0.9.3.17
[sbcl/eslaughter.git] / src / runtime / interrupt.c
blobe734ea11d0bc7700e33d30e66eb719eb46fd83e8
1 /*
2 * interrupt-handling magic
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <stdint.h>
47 #include <string.h>
48 #include <signal.h>
49 #include <sys/types.h>
50 #include <sys/wait.h>
51 #include <errno.h>
53 #include "sbcl.h"
54 #include "runtime.h"
55 #include "arch.h"
56 #include "os.h"
57 #include "interrupt.h"
58 #include "globals.h"
59 #include "lispregs.h"
60 #include "validate.h"
61 #include "monitor.h"
62 #include "gc.h"
63 #include "alloc.h"
64 #include "dynbind.h"
65 #include "interr.h"
66 #include "genesis/fdefn.h"
67 #include "genesis/simple-fun.h"
68 #include "genesis/cons.h"
72 void run_deferred_handler(struct interrupt_data *data, void *v_context) ;
73 static void store_signal_data_for_later (struct interrupt_data *data,
74 void *handler, int signal,
75 siginfo_t *info,
76 os_context_t *context);
77 boolean interrupt_maybe_gc_int(int signal, siginfo_t *info, void *v_context);
79 void sigaddset_blockable(sigset_t *s)
81 sigaddset(s, SIGHUP);
82 sigaddset(s, SIGINT);
83 sigaddset(s, SIGQUIT);
84 sigaddset(s, SIGPIPE);
85 sigaddset(s, SIGALRM);
86 sigaddset(s, SIGURG);
87 sigaddset(s, SIGFPE);
88 sigaddset(s, SIGTSTP);
89 sigaddset(s, SIGCHLD);
90 sigaddset(s, SIGIO);
91 sigaddset(s, SIGXCPU);
92 sigaddset(s, SIGXFSZ);
93 sigaddset(s, SIGVTALRM);
94 sigaddset(s, SIGPROF);
95 sigaddset(s, SIGWINCH);
96 sigaddset(s, SIGUSR1);
97 sigaddset(s, SIGUSR2);
98 #ifdef LISP_FEATURE_SB_THREAD
99 sigaddset(s, SIG_STOP_FOR_GC);
100 sigaddset(s, SIG_INTERRUPT_THREAD);
101 #endif
104 static sigset_t blockable_sigset;
106 inline static void check_blockables_blocked_or_lose()
108 /* Get the current sigmask, by blocking the empty set. */
109 sigset_t empty,current;
110 int i;
111 sigemptyset(&empty);
112 thread_sigmask(SIG_BLOCK, &empty, &current);
113 for(i=0;i<NSIG;i++) {
114 if (sigismember(&blockable_sigset, i) && !sigismember(&current, i))
115 lose("blockable signal %d not blocked",i);
119 inline static void check_interrupts_enabled_or_lose(os_context_t *context)
121 struct thread *thread=arch_os_get_current_thread();
122 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
123 lose("interrupts not enabled");
124 if (
125 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
126 (!foreign_function_call_active) &&
127 #endif
128 arch_pseudo_atomic_atomic(context))
129 lose ("in pseudo atomic section");
132 /* When we catch an internal error, should we pass it back to Lisp to
133 * be handled in a high-level way? (Early in cold init, the answer is
134 * 'no', because Lisp is still too brain-dead to handle anything.
135 * After sufficient initialization has been completed, the answer
136 * becomes 'yes'.) */
137 boolean internal_errors_enabled = 0;
139 struct interrupt_data * global_interrupt_data;
141 /* At the toplevel repl we routinely call this function. The signal
142 * mask ought to be clear anyway most of the time, but may be non-zero
143 * if we were interrupted e.g. while waiting for a queue. */
145 void reset_signal_mask ()
147 sigset_t new;
148 sigemptyset(&new);
149 thread_sigmask(SIG_SETMASK,&new,0);
152 void block_blockable_signals ()
154 sigset_t block;
155 sigemptyset(&block);
156 sigaddset_blockable(&block);
157 thread_sigmask(SIG_BLOCK, &block, 0);
162 * utility routines used by various signal handlers
165 void
166 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
168 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
170 lispobj oldcont;
172 /* Build a fake stack frame or frames */
174 current_control_frame_pointer =
175 (lispobj *)(*os_context_register_addr(context, reg_CSP));
176 if ((lispobj *)(*os_context_register_addr(context, reg_CFP))
177 == current_control_frame_pointer) {
178 /* There is a small window during call where the callee's
179 * frame isn't built yet. */
180 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
181 == FUN_POINTER_LOWTAG) {
182 /* We have called, but not built the new frame, so
183 * build it for them. */
184 current_control_frame_pointer[0] =
185 *os_context_register_addr(context, reg_OCFP);
186 current_control_frame_pointer[1] =
187 *os_context_register_addr(context, reg_LRA);
188 current_control_frame_pointer += 8;
189 /* Build our frame on top of it. */
190 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
192 else {
193 /* We haven't yet called, build our frame as if the
194 * partial frame wasn't there. */
195 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
198 /* We can't tell whether we are still in the caller if it had to
199 * allocate a stack frame due to stack arguments. */
200 /* This observation provoked some past CMUCL maintainer to ask
201 * "Can anything strange happen during return?" */
202 else {
203 /* normal case */
204 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
207 current_control_stack_pointer = current_control_frame_pointer + 8;
209 current_control_frame_pointer[0] = oldcont;
210 current_control_frame_pointer[1] = NIL;
211 current_control_frame_pointer[2] =
212 (lispobj)(*os_context_register_addr(context, reg_CODE));
213 #endif
216 void
217 fake_foreign_function_call(os_context_t *context)
219 int context_index;
220 struct thread *thread=arch_os_get_current_thread();
222 /* context_index incrementing must not be interrupted */
223 check_blockables_blocked_or_lose();
225 /* Get current Lisp state from context. */
226 #ifdef reg_ALLOC
227 dynamic_space_free_pointer =
228 (lispobj *)(*os_context_register_addr(context, reg_ALLOC));
229 #if defined(LISP_FEATURE_ALPHA)
230 if ((long)dynamic_space_free_pointer & 1) {
231 lose("dead in fake_foreign_function_call, context = %x", context);
233 #endif
234 #endif
235 #ifdef reg_BSP
236 current_binding_stack_pointer =
237 (lispobj *)(*os_context_register_addr(context, reg_BSP));
238 #endif
240 build_fake_control_stack_frames(thread,context);
242 /* Do dynamic binding of the active interrupt context index
243 * and save the context in the context array. */
244 context_index =
245 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
247 if (context_index >= MAX_INTERRUPTS) {
248 lose("maximum interrupt nesting depth (%d) exceeded", MAX_INTERRUPTS);
251 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
252 make_fixnum(context_index + 1),thread);
254 thread->interrupt_contexts[context_index] = context;
256 /* no longer in Lisp now */
257 foreign_function_call_active = 1;
260 /* blocks all blockable signals. If you are calling from a signal handler,
261 * the usual signal mask will be restored from the context when the handler
262 * finishes. Otherwise, be careful */
264 void
265 undo_fake_foreign_function_call(os_context_t *context)
267 struct thread *thread=arch_os_get_current_thread();
268 /* Block all blockable signals. */
269 block_blockable_signals();
271 /* going back into Lisp */
272 foreign_function_call_active = 0;
274 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
275 unbind(thread);
277 #ifdef reg_ALLOC
278 /* Put the dynamic space free pointer back into the context. */
279 *os_context_register_addr(context, reg_ALLOC) =
280 (unsigned long) dynamic_space_free_pointer;
281 #endif
284 /* a handler for the signal caused by execution of a trap opcode
285 * signalling an internal error */
286 void
287 interrupt_internal_error(int signal, siginfo_t *info, os_context_t *context,
288 boolean continuable)
290 lispobj context_sap = 0;
292 check_blockables_blocked_or_lose();
293 fake_foreign_function_call(context);
295 /* Allocate the SAP object while the interrupts are still
296 * disabled. */
297 if (internal_errors_enabled) {
298 context_sap = alloc_sap(context);
301 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
303 if (internal_errors_enabled) {
304 SHOW("in interrupt_internal_error");
305 #ifdef QSHOW
306 /* Display some rudimentary debugging information about the
307 * error, so that even if the Lisp error handler gets badly
308 * confused, we have a chance to determine what's going on. */
309 describe_internal_error(context);
310 #endif
311 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
312 continuable ? T : NIL);
313 } else {
314 describe_internal_error(context);
315 /* There's no good way to recover from an internal error
316 * before the Lisp error handling mechanism is set up. */
317 lose("internal error too early in init, can't recover");
319 undo_fake_foreign_function_call(context); /* blocks signals again */
320 if (continuable) {
321 arch_skip_instruction(context);
325 void
326 interrupt_handle_pending(os_context_t *context)
328 struct thread *thread;
329 struct interrupt_data *data;
331 check_blockables_blocked_or_lose();
332 check_interrupts_enabled_or_lose(context);
334 thread=arch_os_get_current_thread();
335 data=thread->interrupt_data;
337 /* Pseudo atomic may trigger several times for a single interrupt,
338 * and while without-interrupts should not, a false trigger by
339 * pseudo-atomic may eat a pending handler even from
340 * without-interrupts. */
341 if (data->pending_handler) {
343 /* If we're here as the result of a pseudo-atomic as opposed
344 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
345 * NIL, because maybe_defer_handler sets
346 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
347 SetSymbolValue(INTERRUPT_PENDING, NIL,thread);
349 /* restore the saved signal mask from the original signal (the
350 * one that interrupted us during the critical section) into the
351 * os_context for the signal we're currently in the handler for.
352 * This should ensure that when we return from the handler the
353 * blocked signals are unblocked */
354 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
356 sigemptyset(&data->pending_mask);
357 /* This will break on sparc linux: the deferred handler really wants
358 * to be called with a void_context */
359 run_deferred_handler(data,(void *)context);
364 * the two main signal handlers:
365 * interrupt_handle_now(..)
366 * maybe_now_maybe_later(..)
368 * to which we have added interrupt_handle_now_handler(..). Why?
369 * Well, mostly because the SPARC/Linux platform doesn't quite do
370 * signals the way we want them done. The third argument in the
371 * handler isn't filled in by the kernel properly, so we fix it up
372 * ourselves in the arch_os_get_context(..) function; however, we only
373 * want to do this when we first hit the handler, and not when
374 * interrupt_handle_now(..) is being called from some other handler
375 * (when the fixup will already have been done). -- CSR, 2002-07-23
378 void
379 interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
381 os_context_t *context = (os_context_t*)void_context;
382 struct thread *thread=arch_os_get_current_thread();
383 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
384 boolean were_in_lisp;
385 #endif
386 union interrupt_handler handler;
387 check_blockables_blocked_or_lose();
388 check_interrupts_enabled_or_lose(context);
390 #ifdef LISP_FEATURE_LINUX
391 /* Under Linux on some architectures, we appear to have to restore
392 the FPU control word from the context, as after the signal is
393 delivered we appear to have a null FPU control word. */
394 os_restore_fp_control(context);
395 #endif
396 handler = thread->interrupt_data->interrupt_handlers[signal];
398 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
399 return;
402 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
403 were_in_lisp = !foreign_function_call_active;
404 if (were_in_lisp)
405 #endif
407 fake_foreign_function_call(context);
410 #ifdef QSHOW_SIGNALS
411 FSHOW((stderr,
412 "/entering interrupt_handle_now(%d, info, context)\n",
413 signal));
414 #endif
416 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
418 /* This can happen if someone tries to ignore or default one
419 * of the signals we need for runtime support, and the runtime
420 * support decides to pass on it. */
421 lose("no handler for signal %d in interrupt_handle_now(..)", signal);
423 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
424 /* Once we've decided what to do about contexts in a
425 * return-elsewhere world (the original context will no longer
426 * be available; should we copy it or was nobody using it anyway?)
427 * then we should convert this to return-elsewhere */
429 /* CMUCL comment said "Allocate the SAPs while the interrupts
430 * are still disabled.". I (dan, 2003.08.21) assume this is
431 * because we're not in pseudoatomic and allocation shouldn't
432 * be interrupted. In which case it's no longer an issue as
433 * all our allocation from C now goes through a PA wrapper,
434 * but still, doesn't hurt */
436 lispobj info_sap,context_sap = alloc_sap(context);
437 info_sap = alloc_sap(info);
438 /* Allow signals again. */
439 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
441 #ifdef QSHOW_SIGNALS
442 SHOW("calling Lisp-level handler");
443 #endif
445 funcall3(handler.lisp,
446 make_fixnum(signal),
447 info_sap,
448 context_sap);
449 } else {
451 #ifdef QSHOW_SIGNALS
452 SHOW("calling C-level handler");
453 #endif
455 /* Allow signals again. */
456 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
458 (*handler.c)(signal, info, void_context);
461 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
462 if (were_in_lisp)
463 #endif
465 undo_fake_foreign_function_call(context); /* block signals again */
468 #ifdef QSHOW_SIGNALS
469 FSHOW((stderr,
470 "/returning from interrupt_handle_now(%d, info, context)\n",
471 signal));
472 #endif
475 /* This is called at the end of a critical section if the indications
476 * are that some signal was deferred during the section. Note that as
477 * far as C or the kernel is concerned we dealt with the signal
478 * already; we're just doing the Lisp-level processing now that we
479 * put off then */
481 void
482 run_deferred_handler(struct interrupt_data *data, void *v_context) {
483 /* The pending_handler may enable interrupts (see
484 * interrupt_maybe_gc_int) and then another interrupt may hit,
485 * overwrite interrupt_data, so reset the pending handler before
486 * calling it. Trust the handler to finish with the siginfo before
487 * enabling interrupts. */
488 void (*pending_handler) (int, siginfo_t*, void*)=data->pending_handler;
489 data->pending_handler=0;
490 (*pending_handler)(data->pending_signal,&(data->pending_info), v_context);
493 boolean
494 maybe_defer_handler(void *handler, struct interrupt_data *data,
495 int signal, siginfo_t *info, os_context_t *context)
497 struct thread *thread=arch_os_get_current_thread();
499 check_blockables_blocked_or_lose();
501 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
502 lose("interrupt already pending");
503 /* If interrupts are disabled then INTERRUPT_PENDING is set and
504 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
505 * atomic section inside a without-interrupts.
507 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
508 store_signal_data_for_later(data,handler,signal,info,context);
509 SetSymbolValue(INTERRUPT_PENDING, T,thread);
510 #ifdef QSHOW_SIGNALS
511 FSHOW((stderr,
512 "/maybe_defer_handler(%x,%d),thread=%ld: deferred\n",
513 (unsigned int)handler,signal,thread->os_thread));
514 #endif
515 return 1;
517 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
518 * actually use its argument for anything on x86, so this branch
519 * may succeed even when context is null (gencgc alloc()) */
520 if (
521 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
522 (!foreign_function_call_active) &&
523 #endif
524 arch_pseudo_atomic_atomic(context)) {
525 store_signal_data_for_later(data,handler,signal,info,context);
526 arch_set_pseudo_atomic_interrupted(context);
527 #ifdef QSHOW_SIGNALS
528 FSHOW((stderr,
529 "/maybe_defer_handler(%x,%d),thread=%ld: deferred(PA)\n",
530 (unsigned int)handler,signal,thread->os_thread));
531 #endif
532 return 1;
534 #ifdef QSHOW_SIGNALS
535 FSHOW((stderr,
536 "/maybe_defer_handler(%x,%d),thread=%ld: not deferred\n",
537 (unsigned int)handler,signal,thread->os_thread));
538 #endif
539 return 0;
542 static void
543 store_signal_data_for_later (struct interrupt_data *data, void *handler,
544 int signal,
545 siginfo_t *info, os_context_t *context)
547 if (data->pending_handler)
548 lose("tried to overwrite pending interrupt handler %x with %x\n",
549 data->pending_handler, handler);
550 if (!handler)
551 lose("tried to defer null interrupt handler\n");
552 data->pending_handler = handler;
553 data->pending_signal = signal;
554 if(info)
555 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
556 if(context) {
557 /* the signal mask in the context (from before we were
558 * interrupted) is copied to be restored when
559 * run_deferred_handler happens. Then the usually-blocked
560 * signals are added to the mask in the context so that we are
561 * running with blocked signals when the handler returns */
562 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
563 sigaddset_blockable(os_context_sigmask_addr(context));
567 static void
568 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
570 os_context_t *context = arch_os_get_context(&void_context);
571 struct thread *thread=arch_os_get_current_thread();
572 struct interrupt_data *data=thread->interrupt_data;
573 #ifdef LISP_FEATURE_LINUX
574 os_restore_fp_control(context);
575 #endif
576 if(maybe_defer_handler(interrupt_handle_now,data,
577 signal,info,context))
578 return;
579 interrupt_handle_now(signal, info, context);
580 #ifdef LISP_FEATURE_DARWIN
581 /* Work around G5 bug */
582 DARWIN_FIX_CONTEXT(context);
583 #endif
586 static void
587 low_level_interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
589 os_context_t *context = (os_context_t*)void_context;
590 struct thread *thread=arch_os_get_current_thread();
592 #ifdef LISP_FEATURE_LINUX
593 os_restore_fp_control(context);
594 #endif
595 check_blockables_blocked_or_lose();
596 check_interrupts_enabled_or_lose(context);
597 (*thread->interrupt_data->interrupt_low_level_handlers[signal])
598 (signal, info, void_context);
599 #ifdef LISP_FEATURE_DARWIN
600 /* Work around G5 bug */
601 DARWIN_FIX_CONTEXT(context);
602 #endif
605 static void
606 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
608 os_context_t *context = arch_os_get_context(&void_context);
609 struct thread *thread=arch_os_get_current_thread();
610 struct interrupt_data *data=thread->interrupt_data;
611 #ifdef LISP_FEATURE_LINUX
612 os_restore_fp_control(context);
613 #endif
614 if(maybe_defer_handler(low_level_interrupt_handle_now,data,
615 signal,info,context))
616 return;
617 low_level_interrupt_handle_now(signal, info, context);
618 #ifdef LISP_FEATURE_DARWIN
619 /* Work around G5 bug */
620 DARWIN_FIX_CONTEXT(context);
621 #endif
624 #ifdef LISP_FEATURE_SB_THREAD
625 void
626 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
628 os_context_t *context = arch_os_get_context(&void_context);
629 struct thread *thread=arch_os_get_current_thread();
630 sigset_t ss;
631 int i;
633 /* need the context stored so it can have registers scavenged */
634 fake_foreign_function_call(context);
636 sigemptyset(&ss);
637 for(i=1;i<NSIG;i++) sigaddset(&ss,i); /* Block everything. */
638 thread_sigmask(SIG_BLOCK,&ss,0);
640 /* The GC can't tell if a thread is a zombie, so this would be a
641 * good time to let the kernel reap any of our children in that
642 * awful state, to stop them from being waited for indefinitely.
643 * Userland reaping is done later when GC is finished */
644 if(thread->state!=STATE_RUNNING) {
645 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
646 fixnum_value(thread->state));
648 thread->state=STATE_SUSPENDED;
650 sigemptyset(&ss); sigaddset(&ss,SIG_STOP_FOR_GC);
651 sigwaitinfo(&ss,0);
652 if(thread->state!=STATE_SUSPENDED) {
653 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
654 fixnum_value(thread->state));
656 thread->state=STATE_RUNNING;
658 undo_fake_foreign_function_call(context);
660 #endif
662 void
663 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
665 os_context_t *context = arch_os_get_context(&void_context);
666 interrupt_handle_now(signal, info, context);
667 #ifdef LISP_FEATURE_DARWIN
668 DARWIN_FIX_CONTEXT(context);
669 #endif
673 * stuff to detect and handle hitting the GC trigger
676 #ifndef LISP_FEATURE_GENCGC
677 /* since GENCGC has its own way to record trigger */
678 static boolean
679 gc_trigger_hit(int signal, siginfo_t *info, os_context_t *context)
681 if (current_auto_gc_trigger == NULL)
682 return 0;
683 else{
684 void *badaddr=arch_get_bad_addr(signal,info,context);
685 return (badaddr >= (void *)current_auto_gc_trigger &&
686 badaddr <((void *)current_dynamic_space + DYNAMIC_SPACE_SIZE));
689 #endif
691 /* manipulate the signal context and stack such that when the handler
692 * returns, it will call function instead of whatever it was doing
693 * previously
696 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
697 int *context_eflags_addr(os_context_t *context);
698 #endif
700 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
701 extern void post_signal_tramp(void);
702 void arrange_return_to_lisp_function(os_context_t *context, lispobj function)
704 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
705 void * fun=native_pointer(function);
706 void *code = &(((struct simple_fun *) fun)->code);
707 #endif
709 /* Build a stack frame showing `interrupted' so that the
710 * user's backtrace makes (as much) sense (as usual) */
712 /* FIXME: what about restoring fp state? */
713 /* FIXME: what about restoring errno? */
714 #ifdef LISP_FEATURE_X86
715 /* Suppose the existence of some function that saved all
716 * registers, called call_into_lisp, then restored GP registers and
717 * returned. It would look something like this:
719 push ebp
720 mov ebp esp
721 pushfl
722 pushal
723 push $0
724 push $0
725 pushl {address of function to call}
726 call 0x8058db0 <call_into_lisp>
727 addl $12,%esp
728 popal
729 popfl
730 leave
733 * What we do here is set up the stack that call_into_lisp would
734 * expect to see if it had been called by this code, and frob the
735 * signal context so that signal return goes directly to call_into_lisp,
736 * and when that function (and the lisp function it invoked) returns,
737 * it returns to the second half of this imaginary function which
738 * restores all registers and returns to C
740 * For this to work, the latter part of the imaginary function
741 * must obviously exist in reality. That would be post_signal_tramp
744 uint32_t *sp=(uint32_t *)*os_context_register_addr(context,reg_ESP);
746 /* return address for call_into_lisp: */
747 *(sp-15) = (uint32_t)post_signal_tramp;
748 *(sp-14) = function; /* args for call_into_lisp : function*/
749 *(sp-13) = 0; /* arg array */
750 *(sp-12) = 0; /* no. args */
751 /* this order matches that used in POPAD */
752 *(sp-11)=*os_context_register_addr(context,reg_EDI);
753 *(sp-10)=*os_context_register_addr(context,reg_ESI);
755 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
756 /* POPAD ignores the value of ESP: */
757 *(sp-8)=0;
758 *(sp-7)=*os_context_register_addr(context,reg_EBX);
760 *(sp-6)=*os_context_register_addr(context,reg_EDX);
761 *(sp-5)=*os_context_register_addr(context,reg_ECX);
762 *(sp-4)=*os_context_register_addr(context,reg_EAX);
763 *(sp-3)=*context_eflags_addr(context);
764 *(sp-2)=*os_context_register_addr(context,reg_EBP);
765 *(sp-1)=*os_context_pc_addr(context);
767 #elif defined(LISP_FEATURE_X86_64)
768 uint64_t *sp=(uint64_t *)*os_context_register_addr(context,reg_RSP);
769 /* return address for call_into_lisp: */
770 *(sp-18) = (uint64_t)post_signal_tramp;
772 *(sp-17)=*os_context_register_addr(context,reg_R15);
773 *(sp-16)=*os_context_register_addr(context,reg_R14);
774 *(sp-15)=*os_context_register_addr(context,reg_R13);
775 *(sp-14)=*os_context_register_addr(context,reg_R12);
776 *(sp-13)=*os_context_register_addr(context,reg_R11);
777 *(sp-12)=*os_context_register_addr(context,reg_R10);
778 *(sp-11)=*os_context_register_addr(context,reg_R9);
779 *(sp-10)=*os_context_register_addr(context,reg_R8);
780 *(sp-9)=*os_context_register_addr(context,reg_RDI);
781 *(sp-8)=*os_context_register_addr(context,reg_RSI);
782 /* skip RBP and RSP */
783 *(sp-7)=*os_context_register_addr(context,reg_RBX);
784 *(sp-6)=*os_context_register_addr(context,reg_RDX);
785 *(sp-5)=*os_context_register_addr(context,reg_RCX);
786 *(sp-4)=*os_context_register_addr(context,reg_RAX);
787 *(sp-3)=*context_eflags_addr(context);
788 *(sp-2)=*os_context_register_addr(context,reg_RBP);
789 *(sp-1)=*os_context_pc_addr(context);
791 *os_context_register_addr(context,reg_RDI) =
792 (os_context_register_t)function; /* function */
793 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
794 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
795 #else
796 struct thread *th=arch_os_get_current_thread();
797 build_fake_control_stack_frames(th,context);
798 #endif
800 #ifdef LISP_FEATURE_X86
801 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
802 *os_context_register_addr(context,reg_ECX) = 0;
803 *os_context_register_addr(context,reg_EBP) = (os_context_register_t)(sp-2);
804 #ifdef __NetBSD__
805 *os_context_register_addr(context,reg_UESP) =
806 (os_context_register_t)(sp-15);
807 #else
808 *os_context_register_addr(context,reg_ESP) = (os_context_register_t)(sp-15);
809 #endif
810 #elif defined(LISP_FEATURE_X86_64)
811 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
812 *os_context_register_addr(context,reg_RCX) = 0;
813 *os_context_register_addr(context,reg_RBP) = (os_context_register_t)(sp-2);
814 *os_context_register_addr(context,reg_RSP) = (os_context_register_t)(sp-18);
815 #else
816 /* this much of the calling convention is common to all
817 non-x86 ports */
818 *os_context_pc_addr(context) = (os_context_register_t)code;
819 *os_context_register_addr(context,reg_NARGS) = 0;
820 *os_context_register_addr(context,reg_LIP) = (os_context_register_t)code;
821 *os_context_register_addr(context,reg_CFP) =
822 (os_context_register_t)current_control_frame_pointer;
823 #endif
824 #ifdef ARCH_HAS_NPC_REGISTER
825 *os_context_npc_addr(context) =
826 4 + *os_context_pc_addr(context);
827 #endif
828 #ifdef LISP_FEATURE_SPARC
829 *os_context_register_addr(context,reg_CODE) =
830 (os_context_register_t)(fun + FUN_POINTER_LOWTAG);
831 #endif
834 #ifdef LISP_FEATURE_SB_THREAD
835 void interrupt_thread_handler(int num, siginfo_t *info, void *v_context)
837 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
838 /* The order of interrupt execution is peculiar. If thread A
839 * interrupts thread B with I1, I2 and B for some reason recieves
840 * I1 when FUN2 is already on the list, then it is FUN2 that gets
841 * to run first. But when FUN2 is run SIG_INTERRUPT_THREAD is
842 * enabled again and I2 hits pretty soon in FUN2 and run
843 * FUN1. This is of course just one scenario, and the order of
844 * thread interrupt execution is undefined. */
845 struct thread *th=arch_os_get_current_thread();
846 struct cons *c;
847 if (th->state != STATE_RUNNING)
848 lose("interrupt_thread_handler: thread %ld in wrong state: %d\n",
849 th->os_thread,fixnum_value(th->state));
850 get_spinlock(&th->interrupt_fun_lock,(long)th);
851 c=((struct cons *)native_pointer(th->interrupt_fun));
852 arrange_return_to_lisp_function(context,c->car);
853 th->interrupt_fun=c->cdr;
854 release_spinlock(&th->interrupt_fun_lock);
857 #endif
859 /* KLUDGE: Theoretically the approach we use for undefined alien
860 * variables should work for functions as well, but on PPC/Darwin
861 * we get bus error at bogus addresses instead, hence this workaround,
862 * that has the added benefit of automatically discriminating between
863 * functions and variables.
865 void undefined_alien_function() {
866 funcall0(SymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
869 boolean handle_guard_page_triggered(os_context_t *context,os_vm_address_t addr)
871 struct thread *th=arch_os_get_current_thread();
873 /* note the os_context hackery here. When the signal handler returns,
874 * it won't go back to what it was doing ... */
875 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
876 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
877 /* We hit the end of the control stack: disable guard page
878 * protection so the error handler has some headroom, protect the
879 * previous page so that we can catch returns from the guard page
880 * and restore it. */
881 protect_control_stack_guard_page(th,0);
882 protect_control_stack_return_guard_page(th,1);
884 arrange_return_to_lisp_function
885 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
886 return 1;
888 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
889 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
890 /* We're returning from the guard page: reprotect it, and
891 * unprotect this one. This works even if we somehow missed
892 * the return-guard-page, and hit it on our way to new
893 * exhaustion instead. */
894 protect_control_stack_guard_page(th,1);
895 protect_control_stack_return_guard_page(th,0);
896 return 1;
898 else if (addr >= undefined_alien_address &&
899 addr < undefined_alien_address + os_vm_page_size) {
900 arrange_return_to_lisp_function
901 (context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
902 return 1;
904 else return 0;
907 #ifndef LISP_FEATURE_GENCGC
908 /* This function gets called from the SIGSEGV (for e.g. Linux, NetBSD, &
909 * OpenBSD) or SIGBUS (for e.g. FreeBSD) handler. Here we check
910 * whether the signal was due to treading on the mprotect()ed zone -
911 * and if so, arrange for a GC to happen. */
912 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
914 boolean
915 interrupt_maybe_gc(int signal, siginfo_t *info, void *void_context)
917 os_context_t *context=(os_context_t *) void_context;
918 struct thread *th=arch_os_get_current_thread();
919 struct interrupt_data *data=
920 th ? th->interrupt_data : global_interrupt_data;
922 if(!data->pending_handler && !foreign_function_call_active &&
923 gc_trigger_hit(signal, info, context)){
924 clear_auto_gc_trigger();
925 if(!maybe_defer_handler(interrupt_maybe_gc_int,
926 data,signal,info,void_context))
927 interrupt_maybe_gc_int(signal,info,void_context);
928 return 1;
930 return 0;
933 #endif
935 /* this is also used by gencgc, in alloc() */
936 boolean
937 interrupt_maybe_gc_int(int signal, siginfo_t *info, void *void_context)
939 os_context_t *context=(os_context_t *) void_context;
941 check_blockables_blocked_or_lose();
942 fake_foreign_function_call(context);
944 /* SUB-GC may return without GCing if *GC-INHIBIT* is set, in
945 * which case we will be running with no gc trigger barrier
946 * thing for a while. But it shouldn't be long until the end
947 * of WITHOUT-GCING.
949 * FIXME: It would be good to protect the end of dynamic space
950 * and signal a storage condition from there.
953 /* restore the signal mask from the interrupted context before
954 * calling into Lisp */
955 if (context)
956 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
958 funcall0(SymbolFunction(SUB_GC));
960 undo_fake_foreign_function_call(context);
961 return 1;
966 * noise to install handlers
969 void
970 undoably_install_low_level_interrupt_handler (int signal,
971 void handler(int,
972 siginfo_t*,
973 void*))
975 struct sigaction sa;
976 struct thread *th=arch_os_get_current_thread();
977 struct interrupt_data *data=
978 th ? th->interrupt_data : global_interrupt_data;
980 if (0 > signal || signal >= NSIG) {
981 lose("bad signal number %d", signal);
984 if (sigismember(&blockable_sigset,signal))
985 sa.sa_sigaction = low_level_maybe_now_maybe_later;
986 else
987 sa.sa_sigaction = handler;
989 sigemptyset(&sa.sa_mask);
990 sigaddset_blockable(&sa.sa_mask);
991 sa.sa_flags = SA_SIGINFO | SA_RESTART;
992 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
993 if((signal==SIG_MEMORY_FAULT)
994 #ifdef SIG_INTERRUPT_THREAD
995 || (signal==SIG_INTERRUPT_THREAD)
996 #endif
998 sa.sa_flags|= SA_ONSTACK;
999 #endif
1001 sigaction(signal, &sa, NULL);
1002 data->interrupt_low_level_handlers[signal] =
1003 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1006 /* This is called from Lisp. */
1007 unsigned long
1008 install_handler(int signal, void handler(int, siginfo_t*, void*))
1010 struct sigaction sa;
1011 sigset_t old, new;
1012 union interrupt_handler oldhandler;
1013 struct thread *th=arch_os_get_current_thread();
1014 struct interrupt_data *data=
1015 th ? th->interrupt_data : global_interrupt_data;
1017 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1019 sigemptyset(&new);
1020 sigaddset(&new, signal);
1021 thread_sigmask(SIG_BLOCK, &new, &old);
1023 sigemptyset(&new);
1024 sigaddset_blockable(&new);
1026 FSHOW((stderr, "/data->interrupt_low_level_handlers[signal]=%x\n",
1027 (unsigned int)data->interrupt_low_level_handlers[signal]));
1028 if (data->interrupt_low_level_handlers[signal]==0) {
1029 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1030 ARE_SAME_HANDLER(handler, SIG_IGN)) {
1031 sa.sa_sigaction = handler;
1032 } else if (sigismember(&new, signal)) {
1033 sa.sa_sigaction = maybe_now_maybe_later;
1034 } else {
1035 sa.sa_sigaction = interrupt_handle_now_handler;
1038 sigemptyset(&sa.sa_mask);
1039 sigaddset_blockable(&sa.sa_mask);
1040 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1041 sigaction(signal, &sa, NULL);
1044 oldhandler = data->interrupt_handlers[signal];
1045 data->interrupt_handlers[signal].c = handler;
1047 thread_sigmask(SIG_SETMASK, &old, 0);
1049 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1051 return (unsigned long)oldhandler.lisp;
1054 void
1055 interrupt_init()
1057 int i;
1058 SHOW("entering interrupt_init()");
1059 sigemptyset(&blockable_sigset);
1060 sigaddset_blockable(&blockable_sigset);
1062 global_interrupt_data=calloc(sizeof(struct interrupt_data), 1);
1064 /* Set up high level handler information. */
1065 for (i = 0; i < NSIG; i++) {
1066 global_interrupt_data->interrupt_handlers[i].c =
1067 /* (The cast here blasts away the distinction between
1068 * SA_SIGACTION-style three-argument handlers and
1069 * signal(..)-style one-argument handlers, which is OK
1070 * because it works to call the 1-argument form where the
1071 * 3-argument form is expected.) */
1072 (void (*)(int, siginfo_t*, void*))SIG_DFL;
1075 SHOW("returning from interrupt_init()");