1 ;;;; the basics of the PCL wrapper cache mechanism
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from software originally released by Xerox
7 ;;;; Corporation. Copyright and release statements follow. Later modifications
8 ;;;; to the software are in the public domain and are provided with
9 ;;;; absolutely no warranty. See the COPYING and CREDITS files for more
12 ;;;; copyright information from original PCL sources:
14 ;;;; Copyright (c) 1985, 1986, 1987, 1988, 1989, 1990 Xerox Corporation.
15 ;;;; All rights reserved.
17 ;;;; Use and copying of this software and preparation of derivative works based
18 ;;;; upon this software are permitted. Any distribution of this software or
19 ;;;; derivative works must comply with all applicable United States export
22 ;;;; This software is made available AS IS, and Xerox Corporation makes no
23 ;;;; warranty about the software, its performance or its conformity to any
26 ;;;; Note: as of SBCL 1.0.6.3 it is questionable if cache.lisp can
27 ;;;; anymore be considered to be "derived from software originally
28 ;;;; released by Xerox Corporation", as at that time the whole cache
29 ;;;; implementation was essentially redone from scratch.
39 ;;;; emit-cache-lookup
41 ;;;; hash-table-to-cache
43 ;;;; This is a thread and interrupt safe reimplementation loosely
44 ;;;; based on the original PCL cache by Kickzales and Rodrigues,
45 ;;;; as described in "Efficient Method Dispatch in PCL".
47 ;;;; * Writes to cache are made atomic using compare-and-swap on
48 ;;;; wrappers. Wrappers are never moved or deleted after they have
49 ;;;; been written: to clean them out the cache need to be copied.
51 ;;;; * Copying or expanding the cache drops out incomplete and invalid
54 ;;;; * Since the cache is used for memoization only we don't need to
55 ;;;; worry about which of simultaneous replacements (when expanding
56 ;;;; the cache) takes place: the loosing one will have its work
57 ;;;; redone later. This also allows us to drop entries when the
58 ;;;; cache is about to grow insanely huge.
60 ;;;; The cache is essentially a specialized hash-table for layouts, used
61 ;;;; for memoization of effective methods, slot locations, and constant
64 ;;;; Subsequences of the cache vector are called cache lines.
66 ;;;; The cache vector uses the symbol SB-PCL::..EMPTY.. as a sentinel
67 ;;;; value, to allow storing NILs in the vector as well.
69 (defstruct (cache (:constructor %make-cache
)
70 (:copier %copy-cache
))
71 ;; Number of keys the cache uses.
72 (key-count 1 :type
(integer 1 (#.call-arguments-limit
)))
73 ;; True if we store values in the cache.
75 ;; Number of vector elements a single cache line uses in the vector.
76 ;; This is always a power of two, so that the vector length can be both
77 ;; an exact multiple of this and a power of two.
78 (line-size 1 :type
(integer 1 #.most-positive-fixnum
))
79 ;; Cache vector, its length is always both a multiple of line-size
80 ;; and a power of two. This is so that we can calculate
81 ;; (mod index (length vector))
83 (vector #() :type simple-vector
)
84 ;; The bitmask used to calculate
85 ;; (mod (* line-size line-hash) (length vector))).
87 ;; Current probe-depth needed in the cache.
89 ;; Maximum allowed probe-depth before the cache needs to expand.
90 (limit 0 :type index
))
92 (defun compute-cache-mask (vector-length line-size
)
93 ;; Since both vector-length and line-size are powers of two, we
94 ;; can compute a bitmask such that
96 ;; (logand <mask> <combined-layout-hash>)
98 ;; is "morally equal" to
100 ;; (mod (* <line-size> <combined-layout-hash>) <vector-length>)
102 ;; This is it: (1- vector-length) is #b111... of the approriate size
103 ;; to get the MOD, and (- line-size) gives right the number of zero
104 ;; bits at the low end.
105 (logand (1- vector-length
) (- line-size
)))
107 ;;; The smallest power of two that is equal to or greater then X.
108 (declaim (inline power-of-two-ceiling
))
109 (defun power-of-two-ceiling (x)
110 (ash 1 (integer-length (1- x
))))
112 (defun cache-statistics (cache)
113 (let* ((vector (cache-vector cache
))
114 (size (length vector
))
115 (line-size (cache-line-size cache
))
116 (total-lines (/ size line-size
))
117 (free-lines (loop for i from
0 by line-size below size
118 unless
(eq (svref vector i
) '..empty..
)
120 (values (- total-lines free-lines
) total-lines
121 (cache-depth cache
) (cache-limit cache
))))
123 ;;; Don't allocate insanely huge caches: this is 4096 lines for a
124 ;;; value cache with 8-15 keys -- probably "big enough for anyone",
125 ;;; and 16384 lines for a commonplace 2-key value cache.
126 (defconstant +cache-vector-max-length
+ (expt 2 16))
128 ;;; Compute the maximum allowed probe depth as a function of cache size.
129 ;;; Cache size refers to number of cache lines, not the length of the
132 ;;; FIXME: It would be nice to take the generic function optimization
133 ;;; policy into account here (speed vs. space.)
134 (declaim (inline compute-limit
))
135 (defun compute-limit (size)
136 (ceiling (sqrt (sqrt size
))))
138 ;;; Returns VALUE if it is not ..EMPTY.., otherwise executes ELSE:
139 (defmacro non-empty-or
(value else
)
140 (with-unique-names (n-value)
141 `(let ((,n-value
,value
))
142 (if (eq ,n-value
'..empty..
)
146 ;;; Fast way to check if a thing found at the position of a cache key is one:
147 ;;; it is always either a wrapper, or the ..EMPTY.. symbol.
148 (declaim (inline cache-key-p
))
149 (defun cache-key-p (thing)
150 (not (symbolp thing
)))
152 ;;; Atomically update the current probe depth of a cache.
153 (defun note-cache-depth (cache depth
)
154 (loop for old
= (cache-depth cache
)
155 while
(and (< old depth
)
156 (not (eq old
(compare-and-swap (cache-depth cache
)
159 ;;; Compute the starting index of the next cache line in the cache vector.
160 (declaim (inline next-cache-index
))
161 (defun next-cache-index (mask index line-size
)
162 (declare (type (unsigned-byte #.sb-vm
:n-word-bits
) index line-size mask
))
163 (logand mask
(+ index line-size
)))
165 ;;; Returns the hash-value for layout, or executes ELSE if the layout
167 (defmacro hash-layout-or
(layout else
)
168 (with-unique-names (n-hash)
169 `(let ((,n-hash
(layout-clos-hash ,layout
)))
174 ;;; Compute cache index for the cache and a list of layouts.
175 (declaim (inline compute-cache-index
))
176 (defun compute-cache-index (cache layouts
)
177 (let ((index (hash-layout-or (car layouts
)
178 (return-from compute-cache-index nil
))))
179 (declare (fixnum index
))
180 (dolist (layout (cdr layouts
))
181 (mixf index
(hash-layout-or layout
(return-from compute-cache-index nil
))))
182 ;; align with cache lines
183 (logand index
(cache-mask cache
))))
185 ;;; Emit code that does lookup in cache bound to CACHE-VAR using
186 ;;; layouts bound to LAYOUT-VARS. Go to MISS-TAG on event of a miss or
187 ;;; invalid layout. Otherwise, if VALUE-VAR is non-nil, set it to the
188 ;;; value found. (VALUE-VAR is non-nil only when CACHE-VALUE is true.)
190 ;;; In other words, produces inlined code for COMPUTE-CACHE-INDEX when
191 ;;; number of keys and presence of values in the cache is known
193 (defun emit-cache-lookup (cache-var layout-vars miss-tag value-var
)
194 (let ((line-size (power-of-two-ceiling (+ (length layout-vars
)
195 (if value-var
1 0)))))
196 (with-unique-names (n-index n-vector n-depth n-pointer n-mask
197 MATCH-WRAPPERS EXIT-WITH-HIT
)
198 `(let* ((,n-index
(hash-layout-or ,(car layout-vars
) (go ,miss-tag
)))
199 (,n-vector
(cache-vector ,cache-var
))
200 (,n-mask
(cache-mask ,cache-var
)))
201 (declare (index ,n-index
))
202 ,@(mapcar (lambda (layout-var)
203 `(mixf ,n-index
(hash-layout-or ,layout-var
(go ,miss-tag
))))
205 ;; align with cache lines
206 (setf ,n-index
(logand ,n-index
,n-mask
))
207 (let ((,n-depth
(cache-depth ,cache-var
))
208 (,n-pointer
,n-index
))
209 (declare (index ,n-depth
,n-pointer
))
215 (eq ,layout-var
(svref ,n-vector
,n-pointer
))
219 `((setf ,value-var
(non-empty-or (svref ,n-vector
,n-pointer
)
225 (setf ,n-index
(next-cache-index ,n-mask
,n-index
,line-size
)
230 ;;; Probes CACHE for LAYOUTS.
232 ;;; Returns two values: a boolean indicating a hit or a miss, and a secondary
233 ;;; value that is the value that was stored in the cache if any.
234 (defun probe-cache (cache layouts
)
235 (declare (optimize speed
))
236 (unless (consp layouts
)
237 (setf layouts
(list layouts
)))
238 (let ((vector (cache-vector cache
))
239 (key-count (cache-key-count cache
))
240 (line-size (cache-line-size cache
))
241 (mask (cache-mask cache
)))
242 (flet ((probe-line (base)
243 (declare (optimize (sb-c::type-check
0)))
245 (loop for offset of-type index from
0 below key-count
246 for layout in layouts do
247 (unless (eq layout
(svref vector
(+ base offset
)))
250 ;; all layouts match!
251 (let ((value (when (cache-value cache
)
252 (non-empty-or (svref vector
(+ base key-count
))
254 (return-from probe-cache
(values t value
)))
256 (return-from probe-line
(next-cache-index mask base line-size
)))))
257 (declare (ftype (function (index) (values index
&optional
)) probe-line
))
258 (let ((index (compute-cache-index cache layouts
)))
260 (loop repeat
(1+ (cache-depth cache
))
261 do
(setf index
(probe-line index
)))))))
264 ;;; Tries to write LAYOUTS and VALUE at the cache line starting at
265 ;;; the index BASE. Returns true on success, and false on failure.
266 (defun try-update-cache-line (cache base layouts value
)
267 (declare (index base
))
268 (let ((vector (cache-vector cache
))
270 ;; If we unwind from here, we will be left with an incomplete
271 ;; cache line, but that is OK: next write using the same layouts
272 ;; will fill it, and reads will treat an incomplete line as a
273 ;; miss -- causing it to be filled.
274 (loop for old
= (compare-and-swap (svref vector base
) '..empty.. new
) do
275 (when (and (cache-key-p old
) (not (eq old new
)))
276 ;; The place was already taken, and doesn't match our key.
277 (return-from try-update-cache-line nil
))
279 ;; All keys match or succesfully saved, save our value --
280 ;; just smash it in. Until the first time it is written
281 ;; there is ..EMPTY.. here, which probes look for, so we
282 ;; don't get bogus hits. This is necessary because we want
283 ;; to be able store arbitrary values here for use with
284 ;; constant-value dispatch functions.
285 (when (cache-value cache
)
286 (setf (svref vector
(1+ base
)) value
))
287 (return-from try-update-cache-line t
))
288 (setf new
(pop layouts
))
291 ;;; Tries to write LAYOUTS and VALUE somewhere in the cache. Returns
292 ;;; true on success and false on failure, meaning the cache is too
294 (defun try-update-cache (cache layouts value
)
295 (let ((index (or (compute-cache-index cache layouts
)
296 ;; At least one of the layouts was invalid: just
297 ;; pretend we updated the cache, and let the next
298 ;; read pick up the mess.
299 (return-from try-update-cache t
)))
300 (line-size (cache-line-size cache
))
301 (mask (cache-mask cache
)))
302 (declare (index index
))
303 (loop for depth from
0 upto
(cache-limit cache
) do
304 (when (try-update-cache-line cache index layouts value
)
305 (note-cache-depth cache depth
)
306 (return-from try-update-cache t
))
307 (setf index
(next-cache-index mask index line-size
)))))
309 ;;; Constructs a new cache.
310 (defun make-cache (&key
(key-count (missing-arg)) (value (missing-arg))
312 (let* ((line-size (power-of-two-ceiling (+ key-count
(if value
1 0))))
313 (adjusted-size (power-of-two-ceiling size
))
314 (length (* adjusted-size line-size
)))
315 (if (<= length
+cache-vector-max-length
+)
316 (%make-cache
:key-count key-count
318 :vector
(make-array length
:initial-element
'..empty..
)
320 :mask
(compute-cache-mask length line-size
)
321 :limit
(compute-limit adjusted-size
))
322 ;; Make a smaller one, then
323 (make-cache :key-count key-count
:value value
:size
(ceiling size
2)))))
325 ;;;; Copies and expands the cache, dropping any invalidated or
326 ;;;; incomplete lines.
327 (defun copy-and-expand-cache (cache layouts value
)
328 (let ((copy (%copy-cache cache
))
329 (length (length (cache-vector cache
))))
330 (declare (index length
))
331 (when (< length
+cache-vector-max-length
+)
332 (setf length
(* 2 length
)))
335 ;; Blow way the old vector first, so a GC potentially triggered by
336 ;; MAKE-ARRAY can collect it.
337 (setf (cache-vector copy
) #()
338 (cache-vector copy
) (make-array length
:initial-element
'..empty..
)
340 (cache-mask copy
) (compute-cache-mask length
(cache-line-size cache
))
341 (cache-limit copy
) (compute-limit (/ length
(cache-line-size cache
))))
342 ;; First insert the new one -- if we don't do this first and
343 ;; the cache has reached it's maximum size we may end up
344 ;; looping in FILL-CACHE.
345 (unless (try-update-cache copy layouts value
)
346 (bug "Could not insert ~S:~S to supposedly empty ~S." layouts value cache
))
347 (map-cache (lambda (layouts value
)
348 (unless (try-update-cache copy layouts value
)
349 ;; If the cache would grow too much we drop the
350 ;; remaining the entries that don't fit. FIXME:
351 ;; It would be better to drop random entries to
352 ;; avoid getting into a rut here (best done by
353 ;; making MAP-CACHE map in a random order?), and
354 ;; possibly to downsize the cache more
355 ;; aggressively (on the assumption that most
356 ;; entries aren't getting used at the moment.)
357 (when (< length
+cache-vector-max-length
+)
358 (setf length
(* 2 length
))
363 (defun cache-has-invalid-entries-p (cache)
364 (let ((vector (cache-vector cache
))
365 (line-size (cache-line-size cache
))
366 (key-count (cache-key-count cache
))
367 (mask (cache-mask cache
))
370 ;; Check if the line is in use, and check validity of the keys.
371 (let ((key1 (svref vector index
)))
372 (when (cache-key-p key1
)
373 (if (zerop (layout-clos-hash key1
))
374 ;; First key invalid.
375 (return-from cache-has-invalid-entries-p t
)
376 ;; Line is in use and the first key is valid: check the rest.
377 (loop for offset from
1 below key-count
378 do
(let ((thing (svref vector
(+ index offset
))))
379 (when (or (not (cache-key-p thing
))
380 (zerop (layout-clos-hash thing
)))
381 ;; Incomplete line or invalid layout.
382 (return-from cache-has-invalid-entries-p t
)))))))
383 ;; Line empty of valid, onwards.
384 (setf index
(next-cache-index mask index line-size
))
387 (return-from cache-has-invalid-entries-p nil
)))))
389 (defun hash-table-to-cache (table &key value key-count
)
390 (let ((cache (make-cache :key-count key-count
:value value
391 :size
(hash-table-count table
))))
392 (maphash (lambda (class value
)
393 (setq cache
(fill-cache cache
(class-wrapper class
) value
)))
397 ;;; Inserts VALUE to CACHE keyd by LAYOUTS. Expands the cache if
398 ;;; necessary, and returns the new cache.
399 (defun fill-cache (cache layouts value
)
401 ((%fill-cache
(cache layouts value
)
402 (cond ((try-update-cache cache layouts value
)
404 ((cache-has-invalid-entries-p cache
)
405 ;; Don't expand yet: maybe there will be enough space if
406 ;; we just drop the invalid entries.
407 (%fill-cache
(copy-cache cache
) layouts value
))
409 (copy-and-expand-cache cache layouts value
)))))
411 (%fill-cache cache layouts value
)
412 (%fill-cache cache
(list layouts
) value
))))
414 ;;; Calls FUNCTION with all layouts and values in cache.
415 (defun map-cache (function cache
)
416 (let* ((vector (cache-vector cache
))
417 (key-count (cache-key-count cache
))
418 (valuep (cache-value cache
))
419 (line-size (cache-line-size cache
))
420 (mask (cache-mask cache
))
421 (fun (if (functionp function
)
423 (fdefinition function
)))
428 (loop for offset from
0 below key-count
429 collect
(non-empty-or (svref vector
(+ offset index
))
431 (let ((value (when valuep
432 (non-empty-or (svref vector
(+ index key-count
))
434 ;; Let the callee worry about invalid layouts
435 (funcall fun layouts value
)))
437 (setf index
(next-cache-index mask index line-size
))
438 (unless (zerop index
)
442 ;;; Copying a cache without expanding it is very much like mapping it:
443 ;;; we need to be carefull because there may be updates while we are
444 ;;; copying it, and we don't want to copy incomplete entries or invalid
446 (defun copy-cache (cache)
447 (let* ((vector (cache-vector cache
))
448 (copy (make-array (length vector
) :initial-element
'..empty..
))
449 (line-size (cache-line-size cache
))
450 (key-count (cache-key-count cache
))
451 (valuep (cache-value cache
))
452 (mask (cache-mask cache
))
453 (size (/ (length vector
) line-size
))
458 (let ((layouts (loop for offset from
0 below key-count
459 collect
(non-empty-or (svref vector
(+ index offset
))
461 ;; Check validity & compute primary index.
462 (let ((primary (or (compute-cache-index cache layouts
)
464 ;; Check & copy value.
466 (setf (svref copy
(+ index key-count
))
467 (non-empty-or (svref vector
(+ index key-count
))
470 (loop for offset from
0 below key-count do
471 (setf (svref copy
(+ index offset
)) (pop layouts
)))
472 ;; Update probe depth.
473 (let ((distance (/ (- index primary
) line-size
)))
474 (setf depth
(max depth
(if (minusp distance
)
475 ;; account for wrap-around
479 (setf index
(next-cache-index mask index line-size
))
480 (unless (zerop index
)
482 (%make-cache
:vector copy
484 :key-count
(cache-key-count cache
)
488 :limit
(cache-limit cache
))))
490 ;;;; For debugging & collecting statistics.
492 (defun map-all-caches (function)
493 (dolist (p (list-all-packages))
495 (when (eq p
(symbol-package s
))
496 (dolist (name (list s
500 (slot-boundp-name s
)))
502 (let ((fun (fdefinition name
)))
503 (when (typep fun
'generic-function
)
504 (let ((cache (gf-dfun-cache fun
)))
506 (funcall function name cache
)))))))))))
508 (defun check-cache-consistency (cache)
509 (let ((table (make-hash-table :test
'equal
)))
510 (map-cache (lambda (layouts value
)
511 (declare (ignore value
))
512 (if (gethash layouts table
)
513 (cerror "Check futher."
514 "Multiple appearances of ~S." layouts
)
515 (setf (gethash layouts table
) t
)))