
)
1367 (float &optional
(or integer float
)))
1368 (let ((defaulted-divisor (if divisor
'divisor
1)))
1369 `(multiple-value-bind (tru rem
) (truncate number
,defaulted-divisor
)
1370 (if (and (not (zerop rem
))
1371 (if (minusp ,defaulted-divisor
)
1374 (values (1- tru
) (+ rem
,defaulted-divisor
))
1375 (values tru rem
)))))
1377 (deftransform ceiling
((number &optional divisor
)
1378 (float &optional
(or integer float
)))
1379 (let ((defaulted-divisor (if divisor
'divisor
1)))
1380 `(multiple-value-bind (tru rem
) (truncate number
,defaulted-divisor
)
1381 (if (and (not (zerop rem
))
1382 (if (minusp ,defaulted-divisor
)
1385 (values (1+ tru
) (- rem
,defaulted-divisor
))
1386 (values tru rem
)))))
1388 (defknown %unary-ftruncate
(real) float
(movable foldable flushable
))
1389 (defknown %unary-ftruncate
/single
(single-float) single-float
1390 (movable foldable flushable
))
1391 (defknown %unary-ftruncate
/double
(double-float) double-float
1392 (movable foldable flushable
))
1394 (defun %unary-ftruncate
/single
(x)
1395 (declare (type single-float x
))
1396 (declare (optimize speed
(safety 0)))
1397 (let* ((bits (single-float-bits x
))
1398 (exp (ldb sb
!vm
:single-float-exponent-byte bits
))
1399 (biased (the single-float-exponent
1400 (- exp sb
!vm
:single-float-bias
))))
1401 (declare (type (signed-byte 32) bits
))
1403 ((= exp sb
!vm
:single-float-normal-exponent-max
) x
)
1404 ((<= biased
0) (* x
0f0
))
1405 ((>= biased
(float-digits x
)) x
)
1407 (let ((frac-bits (- (float-digits x
) biased
)))
1408 (setf bits
(logandc2 bits
(- (ash 1 frac-bits
) 1)))
1409 (make-single-float bits
))))))
1411 (defun %unary-ftruncate
/double
(x)
1412 (declare (type double-float x
))
1413 (declare (optimize speed
(safety 0)))
1414 (let* ((high (double-float-high-bits x
))
1415 (low (double-float-low-bits x
))
1416 (exp (ldb sb
!vm
:double-float-exponent-byte high
))
1417 (biased (the double-float-exponent
1418 (- exp sb
!vm
:double-float-bias
))))
1419 (declare (type (signed-byte 32) high
)
1420 (type (unsigned-byte 32) low
))
1422 ((= exp sb
!vm
:double-float-normal-exponent-max
) x
)
1423 ((<= biased
0) (* x
0d0
))
1424 ((>= biased
(float-digits x
)) x
)
1426 (let ((frac-bits (- (float-digits x
) biased
)))
1427 (cond ((< frac-bits
32)
1428 (setf low
(logandc2 low
(- (ash 1 frac-bits
) 1))))
1431 (setf high
(logandc2 high
(- (ash 1 (- frac-bits
32)) 1)))))
1432 (make-double-float high low
))))))
1435 ((def (float-type fun
)
1436 `(deftransform %unary-ftruncate
((x) (,float-type
))
1438 (def single-float %unary-ftruncate
/single
)
1439 (def double-float %unary-ftruncate
/double
))