0.9.3.41: gc trigger
[sbcl/eslaughter.git] / src / runtime / interrupt.c
blobd711858468ccd6ae559c0be39565a2b486fe3958
1 /*
2 * interrupt-handling magic
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <signal.h>
48 #include <sys/types.h>
49 #include <sys/wait.h>
50 #include <errno.h>
52 #include "sbcl.h"
53 #include "runtime.h"
54 #include "arch.h"
55 #include "os.h"
56 #include "interrupt.h"
57 #include "globals.h"
58 #include "lispregs.h"
59 #include "validate.h"
60 #include "monitor.h"
61 #include "gc.h"
62 #include "alloc.h"
63 #include "dynbind.h"
64 #include "interr.h"
65 #include "genesis/fdefn.h"
66 #include "genesis/simple-fun.h"
67 #include "genesis/cons.h"
71 void run_deferred_handler(struct interrupt_data *data, void *v_context) ;
72 static void store_signal_data_for_later (struct interrupt_data *data,
73 void *handler, int signal,
74 siginfo_t *info,
75 os_context_t *context);
76 boolean interrupt_maybe_gc_int(int signal, siginfo_t *info, void *v_context);
78 void sigaddset_deferrable(sigset_t *s)
80 sigaddset(s, SIGHUP);
81 sigaddset(s, SIGINT);
82 sigaddset(s, SIGQUIT);
83 sigaddset(s, SIGPIPE);
84 sigaddset(s, SIGALRM);
85 sigaddset(s, SIGURG);
86 sigaddset(s, SIGFPE);
87 sigaddset(s, SIGTSTP);
88 sigaddset(s, SIGCHLD);
89 sigaddset(s, SIGIO);
90 sigaddset(s, SIGXCPU);
91 sigaddset(s, SIGXFSZ);
92 sigaddset(s, SIGVTALRM);
93 sigaddset(s, SIGPROF);
94 sigaddset(s, SIGWINCH);
95 sigaddset(s, SIGUSR1);
96 sigaddset(s, SIGUSR2);
97 #ifdef LISP_FEATURE_SB_THREAD
98 sigaddset(s, SIG_INTERRUPT_THREAD);
99 #endif
102 void sigaddset_blockable(sigset_t *s)
104 sigaddset_deferrable(s);
105 #ifdef LISP_FEATURE_SB_THREAD
106 sigaddset(s, SIG_STOP_FOR_GC);
107 #endif
110 /* initialized in interrupt_init */
111 static sigset_t deferrable_sigset;
112 static sigset_t blockable_sigset;
114 inline static void check_blockables_blocked_or_lose()
116 /* Get the current sigmask, by blocking the empty set. */
117 sigset_t empty,current;
118 int i;
119 sigemptyset(&empty);
120 thread_sigmask(SIG_BLOCK, &empty, &current);
121 for(i=0;i<NSIG;i++) {
122 if (sigismember(&blockable_sigset, i) && !sigismember(&current, i))
123 lose("blockable signal %d not blocked",i);
127 inline static void check_interrupts_enabled_or_lose(os_context_t *context)
129 struct thread *thread=arch_os_get_current_thread();
130 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
131 lose("interrupts not enabled");
132 if (
133 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
134 (!foreign_function_call_active) &&
135 #endif
136 arch_pseudo_atomic_atomic(context))
137 lose ("in pseudo atomic section");
140 /* When we catch an internal error, should we pass it back to Lisp to
141 * be handled in a high-level way? (Early in cold init, the answer is
142 * 'no', because Lisp is still too brain-dead to handle anything.
143 * After sufficient initialization has been completed, the answer
144 * becomes 'yes'.) */
145 boolean internal_errors_enabled = 0;
147 struct interrupt_data * global_interrupt_data;
149 /* At the toplevel repl we routinely call this function. The signal
150 * mask ought to be clear anyway most of the time, but may be non-zero
151 * if we were interrupted e.g. while waiting for a queue. */
153 void reset_signal_mask ()
155 sigset_t new;
156 sigemptyset(&new);
157 thread_sigmask(SIG_SETMASK,&new,0);
160 void block_deferrable_signals_and_inhibit_gc ()
162 struct thread *thread=arch_os_get_current_thread();
163 sigset_t block;
164 sigemptyset(&block);
165 sigaddset_deferrable(&block);
166 thread_sigmask(SIG_BLOCK, &block, 0);
167 bind_variable(GC_INHIBIT,T,thread);
170 static void block_blockable_signals ()
172 sigset_t block;
173 sigemptyset(&block);
174 sigaddset_blockable(&block);
175 thread_sigmask(SIG_BLOCK, &block, 0);
180 * utility routines used by various signal handlers
183 void
184 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
186 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
188 lispobj oldcont;
190 /* Build a fake stack frame or frames */
192 current_control_frame_pointer =
193 (lispobj *)(*os_context_register_addr(context, reg_CSP));
194 if ((lispobj *)(*os_context_register_addr(context, reg_CFP))
195 == current_control_frame_pointer) {
196 /* There is a small window during call where the callee's
197 * frame isn't built yet. */
198 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
199 == FUN_POINTER_LOWTAG) {
200 /* We have called, but not built the new frame, so
201 * build it for them. */
202 current_control_frame_pointer[0] =
203 *os_context_register_addr(context, reg_OCFP);
204 current_control_frame_pointer[1] =
205 *os_context_register_addr(context, reg_LRA);
206 current_control_frame_pointer += 8;
207 /* Build our frame on top of it. */
208 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
210 else {
211 /* We haven't yet called, build our frame as if the
212 * partial frame wasn't there. */
213 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
216 /* We can't tell whether we are still in the caller if it had to
217 * allocate a stack frame due to stack arguments. */
218 /* This observation provoked some past CMUCL maintainer to ask
219 * "Can anything strange happen during return?" */
220 else {
221 /* normal case */
222 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
225 current_control_stack_pointer = current_control_frame_pointer + 8;
227 current_control_frame_pointer[0] = oldcont;
228 current_control_frame_pointer[1] = NIL;
229 current_control_frame_pointer[2] =
230 (lispobj)(*os_context_register_addr(context, reg_CODE));
231 #endif
234 void
235 fake_foreign_function_call(os_context_t *context)
237 int context_index;
238 struct thread *thread=arch_os_get_current_thread();
240 /* context_index incrementing must not be interrupted */
241 check_blockables_blocked_or_lose();
243 /* Get current Lisp state from context. */
244 #ifdef reg_ALLOC
245 dynamic_space_free_pointer =
246 (lispobj *)(*os_context_register_addr(context, reg_ALLOC));
247 #if defined(LISP_FEATURE_ALPHA)
248 if ((long)dynamic_space_free_pointer & 1) {
249 lose("dead in fake_foreign_function_call, context = %x", context);
251 #endif
252 #endif
253 #ifdef reg_BSP
254 current_binding_stack_pointer =
255 (lispobj *)(*os_context_register_addr(context, reg_BSP));
256 #endif
258 build_fake_control_stack_frames(thread,context);
260 /* Do dynamic binding of the active interrupt context index
261 * and save the context in the context array. */
262 context_index =
263 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
265 if (context_index >= MAX_INTERRUPTS) {
266 lose("maximum interrupt nesting depth (%d) exceeded", MAX_INTERRUPTS);
269 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
270 make_fixnum(context_index + 1),thread);
272 thread->interrupt_contexts[context_index] = context;
274 /* no longer in Lisp now */
275 foreign_function_call_active = 1;
278 /* blocks all blockable signals. If you are calling from a signal handler,
279 * the usual signal mask will be restored from the context when the handler
280 * finishes. Otherwise, be careful */
282 void
283 undo_fake_foreign_function_call(os_context_t *context)
285 struct thread *thread=arch_os_get_current_thread();
286 /* Block all blockable signals. */
287 block_blockable_signals();
289 /* going back into Lisp */
290 foreign_function_call_active = 0;
292 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
293 unbind(thread);
295 #ifdef reg_ALLOC
296 /* Put the dynamic space free pointer back into the context. */
297 *os_context_register_addr(context, reg_ALLOC) =
298 (unsigned long) dynamic_space_free_pointer;
299 #endif
302 /* a handler for the signal caused by execution of a trap opcode
303 * signalling an internal error */
304 void
305 interrupt_internal_error(int signal, siginfo_t *info, os_context_t *context,
306 boolean continuable)
308 lispobj context_sap = 0;
310 check_blockables_blocked_or_lose();
311 fake_foreign_function_call(context);
313 /* Allocate the SAP object while the interrupts are still
314 * disabled. */
315 if (internal_errors_enabled) {
316 context_sap = alloc_sap(context);
319 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
321 if (internal_errors_enabled) {
322 SHOW("in interrupt_internal_error");
323 #ifdef QSHOW
324 /* Display some rudimentary debugging information about the
325 * error, so that even if the Lisp error handler gets badly
326 * confused, we have a chance to determine what's going on. */
327 describe_internal_error(context);
328 #endif
329 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
330 continuable ? T : NIL);
331 } else {
332 describe_internal_error(context);
333 /* There's no good way to recover from an internal error
334 * before the Lisp error handling mechanism is set up. */
335 lose("internal error too early in init, can't recover");
337 undo_fake_foreign_function_call(context); /* blocks signals again */
338 if (continuable) {
339 arch_skip_instruction(context);
343 void
344 interrupt_handle_pending(os_context_t *context)
346 struct thread *thread;
347 struct interrupt_data *data;
349 check_blockables_blocked_or_lose();
351 thread=arch_os_get_current_thread();
352 data=thread->interrupt_data;
354 if (SymbolValue(GC_INHIBIT,thread)==NIL) {
355 #ifdef LISP_FEATURE_SB_THREAD
356 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL) {
357 /* another thread has already initiated a gc, this attempt
358 * might as well be cancelled */
359 SetSymbolValue(GC_PENDING,NIL,thread);
360 SetSymbolValue(STOP_FOR_GC_PENDING,NIL,thread);
361 sig_stop_for_gc_handler(SIG_STOP_FOR_GC,NULL,context);
362 } else
363 #endif
364 if (SymbolValue(GC_PENDING,thread) != NIL) {
365 /* GC_PENDING is cleared in SUB-GC, or if another thread
366 * is doing a gc already we will get a SIG_STOP_FOR_GC and
367 * that will clear it. */
368 interrupt_maybe_gc_int(0,NULL,context);
370 check_blockables_blocked_or_lose();
373 /* we may be here only to do the gc stuff, if interrupts are
374 * enabled run the pending handler */
375 if (!((SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) ||
377 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
378 (!foreign_function_call_active) &&
379 #endif
380 arch_pseudo_atomic_atomic(context)))) {
382 /* There may be no pending handler, because it was only a gc
383 * that had to be executed or because pseudo atomic triggered
384 * twice for a single interrupt. For the interested reader,
385 * that may happen if an interrupt hits after the interrupted
386 * flag is cleared but before pseduo-atomic is set and a
387 * pseudo atomic is interrupted in that interrupt. */
388 if (data->pending_handler) {
390 /* If we're here as the result of a pseudo-atomic as opposed
391 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
392 * NIL, because maybe_defer_handler sets
393 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
394 SetSymbolValue(INTERRUPT_PENDING, NIL,thread);
396 /* restore the saved signal mask from the original signal (the
397 * one that interrupted us during the critical section) into the
398 * os_context for the signal we're currently in the handler for.
399 * This should ensure that when we return from the handler the
400 * blocked signals are unblocked */
401 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
403 sigemptyset(&data->pending_mask);
404 /* This will break on sparc linux: the deferred handler really wants
405 * to be called with a void_context */
406 run_deferred_handler(data,(void *)context);
412 * the two main signal handlers:
413 * interrupt_handle_now(..)
414 * maybe_now_maybe_later(..)
416 * to which we have added interrupt_handle_now_handler(..). Why?
417 * Well, mostly because the SPARC/Linux platform doesn't quite do
418 * signals the way we want them done. The third argument in the
419 * handler isn't filled in by the kernel properly, so we fix it up
420 * ourselves in the arch_os_get_context(..) function; however, we only
421 * want to do this when we first hit the handler, and not when
422 * interrupt_handle_now(..) is being called from some other handler
423 * (when the fixup will already have been done). -- CSR, 2002-07-23
426 void
427 interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
429 os_context_t *context = (os_context_t*)void_context;
430 struct thread *thread=arch_os_get_current_thread();
431 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
432 boolean were_in_lisp;
433 #endif
434 union interrupt_handler handler;
435 check_blockables_blocked_or_lose();
436 check_interrupts_enabled_or_lose(context);
438 #ifdef LISP_FEATURE_LINUX
439 /* Under Linux on some architectures, we appear to have to restore
440 the FPU control word from the context, as after the signal is
441 delivered we appear to have a null FPU control word. */
442 os_restore_fp_control(context);
443 #endif
444 handler = thread->interrupt_data->interrupt_handlers[signal];
446 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
447 return;
450 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
451 were_in_lisp = !foreign_function_call_active;
452 if (were_in_lisp)
453 #endif
455 fake_foreign_function_call(context);
458 FSHOW_SIGNAL((stderr,
459 "/entering interrupt_handle_now(%d, info, context)\n",
460 signal));
462 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
464 /* This can happen if someone tries to ignore or default one
465 * of the signals we need for runtime support, and the runtime
466 * support decides to pass on it. */
467 lose("no handler for signal %d in interrupt_handle_now(..)", signal);
469 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
470 /* Once we've decided what to do about contexts in a
471 * return-elsewhere world (the original context will no longer
472 * be available; should we copy it or was nobody using it anyway?)
473 * then we should convert this to return-elsewhere */
475 /* CMUCL comment said "Allocate the SAPs while the interrupts
476 * are still disabled.". I (dan, 2003.08.21) assume this is
477 * because we're not in pseudoatomic and allocation shouldn't
478 * be interrupted. In which case it's no longer an issue as
479 * all our allocation from C now goes through a PA wrapper,
480 * but still, doesn't hurt */
482 lispobj info_sap,context_sap = alloc_sap(context);
483 info_sap = alloc_sap(info);
484 /* Allow signals again. */
485 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
487 FSHOW_SIGNAL((stderr,"/calling Lisp-level handler\n"));
489 funcall3(handler.lisp,
490 make_fixnum(signal),
491 info_sap,
492 context_sap);
493 } else {
495 FSHOW_SIGNAL((stderr,"/calling C-level handler\n"));
497 /* Allow signals again. */
498 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
500 (*handler.c)(signal, info, void_context);
503 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
504 if (were_in_lisp)
505 #endif
507 undo_fake_foreign_function_call(context); /* block signals again */
510 FSHOW_SIGNAL((stderr,
511 "/returning from interrupt_handle_now(%d, info, context)\n",
512 signal));
515 /* This is called at the end of a critical section if the indications
516 * are that some signal was deferred during the section. Note that as
517 * far as C or the kernel is concerned we dealt with the signal
518 * already; we're just doing the Lisp-level processing now that we
519 * put off then */
521 void
522 run_deferred_handler(struct interrupt_data *data, void *v_context) {
523 /* The pending_handler may enable interrupts and then another
524 * interrupt may hit, overwrite interrupt_data, so reset the
525 * pending handler before calling it. Trust the handler to finish
526 * with the siginfo before enabling interrupts. */
527 void (*pending_handler) (int, siginfo_t*, void*)=data->pending_handler;
528 data->pending_handler=0;
529 (*pending_handler)(data->pending_signal,&(data->pending_info), v_context);
532 boolean
533 maybe_defer_handler(void *handler, struct interrupt_data *data,
534 int signal, siginfo_t *info, os_context_t *context)
536 struct thread *thread=arch_os_get_current_thread();
538 check_blockables_blocked_or_lose();
540 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
541 lose("interrupt already pending");
542 /* If interrupts are disabled then INTERRUPT_PENDING is set and
543 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
544 * atomic section inside a WITHOUT-INTERRUPTS.
546 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
547 store_signal_data_for_later(data,handler,signal,info,context);
548 SetSymbolValue(INTERRUPT_PENDING, T,thread);
549 FSHOW_SIGNAL((stderr,
550 "/maybe_defer_handler(%x,%d),thread=%lu: deferred\n",
551 (unsigned int)handler,signal,
552 (unsigned long)thread->os_thread));
553 return 1;
555 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
556 * actually use its argument for anything on x86, so this branch
557 * may succeed even when context is null (gencgc alloc()) */
558 if (
559 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
560 /* FIXME: this foreign_function_call_active test is dubious at
561 * best. If a foreign call is made in a pseudo atomic section
562 * (?) or more likely a pseudo atomic section is in a foreign
563 * call then an interrupt is executed immediately. Maybe it
564 * has to do with C code not maintaining pseudo atomic
565 * properly. MG - 2005-08-10 */
566 (!foreign_function_call_active) &&
567 #endif
568 arch_pseudo_atomic_atomic(context)) {
569 store_signal_data_for_later(data,handler,signal,info,context);
570 arch_set_pseudo_atomic_interrupted(context);
571 FSHOW_SIGNAL((stderr,
572 "/maybe_defer_handler(%x,%d),thread=%lu: deferred(PA)\n",
573 (unsigned int)handler,signal,
574 (unsigned long)thread->os_thread));
575 return 1;
577 FSHOW_SIGNAL((stderr,
578 "/maybe_defer_handler(%x,%d),thread=%lu: not deferred\n",
579 (unsigned int)handler,signal,
580 (unsigned long)thread->os_thread));
581 return 0;
584 static void
585 store_signal_data_for_later (struct interrupt_data *data, void *handler,
586 int signal,
587 siginfo_t *info, os_context_t *context)
589 if (data->pending_handler)
590 lose("tried to overwrite pending interrupt handler %x with %x\n",
591 data->pending_handler, handler);
592 if (!handler)
593 lose("tried to defer null interrupt handler\n");
594 data->pending_handler = handler;
595 data->pending_signal = signal;
596 if(info)
597 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
598 if(context) {
599 /* the signal mask in the context (from before we were
600 * interrupted) is copied to be restored when
601 * run_deferred_handler happens. Then the usually-blocked
602 * signals are added to the mask in the context so that we are
603 * running with blocked signals when the handler returns */
604 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
605 sigaddset_deferrable(os_context_sigmask_addr(context));
609 static void
610 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
612 os_context_t *context = arch_os_get_context(&void_context);
613 struct thread *thread=arch_os_get_current_thread();
614 struct interrupt_data *data=thread->interrupt_data;
615 #ifdef LISP_FEATURE_LINUX
616 os_restore_fp_control(context);
617 #endif
618 if(maybe_defer_handler(interrupt_handle_now,data,
619 signal,info,context))
620 return;
621 interrupt_handle_now(signal, info, context);
622 #ifdef LISP_FEATURE_DARWIN
623 /* Work around G5 bug */
624 DARWIN_FIX_CONTEXT(context);
625 #endif
628 static void
629 low_level_interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
631 os_context_t *context = (os_context_t*)void_context;
632 struct thread *thread=arch_os_get_current_thread();
634 #ifdef LISP_FEATURE_LINUX
635 os_restore_fp_control(context);
636 #endif
637 check_blockables_blocked_or_lose();
638 check_interrupts_enabled_or_lose(context);
639 (*thread->interrupt_data->interrupt_low_level_handlers[signal])
640 (signal, info, void_context);
641 #ifdef LISP_FEATURE_DARWIN
642 /* Work around G5 bug */
643 DARWIN_FIX_CONTEXT(context);
644 #endif
647 static void
648 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
650 os_context_t *context = arch_os_get_context(&void_context);
651 struct thread *thread=arch_os_get_current_thread();
652 struct interrupt_data *data=thread->interrupt_data;
653 #ifdef LISP_FEATURE_LINUX
654 os_restore_fp_control(context);
655 #endif
656 if(maybe_defer_handler(low_level_interrupt_handle_now,data,
657 signal,info,context))
658 return;
659 low_level_interrupt_handle_now(signal, info, context);
660 #ifdef LISP_FEATURE_DARWIN
661 /* Work around G5 bug */
662 DARWIN_FIX_CONTEXT(context);
663 #endif
666 #ifdef LISP_FEATURE_SB_THREAD
668 void
669 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
671 os_context_t *context = arch_os_get_context(&void_context);
672 struct thread *thread=arch_os_get_current_thread();
673 sigset_t ss;
674 int i;
676 if ((arch_pseudo_atomic_atomic(context) ||
677 SymbolValue(GC_INHIBIT,thread) != NIL)) {
678 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
679 if (SymbolValue(GC_INHIBIT,thread) == NIL)
680 arch_set_pseudo_atomic_interrupted(context);
681 FSHOW_SIGNAL((stderr,"thread=%lu sig_stop_for_gc deferred\n",
682 thread->os_thread));
683 } else {
684 /* need the context stored so it can have registers scavenged */
685 fake_foreign_function_call(context);
687 sigemptyset(&ss);
688 for(i=1;i<NSIG;i++) sigaddset(&ss,i); /* Block everything. */
689 thread_sigmask(SIG_BLOCK,&ss,0);
691 /* The GC can't tell if a thread is a zombie, so this would be a
692 * good time to let the kernel reap any of our children in that
693 * awful state, to stop them from being waited for indefinitely.
694 * Userland reaping is done later when GC is finished */
695 if(thread->state!=STATE_RUNNING) {
696 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
697 fixnum_value(thread->state));
699 thread->state=STATE_SUSPENDED;
700 FSHOW_SIGNAL((stderr,"thread=%lu suspended\n",thread->os_thread));
702 sigemptyset(&ss); sigaddset(&ss,SIG_STOP_FOR_GC);
703 sigwaitinfo(&ss,0);
704 FSHOW_SIGNAL((stderr,"thread=%lu resumed\n",thread->os_thread));
705 if(thread->state!=STATE_RUNNING) {
706 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
707 fixnum_value(thread->state));
710 undo_fake_foreign_function_call(context);
713 #endif
715 void
716 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
718 os_context_t *context = arch_os_get_context(&void_context);
719 interrupt_handle_now(signal, info, context);
720 #ifdef LISP_FEATURE_DARWIN
721 DARWIN_FIX_CONTEXT(context);
722 #endif
726 * stuff to detect and handle hitting the GC trigger
729 #ifndef LISP_FEATURE_GENCGC
730 /* since GENCGC has its own way to record trigger */
731 static boolean
732 gc_trigger_hit(int signal, siginfo_t *info, os_context_t *context)
734 if (current_auto_gc_trigger == NULL)
735 return 0;
736 else{
737 void *badaddr=arch_get_bad_addr(signal,info,context);
738 return (badaddr >= (void *)current_auto_gc_trigger &&
739 badaddr <((void *)current_dynamic_space + DYNAMIC_SPACE_SIZE));
742 #endif
744 /* manipulate the signal context and stack such that when the handler
745 * returns, it will call function instead of whatever it was doing
746 * previously
749 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
750 int *context_eflags_addr(os_context_t *context);
751 #endif
753 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
754 extern void post_signal_tramp(void);
755 void arrange_return_to_lisp_function(os_context_t *context, lispobj function)
757 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
758 void * fun=native_pointer(function);
759 void *code = &(((struct simple_fun *) fun)->code);
760 #endif
762 /* Build a stack frame showing `interrupted' so that the
763 * user's backtrace makes (as much) sense (as usual) */
765 /* FIXME: what about restoring fp state? */
766 /* FIXME: what about restoring errno? */
767 #ifdef LISP_FEATURE_X86
768 /* Suppose the existence of some function that saved all
769 * registers, called call_into_lisp, then restored GP registers and
770 * returned. It would look something like this:
772 push ebp
773 mov ebp esp
774 pushfl
775 pushal
776 push $0
777 push $0
778 pushl {address of function to call}
779 call 0x8058db0 <call_into_lisp>
780 addl $12,%esp
781 popal
782 popfl
783 leave
786 * What we do here is set up the stack that call_into_lisp would
787 * expect to see if it had been called by this code, and frob the
788 * signal context so that signal return goes directly to call_into_lisp,
789 * and when that function (and the lisp function it invoked) returns,
790 * it returns to the second half of this imaginary function which
791 * restores all registers and returns to C
793 * For this to work, the latter part of the imaginary function
794 * must obviously exist in reality. That would be post_signal_tramp
797 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
799 /* return address for call_into_lisp: */
800 *(sp-15) = (u32)post_signal_tramp;
801 *(sp-14) = function; /* args for call_into_lisp : function*/
802 *(sp-13) = 0; /* arg array */
803 *(sp-12) = 0; /* no. args */
804 /* this order matches that used in POPAD */
805 *(sp-11)=*os_context_register_addr(context,reg_EDI);
806 *(sp-10)=*os_context_register_addr(context,reg_ESI);
808 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
809 /* POPAD ignores the value of ESP: */
810 *(sp-8)=0;
811 *(sp-7)=*os_context_register_addr(context,reg_EBX);
813 *(sp-6)=*os_context_register_addr(context,reg_EDX);
814 *(sp-5)=*os_context_register_addr(context,reg_ECX);
815 *(sp-4)=*os_context_register_addr(context,reg_EAX);
816 *(sp-3)=*context_eflags_addr(context);
817 *(sp-2)=*os_context_register_addr(context,reg_EBP);
818 *(sp-1)=*os_context_pc_addr(context);
820 #elif defined(LISP_FEATURE_X86_64)
821 u64 *sp=(u64 *)*os_context_register_addr(context,reg_RSP);
822 /* return address for call_into_lisp: */
823 *(sp-18) = (u64)post_signal_tramp;
825 *(sp-17)=*os_context_register_addr(context,reg_R15);
826 *(sp-16)=*os_context_register_addr(context,reg_R14);
827 *(sp-15)=*os_context_register_addr(context,reg_R13);
828 *(sp-14)=*os_context_register_addr(context,reg_R12);
829 *(sp-13)=*os_context_register_addr(context,reg_R11);
830 *(sp-12)=*os_context_register_addr(context,reg_R10);
831 *(sp-11)=*os_context_register_addr(context,reg_R9);
832 *(sp-10)=*os_context_register_addr(context,reg_R8);
833 *(sp-9)=*os_context_register_addr(context,reg_RDI);
834 *(sp-8)=*os_context_register_addr(context,reg_RSI);
835 /* skip RBP and RSP */
836 *(sp-7)=*os_context_register_addr(context,reg_RBX);
837 *(sp-6)=*os_context_register_addr(context,reg_RDX);
838 *(sp-5)=*os_context_register_addr(context,reg_RCX);
839 *(sp-4)=*os_context_register_addr(context,reg_RAX);
840 *(sp-3)=*context_eflags_addr(context);
841 *(sp-2)=*os_context_register_addr(context,reg_RBP);
842 *(sp-1)=*os_context_pc_addr(context);
844 *os_context_register_addr(context,reg_RDI) =
845 (os_context_register_t)function; /* function */
846 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
847 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
848 #else
849 struct thread *th=arch_os_get_current_thread();
850 build_fake_control_stack_frames(th,context);
851 #endif
853 #ifdef LISP_FEATURE_X86
854 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
855 *os_context_register_addr(context,reg_ECX) = 0;
856 *os_context_register_addr(context,reg_EBP) = (os_context_register_t)(sp-2);
857 #ifdef __NetBSD__
858 *os_context_register_addr(context,reg_UESP) =
859 (os_context_register_t)(sp-15);
860 #else
861 *os_context_register_addr(context,reg_ESP) = (os_context_register_t)(sp-15);
862 #endif
863 #elif defined(LISP_FEATURE_X86_64)
864 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
865 *os_context_register_addr(context,reg_RCX) = 0;
866 *os_context_register_addr(context,reg_RBP) = (os_context_register_t)(sp-2);
867 *os_context_register_addr(context,reg_RSP) = (os_context_register_t)(sp-18);
868 #else
869 /* this much of the calling convention is common to all
870 non-x86 ports */
871 *os_context_pc_addr(context) = (os_context_register_t)code;
872 *os_context_register_addr(context,reg_NARGS) = 0;
873 *os_context_register_addr(context,reg_LIP) = (os_context_register_t)code;
874 *os_context_register_addr(context,reg_CFP) =
875 (os_context_register_t)current_control_frame_pointer;
876 #endif
877 #ifdef ARCH_HAS_NPC_REGISTER
878 *os_context_npc_addr(context) =
879 4 + *os_context_pc_addr(context);
880 #endif
881 #ifdef LISP_FEATURE_SPARC
882 *os_context_register_addr(context,reg_CODE) =
883 (os_context_register_t)(fun + FUN_POINTER_LOWTAG);
884 #endif
887 #ifdef LISP_FEATURE_SB_THREAD
888 void interrupt_thread_handler(int num, siginfo_t *info, void *v_context)
890 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
891 /* The order of interrupt execution is peculiar. If thread A
892 * interrupts thread B with I1, I2 and B for some reason receives
893 * I1 when FUN2 is already on the list, then it is FUN2 that gets
894 * to run first. But when FUN2 is run SIG_INTERRUPT_THREAD is
895 * enabled again and I2 hits pretty soon in FUN2 and run
896 * FUN1. This is of course just one scenario, and the order of
897 * thread interrupt execution is undefined. */
898 struct thread *th=arch_os_get_current_thread();
899 struct cons *c;
900 if (th->state != STATE_RUNNING)
901 lose("interrupt_thread_handler: thread %ld in wrong state: %d\n",
902 th->os_thread,fixnum_value(th->state));
903 get_spinlock(&th->interrupt_fun_lock,(long)th);
904 c=((struct cons *)native_pointer(th->interrupt_fun));
905 arrange_return_to_lisp_function(context,c->car);
906 th->interrupt_fun=c->cdr;
907 release_spinlock(&th->interrupt_fun_lock);
910 #endif
912 /* KLUDGE: Theoretically the approach we use for undefined alien
913 * variables should work for functions as well, but on PPC/Darwin
914 * we get bus error at bogus addresses instead, hence this workaround,
915 * that has the added benefit of automatically discriminating between
916 * functions and variables.
918 void undefined_alien_function() {
919 funcall0(SymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
922 boolean handle_guard_page_triggered(os_context_t *context,os_vm_address_t addr)
924 struct thread *th=arch_os_get_current_thread();
926 /* note the os_context hackery here. When the signal handler returns,
927 * it won't go back to what it was doing ... */
928 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
929 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
930 /* We hit the end of the control stack: disable guard page
931 * protection so the error handler has some headroom, protect the
932 * previous page so that we can catch returns from the guard page
933 * and restore it. */
934 protect_control_stack_guard_page(th,0);
935 protect_control_stack_return_guard_page(th,1);
937 arrange_return_to_lisp_function
938 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
939 return 1;
941 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
942 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
943 /* We're returning from the guard page: reprotect it, and
944 * unprotect this one. This works even if we somehow missed
945 * the return-guard-page, and hit it on our way to new
946 * exhaustion instead. */
947 protect_control_stack_guard_page(th,1);
948 protect_control_stack_return_guard_page(th,0);
949 return 1;
951 else if (addr >= undefined_alien_address &&
952 addr < undefined_alien_address + os_vm_page_size) {
953 arrange_return_to_lisp_function
954 (context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
955 return 1;
957 else return 0;
960 #ifndef LISP_FEATURE_GENCGC
961 /* This function gets called from the SIGSEGV (for e.g. Linux, NetBSD, &
962 * OpenBSD) or SIGBUS (for e.g. FreeBSD) handler. Here we check
963 * whether the signal was due to treading on the mprotect()ed zone -
964 * and if so, arrange for a GC to happen. */
965 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
967 boolean
968 interrupt_maybe_gc(int signal, siginfo_t *info, void *void_context)
970 os_context_t *context=(os_context_t *) void_context;
971 struct thread *th=arch_os_get_current_thread();
972 struct interrupt_data *data=
973 th ? th->interrupt_data : global_interrupt_data;
975 if(!foreign_function_call_active && gc_trigger_hit(signal, info, context)){
976 struct thread *thread=arch_os_get_current_thread();
977 clear_auto_gc_trigger();
978 /* Don't flood the system with interrupts if the need to gc is
979 * already noted. This can happen for example when SUB-GC
980 * allocates or after a gc triggered in a WITHOUT-GCING. */
981 if (SymbolValue(GC_PENDING,thread) == NIL) {
982 if (SymbolValue(GC_INHIBIT,thread) == NIL) {
983 if (arch_pseudo_atomic_atomic(context)) {
984 /* set things up so that GC happens when we finish
985 * the PA section */
986 SetSymbolValue(GC_PENDING,T,thread);
987 arch_set_pseudo_atomic_interrupted(context);
988 } else {
989 interrupt_maybe_gc_int(signal,info,void_context);
991 } else {
992 SetSymbolValue(GC_PENDING,T,thread);
995 return 1;
997 return 0;
1000 #endif
1002 /* this is also used by gencgc, in alloc() */
1003 boolean
1004 interrupt_maybe_gc_int(int signal, siginfo_t *info, void *void_context)
1006 os_context_t *context=(os_context_t *) void_context;
1007 struct thread *thread=arch_os_get_current_thread();
1009 check_blockables_blocked_or_lose();
1010 fake_foreign_function_call(context);
1012 /* SUB-GC may return without GCing if *GC-INHIBIT* is set, in
1013 * which case we will be running with no gc trigger barrier
1014 * thing for a while. But it shouldn't be long until the end
1015 * of WITHOUT-GCING.
1017 * FIXME: It would be good to protect the end of dynamic space
1018 * and signal a storage condition from there.
1021 /* Restore the signal mask from the interrupted context before
1022 * calling into Lisp if interrupts are enabled. Why not always?
1024 * Suppose there is a WITHOUT-INTERRUPTS block far, far out. If an
1025 * interrupt hits while in SUB-GC, it is deferred and the
1026 * os_context_sigmask of that interrupt is set to block further
1027 * deferrable interrupts (until the first one is
1028 * handled). Unfortunately, that context refers to this place and
1029 * when we return from here the signals will not be blocked.
1031 * A kludgy alternative is to propagate the sigmask change to the
1032 * outer context.
1034 if(SymbolValue(INTERRUPTS_ENABLED,thread)!=NIL)
1035 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
1036 #ifdef LISP_FEATURE_SB_THREAD
1037 else {
1038 sigset_t new;
1039 sigaddset(&new,SIG_STOP_FOR_GC);
1040 thread_sigmask(SIG_UNBLOCK,&new,0);
1042 #endif
1043 funcall0(SymbolFunction(SUB_GC));
1045 undo_fake_foreign_function_call(context);
1046 return 1;
1051 * noise to install handlers
1054 void
1055 undoably_install_low_level_interrupt_handler (int signal,
1056 void handler(int,
1057 siginfo_t*,
1058 void*))
1060 struct sigaction sa;
1061 struct thread *th=arch_os_get_current_thread();
1062 struct interrupt_data *data=
1063 th ? th->interrupt_data : global_interrupt_data;
1065 if (0 > signal || signal >= NSIG) {
1066 lose("bad signal number %d", signal);
1069 if (sigismember(&deferrable_sigset,signal))
1070 sa.sa_sigaction = low_level_maybe_now_maybe_later;
1071 else
1072 sa.sa_sigaction = handler;
1074 sigemptyset(&sa.sa_mask);
1075 sigaddset_blockable(&sa.sa_mask);
1076 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1077 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1078 if((signal==SIG_MEMORY_FAULT)
1079 #ifdef SIG_INTERRUPT_THREAD
1080 || (signal==SIG_INTERRUPT_THREAD)
1081 #endif
1083 sa.sa_flags|= SA_ONSTACK;
1084 #endif
1086 sigaction(signal, &sa, NULL);
1087 data->interrupt_low_level_handlers[signal] =
1088 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1091 /* This is called from Lisp. */
1092 unsigned long
1093 install_handler(int signal, void handler(int, siginfo_t*, void*))
1095 struct sigaction sa;
1096 sigset_t old, new;
1097 union interrupt_handler oldhandler;
1098 struct thread *th=arch_os_get_current_thread();
1099 struct interrupt_data *data=
1100 th ? th->interrupt_data : global_interrupt_data;
1102 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1104 sigemptyset(&new);
1105 sigaddset(&new, signal);
1106 thread_sigmask(SIG_BLOCK, &new, &old);
1108 FSHOW((stderr, "/data->interrupt_low_level_handlers[signal]=%x\n",
1109 (unsigned int)data->interrupt_low_level_handlers[signal]));
1110 if (data->interrupt_low_level_handlers[signal]==0) {
1111 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1112 ARE_SAME_HANDLER(handler, SIG_IGN)) {
1113 sa.sa_sigaction = handler;
1114 } else if (sigismember(&deferrable_sigset, signal)) {
1115 sa.sa_sigaction = maybe_now_maybe_later;
1116 } else {
1117 sa.sa_sigaction = interrupt_handle_now_handler;
1120 sigemptyset(&sa.sa_mask);
1121 sigaddset_blockable(&sa.sa_mask);
1122 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1123 sigaction(signal, &sa, NULL);
1126 oldhandler = data->interrupt_handlers[signal];
1127 data->interrupt_handlers[signal].c = handler;
1129 thread_sigmask(SIG_SETMASK, &old, 0);
1131 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1133 return (unsigned long)oldhandler.lisp;
1136 void
1137 interrupt_init()
1139 int i;
1140 SHOW("entering interrupt_init()");
1141 sigemptyset(&deferrable_sigset);
1142 sigemptyset(&blockable_sigset);
1143 sigaddset_deferrable(&deferrable_sigset);
1144 sigaddset_blockable(&blockable_sigset);
1146 global_interrupt_data=calloc(sizeof(struct interrupt_data), 1);
1148 /* Set up high level handler information. */
1149 for (i = 0; i < NSIG; i++) {
1150 global_interrupt_data->interrupt_handlers[i].c =
1151 /* (The cast here blasts away the distinction between
1152 * SA_SIGACTION-style three-argument handlers and
1153 * signal(..)-style one-argument handlers, which is OK
1154 * because it works to call the 1-argument form where the
1155 * 3-argument form is expected.) */
1156 (void (*)(int, siginfo_t*, void*))SIG_DFL;
1159 SHOW("returning from interrupt_init()");