x86-64: reimplement symbol-value vop
[sbcl.git] / src / compiler / ir2tran.lisp
blob8c85ad22e059f1ba81b51dcd17538e4592575770
1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!C")
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
20 (aver (neq (tn-kind x) :unused))
21 (aver (neq (tn-kind y) :unused))
22 (unless (eq x y)
23 (vop move node block x y))
24 (values))
26 ;;; Determine whether we should emit a single-stepper breakpoint
27 ;;; around a call / before a vop.
28 (defun emit-step-p (node)
29 (if (and (policy node (> insert-step-conditions 1))
30 (typep node 'combination))
31 (combination-step-info node)
32 nil))
34 ;;; Allocate an indirect value cell.
35 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
36 (defun emit-make-value-cell (node block value res)
37 (event make-value-cell-event node)
38 (vop make-value-cell node block value nil res))
40 ;;;; leaf reference
42 ;;; Return the TN that holds the value of THING in the environment ENV.
43 (declaim (ftype (sfunction ((or nlx-info lambda-var clambda) physenv) tn)
44 find-in-physenv))
45 (defun find-in-physenv (thing physenv)
46 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
47 (etypecase thing
48 (lambda-var
49 ;; I think that a failure of this assertion means that we're
50 ;; trying to access a variable which was improperly closed
51 ;; over. The PHYSENV describes a physical environment. Every
52 ;; variable that a form refers to should either be in its
53 ;; physical environment directly, or grabbed from a
54 ;; surrounding physical environment when it was closed over.
55 ;; The ASSOC expression above finds closed-over variables, so
56 ;; if we fell through the ASSOC expression, it wasn't closed
57 ;; over. Therefore, it must be in our physical environment
58 ;; directly. If instead it is in some other physical
59 ;; environment, then it's bogus for us to reference it here
60 ;; without it being closed over. -- WHN 2001-09-29
61 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
62 (leaf-info thing))
63 (nlx-info
64 (aver (eq physenv (block-physenv (nlx-info-target thing))))
65 (ir2-nlx-info-home (nlx-info-info thing)))
66 (clambda
67 (aver (xep-p thing))
68 (entry-info-closure-tn (lambda-info thing))))
69 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
71 ;;; If LEAF already has a constant TN, return that, otherwise make a
72 ;;; TN for it.
73 (defun constant-tn (leaf boxedp)
74 (declare (type constant leaf))
75 ;; When convenient we can have both a boxed and unboxed TN for
76 ;; constant.
77 (if boxedp
78 (or (constant-boxed-tn leaf)
79 (setf (constant-boxed-tn leaf) (make-constant-tn leaf t)))
80 (or (leaf-info leaf)
81 (setf (leaf-info leaf) (make-constant-tn leaf nil)))))
83 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
84 ;;; isn't directly represented by a TN. ENV is the environment that
85 ;;; the reference is done in.
86 (defun leaf-tn (leaf env boxedp)
87 (declare (type leaf leaf) (type physenv env))
88 (typecase leaf
89 (lambda-var
90 (unless (lambda-var-indirect leaf)
91 (find-in-physenv leaf env)))
92 (constant (constant-tn leaf boxedp))
93 (t nil)))
95 ;;; This is used to conveniently get a handle on a constant TN during
96 ;;; IR2 conversion. It returns a constant TN representing the Lisp
97 ;;; object VALUE.
98 (defun emit-constant (value)
99 (constant-tn (find-constant value) t))
101 (defun boxed-combination-ref-p (combination lvar)
102 (let ((args (combination-args combination)))
103 (flet ((struct-slot-tagged-p (dd index)
104 (let ((slot (and dd
105 (find index (dd-slots dd) :key #'dsd-index))))
106 (and slot
107 (eq (dsd-raw-type slot) t))))
108 (constant (lvar)
109 (and (constant-lvar-p lvar)
110 (lvar-value lvar))))
111 (case (combination-fun-source-name combination nil)
112 (data-vector-set-with-offset
113 (and (eq lvar (car (last args)))
114 (csubtypep (lvar-type (car args))
115 (specifier-type '(array t)))))
116 (initialize-vector
117 (csubtypep (lvar-type (car args))
118 (specifier-type '(array t))))
119 (%make-structure-instance
120 (let* ((dd (constant (car args)))
121 (slot-specs (constant (cadr args)))
122 (pos (position lvar (cddr args)))
123 (slot (and pos
124 (nth pos slot-specs))))
125 (struct-slot-tagged-p dd (cddr slot))))
126 (%instance-set
127 (let* ((instance (lvar-type (car args)))
128 (layout (and (structure-classoid-p instance)
129 (classoid-layout instance))))
130 (and (eq lvar (car (last args)))
131 (struct-slot-tagged-p (and layout
132 (layout-info layout))
133 (constant (cadr args))))))
134 ((%special-bind %set-sap-ref-lispobj
135 %rplaca %rplacd cons list list*
136 values)
139 (call-full-like-p combination))))))
141 (defun boxed-ref-p (ref)
142 (let* ((lvar (ref-lvar ref))
143 (dest (lvar-dest lvar)))
144 (cond ((basic-combination-p dest)
145 (if (combination-p dest)
146 (boxed-combination-ref-p dest lvar)
147 (call-full-like-p dest)))
148 ((set-p dest)
149 (global-var-p (set-var dest)))
150 ((return-p dest)
151 (let* ((fun (return-lambda dest))
152 (returns (tail-set-info (lambda-tail-set fun))))
153 (or (xep-p fun)
154 (eq (return-info-kind returns) :unknown)))))))
156 ;;; Convert a REF node. The reference must not be delayed.
157 (defun ir2-convert-ref (node block)
158 (declare (type ref node) (type ir2-block block))
159 (let* ((lvar (node-lvar node))
160 (leaf (ref-leaf node))
161 (locs (lvar-result-tns
162 lvar (list (primitive-type (leaf-type leaf)))))
163 (res (first locs)))
164 (etypecase leaf
165 (lambda-var
166 (let ((tn (find-in-physenv leaf (node-physenv node)))
167 (indirect (lambda-var-indirect leaf))
168 (explicit (lambda-var-explicit-value-cell leaf)))
169 (cond
170 ((and indirect explicit)
171 (vop value-cell-ref node block tn res))
172 ((and indirect
173 (not (eq (node-physenv node)
174 (lambda-physenv (lambda-var-home leaf)))))
175 (let ((reffer (third (primitive-type-indirect-cell-type
176 (primitive-type (leaf-type leaf))))))
177 (if reffer
178 (funcall reffer node block tn (leaf-info leaf) res)
179 (vop ancestor-frame-ref node block tn (leaf-info leaf) res))))
180 (t (emit-move node block tn res)))))
181 (constant
182 (emit-move node block (constant-tn leaf (boxed-ref-p node)) res))
183 (functional
184 (ir2-convert-closure node block leaf res))
185 (global-var
186 (ir2-convert-global-var node block leaf res)))
187 (move-lvar-result node block locs lvar))
188 (values))
190 (defun ir2-convert-global-var (node block leaf res)
191 (let ((unsafe (policy node (zerop safety)))
192 (name (leaf-source-name leaf)))
193 (ecase (global-var-kind leaf)
194 ((:special :unknown)
195 (aver (symbolp name))
196 (let ((name-tn (emit-constant name)))
197 (if (or unsafe (always-boundp name))
198 (vop fast-symbol-value node block name-tn res)
199 (vop symbol-value node block name-tn res))))
200 (:global
201 (aver (symbolp name))
202 (let ((name-tn (emit-constant name)))
203 (if (or unsafe (always-boundp name))
204 (vop fast-symbol-global-value node block name-tn res)
205 (vop symbol-global-value node block name-tn res))))
206 (:global-function
207 ;; In cross-compilation, testing (INFO :function :definition) is not
208 ;; sensible (or possible) but we can assume that things with fun-info
209 ;; will eventually be defined. If that's untrue, e.g. if we referred
210 ;; to #'DESCRIBE during cold-load, we'd just fix it locally by declaring
211 ;; DESCRIBE notinline.
212 ;; But in the target, more caution is warranted because users might
213 ;; DEFKNOWN a function but fail to define it. And they shouldn't be
214 ;; expected to understand the failure mode and the remedy.
215 (cond ((and #-sb-xc-host (info :function :definition name)
216 (info :function :info name)
217 (let ((*lexenv* (node-lexenv node)))
218 (not (fun-lexically-notinline-p name))))
219 ;; Known functions can be dumped without going through fdefns.
220 ;; But if NOTINLINEd, don't early-bind to the functional value
221 ;; because that disallows redefinition, including but not limited
222 ;; to encapsulations, which in turn makes TRACE not work, which
223 ;; leads to extreme frustration when debugging.
224 (emit-move node block (make-load-time-constant-tn :known-fun name)
225 res))
227 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
228 (if unsafe
229 (vop fdefn-fun node block fdefn-tn res)
230 (vop safe-fdefn-fun node block fdefn-tn res)))))))))
232 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
233 (defun assertions-on-ir2-converted-clambda (clambda)
234 ;; This assertion was sort of an experiment. It would be nice and
235 ;; sane and easier to understand things if it were *always* true,
236 ;; but experimentally I observe that it's only *almost* always
237 ;; true. -- WHN 2001-01-02
238 #+nil
239 (aver (eql (lambda-component clambda)
240 (block-component (ir2-block-block ir2-block))))
241 ;; Check for some weirdness which came up in bug
242 ;; 138, 2002-01-02.
244 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
245 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
246 ;; code
247 ;; * treats every HANDLEless :ENTRY record into a
248 ;; patch, and
249 ;; * expects every patch to correspond to an
250 ;; IR2-COMPONENT-ENTRIES record.
251 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
252 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
253 ;; was a HANDLEless :ENTRY record which didn't correspond to an
254 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
255 ;; when it's caught at dump time, so this assertion tries to catch
256 ;; it here.
257 (aver (member clambda
258 (component-lambdas (lambda-component clambda))))
259 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
260 ;; used as a queue for stuff pending to do in IR1, and now that
261 ;; we're doing IR2 it should've been completely flushed (but
262 ;; wasn't).
263 (aver (null (component-new-functionals (lambda-component clambda))))
264 (values))
266 ;;; Emit code to load a function object implementing FUNCTIONAL into
267 ;;; RES. This gets interesting when the referenced function is a
268 ;;; closure: we must make the closure and move the closed-over values
269 ;;; into it.
271 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
272 ;;; for the called function, since local call analysis converts all
273 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
274 ;;; closure.
276 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
277 ;;; don't initialize that slot. This can happen with closures over
278 ;;; top level variables, where optimization of the closure deleted the
279 ;;; variable. Since we committed to the closure format when we
280 ;;; pre-analyzed the top level code, we just leave an empty slot.
281 (defun ir2-convert-closure (ref ir2-block functional res)
282 (declare (type ref ref)
283 (type ir2-block ir2-block)
284 (type functional functional)
285 (type tn res))
286 (flet ((prepare ()
287 (aver (not (eql (functional-kind functional) :deleted)))
288 (unless (leaf-info functional)
289 (setf (leaf-info functional)
290 (make-entry-info :name
291 (functional-debug-name functional))))))
292 (let ((closure (etypecase functional
293 (clambda
294 (assertions-on-ir2-converted-clambda functional)
295 (physenv-closure (get-lambda-physenv functional)))
296 (functional
297 (aver (eq (functional-kind functional) :toplevel-xep))
298 nil)))
299 global-var)
300 (cond (closure
301 (prepare)
302 (let* ((physenv (node-physenv ref))
303 (tn (find-in-physenv functional physenv)))
304 (emit-move ref ir2-block tn res)))
305 ;; we're about to emit a reference to a "closure" that's actually
306 ;; an inlinable global function.
307 ((and (global-var-p (setf global-var
308 (functional-inline-expanded functional)))
309 (eq :global-function (global-var-kind global-var)))
310 (ir2-convert-global-var ref ir2-block global-var res))
312 ;; if we're here, we should have either a toplevel-xep (some
313 ;; global scope function in a different component) or an external
314 ;; reference to the "closure"'s body.
315 (prepare)
316 (aver (memq (functional-kind functional) '(:external :toplevel-xep)))
317 (let ((entry (make-load-time-constant-tn :entry functional)))
318 (emit-move ref ir2-block entry res))))))
319 (values))
321 (defun closure-initial-value (what this-env current-fp)
322 (declare (type (or nlx-info lambda-var clambda) what)
323 (type physenv this-env)
324 (type (or tn null) current-fp))
325 ;; If we have an indirect LAMBDA-VAR that does not require an
326 ;; EXPLICIT-VALUE-CELL, and is from this environment (not from being
327 ;; closed over), we need to store the current frame pointer.
328 (if (and (lambda-var-p what)
329 (lambda-var-indirect what)
330 (not (lambda-var-explicit-value-cell what))
331 (eq (lambda-physenv (lambda-var-home what))
332 this-env))
333 current-fp
334 (find-in-physenv what this-env)))
336 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
337 (declare (ignore ltn-policy))
338 (when (lvar-dynamic-extent leaves)
339 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
340 (setf (ir2-lvar-kind info) :delayed)
341 (setf (lvar-info leaves) info)
342 (setf (ir2-lvar-stack-pointer info)
343 (make-stack-pointer-tn)))))
345 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
346 (let ((dx-p (lvar-dynamic-extent leaves)))
347 (collect ((delayed))
348 (when dx-p
349 (vop current-stack-pointer call 2block
350 (ir2-lvar-stack-pointer (lvar-info leaves))))
351 (dolist (leaf (lvar-value leaves))
352 (binding* ((xep (awhen (functional-entry-fun leaf)
353 ;; if the xep's been deleted then we can skip it
354 (if (eq (functional-kind it) :deleted)
355 nil it))
356 :exit-if-null)
357 (nil (aver (xep-p xep)))
358 (entry-info (lambda-info xep) :exit-if-null)
359 (tn (entry-info-closure-tn entry-info) :exit-if-null)
360 (closure (physenv-closure (get-lambda-physenv xep)))
361 #!-x86-64
362 (entry (make-load-time-constant-tn :entry xep)))
363 (let ((this-env (node-physenv call))
364 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
365 (aver (entry-info-offset entry-info))
366 (vop make-closure call 2block #!-x86-64 entry
367 (entry-info-offset entry-info) (length closure)
368 leaf-dx-p tn)
369 (loop for what in closure and n from 0 do
370 (unless (and (lambda-var-p what)
371 (null (leaf-refs what)))
372 ;; In LABELS a closure may refer to another closure
373 ;; in the same group, so we must be sure that we
374 ;; store a closure only after its creation.
376 ;; TODO: Here is a simple solution: we postpone
377 ;; putting of all closures after all creations
378 ;; (though it may require more registers).
379 (if (lambda-p what)
380 (delayed (list tn (find-in-physenv what this-env) n))
381 (let ((initial-value (closure-initial-value
382 what this-env nil)))
383 (if initial-value
384 (vop closure-init call 2block
385 tn initial-value n)
386 ;; An initial-value of NIL means to stash
387 ;; the frame pointer... which requires a
388 ;; different VOP.
389 (vop closure-init-from-fp call 2block tn n)))))))))
390 (loop for (tn what n) in (delayed)
391 do (vop closure-init call 2block
392 tn what n))))
393 (values))
395 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
396 ;;; deliver the value to that lvar. If the var is a lexical variable
397 ;;; with no refs, then we don't actually set anything, since the
398 ;;; variable has been deleted.
399 (defun ir2-convert-set (node block)
400 (declare (type cset node) (type ir2-block block))
401 (let* ((lvar (node-lvar node))
402 (leaf (set-var node))
403 (val (lvar-tn node block (set-value node)))
404 (locs (if lvar
405 (lvar-result-tns
406 lvar (list (primitive-type (leaf-type leaf))))
407 nil)))
408 (etypecase leaf
409 (lambda-var
410 (when (leaf-refs leaf)
411 (let ((tn (find-in-physenv leaf (node-physenv node)))
412 (indirect (lambda-var-indirect leaf))
413 (explicit (lambda-var-explicit-value-cell leaf)))
414 (cond
415 ((and indirect explicit)
416 (vop value-cell-set node block tn val))
417 ((and indirect
418 (not (eq (node-physenv node)
419 (lambda-physenv (lambda-var-home leaf)))))
420 (let ((setter (fourth (primitive-type-indirect-cell-type
421 (primitive-type (leaf-type leaf))))))
422 (if setter
423 (funcall setter node block tn val (leaf-info leaf))
424 (vop ancestor-frame-set node block tn val (leaf-info leaf)))))
425 (t (emit-move node block val tn))))))
426 (global-var
427 (aver (symbolp (leaf-source-name leaf)))
428 (ecase (global-var-kind leaf)
429 ((:special)
430 (vop set node block (emit-constant (leaf-source-name leaf)) val))
431 ((:global)
432 (vop %set-symbol-global-value node
433 block (emit-constant (leaf-source-name leaf)) val)))))
434 (when locs
435 (emit-move node block val (first locs))
436 (move-lvar-result node block locs lvar)))
437 (values))
439 ;;;; utilities for receiving fixed values
441 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
442 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
443 ;;; single-value lvar.
445 ;;; The primitive-type of the result will always be the same as the
446 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
447 ;;; TNs that satisfy the operand primitive-type restriction. We may
448 ;;; have to make a temporary of the desired type and move the actual
449 ;;; lvar TN into it. This happens when we delete a type check in
450 ;;; unsafe code or when we locally know something about the type of an
451 ;;; argument variable.
452 (defun lvar-tn (node block lvar)
453 (declare (type node node) (type ir2-block block) (type lvar lvar))
454 (let* ((2lvar (lvar-info lvar))
455 (lvar-tn
456 (ecase (ir2-lvar-kind 2lvar)
457 (:delayed
458 (let ((ref (lvar-uses lvar)))
459 (leaf-tn (ref-leaf ref) (node-physenv ref) (boxed-ref-p ref))))
460 (:fixed
461 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
462 (first (ir2-lvar-locs 2lvar)))))
463 (ptype (ir2-lvar-primitive-type 2lvar)))
465 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
467 (let ((temp (make-normal-tn ptype)))
468 (emit-move node block lvar-tn temp)
469 temp)))))
471 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
472 ;;; TNs holding the values of LVAR with PTYPES as their primitive
473 ;;; types. LVAR must be annotated for the same number of fixed values
474 ;;; are there are PTYPES.
476 ;;; If the lvar has a type check, check the values into temps and
477 ;;; return the temps. When we have more values than assertions, we
478 ;;; move the extra values with no check.
479 (defun lvar-tns (node block lvar ptypes)
480 (declare (type node node) (type ir2-block block)
481 (type lvar lvar) (list ptypes))
482 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
483 (nlocs (length locs)))
484 (aver (= nlocs (length ptypes)))
486 (mapcar (lambda (from to-type)
487 (if (or (eq (tn-kind from) :unused)
488 (eq (tn-primitive-type from) to-type))
489 from
490 (let ((temp (make-normal-tn to-type)))
491 (emit-move node block from temp)
492 temp)))
493 locs
494 ptypes)))
496 ;;;; utilities for delivering values to lvars
498 ;;; Return a list of TNs with the specifier TYPES that can be used as
499 ;;; result TNs to evaluate an expression into LVAR. This is used
500 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
501 ;;; an lvar.
503 ;;; If the lvar isn't annotated (meaning the values are discarded) or
504 ;;; is unknown-values, then we make temporaries for each supplied
505 ;;; value, providing a place to compute the result in until we decide
506 ;;; what to do with it (if anything.)
508 ;;; If the lvar is fixed-values, and wants the same number of values
509 ;;; as the user wants to deliver, then we just return the
510 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
511 ;;; discarded TNs. We always return a TN of the specified type, using
512 ;;; the lvar locs only when they are of the correct type.
513 (defun lvar-result-tns (lvar types)
514 (declare (type (or lvar null) lvar) (type list types))
515 (if (not lvar)
516 (mapcar #'make-normal-tn types)
517 (let ((2lvar (lvar-info lvar)))
518 (ecase (ir2-lvar-kind 2lvar)
519 (:fixed
520 (let* ((locs (ir2-lvar-locs 2lvar))
521 (nlocs (length locs))
522 (ntypes (length types)))
523 (if (and (= nlocs ntypes)
524 (do ((loc locs (cdr loc))
525 (type types (cdr type)))
526 ((null loc) t)
527 (unless (eq (tn-primitive-type (car loc)) (car type))
528 (return nil))))
529 locs
530 (mapcar (lambda (loc type)
531 (if (eq (tn-primitive-type loc) type)
533 (make-normal-tn type)))
534 (if (< nlocs ntypes)
535 (append locs
536 (mapcar #'make-normal-tn
537 (subseq types nlocs)))
538 locs)
539 types))))
540 (:unknown
541 (mapcar #'make-normal-tn types))))))
543 ;;; Make the first N standard value TNs, returning them in a list.
544 (defun make-standard-value-tns (n)
545 (declare (type unsigned-byte n))
546 (collect ((res))
547 (dotimes (i n)
548 (res (standard-arg-location i)))
549 (res)))
551 ;;; Return a list of TNs wired to the standard value passing
552 ;;; conventions that can be used to receive values according to the
553 ;;; unknown-values convention. This is used together with
554 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
555 ;;; lvar.
557 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
558 ;;; an empty list of temporaries.
560 ;;; If the lvar is annotated, then it must be :FIXED.
561 (defun standard-result-tns (lvar)
562 (declare (type (or lvar null) lvar))
563 (if lvar
564 (let ((2lvar (lvar-info lvar)))
565 (ecase (ir2-lvar-kind 2lvar)
566 (:fixed
567 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
568 nil))
570 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
571 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
572 ;;; doing the appropriate coercions.
573 (defun move-results-coerced (node block src dest)
574 (declare (type node node) (type ir2-block block) (list src dest))
575 (let ((nsrc (length src))
576 (ndest (length dest)))
577 (mapc (lambda (from to)
578 (unless (or (eq from to)
579 (eq (tn-kind to) :unused))
580 (emit-move node block from to)))
581 (if (> ndest nsrc)
582 (append src (make-list (- ndest nsrc)
583 :initial-element (emit-constant nil)))
584 src)
585 dest))
586 (values))
588 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
589 ;;; the specified lvar. NODE and BLOCK provide context for emitting
590 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
591 ;;; LVAR-RESULT-TNs, RESULTS may be a list of any type or
592 ;;; number of TNs.
594 ;;; If the lvar is fixed values, then move the results into the lvar
595 ;;; locations. If the lvar is unknown values, then do the moves into
596 ;;; the standard value locations, and use PUSH-VALUES to put the
597 ;;; values on the stack.
598 (defun move-lvar-result (node block results lvar)
599 (declare (type node node) (type ir2-block block)
600 (list results) (type (or lvar null) lvar))
601 (when lvar
602 (let ((2lvar (lvar-info lvar)))
603 ;; If LVAR flows through a CAST which is unused it won't get
604 ;; deleted and won't be annotated
605 (when 2lvar
606 (ecase (ir2-lvar-kind 2lvar)
607 (:fixed
608 (let ((locs (ir2-lvar-locs 2lvar)))
609 (unless (eq locs results)
610 (move-results-coerced node block results locs))))
611 (:unknown
612 (let* ((nvals (length results))
613 (locs (make-standard-value-tns nvals)))
614 (move-results-coerced node block results locs)
615 (vop* push-values node block
616 ((reference-tn-list locs nil))
617 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
618 nvals)))))))
619 (values))
621 ;;; Doing this during IR2 conversion and not in ir1-optimize-cast
622 ;;; because of possible function redefinition and the need to signal a
623 ;;; style-warning and not a full warning.
624 ;;; If the cast is not deleted after a warning is signalled then it
625 ;;; might get signalled multiple times, and IR2 conversion happens
626 ;;; only once.
627 (defun check-functional-cast (cast)
628 (let ((value (cast-value cast))
629 (atype (cast-asserted-type cast)))
630 (cond ((function-designator-cast-p cast)
631 (multiple-value-bind (type name leaf) (lvar-fun-type value)
632 (when (and (fun-type-p type)
633 leaf)
634 (let ((*valid-fun-use-name* (function-designator-cast-caller cast))
635 (*lossage-fun* (callable-argument-lossage-kind name
636 leaf
637 #'compiler-style-warn
638 #'compiler-warn))
639 (*compiler-error-context* cast)
640 (dest (lvar-dest (cast-lvar cast))))
641 (if (and (combination-p dest)
642 (eq (lvar-fun-name (combination-fun dest) t)
643 *valid-fun-use-name*))
644 (map-callable-arguments (lambda (lvar &rest args)
645 (when (eq lvar (cast-lvar cast))
646 (apply #'valid-callable-argument value args)))
647 dest)
648 ;; Coming from CALLABLE-CAST
649 (valid-callable-argument value
650 :arg-count
651 (function-designator-cast-arg-count cast)))))))
652 ((fun-type-p atype)
653 (multiple-value-bind (type name leaf) (lvar-fun-type value)
654 (when (and (fun-type-p type)
655 leaf)
656 (let ((int (type-intersection type atype)))
657 (when (or (memq *empty-type* (fun-type-required int))
658 (and (eq (fun-type-returns int) *empty-type*)
659 (neq (fun-type-returns type) *empty-type*)
660 (not (and (eq (fun-type-returns atype) *empty-type*)
661 (eq (fun-type-returns type) *wild-type*)))))
662 (%compile-time-type-error-warn cast
663 (type-specifier atype)
664 (type-specifier type)
665 (list name)
666 :condition
667 (callable-argument-lossage-kind name
668 leaf
669 'type-style-warning
670 'type-warning))))))))))
672 ;;; CAST
673 (defun ir2-convert-cast (node block)
674 (declare (type cast node)
675 (type ir2-block block))
676 (binding* ((lvar (node-lvar node) :exit-if-null)
677 (2lvar (lvar-info lvar))
678 (value (cast-value node))
679 (2value (lvar-info value)))
680 (check-functional-cast node)
681 (when 2lvar ;; the cast can be unused but not deleted to due vestigial exits
682 (ecase (ir2-lvar-kind 2lvar)
683 (:unused)
684 ((:unknown :fixed)
685 (aver (not (cast-type-check node)))
686 (move-results-coerced node block
687 (ir2-lvar-locs 2value)
688 (ir2-lvar-locs 2lvar)))))))
690 (defoptimizer (%check-bound ir2-hook) ((array bound index) node block)
691 (declare (ignore block))
692 (when (constant-lvar-p bound)
693 (let* ((bound-type (specifier-type `(integer 0 (,(lvar-value bound)))))
694 (index-type (lvar-type index)))
695 (when (eq (type-intersection bound-type index-type)
696 *empty-type*)
697 (let ((*compiler-error-context* node))
698 (compiler-warn "Derived type ~s is not a suitable index for ~s."
699 (type-specifier index-type)
700 (type-specifier (lvar-type array))))))))
702 ;;;; template conversion
704 ;;; Build a TN-REFS list that represents access to the values of the
705 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
706 ;;; are returned in the second value as a list rather than being
707 ;;; accessed as a normal argument. NODE and BLOCK provide the context
708 ;;; for emitting any necessary type-checking code.
709 (defun reference-args (node block args template)
710 (declare (type node node) (type ir2-block block) (list args)
711 (type template template))
712 (collect ((info-args))
713 (let ((last nil)
714 (first nil))
715 (do ((args args (cdr args))
716 (types (template-arg-types template) (cdr types)))
717 ((null args))
718 (let ((type (first types))
719 (arg (first args)))
720 (if (and (consp type) (eq (car type) ':constant))
721 (info-args (lvar-value arg))
722 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
723 (if last
724 (setf (tn-ref-across last) ref)
725 (setf first ref))
726 (setq last ref)))))
728 (values (the (or tn-ref null) first) (info-args)))))
730 ;;; Convert a conditional template. We try to exploit any
731 ;;; drop-through, but emit an unconditional branch afterward if we
732 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
733 ;;; negated.
734 (defun ir2-convert-conditional (node block template args info-args if not-p)
735 (declare (type node node) (type ir2-block block)
736 (type template template) (type (or tn-ref null) args)
737 (list info-args) (type cif if) (type boolean not-p))
738 (let ((consequent (if-consequent if))
739 (alternative (if-alternative if))
740 (flags (and (consp (template-result-types template))
741 (rest (template-result-types template)))))
742 (aver (= (template-info-arg-count template)
743 (+ (length info-args)
744 (if flags 0 2))))
745 (when not-p
746 (rotatef consequent alternative)
747 (setf not-p nil))
748 (when (drop-thru-p if consequent)
749 (rotatef consequent alternative)
750 (setf not-p t))
751 (cond ((not flags)
752 (emit-template node block template args nil
753 (list* (block-label consequent) not-p
754 info-args))
755 (if (drop-thru-p if alternative)
756 (register-drop-thru alternative)
757 (vop branch node block (block-label alternative))))
759 (emit-template node block template args nil info-args)
760 (vop branch-if node block (block-label consequent) flags not-p)
761 (if (drop-thru-p if alternative)
762 (register-drop-thru alternative)
763 (vop branch node block (block-label alternative)))))))
765 ;;; Convert an IF that isn't the DEST of a conditional template.
766 (defun ir2-convert-if (node block)
767 (declare (type ir2-block block) (type cif node))
768 (let* ((test (if-test node))
769 (test-ref (reference-tn (lvar-tn node block test) nil))
770 (nil-ref (reference-tn (emit-constant nil) nil)))
771 (setf (tn-ref-across test-ref) nil-ref)
772 (ir2-convert-conditional node block (template-or-lose 'if-eq)
773 test-ref () node t)))
775 ;;; Return a list of primitive-types that we can pass to LVAR-RESULT-TNS
776 ;;; describing the result types we want for a template call. We are really
777 ;;; only interested in the number of results required: in normal case
778 ;;; TEMPLATE-RESULTS-OK has already checked them.
779 (defun find-template-result-types (call rtypes)
780 (let* ((type (node-derived-type call))
781 (types
782 (mapcar #'primitive-type
783 (if (args-type-p type)
784 (append (args-type-required type)
785 (args-type-optional type))
786 (list type))))
787 (primitive-t *backend-t-primitive-type*))
788 (mapcar (lambda (rtype)
789 (declare (ignore rtype))
790 (or (pop types) primitive-t)) rtypes)))
792 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering values to
793 ;;; LVAR. As an efficiency hack, we pick off the common case where the LVAR is
794 ;;; fixed values and has locations that satisfy the result restrictions. This
795 ;;; can fail when there is a type check or a values count mismatch.
796 (defun make-template-result-tns (call lvar rtypes)
797 (declare (type combination call) (type (or lvar null) lvar)
798 (list rtypes))
799 (let ((2lvar (when lvar (lvar-info lvar))))
800 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
801 (let ((locs (ir2-lvar-locs 2lvar)))
802 (if (and (= (length rtypes) (length locs))
803 (do ((loc locs (cdr loc))
804 (rtypes rtypes (cdr rtypes)))
805 ((null loc) t)
806 (unless (and (neq (tn-kind (car loc)) :unused)
807 (operand-restriction-ok
808 (car rtypes)
809 (tn-primitive-type (car loc))
810 :t-ok nil))
811 (return nil))))
812 locs
813 (lvar-result-tns
814 lvar
815 (find-template-result-types call rtypes))))
816 (lvar-result-tns
817 lvar
818 (find-template-result-types call rtypes)))))
820 ;;; Get the operands into TNs, make TN-REFs for them, and then call
821 ;;; the template emit function.
822 (defun ir2-convert-template (call block)
823 (declare (type combination call) (type ir2-block block))
824 (let* ((template (combination-info call))
825 (lvar (node-lvar call))
826 (rtypes (template-result-types template)))
827 (multiple-value-bind (args info-args)
828 (reference-args call block (combination-args call) template)
829 (aver (not (template-more-results-type template)))
830 (if (template-conditional-p template)
831 (ir2-convert-conditional call block template args info-args
832 (lvar-dest lvar) nil)
833 (let* ((results (make-template-result-tns call lvar rtypes))
834 (r-refs (reference-tn-list results t)))
835 (aver (= (length info-args)
836 (template-info-arg-count template)))
837 (when (and lvar (lvar-dynamic-extent lvar))
838 (vop current-stack-pointer call block
839 (ir2-lvar-stack-pointer (lvar-info lvar))))
840 (when (emit-step-p call)
841 (vop sb!vm::step-instrument-before-vop call block))
842 (if info-args
843 (emit-template call block template args r-refs info-args)
844 (emit-template call block template args r-refs))
845 (move-lvar-result call block results lvar)))))
846 (values))
848 ;;; We don't have to do much because operand count checking is done by
849 ;;; IR1 conversion. The only difference between this and the function
850 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
851 ;;; arguments.
852 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
853 (declare (ignore args))
854 (let* ((template (lvar-value template))
855 (info (lvar-value info))
856 (lvar (node-lvar call))
857 (rtypes (template-result-types template))
858 (results (make-template-result-tns call lvar rtypes))
859 (r-refs (reference-tn-list results t)))
860 (multiple-value-bind (args info-args)
861 (reference-args call block (cddr (combination-args call)) template)
862 (aver (not (template-more-results-type template)))
863 (aver (not (template-conditional-p template)))
864 (aver (null info-args))
866 (if info
867 (emit-template call block template args r-refs info)
868 (emit-template call block template args r-refs))
870 (move-lvar-result call block results lvar)))
871 (values))
873 (defoptimizer (%%primitive derive-type) ((template info &rest args))
874 (declare (ignore info args))
875 (let ((type (template-type (lvar-value template))))
876 (if (fun-type-p type)
877 (fun-type-returns type)
878 *wild-type*)))
880 ;;;; local call
882 ;;; Convert a LET by moving the argument values into the variables.
883 ;;; Since a LET doesn't have any passing locations, we move the
884 ;;; arguments directly into the variables. We must also allocate any
885 ;;; indirect value cells, since there is no function prologue to do
886 ;;; this.
887 (defun ir2-convert-let (node block fun)
888 (declare (type combination node) (type ir2-block block) (type clambda fun))
889 (mapc (lambda (var arg)
890 (when arg
891 (let ((src (lvar-tn node block arg))
892 (dest (leaf-info var)))
893 (if (and (lambda-var-indirect var)
894 (lambda-var-explicit-value-cell var))
895 (emit-make-value-cell node block src dest)
896 (emit-move node block src dest)))))
897 (lambda-vars fun) (basic-combination-args node))
898 (values))
900 ;;; Emit any necessary moves into assignment temps for a local call to
901 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
902 ;;; values, and (possibly EQ) TNs that are the actual destination of
903 ;;; the arguments. When necessary, we allocate temporaries for
904 ;;; arguments to preserve parallel assignment semantics. These lists
905 ;;; exclude unused arguments and include implicit environment
906 ;;; arguments, i.e. they exactly correspond to the arguments passed.
908 ;;; OLD-FP is the TN currently holding the value we want to pass as
909 ;;; OLD-FP. If null, then the call is to the same environment (an
910 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
911 ;;; environment alone.
913 ;;; CLOSURE-FP is for calling a closure that has "implicit" value
914 ;;; cells (stored in the allocating stack frame), and is the frame
915 ;;; pointer TN to use for values allocated in the outbound stack
916 ;;; frame. This is distinct from OLD-FP for the specific case of a
917 ;;; tail-local-call.
918 (defun emit-psetq-moves (node block fun old-fp &optional (closure-fp old-fp))
919 (declare (type combination node) (type ir2-block block) (type clambda fun)
920 (type (or tn null) old-fp closure-fp))
921 (let ((actuals (mapcar (lambda (x)
922 (when x
923 (lvar-tn node block x)))
924 (combination-args node))))
925 (collect ((temps)
926 (locs))
927 (dolist (var (lambda-vars fun))
928 (let ((actual (pop actuals))
929 (loc (leaf-info var)))
930 (when actual
931 (cond
932 ((and (lambda-var-indirect var)
933 (lambda-var-explicit-value-cell var))
934 (let ((temp
935 (make-normal-tn *backend-t-primitive-type*)))
936 (emit-make-value-cell node block actual temp)
937 (temps temp)))
938 ((member actual (locs))
939 (let ((temp (make-normal-tn (tn-primitive-type loc))))
940 (emit-move node block actual temp)
941 (temps temp)))
943 (temps actual)))
944 (locs loc))))
946 (when old-fp
947 (let ((this-1env (node-physenv node))
948 (called-env (physenv-info (lambda-physenv fun))))
949 (dolist (thing (ir2-physenv-closure called-env))
950 (temps (closure-initial-value (car thing) this-1env closure-fp))
951 (locs (cdr thing)))
952 (temps old-fp)
953 (locs (ir2-physenv-old-fp called-env))))
955 (values (temps) (locs)))))
957 ;;; A tail-recursive local call is done by emitting moves of stuff
958 ;;; into the appropriate passing locations. After setting up the args
959 ;;; and environment, we just move our return-pc into the called
960 ;;; function's passing location.
961 (defun ir2-convert-tail-local-call (node block fun)
962 (declare (type combination node) (type ir2-block block) (type clambda fun))
963 (let ((this-env (physenv-info (node-physenv node)))
964 (current-fp (make-stack-pointer-tn)))
965 (multiple-value-bind (temps locs)
966 (emit-psetq-moves node block fun
967 (ir2-physenv-old-fp this-env) current-fp)
969 ;; If we're about to emit a move from CURRENT-FP then we need to
970 ;; initialize it.
971 (when (find current-fp temps)
972 (vop current-fp node block current-fp))
974 (mapc (lambda (temp loc)
975 (emit-move node block temp loc))
976 temps locs))
978 (emit-move node block
979 (ir2-physenv-return-pc this-env)
980 (ir2-physenv-return-pc-pass
981 (physenv-info
982 (lambda-physenv fun)))))
984 (values))
986 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
987 ;;; except that the caller and callee environment are the same, so we
988 ;;; don't need to mess with the environment locations, return PC, etc.
989 (defun ir2-convert-assignment (node block fun)
990 (declare (type combination node) (type ir2-block block) (type clambda fun))
991 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
993 (mapc (lambda (temp loc)
994 (emit-move node block temp loc))
995 temps locs))
996 (values))
998 ;;; Do stuff to set up the arguments to a non-tail local call
999 ;;; (including implicit environment args.) We allocate a frame
1000 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
1001 ;;; the values to pass and the list of passing location TNs.
1002 (defun ir2-convert-local-call-args (node block fun)
1003 (declare (type combination node) (type ir2-block block) (type clambda fun))
1004 (let ((fp (make-stack-pointer-tn))
1005 (nfp (make-number-stack-pointer-tn))
1006 (old-fp (make-stack-pointer-tn)))
1007 (multiple-value-bind (temps locs)
1008 (emit-psetq-moves node block fun old-fp)
1009 (vop current-fp node block old-fp)
1010 (vop allocate-frame node block
1011 (physenv-info (lambda-physenv fun))
1012 fp nfp)
1013 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
1015 ;;; Handle a non-TR known-values local call. We emit the call, then
1016 ;;; move the results to the lvar's destination.
1017 (defun ir2-convert-local-known-call (node block fun returns lvar start)
1018 (declare (type node node) (type ir2-block block) (type clambda fun)
1019 (type return-info returns) (type (or lvar null) lvar)
1020 (type label start))
1021 (multiple-value-bind (fp nfp temps arg-locs)
1022 (ir2-convert-local-call-args node block fun)
1023 (let ((locs (return-info-locations returns)))
1024 (vop* known-call-local node block
1025 (fp nfp (reference-tn-list temps nil))
1026 ((reference-tn-list locs t))
1027 arg-locs (physenv-info (lambda-physenv fun)) start)
1028 (move-lvar-result node block locs lvar)))
1029 (values))
1031 ;;; Handle a non-TR unknown-values local call. We do different things
1032 ;;; depending on what kind of values the lvar wants.
1034 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
1035 ;;; specifying the lvar's LOCS as the VOP results so that we don't
1036 ;;; have to do anything after the call.
1038 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
1039 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
1040 ;;; coercions.
1041 (defun ir2-convert-local-unknown-call (node block fun lvar start)
1042 (declare (type node node) (type ir2-block block) (type clambda fun)
1043 (type (or lvar null) lvar) (type label start))
1044 (multiple-value-bind (fp nfp temps arg-locs)
1045 (ir2-convert-local-call-args node block fun)
1046 (let ((2lvar (and lvar (lvar-info lvar)))
1047 (env (physenv-info (lambda-physenv fun)))
1048 (temp-refs (reference-tn-list temps nil)))
1049 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1050 (vop* multiple-call-local node block (fp nfp temp-refs)
1051 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1052 arg-locs env start)
1053 (let ((locs (standard-result-tns lvar)))
1054 (vop* call-local node block
1055 (fp nfp temp-refs)
1056 ((reference-tn-list locs t))
1057 arg-locs env start (length locs))
1058 (move-lvar-result node block locs lvar)))))
1059 (values))
1061 ;;; Dispatch to the appropriate function, depending on whether we have
1062 ;;; a let, tail or normal call. If the function doesn't return, call
1063 ;;; it using the unknown-value convention. We could compile it as a
1064 ;;; tail call, but that might seem confusing in the debugger.
1065 (defun ir2-convert-local-call (node block)
1066 (declare (type combination node) (type ir2-block block))
1067 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1068 (kind (functional-kind fun)))
1069 (cond ((eq kind :let)
1070 (ir2-convert-let node block fun))
1071 ((eq kind :assignment)
1072 (ir2-convert-assignment node block fun))
1073 ((node-tail-p node)
1074 (ir2-convert-tail-local-call node block fun))
1076 (let ((start (block-trampoline (lambda-block fun)))
1077 (returns (tail-set-info (lambda-tail-set fun)))
1078 (lvar (node-lvar node)))
1079 (ecase (if returns
1080 (return-info-kind returns)
1081 :unknown)
1082 (:unknown
1083 (ir2-convert-local-unknown-call node block fun lvar start))
1084 (:fixed
1085 (ir2-convert-local-known-call node block fun returns
1086 lvar start)))))))
1087 (values))
1089 ;;;; full call
1091 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
1092 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
1093 ;;; true if the thing is named (false if it is a function).
1095 ;;; There are two interesting non-named cases:
1096 ;;; -- We know it's a function. No check needed: return the
1097 ;;; lvar LOC.
1098 ;;; -- We don't know what it is.
1099 (defun fun-lvar-tn (node block lvar)
1100 (declare (ignore node block))
1101 (declare (type lvar lvar))
1102 (let ((2lvar (lvar-info lvar)))
1103 (if (eq (ir2-lvar-kind 2lvar) :delayed)
1104 (let ((name (lvar-fun-name lvar t)))
1105 (aver name)
1106 (values (cond ((sb!vm::static-fdefn-offset name)
1107 name)
1109 ;; Named call to an immobile fdefn from an immobile component
1110 ;; uses the FUN-TN only to preserve liveness of the fdefn.
1111 ;; The name becomes an info arg.
1112 (make-load-time-constant-tn :fdefinition name)))
1113 name))
1114 (let* ((locs (ir2-lvar-locs 2lvar))
1115 (loc (first locs))
1116 (function-ptype (primitive-type-or-lose 'function)))
1117 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
1118 (= (length locs) 1)))
1119 (aver (eq (tn-primitive-type loc) function-ptype))
1120 (values loc nil)))))
1122 ;;; Set up the args to NODE in the current frame, and return a TN-REF
1123 ;;; list for the passing locations.
1124 (defun move-tail-full-call-args (node block)
1125 (declare (type combination node) (type ir2-block block))
1126 (let ((args (basic-combination-args node))
1127 (last nil)
1128 (first nil))
1129 (dotimes (num (length args))
1130 (let ((loc (standard-arg-location num)))
1131 (emit-move node block (lvar-tn node block (elt args num)) loc)
1132 (let ((ref (reference-tn loc nil)))
1133 (if last
1134 (setf (tn-ref-across last) ref)
1135 (setf first ref))
1136 (setq last ref))))
1137 first))
1139 ;;; Move the arguments into the passing locations and do a (possibly
1140 ;;; named) tail call.
1141 (defun ir2-convert-tail-full-call (node block)
1142 (declare (type combination node) (type ir2-block block))
1143 (let* ((env (physenv-info (node-physenv node)))
1144 (args (basic-combination-args node))
1145 (nargs (length args))
1146 (pass-refs (move-tail-full-call-args node block))
1147 (old-fp (ir2-physenv-old-fp env))
1148 (return-pc (ir2-physenv-return-pc env)))
1150 (multiple-value-bind (fun-tn named)
1151 (fun-lvar-tn node block (basic-combination-fun node))
1152 (cond ((not named)
1153 (vop* tail-call node block
1154 (fun-tn old-fp return-pc pass-refs)
1155 (nil)
1156 nargs (emit-step-p node)))
1157 #!-immobile-code
1158 ((eq fun-tn named)
1159 (vop* static-tail-call-named node block
1160 (old-fp return-pc pass-refs) ; args
1161 (nil) ; results
1162 nargs named (emit-step-p node)))
1164 (vop* tail-call-named node block
1165 (#!-immobile-code fun-tn old-fp return-pc pass-refs) ; args
1166 (nil) ; results
1167 nargs #!+immobile-code named (emit-step-p node)))))) ; info
1168 (values))
1170 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
1171 (defun ir2-convert-full-call-args (node block)
1172 (declare (type combination node) (type ir2-block block))
1173 (let* ((args (basic-combination-args node))
1174 (nargs (length args))
1175 (fp (make-stack-pointer-tn nargs)))
1176 (vop allocate-full-call-frame node block nargs fp)
1177 (collect ((locs))
1178 (let ((last nil)
1179 (first nil))
1180 (dotimes (num nargs)
1181 (locs (standard-arg-location num))
1182 (let ((ref (reference-tn (lvar-tn node block (elt args num))
1183 nil)))
1184 (if last
1185 (setf (tn-ref-across last) ref)
1186 (setf first ref))
1187 (setq last ref)))
1189 (values fp first (locs) nargs)))))
1191 ;;; Do full call when a fixed number of values are desired. We make
1192 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
1193 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
1194 (defun ir2-convert-fixed-full-call (node block)
1195 (declare (type combination node) (type ir2-block block))
1196 (multiple-value-bind (fp args arg-locs nargs)
1197 (ir2-convert-full-call-args node block)
1198 (let* ((lvar (node-lvar node))
1199 (locs (and lvar
1200 (loop for loc in (ir2-lvar-locs (lvar-info lvar))
1201 for i from 0
1202 collect (cond ((eql (tn-kind loc) :unused)
1203 loc)
1204 #!+(or x86-64 arm64) ;; needs default-unknown-values support
1205 ((>= i sb!vm::register-arg-count)
1206 (make-normal-tn *backend-t-primitive-type*))
1208 (standard-arg-location i))))))
1209 (loc-refs (reference-tn-list locs t))
1210 (nvals (length locs)))
1211 (multiple-value-bind (fun-tn named)
1212 (fun-lvar-tn node block (basic-combination-fun node))
1213 (cond ((not named)
1214 (vop* call node block (fp fun-tn args) (loc-refs)
1215 arg-locs nargs nvals (emit-step-p node)))
1216 #!-immobile-code
1217 ((eq fun-tn named)
1218 (vop* static-call-named node block
1219 (fp args)
1220 (loc-refs)
1221 arg-locs nargs named nvals
1222 (emit-step-p node)))
1224 (vop* call-named node block
1225 (fp #!-immobile-code fun-tn args) ; args
1226 (loc-refs) ; results
1227 arg-locs nargs #!+immobile-code named nvals ; info
1228 (emit-step-p node))))
1229 (move-lvar-result node block locs lvar))))
1230 (values))
1232 ;;; Do full call when unknown values are desired.
1233 (defun ir2-convert-multiple-full-call (node block)
1234 (declare (type combination node) (type ir2-block block))
1235 (multiple-value-bind (fp args arg-locs nargs)
1236 (ir2-convert-full-call-args node block)
1237 (let* ((lvar (node-lvar node))
1238 (locs (ir2-lvar-locs (lvar-info lvar)))
1239 (loc-refs (reference-tn-list locs t)))
1240 (multiple-value-bind (fun-tn named)
1241 (fun-lvar-tn node block (basic-combination-fun node))
1242 (cond ((not named)
1243 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1244 arg-locs nargs (emit-step-p node)))
1245 #!-immobile-code
1246 ((eq fun-tn named)
1247 (vop* static-multiple-call-named node block
1248 (fp args)
1249 (loc-refs)
1250 arg-locs nargs named
1251 (emit-step-p node)))
1253 (vop* multiple-call-named node block
1254 (fp #!-immobile-code fun-tn args) ; args
1255 (loc-refs) ; results
1256 arg-locs nargs #!+immobile-code named ; info
1257 (emit-step-p node)))))))
1258 (values))
1260 ;;; stuff to check in PONDER-FULL-CALL
1262 ;;; These came in handy when troubleshooting cold boot after making
1263 ;;; major changes in the package structure: various transforms and
1264 ;;; VOPs and stuff got attached to the wrong symbol, so that
1265 ;;; references to the right symbol were bogusly translated as full
1266 ;;; calls instead of primitives, sending the system off into infinite
1267 ;;; space. Having a report on all full calls generated makes it easier
1268 ;;; to figure out what form caused the problem this time.
1269 (declaim (type (member :minimal :detailed :very-detailed :maximal)
1270 *track-full-called-fnames*))
1271 (defvar *track-full-called-fnames* :minimal)
1273 ;;; Do some checks (and store some notes relevant for future checks)
1274 ;;; on a full call:
1275 ;;; * Is this a full call to something we have reason to know should
1276 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1277 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1278 ;;; been detected.)
1279 (defun ponder-full-call (node)
1280 (let* ((lvar (basic-combination-fun node))
1281 (fname (lvar-fun-name lvar t)))
1282 (declare (type (or symbol cons) fname))
1284 (when (and (symbolp fname)
1285 (eq (symbol-package fname) *cl-package*))
1286 ;; Never produce a warning from (DECLARE (INLINE LENGTH)) etc
1287 (return-from ponder-full-call))
1289 ;; Warn about cross-compiling certain full-calls,
1290 ;; as it is indicative of dependency order problems.
1291 #+sb-xc-host
1292 (let ((compname (component-name (node-component node))))
1293 ;; Don't care too much about macro performance.
1294 (unless (and (stringp compname) (string/= compname "DEFMACRO"))
1295 ;; Catch FOO and (SETF FOO) both.
1296 (let ((stem (if (atom fname) fname (second fname))))
1297 (when (member stem
1298 sb-cold::*full-calls-to-warn-about*
1299 :test #'string=)
1300 (warn "Full call to ~S" fname)))))
1302 (let* ((inlineable-p (not (let ((*lexenv* (node-lexenv node)))
1303 (fun-lexically-notinline-p fname))))
1304 (inlineable-bit (if inlineable-p 1 0))
1305 (cell (info :function :emitted-full-calls fname)))
1306 (if (not cell)
1307 ;; The low bit indicates whether any not-NOTINLINE call was seen.
1308 ;; The next-lowest bit is magic. Refer to %COMPILER-DEFMACRO
1309 ;; and WARN-IF-INLINE-FAILED/CALL for the pertinent logic.
1310 (setf cell (list (logior 4 inlineable-bit))
1311 (info :function :emitted-full-calls fname) cell)
1312 (incf (car cell) (+ 4 (if (oddp (car cell)) 0 inlineable-bit))))
1313 ;; If the full call was wanted, don't record anything.
1314 ;; (This was originally for debugging SBCL self-compilation)
1315 (when inlineable-p
1316 (unless *failure-p*
1317 (warn-if-inline-failed/call fname (node-lexenv node) cell))
1318 (case *track-full-called-fnames*
1319 (:detailed
1320 (when (boundp 'sb!xc:*compile-file-pathname*)
1321 (pushnew sb!xc:*compile-file-pathname* (cdr cell)
1322 :test #'equal)))
1323 (:very-detailed
1324 (pushnew (component-name *component-being-compiled*)
1325 (cdr cell) :test #'equalp)))))
1327 ;; Special mode, usually only for the cross-compiler
1328 ;; and only with the feature enabled.
1329 #!+sb-show (when (eq *track-full-called-fnames* :maximal)
1330 (/show "converting full call to named function" fname)
1331 (/show (basic-combination-args node))
1332 (/show (policy node speed) (policy node safety))
1333 (/show (policy node compilation-speed))
1334 (let ((arg-types (mapcar (lambda (lvar)
1335 (when lvar
1336 (type-specifier
1337 (lvar-type lvar))))
1338 (basic-combination-args node))))
1339 (/show arg-types)))
1341 ;; When illegal code is compiled, all sorts of perverse paths
1342 ;; through the compiler can be taken, and it's much harder -- and
1343 ;; probably pointless -- to guarantee that always-optimized-away
1344 ;; functions are actually optimized away. Thus, we skip the check
1345 ;; in that case.
1346 (unless *failure-p*
1347 ;; check to see if we know anything about the function
1348 (let ((info (info :function :info fname)))
1349 ;; if we know something, check to see if the full call was valid
1350 (when (and info (ir1-attributep (fun-info-attributes info)
1351 always-translatable))
1352 (/show (policy node speed) (policy node safety))
1353 (/show (policy node compilation-speed))
1354 (bug "full call to ~S" fname))))
1356 (when (consp fname)
1357 (aver (legal-fun-name-p fname))))) ;; FIXME: needless check?
1359 ;;; If the call is in a tail recursive position and the return
1360 ;;; convention is standard, then do a tail full call. If one or fewer
1361 ;;; values are desired, then use a single-value call, otherwise use a
1362 ;;; multiple-values call.
1363 (defun ir2-convert-full-call (node block)
1364 (declare (type combination node) (type ir2-block block))
1365 (ponder-full-call node)
1366 (cond ((node-tail-p node)
1367 (ir2-convert-tail-full-call node block))
1368 ((let ((lvar (node-lvar node)))
1369 (and lvar
1370 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1371 (ir2-convert-multiple-full-call node block))
1373 (ir2-convert-fixed-full-call node block)))
1374 (values))
1376 ;;;; entering functions
1377 (defun xep-verify-arg-count (node block fun arg-count-location)
1378 (when (policy fun (plusp verify-arg-count))
1379 (let* ((ef (functional-entry-fun fun))
1380 (optional (optional-dispatch-p ef))
1381 (min (and optional
1382 (optional-dispatch-min-args ef)))
1383 (max (cond ((not optional)
1384 (1- (length (lambda-vars fun))))
1385 ((and optional
1386 (not (optional-dispatch-more-entry ef)))
1387 (optional-dispatch-max-args ef)))))
1388 (unless (and (eql min 0) (not max))
1389 (vop verify-arg-count node block
1390 arg-count-location
1392 max)
1393 min))))
1395 ;;; Do all the stuff that needs to be done on XEP entry:
1396 ;;; -- Create frame.
1397 ;;; -- Copy any more arg.
1398 ;;; -- Set up the environment, accessing any closure variables.
1399 ;;; -- Move args from the standard passing locations to their internal
1400 ;;; locations.
1401 (defun init-xep-environment (node block fun)
1402 (declare (type bind node) (type ir2-block block) (type clambda fun))
1403 (let ((start-label (entry-info-offset (leaf-info fun)))
1404 (env (physenv-info (node-physenv node)))
1405 arg-count-tn)
1406 (let ((ef (functional-entry-fun fun)))
1407 (vop xep-allocate-frame node block start-label)
1408 ;; Arg verification needs to be done before the stack pointer is adjusted
1409 ;; so that the extra arguments are still present when the error is signalled
1410 #!-precise-arg-count-error
1411 (vop xep-setup-sp node block)
1412 (let ((verified (unless (eq (functional-kind fun) :toplevel)
1413 (setf arg-count-tn (make-arg-count-location))
1414 (xep-verify-arg-count node block fun arg-count-tn))))
1415 #!-x86-64
1416 (declare (ignore verified))
1417 (cond ((and (optional-dispatch-p ef)
1418 (optional-dispatch-more-entry ef)
1419 (neq (functional-kind (optional-dispatch-more-entry ef)) :deleted))
1420 ;; COPY-MORE-ARG does the job of XEP-SETUP-SP on +precise-arg-count-error
1421 (vop copy-more-arg node block (optional-dispatch-max-args ef)
1422 #!+x86-64 verified))
1423 #!+precise-arg-count-error
1425 (vop xep-setup-sp node block))))
1426 (when (ir2-physenv-closure env)
1427 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1428 (when (policy fun (> store-closure-debug-pointer 1))
1429 ;; Save the closure pointer on the stack.
1430 (let ((closure-save (make-representation-tn
1431 *backend-t-primitive-type*
1432 (sc-number-or-lose 'sb!vm::control-stack))))
1433 (vop setup-closure-environment node block start-label
1434 closure-save)
1435 (setf (ir2-physenv-closure-save-tn env) closure-save)
1436 (component-live-tn closure-save)))
1437 (vop setup-closure-environment node block start-label closure)
1438 (let ((n -1))
1439 (dolist (loc (ir2-physenv-closure env))
1440 (vop closure-ref node block closure (incf n) (cdr loc)))))))
1441 (unless (eq (functional-kind fun) :toplevel)
1442 (let ((vars (lambda-vars fun))
1443 (n 0))
1444 (when (leaf-refs (first vars))
1445 (emit-move node block arg-count-tn (leaf-info (first vars))))
1446 (dolist (arg (rest vars))
1447 (when (leaf-refs arg)
1448 (let ((pass (standard-arg-location n))
1449 (home (leaf-info arg)))
1450 (if (and (lambda-var-indirect arg)
1451 (lambda-var-explicit-value-cell arg))
1452 (emit-make-value-cell node block pass home)
1453 (emit-move node block pass home))))
1454 (incf n))))
1456 (emit-move node block (make-old-fp-passing-location t)
1457 (ir2-physenv-old-fp env)))
1459 (values))
1461 ;;; Emit function prolog code. This is only called on bind nodes for
1462 ;;; functions that allocate environments. All semantics of let calls
1463 ;;; are handled by IR2-CONVERT-LET.
1465 ;;; If not an XEP, all we do is move the return PC from its passing
1466 ;;; location, since in a local call, the caller allocates the frame
1467 ;;; and sets up the arguments.
1469 #!+unwind-to-frame-and-call-vop
1470 (defun save-bsp (node block env)
1471 ;; Save BSP on stack so that the binding environment can be restored
1472 ;; when restarting frames.
1473 ;; This is done inside functions, which leaves XEPs without saved
1474 ;; BSP, though the code in XEPs doesn't bind any variables, it can
1475 ;; call arbitrary code through the SATISFIES declaration.
1476 ;; And functions called by SATISFIES are not inlined, except for
1477 ;; source transforms, but these usually do not bind anything.
1478 ;; Thus when restarting it needs to check that the interrupt was in
1479 ;; the XEP itself.
1481 ;; It could be saved from the XEP, but some functions have both
1482 ;; external and internal entry points, so it will be saved twice.
1483 (let ((temp (make-normal-tn *backend-t-primitive-type*))
1484 (bsp-save-tn (make-representation-tn
1485 *backend-t-primitive-type*
1486 (sc-number-or-lose 'sb!vm::control-stack))))
1487 (vop current-binding-pointer node block temp)
1488 (emit-move node block temp bsp-save-tn)
1489 (setf (ir2-physenv-bsp-save-tn env) bsp-save-tn)
1490 (component-live-tn bsp-save-tn)))
1492 (defun ir2-convert-bind (node block)
1493 (declare (type bind node) (type ir2-block block))
1494 (let* ((fun (bind-lambda node))
1495 (env (physenv-info (lambda-physenv fun))))
1496 (aver (member (functional-kind fun)
1497 '(nil :external :optional :toplevel :cleanup)))
1499 (cond ((xep-p fun)
1500 (init-xep-environment node block fun)
1501 #!+sb-dyncount
1502 (when *collect-dynamic-statistics*
1503 (vop count-me node block *dynamic-counts-tn*
1504 (block-number (ir2-block-block block)))))
1505 ((policy fun (> store-closure-debug-pointer 1))
1506 ;; Propagate the location of the closure pointer from the
1507 ;; enclosing functions. (FIXME: Should make sure that this
1508 ;; handles closures inside closures correctly). [remark by JES]
1509 (let* ((entry-fun (lambda-entry-fun fun)))
1510 (when entry-fun
1511 (let ((2env (physenv-info (lambda-physenv fun)))
1512 (entry-2env (physenv-info (lambda-physenv entry-fun))))
1513 (setf (ir2-physenv-closure-save-tn 2env)
1514 (ir2-physenv-closure-save-tn entry-2env)))))))
1516 (emit-move node
1517 block
1518 (ir2-physenv-return-pc-pass env)
1519 (ir2-physenv-return-pc env))
1520 #!+unwind-to-frame-and-call-vop
1521 (when (and (lambda-allow-instrumenting fun)
1522 (not (lambda-inline-expanded fun))
1523 (policy fun (>= insert-debug-catch 1)))
1524 (save-bsp node block env))
1526 (let ((lab (gen-label)))
1527 (setf (ir2-physenv-environment-start env) lab)
1528 (vop note-environment-start node block lab)
1529 #!+sb-safepoint
1530 (unless (policy fun (>= inhibit-safepoints 2))
1531 (vop sb!vm::insert-safepoint node block))))
1533 (values))
1535 ;;;; function return
1537 ;;; Do stuff to return from a function with the specified values and
1538 ;;; convention. If the return convention is :FIXED and we aren't
1539 ;;; returning from an XEP, then we do a known return (letting
1540 ;;; representation selection insert the correct move-arg VOPs.)
1541 ;;; Otherwise, we use the unknown-values convention. If there is a
1542 ;;; fixed number of return values, then use RETURN, otherwise use
1543 ;;; RETURN-MULTIPLE.
1544 (defun ir2-convert-return (node block)
1545 (declare (type creturn node) (type ir2-block block))
1546 (let* ((lvar (return-result node))
1547 (2lvar (lvar-info lvar))
1548 (lvar-kind (ir2-lvar-kind 2lvar))
1549 (fun (return-lambda node))
1550 (env (physenv-info (lambda-physenv fun)))
1551 (old-fp (ir2-physenv-old-fp env))
1552 (return-pc (ir2-physenv-return-pc env))
1553 (returns (tail-set-info (lambda-tail-set fun))))
1554 (cond
1555 ((and (eq (return-info-kind returns) :fixed)
1556 (not (xep-p fun)))
1557 (let ((locs (lvar-tns node block lvar
1558 (return-info-types returns))))
1559 (vop* known-return node block
1560 (old-fp return-pc (reference-tn-list locs nil))
1561 (nil)
1562 (return-info-locations returns))))
1563 ((eq lvar-kind :fixed)
1564 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1565 (lvar-locs (lvar-tns node block lvar types))
1566 (nvals (length lvar-locs))
1567 (locs (make-standard-value-tns nvals)))
1568 (mapc (lambda (val loc)
1569 (emit-move node block val loc))
1570 lvar-locs
1571 locs)
1572 (if (= nvals 1)
1573 (vop return-single node block old-fp return-pc (car locs))
1574 (vop* return node block
1575 (old-fp return-pc (reference-tn-list locs nil))
1576 (nil)
1577 nvals))))
1579 (aver (eq lvar-kind :unknown))
1580 (vop* return-multiple node block
1581 (old-fp return-pc
1582 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1583 (nil)))))
1585 (values))
1587 ;;;; debugger hooks
1588 ;;;;
1589 ;;;; These are used by the debugger to find the top function on the
1590 ;;;; stack. They return the OLD-FP and RETURN-PC for the current
1591 ;;;; function as multiple values.
1593 (defoptimizer (%caller-frame ir2-convert) (() node block)
1594 (let ((ir2-physenv (physenv-info (node-physenv node))))
1595 (move-lvar-result node block
1596 (list (ir2-physenv-old-fp ir2-physenv))
1597 (node-lvar node))))
1599 (defoptimizer (%caller-pc ir2-convert) (() node block)
1600 (let ((ir2-physenv (physenv-info (node-physenv node))))
1601 (move-lvar-result node block
1602 (list (ir2-physenv-return-pc ir2-physenv))
1603 (node-lvar node))))
1605 ;;;; multiple values
1607 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1608 ;;; the lvar for the correct number of values (with the lvar user
1609 ;;; responsible for defaulting), we can just pick them up from the
1610 ;;; lvar.
1611 (defun ir2-convert-mv-bind (node block)
1612 (declare (type mv-combination node) (type ir2-block block))
1613 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1614 (args (basic-combination-args node))
1615 (vars (lambda-vars fun)))
1616 (aver (eq (functional-kind fun) :mv-let))
1617 (mapc (lambda (src var)
1618 (when (leaf-refs var)
1619 (let ((dest (leaf-info var)))
1620 (if (and (lambda-var-indirect var)
1621 (lambda-var-explicit-value-cell var))
1622 (emit-make-value-cell node block src dest)
1623 (emit-move node block src dest)))))
1624 (if (singleton-p args)
1625 (lvar-tns node block (first args)
1626 (mapcar (lambda (x)
1627 (primitive-type (leaf-type x)))
1628 vars))
1629 (let ((vars vars))
1630 (loop for lvar in args
1631 for values = (nth-value 1 (values-types
1632 (lvar-derived-type lvar)))
1633 while vars
1634 nconc
1635 (lvar-tns node block lvar (loop repeat values
1636 collect (if vars
1637 (primitive-type (leaf-type (pop vars)))
1638 *backend-t-primitive-type*))))))
1639 vars))
1640 (values))
1642 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1643 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1644 ;;; the first argument: all the other argument lvar TNs are
1645 ;;; ignored. This is because we require all of the values globs to be
1646 ;;; contiguous and on stack top.
1647 (defun ir2-convert-mv-call (node block)
1648 (declare (type mv-combination node) (type ir2-block block))
1649 (aver (basic-combination-args node))
1650 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1651 (start (first (ir2-lvar-locs start-lvar)))
1652 (tails (and (node-tail-p node)
1653 (lambda-tail-set (node-home-lambda node))))
1654 (lvar (node-lvar node))
1655 (2lvar (and lvar (lvar-info lvar))))
1656 (multiple-value-bind (fun named)
1657 (fun-lvar-tn node block (basic-combination-fun node))
1658 (aver (and (not named)
1659 (eq (ir2-lvar-kind start-lvar) :unknown)))
1660 (cond
1661 (tails
1662 (let ((env (physenv-info (node-physenv node))))
1663 (vop tail-call-variable node block start fun
1664 (ir2-physenv-old-fp env)
1665 (ir2-physenv-return-pc env))))
1666 ((and 2lvar
1667 (eq (ir2-lvar-kind 2lvar) :unknown))
1668 (vop* multiple-call-variable node block (start fun nil)
1669 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1670 (emit-step-p node)))
1672 (let ((locs (standard-result-tns lvar)))
1673 (vop* call-variable node block (start fun nil)
1674 ((reference-tn-list locs t)) (length locs)
1675 (emit-step-p node))
1676 (move-lvar-result node block locs lvar)))))))
1678 ;;; Reset the stack pointer to the start of the specified
1679 ;;; unknown-values lvar (discarding it and all values globs on top of
1680 ;;; it.)
1681 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1682 (let* ((lvar (lvar-value %lvar))
1683 (2lvar (lvar-info lvar)))
1684 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1685 (vop reset-stack-pointer node block
1686 (first (ir2-lvar-locs 2lvar))))
1687 ((lvar-dynamic-extent lvar)
1688 (vop reset-stack-pointer node block
1689 (ir2-lvar-stack-pointer 2lvar)))
1690 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1691 lvar)))))
1693 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1694 &rest moved)
1695 node block)
1696 (let* ( ;; pointer immediately after the nipped block
1697 (after (lvar-value last-nipped))
1698 (2after (lvar-info after))
1699 ;; pointer to the first nipped word
1700 (first (lvar-value last-preserved))
1701 (2first (lvar-info first))
1703 (moved-tns (loop for lvar-ref in moved
1704 for lvar = (lvar-value lvar-ref)
1705 for 2lvar = (lvar-info lvar)
1706 ;when 2lvar
1707 collect (first (ir2-lvar-locs 2lvar)))))
1708 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1709 (lvar-dynamic-extent after)))
1710 (aver (eq (ir2-lvar-kind 2first) :unknown))
1711 (when *check-consistency*
1712 ;; we cannot move stack-allocated DX objects
1713 (dolist (moved-lvar moved)
1714 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1715 :unknown))))
1716 (flet ((nip-aligned (nipped)
1717 (vop* %%nip-values node block
1718 (nipped
1719 (first (ir2-lvar-locs 2first))
1720 (reference-tn-list moved-tns nil))
1721 ((reference-tn-list moved-tns t)))))
1722 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1723 (nip-aligned (first (ir2-lvar-locs 2after))))
1724 ((lvar-dynamic-extent after)
1725 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1727 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1729 (defoptimizer (%dummy-dx-alloc ir2-convert) ((target source) node block)
1730 (let* ((target-lvar (lvar-value target))
1731 (source-lvar (lvar-value source))
1732 (target-2lvar (lvar-info target-lvar))
1733 (source-2lvar (and source-lvar (lvar-info source-lvar))))
1734 (aver (lvar-dynamic-extent target-lvar))
1735 (cond ((not source-lvar)
1736 (vop current-stack-pointer node block
1737 (ir2-lvar-stack-pointer target-2lvar)))
1738 ((lvar-dynamic-extent source-lvar)
1739 (emit-move node block
1740 (ir2-lvar-stack-pointer source-2lvar)
1741 (ir2-lvar-stack-pointer target-2lvar)))
1742 ((eq (ir2-lvar-kind source-2lvar) :unknown)
1743 (emit-move node block
1744 (first (ir2-lvar-locs source-2lvar))
1745 (ir2-lvar-stack-pointer target-2lvar)))
1746 (t (bug "Trying to dummy up DX allocation from a ~
1747 not stack-allocated LVAR ~S." source-lvar)))))
1749 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1750 (defoptimizer (values ir2-convert) ((&rest values) node block)
1751 (let ((tns (mapcar (lambda (x)
1752 (lvar-tn node block x))
1753 values)))
1755 (move-lvar-result node block tns (node-lvar node))))
1757 ;;; In the normal case where unknown values are desired, we use the
1758 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1759 ;;; for a fixed number of values, we punt by doing a full call to the
1760 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1761 ;;; defaulting any unsupplied values. It seems unworthwhile to
1762 ;;; optimize this case.
1763 (defoptimizer (values-list ir2-convert) ((list) node block)
1764 (let* ((lvar (node-lvar node))
1765 (2lvar (and lvar (lvar-info lvar))))
1766 (cond ((and 2lvar
1767 (eq (ir2-lvar-kind 2lvar) :unknown))
1768 (let ((locs (ir2-lvar-locs 2lvar)))
1769 (vop* values-list node block
1770 ((lvar-tn node block list) nil)
1771 ((reference-tn-list locs t)))))
1772 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1773 (eq (ir2-lvar-kind 2lvar) :fixed)))
1774 (ir2-convert-full-call node block)))))
1776 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1777 (binding* ((lvar (node-lvar node) :exit-if-null)
1778 (2lvar (lvar-info lvar)))
1779 (ecase (ir2-lvar-kind 2lvar)
1780 (:fixed
1781 ;; KLUDGE: this is very much unsafe, and can leak random stack values.
1782 ;; OTOH, I think the :FIXED case can only happen with (safety 0) in the
1783 ;; first place.
1784 ;; -PK
1785 (loop for loc in (ir2-lvar-locs 2lvar)
1786 for idx upfrom 0
1787 do (vop sb!vm::more-arg node block
1788 (lvar-tn node block context)
1789 (emit-constant idx)
1790 loc)))
1791 (:unknown
1792 (let ((locs (ir2-lvar-locs 2lvar)))
1793 (vop* %more-arg-values node block
1794 ((lvar-tn node block context)
1795 (lvar-tn node block start)
1796 (lvar-tn node block count)
1797 nil)
1798 ((reference-tn-list locs t))))))))
1800 ;;;; special binding
1802 ;;; This is trivial, given our assumption of a shallow-binding
1803 ;;; implementation.
1804 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1805 (let ((name (leaf-source-name (lvar-value var))))
1806 ;; Emit either BIND or DYNBIND, preferring BIND if both exist.
1807 ;; If only one exists, it's DYNBIND.
1808 ;; Even if the backend supports load-time TLS index assignment,
1809 ;; there might be only one vop (as with arm64).
1810 (macrolet ((doit (bind dynbind)
1811 (if (gethash 'bind *backend-parsed-vops*) bind dynbind)))
1812 (doit
1813 (progn
1814 ;; Inform later SYMBOL-VALUE calls that they can
1815 ;; assume a nonzero tls-index.
1816 ;; FIXME: setting INFO is inefficient when not actually
1817 ;; changing anything
1818 (unless (info :variable :wired-tls name)
1819 (setf (info :variable :wired-tls name) t))
1820 ;; We force the symbol into the code constants in case BIND
1821 ;; does not actually reference it, as with immobile symbols.
1822 (emit-constant name)
1823 (vop bind node block (lvar-tn node block value) name))
1824 (vop dynbind node block (lvar-tn node block value)
1825 (emit-constant name))))))
1827 (defoptimizer (%special-unbind ir2-convert) ((n) node block)
1828 (declare (ignorable n))
1829 (vop unbind node block #!+(and sb-thread unbind-n-vop) (lvar-value n)))
1831 ;;; ### It's not clear that this really belongs in this file, or
1832 ;;; should really be done this way, but this is the least violation of
1833 ;;; abstraction in the current setup. We don't want to wire
1834 ;;; shallow-binding assumptions into IR1tran.
1835 (def-ir1-translator progv
1836 ((vars vals &body body) start next result)
1837 (ir1-convert
1838 start next result
1839 (with-unique-names (bind unbind)
1840 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1841 `(unwind-protect
1842 (progn
1843 (labels ((,unbind (vars)
1844 (declare (optimize (speed 2) (debug 0)))
1845 (let ((unbound-marker (%primitive make-unbound-marker)))
1846 (dolist (var vars)
1847 ;; CLHS says "bound and then made to have no value" -- user
1848 ;; should not be able to tell the difference between that and this.
1849 (about-to-modify-symbol-value var 'progv)
1850 (%primitive dynbind unbound-marker var))))
1851 (,bind (vars vals)
1852 (declare (optimize (speed 2) (debug 0)
1853 (insert-debug-catch 0)))
1854 (cond ((null vars))
1855 ((null vals) (,unbind vars))
1857 (let ((val (car vals))
1858 (var (car vars)))
1859 (about-to-modify-symbol-value var 'progv val t)
1860 (%primitive dynbind val var))
1861 (,bind (cdr vars) (cdr vals))))))
1862 (,bind ,vars ,vals))
1864 ,@body)
1865 ;; Technically ANSI CL doesn't allow declarations at the
1866 ;; start of the cleanup form. SBCL happens to allow for
1867 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1868 ;; is implemented; the cleanup forms are directly spliced
1869 ;; into an FLET definition body. And a declaration here
1870 ;; actually has exactly the right scope for what we need
1871 ;; (ensure that debug instrumentation is not emitted for the
1872 ;; cleanup function). -- JES, 2007-06-16
1873 (declare (optimize (insert-debug-catch 0)))
1874 (%primitive unbind-to-here ,n-save-bs))))))
1876 ;;;; non-local exit
1878 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1879 ;;; environment. Note that this is never called on the escape exits
1880 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1881 ;;; IR2 converted.
1882 (defun ir2-convert-exit (node block)
1883 (declare (type exit node) (type ir2-block block))
1884 (let* ((nlx (exit-nlx-info node))
1885 (loc (find-in-physenv nlx (node-physenv node)))
1886 (temp (make-stack-pointer-tn))
1887 (value (exit-value node)))
1888 (if (nlx-info-safe-p nlx)
1889 (vop value-cell-ref node block loc temp)
1890 (emit-move node block loc temp))
1891 (if value
1892 (let ((locs (ir2-lvar-locs (lvar-info value))))
1893 (vop unwind node block temp (first locs) (second locs)))
1894 (let ((0-tn (emit-constant 0)))
1895 (vop unwind node block temp 0-tn 0-tn))))
1897 (values))
1899 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1900 ;;; being entirely deleted.
1901 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1903 ;;; This function invalidates a lexical exit on exiting from the
1904 ;;; dynamic extent. This is done by storing 0 into the indirect value
1905 ;;; cell that holds the closed unwind block.
1906 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1907 (let ((nlx (lvar-value info)))
1908 (when (nlx-info-safe-p nlx)
1909 (vop value-cell-set node block
1910 (find-in-physenv nlx (node-physenv node))
1911 (emit-constant 0)))))
1913 ;;; We have to do a spurious move of no values to the result lvar so
1914 ;;; that lifetime analysis won't get confused.
1915 (defun ir2-convert-throw (node block)
1916 (declare (type mv-combination node) (type ir2-block block))
1917 (let ((args (basic-combination-args node)))
1918 (check-catch-tag-type (first args))
1919 (vop* throw node block
1920 ((lvar-tn node block (first args))
1921 (reference-tn-list
1922 (ir2-lvar-locs (lvar-info (second args)))
1923 nil))
1924 (nil)))
1925 (move-lvar-result node block () (node-lvar node))
1926 (values))
1928 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1929 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1930 ;;; the target PC by passing in the label to the vop. The vop is
1931 ;;; responsible for building a return-PC object.
1932 (defun emit-nlx-start (node block info tag)
1933 (declare (type node node) (type ir2-block block) (type nlx-info info)
1934 (type (or lvar null) tag))
1935 (let* ((2info (nlx-info-info info))
1936 (kind (cleanup-kind (nlx-info-cleanup info)))
1937 (block-tn (physenv-live-tn
1938 (make-normal-tn
1939 (primitive-type-or-lose
1940 (ecase kind
1941 (:catch
1942 'catch-block)
1943 ((:unwind-protect :block :tagbody)
1944 'unwind-block))))
1945 (node-physenv node)))
1946 (res (make-stack-pointer-tn))
1947 (target-label (ir2-nlx-info-target 2info)))
1949 (vop current-binding-pointer node block
1950 (car (ir2-nlx-info-dynamic-state 2info)))
1951 (vop* save-dynamic-state node block
1952 (nil)
1953 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1954 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1956 (ecase kind
1957 (:catch
1958 (vop make-catch-block node block block-tn
1959 (lvar-tn node block tag) target-label res))
1960 ((:unwind-protect :block :tagbody)
1961 (vop make-unwind-block node block block-tn target-label res)))
1963 (ecase kind
1964 ((:block :tagbody)
1965 (if (nlx-info-safe-p info)
1966 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1967 (emit-move node block res (ir2-nlx-info-home 2info))))
1968 (:unwind-protect
1969 (vop set-unwind-protect node block block-tn))
1970 (:catch)))
1972 (values))
1974 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1975 (defun ir2-convert-entry (node block)
1976 (declare (type entry node) (type ir2-block block))
1977 (let ((nlxes '()))
1978 (dolist (exit (entry-exits node))
1979 (let ((info (exit-nlx-info exit)))
1980 (when (and info
1981 (not (memq info nlxes))
1982 (member (cleanup-kind (nlx-info-cleanup info))
1983 '(:block :tagbody)))
1984 (push info nlxes)
1985 (emit-nlx-start node block info nil)))))
1986 (values))
1988 ;;; Set up the unwind block for these guys.
1989 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1990 (check-catch-tag-type tag)
1991 (emit-nlx-start node block (lvar-value info-lvar) tag))
1992 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1993 (declare (ignore cleanup))
1994 (emit-nlx-start node block (lvar-value info-lvar) nil))
1996 ;;; Emit the entry code for a non-local exit. We receive values and
1997 ;;; restore dynamic state.
1999 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
2000 ;;; kind to determine which flavor of entry VOP to emit. If unknown
2001 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
2002 ;;; values, make the appropriate number of temps in the standard
2003 ;;; values locations and use the other variant, delivering the temps
2004 ;;; to the lvar using MOVE-LVAR-RESULT.
2006 ;;; In the UNWIND-PROTECT case, we deliver the first register
2007 ;;; argument, the argument count and the argument pointer to our lvar
2008 ;;; as multiple values. These values are the block exited to and the
2009 ;;; values start and count.
2011 ;;; After receiving values, we restore dynamic state. Except in the
2012 ;;; UNWIND-PROTECT case, the values receiving restores the stack
2013 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
2014 ;;; pointer alone, since the thrown values are still out there.
2015 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
2016 (let* ((info (lvar-value info-lvar))
2017 (lvar (node-lvar node))
2018 (2info (nlx-info-info info))
2019 (top-loc (ir2-nlx-info-save-sp 2info))
2020 (start-loc (make-nlx-entry-arg-start-location))
2021 (count-loc (make-arg-count-location))
2022 (target (ir2-nlx-info-target 2info)))
2024 (ecase (cleanup-kind (nlx-info-cleanup info))
2025 ((:catch :block :tagbody)
2026 (let ((2lvar (and lvar (lvar-info lvar))))
2027 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
2028 (vop* nlx-entry-multiple node block
2029 (top-loc start-loc count-loc nil)
2030 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
2031 target)
2032 (let ((locs (standard-result-tns lvar)))
2033 (vop* nlx-entry node block
2034 (top-loc start-loc count-loc nil)
2035 ((reference-tn-list locs t))
2036 target
2037 (length locs))
2038 (move-lvar-result node block locs lvar)))))
2039 (:unwind-protect
2040 (let ((block-loc (standard-arg-location 0)))
2041 (vop uwp-entry node block target block-loc start-loc count-loc)
2042 (move-lvar-result
2043 node block
2044 (list block-loc start-loc count-loc)
2045 lvar))))
2047 #!+sb-dyncount
2048 (when *collect-dynamic-statistics*
2049 (vop count-me node block *dynamic-counts-tn*
2050 (block-number (ir2-block-block block))))
2052 (vop* restore-dynamic-state node block
2053 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
2054 (nil))
2055 (vop unbind-to-here node block
2056 (car (ir2-nlx-info-dynamic-state 2info)))))
2058 ;;;; n-argument functions
2060 (macrolet ((def (name)
2061 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
2062 (cond #!+gencgc
2063 ((>= (length args)
2064 (/ sb!vm:large-object-size
2065 (* sb!vm:n-word-bytes 2)))
2066 ;; The VOPs will try to allocate all space at once
2067 ;; And it'll end up in large objects, and no conses
2068 ;; are welcome there.
2069 (ir2-convert-full-call node block))
2071 (let* ((refs (reference-tn-list
2072 (loop for arg in args
2073 for tn = (make-normal-tn *backend-t-primitive-type*)
2075 (emit-move node block (lvar-tn node block arg) tn)
2076 collect tn)
2077 nil))
2078 (lvar (node-lvar node))
2079 (res (lvar-result-tns
2080 lvar
2081 (list (primitive-type (specifier-type 'list))))))
2082 (when (and lvar (lvar-dynamic-extent lvar))
2083 (vop current-stack-pointer node block
2084 (ir2-lvar-stack-pointer (lvar-info lvar))))
2085 (vop* ,name node block (refs) ((first res) nil)
2086 (length args))
2087 (move-lvar-result node block res lvar)))))))
2088 (def list)
2089 (def list*))
2092 (defoptimizer (mask-signed-field ir2-convert) ((width x) node block)
2093 (block nil
2094 (when (constant-lvar-p width)
2095 (case (lvar-value width)
2096 (#.(- sb!vm:n-word-bits sb!vm:n-fixnum-tag-bits)
2097 (when (or (csubtypep (lvar-type x)
2098 (specifier-type 'word))
2099 (csubtypep (lvar-type x)
2100 (specifier-type 'sb!vm:signed-word)))
2101 (let* ((lvar (node-lvar node))
2102 (temp (make-normal-tn
2103 (if (csubtypep (lvar-type x)
2104 (specifier-type 'word))
2105 (primitive-type-of most-positive-word)
2106 (primitive-type-of
2107 (- (ash most-positive-word -1))))))
2108 (results (lvar-result-tns
2109 lvar
2110 (list (primitive-type-or-lose 'fixnum)))))
2111 (emit-move node block (lvar-tn node block x) temp)
2112 (vop sb!vm::move-from-word/fixnum node block
2113 temp (first results))
2114 (move-lvar-result node block results lvar)
2115 (return))))
2116 (#.sb!vm:n-word-bits
2117 (when (csubtypep (lvar-type x) (specifier-type 'word))
2118 (let* ((lvar (node-lvar node))
2119 (temp (make-normal-tn
2120 (primitive-type-of most-positive-word)))
2121 (results (lvar-result-tns
2122 lvar
2123 (list (primitive-type
2124 (specifier-type 'sb!vm:signed-word))))))
2125 (emit-move node block (lvar-tn node block x) temp)
2126 (vop sb!vm::word-move node block
2127 temp (first results))
2128 (move-lvar-result node block results lvar)
2129 (return))))))
2130 (if (template-p (basic-combination-info node))
2131 (ir2-convert-template node block)
2132 (ir2-convert-full-call node block))))
2134 ;; just a fancy identity
2135 (defoptimizer (%typep-wrapper ir2-convert) ((value variable type) node block)
2136 (declare (ignore variable type))
2137 (let* ((lvar (node-lvar node))
2138 (results (lvar-result-tns lvar (list (primitive-type-or-lose t)))))
2139 (emit-move node block (lvar-tn node block value) (first results))
2140 (move-lvar-result node block results lvar)))
2142 ;;; An identity to avoid complaints about constant modification
2143 (defoptimizer (ltv-wrapper ir2-convert) ((x) node block)
2144 (let* ((lvar (node-lvar node))
2145 (results (lvar-result-tns lvar (list (primitive-type-or-lose t)))))
2146 (emit-move node block (lvar-tn node block x) (first results))
2147 (move-lvar-result node block results lvar)))
2149 #-sb-xc-host ;; package-lock-violation-p is not present yet
2150 (defoptimizer (set ir2-hook) ((symbol value) node block)
2151 (declare (ignore value block))
2152 (when (constant-lvar-p symbol)
2153 (let* ((symbol (lvar-value symbol))
2154 (kind (info :variable :kind symbol)))
2155 (when (and (eq kind :unknown)
2156 (sb!impl::package-lock-violation-p (symbol-package symbol) symbol))
2157 (let ((*compiler-error-context* node))
2158 (compiler-warn "violating package lock on ~/sb-ext:print-symbol-with-prefix/"
2159 symbol))))))
2161 (defoptimizer (restart-point ir2-convert) ((location) node block)
2162 (setf (restart-location-label (lvar-value location))
2163 (block-label (ir2-block-block block))))
2165 ;;; Convert the code in a component into VOPs.
2166 (defun ir2-convert (component)
2167 (declare (type component component))
2168 (let (#!+sb-dyncount
2169 (*dynamic-counts-tn*
2170 (when *collect-dynamic-statistics*
2171 (let* ((blocks
2172 (block-number (block-next (component-head component))))
2173 (counts (make-array blocks
2174 :element-type '(unsigned-byte 32)
2175 :initial-element 0))
2176 (info (make-dyncount-info
2177 :for (component-name component)
2178 :costs (make-array blocks
2179 :element-type '(unsigned-byte 32)
2180 :initial-element 0)
2181 :counts counts)))
2182 (setf (ir2-component-dyncount-info (component-info component))
2183 info)
2184 (emit-constant info)
2185 (emit-constant counts)))))
2186 (let ((num 0))
2187 (declare (type index num))
2188 (do-ir2-blocks (2block component)
2189 (let ((block (ir2-block-block 2block)))
2190 (when (block-start block)
2191 (setf (block-number block) num)
2192 #!+sb-dyncount
2193 (when *collect-dynamic-statistics*
2194 (let ((first-node (block-start-node block)))
2195 (unless (or (and (bind-p first-node)
2196 (xep-p (bind-lambda first-node)))
2197 (eq (lvar-fun-name
2198 (node-lvar first-node))
2199 '%nlx-entry))
2200 (vop count-me
2201 first-node
2202 2block
2203 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
2204 num))))
2205 #!+sb-safepoint
2206 (let ((first-node (block-start-node block)))
2207 (unless (or (and (bind-p first-node)
2208 ;; Bind-nodes already have safepoints
2209 (eq (bind-lambda first-node)
2210 (lambda-home (bind-lambda first-node))))
2211 (and (valued-node-p first-node)
2212 (node-lvar first-node)
2213 (eq (lvar-fun-name
2214 (node-lvar first-node))
2215 '%nlx-entry)))
2216 (when (and (rest (block-pred block))
2217 (block-loop block)
2218 (member (loop-kind (block-loop block))
2219 '(:natural :strange))
2220 (eq block (loop-head (block-loop block)))
2221 (policy first-node (< inhibit-safepoints 2)))
2222 (vop sb!vm::insert-safepoint first-node 2block))))
2223 (ir2-convert-block block)
2224 (incf num))))))
2225 (values))
2227 ;;; If necessary, emit a terminal unconditional branch to go to the
2228 ;;; successor block. If the successor is the component tail, then
2229 ;;; there isn't really any successor, but if the end is a non-tail
2230 ;;; call to a function that's not *known* to never return, then we
2231 ;;; emit an error trap just in case the function really does return.
2233 ;;; Trapping after known calls makes it easier to understand type
2234 ;;; derivation bugs at runtime: they show up as nil-fun-returned-error,
2235 ;;; rather than the execution of arbitrary code or error traps.
2236 (defun finish-ir2-block (block)
2237 (declare (type cblock block))
2238 (let* ((2block (block-info block))
2239 (last (block-last block))
2240 (succ (block-succ block)))
2241 (unless (if-p last)
2242 (aver (singleton-p succ))
2243 (let ((target (first succ)))
2244 (cond ((eq target (component-tail (block-component block)))
2245 (when (and (basic-combination-p last)
2246 (or (eq (basic-combination-kind last) :full)
2247 (and (eq (basic-combination-kind last) :known)
2248 (eq (basic-combination-info last) :full))))
2249 (let* ((fun (basic-combination-fun last))
2250 (use (lvar-uses fun))
2251 (name (and (ref-p use)
2252 (leaf-has-source-name-p (ref-leaf use))
2253 (leaf-source-name (ref-leaf use))))
2254 (ftype (and (info :function :info name) ; only use the FTYPE if
2255 (proclaimed-ftype name)))) ; NAME was DEFKNOWN
2256 (unless (or (node-tail-p last)
2257 (policy last (zerop safety))
2258 (and (fun-type-p ftype)
2259 (eq *empty-type* (fun-type-returns ftype))))
2260 (vop nil-fun-returned-error last 2block
2261 (if name
2262 (emit-constant name)
2263 (multiple-value-bind (tn named)
2264 (fun-lvar-tn last 2block fun)
2265 (aver (not named))
2266 tn)))))))
2267 ((not (eq (ir2-block-next 2block) (block-info target)))
2268 (vop branch last 2block (block-label target)))
2270 (register-drop-thru target))))))
2272 (values))
2274 ;;; Convert the code in a block into VOPs.
2275 (defun ir2-convert-block (block)
2276 (declare (type cblock block))
2277 (let ((2block (block-info block)))
2278 (do-nodes (node lvar block)
2279 (etypecase node
2280 (ref
2281 (when lvar
2282 (let ((2lvar (lvar-info lvar)))
2283 ;; function REF in a local call is not annotated
2284 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
2285 (ir2-convert-ref node 2block)))))
2286 (combination
2287 (let ((kind (basic-combination-kind node)))
2288 (ecase kind
2289 (:local
2290 (ir2-convert-local-call node 2block))
2291 (:full
2292 (ir2-convert-full-call node 2block))
2293 (:known
2294 (let* ((info (basic-combination-fun-info node))
2295 (fun (fun-info-ir2-convert info))
2296 (hook (fun-info-ir2-hook info)))
2297 (when hook
2298 (funcall hook node 2block))
2299 (cond (fun
2300 (funcall fun node 2block))
2301 ((eq (basic-combination-info node) :full)
2302 (ir2-convert-full-call node 2block))
2304 (ir2-convert-template node 2block))))))))
2305 (cif
2306 (when (lvar-info (if-test node))
2307 (ir2-convert-if node 2block)))
2308 (bind
2309 (let ((fun (bind-lambda node)))
2310 (when (eq (lambda-home fun) fun)
2311 (ir2-convert-bind node 2block))))
2312 (creturn
2313 (ir2-convert-return node 2block))
2314 (cset
2315 (ir2-convert-set node 2block))
2316 (cast
2317 (ir2-convert-cast node 2block))
2318 (mv-combination
2319 (cond
2320 ((eq (basic-combination-kind node) :local)
2321 (ir2-convert-mv-bind node 2block))
2322 ((eq (lvar-fun-name (basic-combination-fun node))
2323 '%throw)
2324 (ir2-convert-throw node 2block))
2326 (ir2-convert-mv-call node 2block))))
2327 (exit
2328 (when (exit-entry node)
2329 (ir2-convert-exit node 2block)))
2330 (entry
2331 (ir2-convert-entry node 2block)))))
2333 (finish-ir2-block block)
2335 (values))