1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;;; FIXME: where is that file?
19 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
20 ;;;; function representation" before you seriously mess with this
23 (declaim (ftype (sfunction * function
) make-repeated-name-check
))
24 (defun make-repeated-name-check (&key
26 (context "lambda list")
27 (signal-via #'compiler-error
))
30 (when (member name seen
:test
#'eq
)
31 (funcall signal-via
"~@<The ~A ~S occurs more than once in ~
37 ;;; Verify that NAME is a legal name for a variable.
38 (declaim (ftype (function (t &key
39 (:context t
) (:allow-special t
) (:allow-symbol-macro t
)
40 (:signal-via
(or symbol function
)))
41 (values symbol keyword
))
42 check-variable-name-for-binding
))
43 (defun check-variable-name-for-binding (name
47 (allow-symbol-macro t
)
48 (signal-via #'compiler-error
))
49 (check-variable-name name
:signal-via signal-via
)
52 #+xc-host
"~@<~/sb!impl:print-symbol-with-prefix/ names a ~
53 ~A, and cannot be used in ~A.~:@>"
54 #-xc-host
"~@<~/sb-impl:print-symbol-with-prefix/ names a ~
55 ~A, and cannot be used in ~A.~:@>"
57 (let ((kind (info :variable
:kind name
)))
60 (unless allow-symbol-macro
61 (program-assert-symbol-home-package-unlocked
62 :compile name
(format nil
"lexically binding global ~
63 symbol-macro ~~A in ~A"
66 (lose "defined constant"))
68 (lose "global lexical variable"))
71 (lose "special variable"))))
74 ;;; Return a VAR structure for NAME, filling in info if it is globally
75 ;;; special. If it is losing, we punt with a COMPILER-ERROR.
76 (declaim (ftype (sfunction (symbol) lambda-var
) varify-lambda-arg
))
77 (defun varify-lambda-arg (name)
78 (case (info :variable
:kind name
)
80 (let ((variable (find-free-var name
)))
81 (make-lambda-var :%source-name name
82 :type
(leaf-type variable
)
83 :where-from
(leaf-where-from variable
)
86 (make-lambda-var :%source-name name
))))
88 ;;; Parse a lambda list into a list of VAR structures, stripping off
89 ;;; any &AUX bindings. Each arg name is checked for legality, and
90 ;;; duplicate names are checked for. If an arg is globally special,
91 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
92 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
93 ;;; which contains the extra information. If we hit something losing,
94 ;;; we bug out with COMPILER-ERROR. These values are returned:
95 ;;; 1. a list of the var structures for each top level argument;
96 ;;; 2. a flag indicating whether &KEY was specified;
97 ;;; 3. a flag indicating whether other &KEY args are allowed;
98 ;;; 4. a list of the &AUX variables; and
99 ;;; 5. a list of the &AUX values.
100 (declaim (ftype (sfunction (list) (values list boolean boolean list list
))
102 (defun make-lambda-vars (list)
103 (multiple-value-bind (llks required optional rest
/more keys aux
)
104 (multiple-value-call #'check-lambda-list-names
(parse-lambda-list list
))
108 (flet ((add-var (name)
109 (let ((var (varify-lambda-arg name
)))
112 (add-info (var kind
&key
(default nil defaultp
) suppliedp-var key
)
113 (let ((info (make-arg-info :kind kind
)))
115 (setf (arg-info-default info
) default
))
117 (setf (arg-info-supplied-p info
)
118 (varify-lambda-arg suppliedp-var
)))
120 (setf (arg-info-key info
) key
))
121 (setf (lambda-var-arg-info var
) info
))))
123 (mapc #'add-var required
)
125 (dolist (spec optional
)
126 (multiple-value-bind (name default suppliedp-var defaultp
)
127 (parse-optional-arg-spec spec
)
128 (apply #'add-info
(add-var name
) :optional
129 :suppliedp-var
(first suppliedp-var
)
130 (when defaultp
(list :default default
)))))
133 (mapc (lambda (name kind
)
134 (add-info (add-var name
) kind
))
135 rest
/more
(let ((morep (eq (ll-kwds-restp llks
) '&more
)))
136 (if morep
'(:more-context
:more-count
) '(:rest
)))))
139 (multiple-value-bind (keyword name default suppliedp-var defaultp
)
140 (parse-key-arg-spec spec
)
141 (apply #'add-info
(add-var name
) :keyword
142 :suppliedp-var
(first suppliedp-var
)
144 (when defaultp
(list :default default
)))))
147 (multiple-value-bind (name val
)
148 (if (atom spec
) spec
(values (car spec
) (cadr spec
)))
149 (let ((var (varify-lambda-arg name
)))
153 (values (vars) (ll-kwds-keyp llks
) (ll-kwds-allowp llks
)
154 (aux-vars) (aux-vals))))))
156 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
157 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
158 ;;; converting the body. If there are no bindings, just convert the
159 ;;; body, otherwise do one binding and recurse on the rest.
161 ;;; FIXME: This could and probably should be converted to use
162 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
163 ;;; so I'm not motivated. Patches will be accepted...
164 (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals
166 (declare (type ctran start next
) (type (or lvar null
) result
)
167 (list body aux-vars aux-vals
))
169 (let ((*lexenv
* (make-lexenv :vars
(copy-list post-binding-lexenv
))))
170 (ir1-convert-progn-body start next result body
))
171 (let ((ctran (make-ctran))
172 (fun-lvar (make-lvar))
173 (fun (ir1-convert-lambda-body body
174 (list (first aux-vars
))
175 :aux-vars
(rest aux-vars
)
176 :aux-vals
(rest aux-vals
)
177 :post-binding-lexenv post-binding-lexenv
178 :debug-name
(debug-name
181 (reference-leaf start ctran fun-lvar fun
)
182 (ir1-convert-combination-args fun-lvar ctran next result
183 (list (first aux-vals
)))))
186 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
187 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
188 ;;; around the body. If there are no special bindings, we just convert
189 ;;; the body, otherwise we do one special binding and recurse on the
192 ;;; We make a cleanup and introduce it into the lexical
193 ;;; environment. If there are multiple special bindings, the cleanup
194 ;;; for the blocks will end up being the innermost one. We force NEXT
195 ;;; to start a block outside of this cleanup, causing cleanup code to
196 ;;; be emitted when the scope is exited.
197 (defun ir1-convert-special-bindings
198 (start next result body aux-vars aux-vals svars post-binding-lexenv
)
199 (declare (type ctran start next
) (type (or lvar null
) result
)
200 (list body aux-vars aux-vals svars
))
203 (ir1-convert-aux-bindings start next result body aux-vars aux-vals
204 post-binding-lexenv
))
206 (ctran-starts-block next
)
207 (let ((cleanup (make-cleanup :kind
:special-bind
))
209 (bind-ctran (make-ctran))
210 (cleanup-ctran (make-ctran)))
211 (ir1-convert start bind-ctran nil
212 `(%special-bind
',(lambda-var-specvar var
) ,var
))
213 (setf (cleanup-mess-up cleanup
) (ctran-use bind-ctran
))
214 (let ((*lexenv
* (make-lexenv :cleanup cleanup
)))
215 (ir1-convert bind-ctran cleanup-ctran nil
'(%cleanup-point
))
216 (ir1-convert-special-bindings cleanup-ctran next result
217 body aux-vars aux-vals
219 post-binding-lexenv
)))))
222 ;;; Create a lambda node out of some code, returning the result. The
223 ;;; bindings are specified by the list of VAR structures VARS. We deal
224 ;;; with adding the names to the LEXENV-VARS for the conversion. The
225 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
226 ;;; and linked to the component head and tail.
228 ;;; We detect special bindings here, replacing the original VAR in the
229 ;;; lambda list with a temporary variable. We then pass a list of the
230 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
231 ;;; the special binding code.
233 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
234 ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT.
236 ;;; AUX-VARS is a list of VAR structures for variables that are to be
237 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
238 ;;; to get the initial value for the corresponding AUX-VAR.
239 (defun ir1-convert-lambda-body (body
244 (source-name '.anonymous.
)
246 (note-lexical-bindings t
)
249 (declare (list body vars aux-vars aux-vals
))
251 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
252 (aver-live-component *current-component
*)
254 (let* ((bind (make-bind))
255 (lambda (make-lambda :vars vars
257 :%source-name source-name
258 :%debug-name debug-name
259 :system-lambda-p system-lambda
))
260 (result-ctran (make-ctran))
261 (result-lvar (make-lvar)))
263 (awhen (lexenv-lambda *lexenv
*)
264 (push lambda
(lambda-children it
))
265 (setf (lambda-parent lambda
) it
))
267 ;; just to check: This function should fail internal assertions if
268 ;; we didn't set up a valid debug name above.
270 ;; (In SBCL we try to make everything have a debug name, since we
271 ;; lack the omniscient perspective the original implementors used
272 ;; to decide which things didn't need one.)
273 (functional-debug-name lambda
)
275 (setf (lambda-home lambda
) lambda
)
280 ;; As far as I can see, LAMBDA-VAR-HOME should never have
281 ;; been set before. Let's make sure. -- WHN 2001-09-29
282 (aver (not (lambda-var-home var
)))
283 (setf (lambda-var-home var
) lambda
)
284 (let ((specvar (lambda-var-specvar var
)))
287 (new-venv (cons (leaf-source-name specvar
) specvar
)))
289 (when note-lexical-bindings
290 (note-lexical-binding (leaf-source-name var
)))
291 (new-venv (cons (leaf-source-name var
) var
))))))
293 (let ((*lexenv
* (make-lexenv :vars
(new-venv)
296 (setf (bind-lambda bind
) lambda
)
297 (setf (node-lexenv bind
) *lexenv
*)
299 (let ((block (ctran-starts-block result-ctran
)))
300 (let ((return (make-return :result result-lvar
:lambda lambda
))
301 (tail-set (make-tail-set :funs
(list lambda
))))
302 (setf (lambda-tail-set lambda
) tail-set
)
303 (setf (lambda-return lambda
) return
)
304 (setf (lvar-dest result-lvar
) return
)
305 (link-node-to-previous-ctran return result-ctran
)
306 (setf (block-last block
) return
))
307 (link-blocks block
(component-tail *current-component
*)))
309 (with-component-last-block (*current-component
*
310 (ctran-block result-ctran
))
311 (let ((prebind-ctran (make-ctran))
312 (postbind-ctran (make-ctran)))
313 (ctran-starts-block prebind-ctran
)
314 (link-node-to-previous-ctran bind prebind-ctran
)
315 (use-ctran bind postbind-ctran
)
316 (ir1-convert-special-bindings postbind-ctran result-ctran
318 aux-vars aux-vals
(svars)
319 post-binding-lexenv
)))))
321 (link-blocks (component-head *current-component
*) (node-block bind
))
322 (push lambda
(component-new-functionals *current-component
*))
326 ;;; Entry point CLAMBDAs have a special kind
327 (defun register-entry-point (entry dispatcher
)
328 (declare (type clambda entry
)
329 (type optional-dispatch dispatcher
))
330 (setf (functional-kind entry
) :optional
)
331 (setf (leaf-ever-used entry
) t
)
332 (setf (lambda-optional-dispatch entry
) dispatcher
)
335 ;;; Create the actual entry-point function for an optional entry
336 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
337 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
338 ;;; to the VARS by name. The VALS are passed in the reverse order.
340 ;;; If any of the copies of the vars are referenced more than once,
341 ;;; then we mark the corresponding var as EVER-USED to inhibit
342 ;;; "defined but not read" warnings for arguments that are only used
343 ;;; by default forms.
344 (defun convert-optional-entry (fun vars vals defaults name
)
345 (declare (type clambda fun
) (list vars vals defaults
))
346 (let* ((fvars (reverse vars
))
347 (arg-vars (mapcar (lambda (var)
349 :%source-name
(leaf-source-name var
)
350 :type
(leaf-type var
)
351 :where-from
(leaf-where-from var
)
352 :specvar
(lambda-var-specvar var
)))
354 (fun (collect ((default-bindings)
356 (dolist (default defaults
)
357 (if (sb!xc
:constantp default
)
358 (default-vals default
)
359 (let ((var (sb!xc
:gensym
)))
360 (default-bindings `(,var
,default
))
361 (default-vals var
))))
362 (let ((bindings (default-bindings))
365 ;; See lengthy comment at top of 'seqtran'
366 ;; as to why muffling is not done during xc.
368 (declare (muffle-conditions code-deletion-note
))
369 (%funcall
,fun
,@(reverse vals
) ,@(default-vals)))))
370 (ir1-convert-lambda-body (if bindings
371 `((let (,@bindings
) ,call
))
374 ;; FIXME: Would be nice to
375 ;; share these names instead
376 ;; of consing up several
377 ;; identical ones. Oh well.
378 :debug-name
(debug-name
381 :note-lexical-bindings nil
382 :system-lambda t
)))))
383 (mapc (lambda (var arg-var
)
384 (when (cdr (leaf-refs arg-var
))
385 (setf (leaf-ever-used var
) t
)))
389 ;;; This function deals with supplied-p vars in optional arguments. If
390 ;;; there is no supplied-p arg, then we just call
391 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
392 ;;; optional entry that calls the result. If there is a supplied-p
393 ;;; var, then we add it into the default vars and throw a T into the
394 ;;; entry values. The resulting entry point function is returned.
395 (defun generate-optional-default-entry (res default-vars default-vals
396 entry-vars entry-vals
397 vars supplied-p-p body
399 source-name debug-name
400 force post-binding-lexenv
402 (declare (type optional-dispatch res
)
403 (list default-vars default-vals entry-vars entry-vals vars body
405 (let* ((arg (first vars
))
406 (arg-name (leaf-source-name arg
))
407 (info (lambda-var-arg-info arg
))
408 (default (arg-info-default info
))
409 (supplied-p (arg-info-supplied-p info
))
411 (not (sb!xc
:constantp
(arg-info-default info
)))))
413 (ir1-convert-hairy-args
415 (list* supplied-p arg default-vars
)
416 (list* (leaf-source-name supplied-p
) arg-name default-vals
)
417 (cons arg entry-vars
)
418 (list* t arg-name entry-vals
)
419 (rest vars
) t body aux-vars aux-vals
420 source-name debug-name
421 force post-binding-lexenv system-lambda
)
422 (ir1-convert-hairy-args
424 (cons arg default-vars
)
425 (cons arg-name default-vals
)
426 (cons arg entry-vars
)
427 (cons arg-name entry-vals
)
428 (rest vars
) supplied-p-p body aux-vars aux-vals
429 source-name debug-name
430 force post-binding-lexenv system-lambda
))))
432 ;; We want to delay converting the entry, but there exist
433 ;; problems: hidden references should not be established to
434 ;; lambdas of kind NIL should not have (otherwise the compiler
435 ;; might let-convert or delete them) and to variables.
436 (let ((name (or debug-name source-name
)))
438 supplied-p-p
; this entry will be of kind NIL
439 (and (lambda-p ep
) (eq (lambda-kind ep
) nil
)))
440 (convert-optional-entry ep
441 default-vars default-vals
442 (if supplied-p
(list default nil
) (list default
))
444 (let* ((value (constant-form-value default
))
445 ;; One-and-only-once-more: MAYBE-EMIT-MAKE-LOAD-FORMS has a similar test.
446 (namedp-not-eql-comparable
447 (and (symbolp default
)
448 (not (typep value
'(or symbol character number
)))))
449 (default (if namedp-not-eql-comparable default
`',value
))
450 (defaults (if supplied-p
(list default nil
) (list default
))))
451 ;; DEFAULT can contain a reference to a
452 ;; to-be-optimized-away function/block/tag, so better to
453 ;; reduce code now (but we possibly lose syntax checking
454 ;; in an unreachable code).
456 (register-entry-point
457 (convert-optional-entry (force ep
)
458 default-vars default-vals
463 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
464 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
465 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
467 ;;; The most interesting thing that we do is parse keywords. We create
468 ;;; a bunch of temporary variables to hold the result of the parse,
469 ;;; and then loop over the supplied arguments, setting the appropriate
470 ;;; temps for the supplied keyword. Note that it is significant that
471 ;;; we iterate over the keywords in reverse order --- this implements
472 ;;; the CL requirement that (when a keyword appears more than once)
473 ;;; the first value is used.
475 ;;; If there is no supplied-p var, then we initialize the temp to the
476 ;;; default and just pass the temp into the main entry. Since
477 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
478 ;;; know that the default is constant, and thus safe to evaluate out
481 ;;; If there is a supplied-p var, then we create temps for both the
482 ;;; value and the supplied-p, and pass them into the main entry,
483 ;;; letting it worry about defaulting.
485 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
486 ;;; until we have scanned all the keywords.
487 (defun convert-more-entry (res entry-vars entry-vals rest morep keys name
)
488 (declare (type optional-dispatch res
) (list entry-vars entry-vals keys
))
490 (arg-vals (reverse entry-vals
))
494 (dolist (var (reverse entry-vars
))
495 (arg-vars (make-lambda-var :%source-name
(leaf-source-name var
)
496 :type
(leaf-type var
)
497 :where-from
(leaf-where-from var
))))
499 (let* ((n-context (sb!xc
:gensym
"N-CONTEXT-"))
500 (context-temp (make-lambda-var :%source-name n-context
501 :arg-info
(make-arg-info :kind
:more-context
)))
502 (n-count (sb!xc
:gensym
"N-COUNT-"))
503 (count-temp (make-lambda-var :%source-name n-count
504 :type
(specifier-type 'index
)
505 :arg-info
(make-arg-info :kind
:more-count
))))
507 (arg-vars context-temp count-temp
)
510 (arg-vals `(%listify-rest-args
,n-context
,n-count
)))
515 ;; The reason for all the noise with
516 ;; STACK-GROWS-DOWNWARD-NOT-UPWARD is to enable generation of
517 ;; slightly more efficient code on x86oid processors. (We can
518 ;; hoist the negation of the index outside the main parsing loop
519 ;; and take advantage of the base+index+displacement addressing
521 (when (optional-dispatch-keyp res
)
522 (let ((n-index (sb!xc
:gensym
"N-INDEX-"))
523 (n-key (sb!xc
:gensym
"N-KEY-"))
524 (n-value-temp (sb!xc
:gensym
"N-VALUE-TEMP-"))
525 (n-allowp (sb!xc
:gensym
"N-ALLOWP-"))
526 (n-lose (sb!xc
:gensym
"N-LOSE-"))
527 (n-losep (sb!xc
:gensym
"N-LOSEP-"))
528 (allowp (or (optional-dispatch-allowp res
)
529 (policy *lexenv
* (zerop safety
))))
532 (temps #!-stack-grows-downward-not-upward
533 `(,n-index
(1- ,n-count
))
534 #!+stack-grows-downward-not-upward
535 `(,n-index
(- (1- ,n-count
)))
536 #!-stack-grows-downward-not-upward n-value-temp
537 #!-stack-grows-downward-not-upward n-key
)
538 (body `(declare (fixnum ,n-index
)
539 #!-stack-grows-downward-not-upward
540 (ignorable ,n-value-temp
,n-key
)))
544 (let* ((info (lambda-var-arg-info key
))
545 (default (arg-info-default info
))
546 (keyword (arg-info-key info
))
547 (supplied-p (arg-info-supplied-p info
))
548 (supplied-used-p (arg-info-supplied-used-p info
))
549 (n-value (sb!xc
:gensym
"N-VALUE-"))
550 (clause (cond (supplied-p
551 (let ((n-supplied (sb!xc
:gensym
"N-SUPPLIED-")))
552 (temps (list n-supplied
556 (arg-vals n-value n-supplied
)
557 `((eq ,n-key
',keyword
)
558 (setq ,n-supplied
,(if supplied-used-p
561 (setq ,n-value
,n-value-temp
))))
564 `((eq ,n-key
',keyword
)
565 (setq ,n-value
,n-value-temp
))))))
566 (when (and (not allowp
) (eq keyword
:allow-other-keys
))
567 (setq found-allow-p t
)
569 (append clause
`((setq ,n-allowp
,n-value-temp
)))))
571 (temps `(,n-value
,default
))
578 (unless found-allow-p
579 (tests `((eq ,n-key
:allow-other-keys
)
580 (setq ,n-allowp
,n-value-temp
))))
586 `(when (oddp ,n-count
)
587 (%odd-key-args-error
)))
590 #!-stack-grows-downward-not-upward
592 (declare (optimize (safety 0)))
594 (when (minusp ,n-index
) (return))
595 (setf ,n-value-temp
(%more-arg
,n-context
,n-index
))
597 (setq ,n-key
(%more-arg
,n-context
,n-index
))
600 #!+stack-grows-downward-not-upward
601 `(locally (declare (optimize (safety 0)))
603 (when (plusp ,n-index
) (return))
604 (multiple-value-bind (,n-value-temp
,n-key
)
605 (%more-kw-arg
,n-context
,n-index
)
606 (declare (ignorable ,n-value-temp
,n-key
))
611 (let ((location (make-restart-location)))
612 (body `(if (and (/= ,n-losep
0) (not ,n-allowp
))
613 (%unknown-key-arg-error
,n-lose
,location
)
614 (restart-point ,location
))))))))
616 (let ((ep (ir1-convert-lambda-body
619 (%funcall
,(optional-dispatch-main-entry res
)
622 :debug-name
(debug-name '&more-processor name
)
623 :note-lexical-bindings nil
625 (setf (optional-dispatch-more-entry res
)
626 (register-entry-point ep res
)))))
630 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
631 ;;; or &KEY arg. The arguments are similar to that function, but we
632 ;;; split off any &REST arg and pass it in separately. REST is the
633 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
634 ;;; the &KEY argument vars.
636 ;;; When there are &KEY arguments, we introduce temporary gensym
637 ;;; variables to hold the values while keyword defaulting is in
638 ;;; progress to get the required sequential binding semantics.
640 ;;; This gets interesting mainly when there are &KEY arguments with
641 ;;; supplied-p vars or non-constant defaults. In either case, pass in
642 ;;; a supplied-p var. If the default is non-constant, we introduce an
643 ;;; IF in the main entry that tests the supplied-p var and decides
644 ;;; whether to evaluate the default or not. In this case, the real
645 ;;; incoming value is NIL, so we must union NULL with the declared
646 ;;; type when computing the type for the main entry's argument.
647 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
648 rest more-context more-count keys supplied-p-p
649 body aux-vars aux-vals source-name debug-name
650 post-binding-lexenv system-lambda
)
651 (declare (type optional-dispatch res
)
652 (list default-vars default-vals entry-vars entry-vals keys body
654 (collect ((main-vars (reverse default-vars
))
655 (main-vals default-vals cons
)
661 (unless (lambda-var-ignorep rest
)
662 ;; Make up two extra variables, and squirrel them away in
663 ;; ARG-INFO-DEFAULT for transforming (VALUES-LIST REST) into
664 ;; (%MORE-ARG-VALUES CONTEXT 0 COUNT) when possible.
665 (let* ((context-name (sb!xc
:gensym
"REST-CONTEXT-"))
666 (context (make-lambda-var :%source-name context-name
667 :arg-info
(make-arg-info :kind
:more-context
)))
668 (count-name (sb!xc
:gensym
"REST-COUNT-"))
669 (count (make-lambda-var :%source-name count-name
670 :arg-info
(make-arg-info :kind
:more-count
)
671 :type
(specifier-type 'index
))))
672 (setf (arg-info-default (lambda-var-arg-info rest
)) (list context count
)
673 (lambda-var-ever-used context
) t
674 (lambda-var-ever-used count
) t
)
675 (setf more-context context
678 (main-vars more-context
)
680 (main-vars more-count
)
684 (let* ((info (lambda-var-arg-info key
))
685 (default (arg-info-default info
))
686 (hairy-default (not (sb!xc
:constantp default
)))
687 (supplied-p (arg-info-supplied-p info
))
688 ;; was: (format nil "~A-DEFAULTING-TEMP" (leaf-source-name key))
689 (n-val (make-symbol ".DEFAULTING-TEMP."))
690 (val-temp (make-lambda-var :%source-name n-val
)))
693 (cond ((or hairy-default supplied-p
)
694 (let* ((n-supplied (sb!xc
:gensym
"N-SUPPLIED-"))
695 (supplied-temp (make-lambda-var
696 :%source-name n-supplied
)))
698 (setf (arg-info-supplied-p info
) supplied-temp
))
700 (setf (arg-info-default info
) nil
)
702 (setf (arg-info-supplied-used-p info
) nil
)))
703 (main-vars supplied-temp
)
711 `(if ,n-supplied
,n-val
,default
)
712 `(if (eq ,n-supplied
0) ,default
,n-val
))))
714 (main-vals default nil
)
717 (bind-vars supplied-p
)
718 (bind-vals n-supplied
))))
720 (main-vals (arg-info-default info
))
721 (bind-vals n-val
)))))
723 (let* ((main-entry (ir1-convert-lambda-body
725 :aux-vars
(append (bind-vars) aux-vars
)
726 :aux-vals
(append (bind-vals) aux-vals
)
727 :post-binding-lexenv post-binding-lexenv
728 :source-name source-name
729 :debug-name debug-name
730 :system-lambda system-lambda
))
731 (name (or debug-name source-name
))
732 (last-entry (convert-optional-entry main-entry default-vars
733 (main-vals) () name
)))
734 (setf (optional-dispatch-main-entry res
)
735 (register-entry-point main-entry res
))
736 (convert-more-entry res entry-vars entry-vals rest more-context keys
739 (push (register-entry-point
741 (convert-optional-entry last-entry entry-vars entry-vals
745 (optional-dispatch-entry-points res
))
748 ;;; This function generates the entry point functions for the
749 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
750 ;;; of arguments, analyzing the arglist on the way down and generating
751 ;;; entry points on the way up.
753 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
754 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
755 ;;; names of the DEFAULT-VARS.
757 ;;; ENTRY-VARS is a reversed list of processed argument vars,
758 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
759 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
760 ;;; It has the var name for each required or optional arg, and has T
761 ;;; for each supplied-p arg.
763 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
764 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
765 ;;; argument has already been processed; only in this case are the
766 ;;; DEFAULT-XXX and ENTRY-XXX different.
768 ;;; The result at each point is a lambda which should be called by the
769 ;;; above level to default the remaining arguments and evaluate the
770 ;;; body. We cause the body to be evaluated by converting it and
771 ;;; returning it as the result when the recursion bottoms out.
773 ;;; Each level in the recursion also adds its entry point function to
774 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
775 ;;; function and the entry point function will be the same, but when
776 ;;; SUPPLIED-P args are present they may be different.
778 ;;; When we run into a &REST or &KEY arg, we punt out to
779 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
780 (defun ir1-convert-hairy-args (res default-vars default-vals
781 entry-vars entry-vals
782 vars supplied-p-p body aux-vars
784 source-name debug-name
785 force post-binding-lexenv
787 (declare (type optional-dispatch res
)
788 (list default-vars default-vals entry-vars entry-vals vars body
790 (aver (or debug-name
(neq '.anonymous. source-name
)))
792 (if (optional-dispatch-keyp res
)
793 ;; Handle &KEY with no keys...
794 (ir1-convert-more res default-vars default-vals
795 entry-vars entry-vals
796 nil nil nil vars supplied-p-p body aux-vars
797 aux-vals source-name debug-name
798 post-binding-lexenv system-lambda
)
799 (let* ((name (or debug-name source-name
))
800 (fun (ir1-convert-lambda-body
801 body
(reverse default-vars
)
804 :post-binding-lexenv post-binding-lexenv
805 :source-name source-name
806 :debug-name debug-name
807 :system-lambda system-lambda
)))
809 (setf (optional-dispatch-main-entry res
) fun
)
810 (register-entry-point fun res
)
811 (push (if supplied-p-p
812 (register-entry-point
813 (convert-optional-entry fun entry-vars entry-vals
()
817 (optional-dispatch-entry-points res
))
819 ((not (lambda-var-arg-info (first vars
)))
820 (let* ((arg (first vars
))
821 (nvars (cons arg default-vars
))
822 (nvals (cons (leaf-source-name arg
) default-vals
)))
823 (ir1-convert-hairy-args res nvars nvals nvars nvals
824 (rest vars
) nil body aux-vars aux-vals
825 source-name debug-name
826 nil post-binding-lexenv system-lambda
)))
828 (let* ((arg (first vars
))
829 (info (lambda-var-arg-info arg
))
830 (kind (arg-info-kind info
)))
833 (let ((ep (generate-optional-default-entry
834 res default-vars default-vals
835 entry-vars entry-vals vars supplied-p-p body
837 source-name debug-name
838 force post-binding-lexenv
840 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
841 (push (if (lambda-p ep
)
842 (register-entry-point
844 (convert-optional-entry
845 ep entry-vars entry-vals nil
846 (or debug-name source-name
))
849 (progn (aver (not supplied-p-p
))
851 (optional-dispatch-entry-points res
))
854 (ir1-convert-more res default-vars default-vals
855 entry-vars entry-vals
856 arg nil nil
(rest vars
) supplied-p-p body
858 source-name debug-name
859 post-binding-lexenv system-lambda
))
861 (ir1-convert-more res default-vars default-vals
862 entry-vars entry-vals
863 nil arg
(second vars
) (cddr vars
) supplied-p-p
864 body aux-vars aux-vals
865 source-name debug-name
866 post-binding-lexenv system-lambda
))
868 (ir1-convert-more res default-vars default-vals
869 entry-vars entry-vals
870 nil nil nil vars supplied-p-p body aux-vars
871 aux-vals source-name debug-name
872 post-binding-lexenv system-lambda
)))))))
874 ;;; This function deals with the case where we have to make an
875 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
876 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
877 ;;; figure out the MIN-ARGS and MAX-ARGS.
878 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
879 &key post-binding-lexenv
880 (source-name '.anonymous.
)
881 debug-name system-lambda
)
882 (declare (list body vars aux-vars aux-vals
))
883 (aver (or debug-name
(neq '.anonymous. source-name
)))
884 (let ((res (make-optional-dispatch :arglist vars
887 :%source-name source-name
888 :%debug-name debug-name
889 :plist
`(:ir1-environment
892 (min (or (position-if #'lambda-var-arg-info vars
) (length vars
))))
893 (aver-live-component *current-component
*)
894 (ir1-convert-hairy-args res
() () () () vars nil body aux-vars aux-vals
895 source-name debug-name nil post-binding-lexenv
897 ;; ir1-convert-hairy-args can throw 'locall-already-let-converted
898 ;; push optional-dispatch into the current component only after it
900 (push res
(component-new-functionals *current-component
*))
901 (setf (optional-dispatch-min-args res
) min
)
902 (setf (optional-dispatch-max-args res
)
903 (+ (1- (length (optional-dispatch-entry-points res
))) min
))
907 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
908 (defun ir1-convert-lambda (form &key
(source-name '.anonymous.
)
909 debug-name maybe-add-debug-catch
912 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
915 (unless (eq (car form
) 'lambda
)
916 (compiler-error "~S was expected but ~S was found:~% ~S"
920 (unless (and (consp (cdr form
)) (listp (cadr form
)))
922 "The lambda expression has a missing or non-list lambda list:~% ~S"
924 (when (and system-lambda maybe-add-debug-catch
)
925 (bug "Both SYSTEM-LAMBDA and MAYBE-ADD-DEBUG-CATCH specified"))
926 (unless (or debug-name
(neq '.anonymous. source-name
))
927 (setf debug-name
(name-lambdalike form
)))
928 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals
)
929 (make-lambda-vars (cadr form
))
930 (multiple-value-bind (forms decls doc
) (parse-body (cddr form
) t
)
931 (binding* (((*lexenv
* result-type post-binding-lexenv
932 lambda-list explicit-check
)
933 (process-decls decls
(append aux-vars vars
) nil
934 :binding-form-p t
:allow-lambda-list t
))
935 (debug-catch-p (and maybe-add-debug-catch
936 *allow-instrumenting
*
938 (>= insert-debug-catch
2))))
939 (forms (if debug-catch-p
940 (wrap-forms-in-debug-catch forms
)
942 (forms (if (eq result-type
*wild-type
*)
944 `((the ,(type-specifier result-type
) (progn ,@forms
)))))
945 (*allow-instrumenting
* (and (not system-lambda
) *allow-instrumenting
*))
946 (res (cond ((or (find-if #'lambda-var-arg-info vars
) keyp
)
947 (ir1-convert-hairy-lambda forms vars keyp
950 :post-binding-lexenv post-binding-lexenv
951 :source-name source-name
952 :debug-name debug-name
953 :system-lambda system-lambda
))
955 (ir1-convert-lambda-body forms vars
958 :post-binding-lexenv post-binding-lexenv
959 :source-name source-name
960 :debug-name debug-name
961 :system-lambda system-lambda
)))))
963 (setf (getf (functional-plist res
) 'explicit-check
) explicit-check
))
964 (setf (functional-inline-expansion res
) form
)
965 (setf (functional-arg-documentation res
)
966 (if (eq lambda-list
:unspecified
)
967 (strip-lambda-list (cadr form
) :arglist
)
969 (setf (functional-documentation res
) doc
)
970 (when (boundp '*lambda-conversions
*)
971 ;; KLUDGE: Not counting TL-XEPs is a lie, of course, but
972 ;; keeps things less confusing to users of TIME, where this
974 (unless (and (consp debug-name
) (eq 'tl-xep
(car debug-name
)))
975 (incf *lambda-conversions
*)))
978 (defun wrap-forms-in-debug-catch (forms)
979 #!+unwind-to-frame-and-call-vop
980 `((multiple-value-prog1
983 ;; Just ensure that there won't be any tail-calls, IR2 magic will
986 #!-unwind-to-frame-and-call-vop
987 `( ;; Normally, we'll return from this block with the below RETURN-FROM.
990 ;; If DEBUG-CATCH-TAG is thrown (with a thunk as the value) the
991 ;; RETURN-FROM is elided and we funcall the thunk instead. That
992 ;; thunk might either return a value (for a RETURN-FROM-FRAME)
993 ;; or call this same function again (for a RESTART-FRAME).
994 ;; -- JES, 2007-01-09
997 ;; Use a constant catch tag instead of consing a new one for every
998 ;; entry to this block. The uniquencess of the catch tags is
999 ;; ensured when the tag is throw by the debugger. It'll allocate a
1000 ;; new tag, and modify the reference this tag in the proper
1001 ;; catch-block structure to refer to that new tag. This
1002 ;; significantly decreases the runtime cost of high debug levels.
1003 ;; -- JES, 2007-01-09
1004 (catch 'debug-catch-tag
1005 (return-from return-value-tag
1009 ;;; helper for LAMBDA-like things, to massage them into a form
1010 ;;; suitable for IR1-CONVERT-LAMBDA.
1011 (defun ir1-convert-lambdalike (thing
1013 (source-name '.anonymous.
)
1015 (when (and (not debug-name
) (eq '.anonymous. source-name
))
1016 (setf debug-name
(name-lambdalike thing
)))
1019 (ir1-convert-lambda thing
1020 :maybe-add-debug-catch t
1021 :source-name source-name
1022 :debug-name debug-name
))
1024 (let ((name (cadr thing
))
1025 (lambda-expression `(lambda ,@(cddr thing
))))
1026 (if (and name
(legal-fun-name-p name
))
1027 (let ((defined-fun-res (get-defined-fun name
(second lambda-expression
)))
1028 (res (ir1-convert-lambda lambda-expression
1029 :maybe-add-debug-catch t
1031 (info (info :function
:info name
)))
1032 (assert-global-function-definition-type name res
)
1033 (push res
(defined-fun-functionals defined-fun-res
))
1035 (eq (defined-fun-inlinep defined-fun-res
) :notinline
)
1036 ;; Don't treat recursive stubs like CAR as self-calls
1037 ;; Maybe just use the fact that it is a known function?
1038 ;; Though a known function may be used
1039 ;; because of some other attributues but
1040 ;; still wants to get optimized self calls
1042 (or (fun-info-templates info
)
1043 (fun-info-transforms info
)
1044 (fun-info-ltn-annotate info
)
1045 (fun-info-ir2-convert info
)
1046 (fun-info-optimizer info
))))
1049 (policy ref
(> recognize-self-calls
0)))
1050 res defined-fun-res
))
1052 (ir1-convert-lambda lambda-expression
1053 :maybe-add-debug-catch t
1055 (or name
(name-lambdalike thing
))))))
1056 ((lambda-with-lexenv)
1057 (ir1-convert-inline-lambda thing
1058 :source-name source-name
1059 :debug-name debug-name
))))
1061 ;;; Convert the forms produced by RECONSTRUCT-LEXENV to LEXENV
1062 (defun process-inline-lexenv (inline-lexenv)
1063 (labels ((recurse (inline-lexenv lexenv
)
1064 (let ((*lexenv
* lexenv
))
1065 (if (null inline-lexenv
)
1067 (destructuring-bind (type bindings
&optional body
) inline-lexenv
1071 (process-decls `((declare ,@bindings
)) nil nil
)))
1074 (mapcar (lambda (binding)
1075 (list* (car binding
) 'macro
1077 (eval-in-lexenv (cdr binding
) lexenv
)
1078 #+sb-xc-host
; no EVAL-IN-LEXENV
1079 (if (null-lexenv-p lexenv
)
1080 (eval (cdr binding
))
1081 (bug "inline-lexenv?"))))
1084 (make-lexenv :default lexenv
1087 (funcall-in-symbol-macrolet-lexenv bindings
1088 (lambda (&optional vars
)
1089 (declare (ignore vars
))
1090 (recurse body
*lexenv
*))
1092 (recurse inline-lexenv
(make-null-lexenv))))
1094 ;;; Convert FUN as a lambda in the null environment, but use the
1095 ;;; current compilation policy. Note that FUN may be a
1096 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
1097 ;;; reflect the state at the definition site.
1098 (defun ir1-convert-inline-lambda (fun
1100 (source-name '.anonymous.
)
1103 (policy (lexenv-policy *lexenv
*)))
1104 (when (and (not debug-name
) (eq '.anonymous. source-name
))
1105 (setf debug-name
(name-lambdalike fun
)))
1106 (let* ((lambda-with-lexenv-p (eq (car fun
) 'lambda-with-lexenv
))
1107 (body (if lambda-with-lexenv-p
1108 `(lambda ,@(cddr fun
))
1111 (if lambda-with-lexenv-p
1113 :default
(process-inline-lexenv (second fun
))
1114 :handled-conditions
(lexenv-handled-conditions *lexenv
*)
1116 (make-almost-null-lexenv
1118 ;; Inherit MUFFLE-CONDITIONS from the call-site lexenv
1119 ;; rather than the definition-site lexenv, since it seems
1120 ;; like a much more common case.
1121 (lexenv-handled-conditions *lexenv
*))))
1122 (clambda (ir1-convert-lambda body
1123 :source-name source-name
1124 :debug-name debug-name
1125 :system-lambda system-lambda
)))
1126 (setf (functional-inline-expanded clambda
) t
)
1128 ;;;; defining global functions
1129 ;;; Given a lambda-list, return a FUN-TYPE object representing the signature:
1130 ;;; return type is *, and each individual arguments type is T -- but we get
1131 ;;; the argument counts and keywords.
1132 ;;; TODO: enhance this to optionally accept an alist of (var . type)
1133 ;;; and use that lieu of SB-INTERPRETER:APPROXIMATE-PROTO-FN-TYPE.
1134 (defun ftype-from-lambda-list (lambda-list)
1135 (multiple-value-bind (llks req opt rest key-list
)
1136 (parse-lambda-list lambda-list
:silent t
)
1137 (flet ((list-of-t (list) (mapcar (constantly t
) list
)))
1138 (let ((reqs (list-of-t req
))
1139 (opts (when opt
(cons '&optional
(list-of-t opt
))))
1140 ;; When it comes to building a type, &REST means pretty much the
1141 ;; same thing as &MORE.
1142 (rest (when rest
'(&rest t
)))
1143 (keys (when (ll-kwds-keyp llks
)
1144 (cons '&key
(mapcar (lambda (spec)
1145 (list (parse-key-arg-spec spec
) t
))
1147 (allow (when (ll-kwds-allowp llks
) '(&allow-other-keys
))))
1148 (compiler-specifier-type `(function (,@reqs
,@opts
,@rest
,@keys
,@allow
) *))))))
1150 ;;; Get a DEFINED-FUN object for a function we are about to define. If
1151 ;;; the function has been forward referenced, then substitute for the
1152 ;;; previous references.
1153 (defun get-defined-fun (name &optional
(lambda-list nil lp
))
1154 (proclaim-as-fun-name name
)
1155 (when (boundp '*free-funs
*)
1156 (let ((found (find-free-fun name
"shouldn't happen! (defined-fun)")))
1157 (note-name-defined name
:function
)
1158 (cond ((not (defined-fun-p found
))
1159 (aver (not (info :function
:inlinep name
)))
1160 (let* ((where-from (leaf-where-from found
))
1161 (res (make-defined-fun
1163 :where-from
(if (eq where-from
:declared
)
1166 :type
(if (eq :declared where-from
)
1169 (ftype-from-lambda-list lambda-list
)
1170 (specifier-type 'function
))))))
1171 (substitute-leaf res found
)
1172 (setf (gethash name
*free-funs
*) res
)))
1173 ;; If *FREE-FUNS* has a previously converted definition
1174 ;; for this name, then blow it away and try again.
1175 ((defined-fun-functionals found
)
1176 (remhash name
*free-funs
*)
1177 (get-defined-fun name lambda-list
))
1180 ;;; Check a new global function definition for consistency with
1181 ;;; previous declaration or definition, and assert argument/result
1182 ;;; types if appropriate. This assertion is suppressed by the
1183 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
1184 ;;; check their argument types as a consequence of type dispatching.
1185 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
1186 ;;; FIXME: this seems to have nothing at all to do with adding "new"
1187 ;;; definitions, as it is only called from IR1-CONVERT-INLINE-EXPANSION.
1188 (defun assert-new-definition (var fun
)
1189 (let* ((type (leaf-type var
))
1190 (for-real (eq (leaf-where-from var
) :declared
))
1191 (name (leaf-source-name var
))
1192 (info (info :function
:info name
))
1193 (explicit-check (getf (functional-plist fun
) 'explicit-check
)))
1194 (assert-definition-type
1196 ;; KLUDGE: Common Lisp is such a dynamic language that in general
1197 ;; all we can do here is issue a STYLE-WARNING. It would be nice
1198 ;; to issue a full WARNING in the special case of type mismatches
1199 ;; within a compilation unit (as in section 3.2.2.3 of the spec)
1200 ;; but at least as of sbcl-0.6.11, we don't keep track of whether
1201 ;; the mismatched data came from the same compilation unit, so we
1202 ;; can't do that. -- WHN 2001-02-11
1203 :lossage-fun
#'compiler-style-warn
1204 :unwinnage-fun
(cond (info #'compiler-style-warn
)
1205 (for-real #'compiler-notify
)
1207 :really-assert
(if for-real
1208 (explicit-check->really-assert explicit-check
))
1210 "previous declaration"
1211 "previous definition"))))
1213 ;;; Used for global inline expansion. Earlier something like this was
1214 ;;; used by %DEFUN too. FIXME: And now it's probably worth rethinking
1215 ;;; whether this function is a good idea at all.
1216 (defun ir1-convert-inline-expansion (name expansion var inlinep info
)
1217 ;; Unless a :INLINE function, we temporarily clobber the inline
1218 ;; expansion. This prevents recursive inline expansion of
1219 ;; opportunistic pseudo-inlines.
1220 (unless (eq inlinep
:inline
)
1221 (setf (defined-fun-inline-expansion var
) nil
))
1222 (let ((fun (ir1-convert-inline-lambda expansion
1224 ;; prevent instrumentation of
1225 ;; known function expansions
1226 :system-lambda
(and info t
))))
1227 (setf (functional-inlinep fun
) inlinep
)
1228 (assert-new-definition var fun
)
1229 (setf (defined-fun-inline-expansion var
) expansion
)
1230 ;; Associate VAR with the FUN -- and in case of an optional dispatch
1231 ;; with the various entry-points. This allows XREF to know where the
1232 ;; inline CLAMBDA comes from.
1233 (flet ((note-inlining (f)
1236 (setf (functional-inline-expanded f
) var
))
1238 ;; Delayed entry-point.
1240 (setf (functional-inline-expanded (cdr f
)) var
)
1241 (let ((old-thunk (cdr f
)))
1242 (setf (cdr f
) (lambda ()
1243 (let ((g (funcall old-thunk
)))
1244 (setf (functional-inline-expanded g
) var
)
1247 (when (optional-dispatch-p fun
)
1248 (note-inlining (optional-dispatch-main-entry fun
))
1249 (note-inlining (optional-dispatch-more-entry fun
))
1250 (mapc #'note-inlining
(optional-dispatch-entry-points fun
))))
1251 ;; substitute for any old references
1252 (unless (or (not *block-compile
*)
1254 (or (fun-info-transforms info
)
1255 (fun-info-templates info
)
1256 (fun-info-ir2-convert info
))))
1257 (substitute-leaf fun var
))
1260 ;;; Store INLINE-LAMBDA as the inline expansion of NAME.
1261 (defun %set-inline-expansion
(name defined-fun inline-lambda
)
1262 (cond ((member inline-lambda
'(:accessor
:predicate
))
1263 ;; Special-case that implies a structure-related source-transform.
1264 (when (info :function
:inline-expansion-designator name
)
1265 ;; Any inline expansion that existed can't be useful.
1266 (warn "structure ~(~A~) ~S clobbers inline function"
1267 inline-lambda name
))
1268 (setq inline-lambda nil
)) ; will be cleared below
1270 ;; Warn if stomping on a structure predicate or accessor
1271 ;; whether or not we are about to install an inline-lambda.
1272 (let ((info (info :function
:source-transform name
)))
1274 (clear-info :function
:source-transform name
)
1275 ;; This is serious enough that you can get two warnings:
1276 ;; - one because you redefined a function at all,
1277 ;; - and one because the source-transform is erased.
1278 (warn "redefinition of ~S clobbers structure ~:[accessor~;predicate~]"
1279 name
(eq (cdr info
) :predicate
))))))
1280 (cond (inline-lambda
1281 (setf (info :function
:inline-expansion-designator name
)
1284 (setf (defined-fun-inline-expansion defined-fun
)
1287 (clear-info :function
:inline-expansion-designator name
))))
1289 ;;; the even-at-compile-time part of DEFUN
1291 ;;; The INLINE-LAMBDA is either the symbol :ACCESSOR, meaning that
1292 ;;; the function is a structure accessor, or a LAMBDA-WITH-LEXENV,
1293 ;;; or NIL if there is no inline expansion.
1294 (defun %compiler-defun
(name inline-lambda compile-toplevel
)
1295 (let ((defined-fun nil
)) ; will be set below if we're in the compiler
1296 (when compile-toplevel
1297 (with-single-package-locked-error
1298 (:symbol name
"defining ~S as a function")
1300 (if (consp inline-lambda
)
1301 ;; FIFTH as an accessor - how informative!
1302 ;; Obfuscation aside, I doubt this is even right.
1303 (get-defined-fun name
(fifth inline-lambda
))
1304 (get-defined-fun name
))))
1305 (when (boundp '*lexenv
*)
1306 (aver (producing-fasl-file))
1307 (if (member name
*fun-names-in-this-file
* :test
#'equal
)
1308 (warn 'duplicate-definition
:name name
)
1309 (push name
*fun-names-in-this-file
*)))
1310 (%set-inline-expansion name defined-fun inline-lambda
))
1312 (become-defined-fun-name name
)
1314 ;; old CMU CL comment:
1315 ;; If there is a type from a previous definition, blast it,
1316 ;; since it is obsolete.
1317 (when (and defined-fun
(neq :declared
(leaf-where-from defined-fun
)))
1318 (setf (leaf-type defined-fun
)
1319 ;; FIXME: If this is a block compilation thing, shouldn't
1320 ;; we be setting the type to the full derived type for the
1321 ;; definition, instead of this most general function type?
1322 (specifier-type 'function
))))
1326 ;; Similar to above, detect duplicate definitions within a file,
1327 ;; but the package lock check is unnecessary - it's handled elsewhere.
1329 ;; Additionally, this is a STYLE-WARNING, not a WARNING, because there is
1330 ;; meaningful behavior that can be ascribed to some redefinitions, e.g.
1331 ;; (defmacro foo () first-definition)
1332 ;; (defun f () (use-it (foo )))
1333 ;; (defmacro foo () other-definition)
1334 ;; will use the first definition when compiling F, but make the second available
1335 ;; in the loaded fasl. In this usage it would have made sense to wrap the
1336 ;; respective definitions with EVAL-WHEN for different situations,
1337 ;; but as long as the compile-time behavior is deterministic, it's just bad style
1338 ;; and not flat-out wrong, though there is indeed some waste in the fasl.
1340 ;; KIND is the globaldb KIND of this NAME
1341 (defun %compiler-defmacro
(kind name compile-toplevel
)
1342 (when compile-toplevel
1343 (let ((name-key `(,kind
,name
)))
1344 (when (boundp '*lexenv
*)
1345 (aver (producing-fasl-file))
1346 (if (member name-key
*fun-names-in-this-file
* :test
#'equal
)
1347 (compiler-style-warn 'same-file-redefinition-warning
:name name
)
1348 (push name-key
*fun-names-in-this-file
*))))))
1351 ;;; Entry point utilities
1353 ;;; Return a function for the Nth entry point.
1354 (defun optional-dispatch-entry-point-fun (dispatcher n
)
1355 (declare (type optional-dispatch dispatcher
)
1356 (type unsigned-byte n
))
1357 (let* ((env (getf (optional-dispatch-plist dispatcher
) :ir1-environment
))
1358 (*lexenv
* (first env
))
1359 (*current-path
* (second env
)))
1360 (force (nth n
(optional-dispatch-entry-points dispatcher
)))))