Delete a ton of cruft from the globaldb initialization logic.
[sbcl.git] / src / runtime / purify.c
blob091be5c74525f735a487faa6e3568e06e9ed34a0
1 /*
2 * C-level stuff to implement Lisp-level PURIFY
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
16 #include <stdio.h>
17 #include <sys/types.h>
18 #include <stdlib.h>
19 #include <strings.h>
20 #include <errno.h>
22 #include "sbcl.h"
23 #include "runtime.h"
24 #include "os.h"
25 #include "globals.h"
26 #include "validate.h"
27 #include "interrupt.h"
28 #include "purify.h"
29 #include "interr.h"
30 #include "gc.h"
31 #include "gc-internal.h"
32 #include "thread.h"
33 #include "genesis/primitive-objects.h"
34 #include "genesis/static-symbols.h"
35 #include "genesis/layout.h"
36 #include "genesis/hash-table.h"
37 #include "gencgc.h"
39 /* We don't ever do purification with GENCGC as of 1.0.5.*. There was
40 * a lot of hairy and fragile ifdeffage in here to support purify on
41 * x86oids, which has now been removed. So this code can't even be
42 * compiled with GENCGC any more. -- JES, 2007-04-30.
44 #ifndef LISP_FEATURE_GENCGC
46 #define PRINTNOISE
48 static lispobj *dynamic_space_purify_pointer;
51 /* These hold the original end of the read_only and static spaces so
52 * we can tell what are forwarding pointers. */
54 static lispobj *read_only_end, *static_end;
56 static lispobj *read_only_free, *static_free;
58 static lispobj *pscav(lispobj *addr, long nwords, boolean constant);
60 #define LATERBLOCKSIZE 1020
61 #define LATERMAXCOUNT 10
63 static struct
64 later {
65 struct later *next;
66 union {
67 lispobj *ptr;
68 long count;
69 } u[LATERBLOCKSIZE];
70 } *later_blocks = NULL;
71 static long later_count = 0;
73 #if N_WORD_BITS == 32
74 #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG
75 #elif N_WORD_BITS == 64
76 #define SIMPLE_ARRAY_WORD_WIDETAG SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
77 #endif
80 static boolean
81 forwarding_pointer_p(lispobj obj)
83 lispobj *ptr = native_pointer(obj);
85 return ((static_end <= ptr && ptr <= static_free) ||
86 (read_only_end <= ptr && ptr <= read_only_free));
89 static boolean
90 dynamic_pointer_p(lispobj ptr)
92 return (ptr >= (lispobj)current_dynamic_space
94 ptr < (lispobj)dynamic_space_purify_pointer);
97 static inline lispobj *
98 newspace_alloc(long nwords, int constantp)
100 lispobj *ret;
101 nwords=CEILING(nwords,2);
102 if(constantp) {
103 if(read_only_free + nwords >= (lispobj *)READ_ONLY_SPACE_END) {
104 lose("Ran out of read-only space while purifying!\n");
106 ret=read_only_free;
107 read_only_free+=nwords;
108 } else {
109 if(static_free + nwords >= (lispobj *)STATIC_SPACE_END) {
110 lose("Ran out of static space while purifying!\n");
112 ret=static_free;
113 static_free+=nwords;
115 return ret;
119 static void
120 pscav_later(lispobj *where, long count)
122 struct later *new;
124 if (count > LATERMAXCOUNT) {
125 while (count > LATERMAXCOUNT) {
126 pscav_later(where, LATERMAXCOUNT);
127 count -= LATERMAXCOUNT;
128 where += LATERMAXCOUNT;
131 else {
132 if (later_blocks == NULL || later_count == LATERBLOCKSIZE ||
133 (later_count == LATERBLOCKSIZE-1 && count > 1)) {
134 new = (struct later *)malloc(sizeof(struct later));
135 new->next = later_blocks;
136 if (later_blocks && later_count < LATERBLOCKSIZE)
137 later_blocks->u[later_count].ptr = NULL;
138 later_blocks = new;
139 later_count = 0;
142 if (count != 1)
143 later_blocks->u[later_count++].count = count;
144 later_blocks->u[later_count++].ptr = where;
148 static lispobj
149 ptrans_boxed(lispobj thing, lispobj header, boolean constant)
151 long nwords;
152 lispobj result, *new, *old;
154 nwords = CEILING(1 + HeaderValue(header), 2);
156 /* Allocate it */
157 old = (lispobj *)native_pointer(thing);
158 new = newspace_alloc(nwords,constant);
160 /* Copy it. */
161 bcopy(old, new, nwords * sizeof(lispobj));
163 /* Deposit forwarding pointer. */
164 result = make_lispobj(new, lowtag_of(thing));
165 *old = result;
167 /* Scavenge it. */
168 pscav(new, nwords, constant);
170 return result;
173 /* We need to look at the layout to see whether it is a pure structure
174 * class, and only then can we transport as constant. If it is pure,
175 * we can ALWAYS transport as a constant. */
176 static lispobj
177 ptrans_instance(lispobj thing, lispobj header, boolean /* ignored */ constant)
179 struct layout *layout =
180 (struct layout *) native_pointer(((struct instance *)native_pointer(thing))->slots[0]);
181 lispobj pure = layout->pure;
183 switch (pure) {
184 case T:
185 return (ptrans_boxed(thing, header, 1));
186 case NIL:
187 return (ptrans_boxed(thing, header, 0));
188 default:
189 gc_abort();
190 return NIL; /* dummy value: return something ... */
194 static lispobj
195 ptrans_fdefn(lispobj thing, lispobj header)
197 long nwords;
198 lispobj result, *new, *old, oldfn;
199 struct fdefn *fdefn;
201 nwords = CEILING(1 + HeaderValue(header), 2);
203 /* Allocate it */
204 old = (lispobj *)native_pointer(thing);
205 new = newspace_alloc(nwords, 0); /* inconstant */
207 /* Copy it. */
208 bcopy(old, new, nwords * sizeof(lispobj));
210 /* Deposit forwarding pointer. */
211 result = make_lispobj(new, lowtag_of(thing));
212 *old = result;
214 /* Scavenge the function. */
215 fdefn = (struct fdefn *)new;
216 oldfn = fdefn->fun;
217 pscav(&fdefn->fun, 1, 0);
218 if ((char *)oldfn + FUN_RAW_ADDR_OFFSET == fdefn->raw_addr)
219 fdefn->raw_addr = (char *)fdefn->fun + FUN_RAW_ADDR_OFFSET;
221 return result;
224 static lispobj
225 ptrans_unboxed(lispobj thing, lispobj header)
227 long nwords;
228 lispobj result, *new, *old;
230 nwords = CEILING(1 + HeaderValue(header), 2);
232 /* Allocate it */
233 old = (lispobj *)native_pointer(thing);
234 new = newspace_alloc(nwords,1); /* always constant */
236 /* copy it. */
237 bcopy(old, new, nwords * sizeof(lispobj));
239 /* Deposit forwarding pointer. */
240 result = make_lispobj(new , lowtag_of(thing));
241 *old = result;
243 return result;
246 static lispobj
247 ptrans_vector(lispobj thing, long bits, long extra,
248 boolean boxed, boolean constant)
250 struct vector *vector;
251 long nwords;
252 lispobj result, *new;
253 long length;
255 vector = (struct vector *)native_pointer(thing);
256 length = fixnum_value(vector->length)+extra;
257 // Argh, handle simple-vector-nil separately.
258 if (bits == 0) {
259 nwords = 2;
260 } else {
261 nwords = CEILING(NWORDS(length, bits) + 2, 2);
264 new=newspace_alloc(nwords, (constant || !boxed));
265 bcopy(vector, new, nwords * sizeof(lispobj));
267 result = make_lispobj(new, lowtag_of(thing));
268 vector->header = result;
270 if (boxed)
271 pscav(new, nwords, constant);
273 return result;
276 static lispobj
277 ptrans_code(lispobj thing)
279 struct code *code, *new;
280 long nwords;
281 lispobj func, result;
283 code = (struct code *)native_pointer(thing);
284 nwords = CEILING(HeaderValue(code->header) + fixnum_word_value(code->code_size),
287 new = (struct code *)newspace_alloc(nwords,1); /* constant */
289 bcopy(code, new, nwords * sizeof(lispobj));
291 result = make_lispobj(new, OTHER_POINTER_LOWTAG);
293 /* Stick in a forwarding pointer for the code object. */
294 *(lispobj *)code = result;
296 /* Put in forwarding pointers for all the functions. */
297 for (func = code->entry_points;
298 func != NIL;
299 func = ((struct simple_fun *)native_pointer(func))->next) {
301 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
303 *(lispobj *)native_pointer(func) = result + (func - thing);
306 /* Arrange to scavenge the debug info later. */
307 pscav_later(&new->debug_info, 1);
309 /* Scavenge the constants. */
310 pscav(new->constants,
311 HeaderValue(new->header) - (offsetof(struct code, constants) >> WORD_SHIFT),
314 /* Scavenge all the functions. */
315 pscav(&new->entry_points, 1, 1);
316 for (func = new->entry_points;
317 func != NIL;
318 func = ((struct simple_fun *)native_pointer(func))->next) {
319 gc_assert(lowtag_of(func) == FUN_POINTER_LOWTAG);
320 gc_assert(!dynamic_pointer_p(func));
322 pscav(&((struct simple_fun *)native_pointer(func))->self, 2, 1);
323 pscav_later(&((struct simple_fun *)native_pointer(func))->name, 4);
326 return result;
329 static lispobj
330 ptrans_func(lispobj thing, lispobj header)
332 long nwords;
333 lispobj code, *new, *old, result;
334 struct simple_fun *function;
336 /* Thing can either be a function header, a closure function
337 * header, a closure, or a funcallable-instance. If it's a closure
338 * or a funcallable-instance, we do the same as ptrans_boxed.
339 * Otherwise we have to do something strange, 'cause it is buried
340 * inside a code object. */
342 if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG) {
344 /* We can only end up here if the code object has not been
345 * scavenged, because if it had been scavenged, forwarding pointers
346 * would have been left behind for all the entry points. */
348 function = (struct simple_fun *)native_pointer(thing);
349 code =
350 make_lispobj
351 ((native_pointer(thing) -
352 (HeaderValue(function->header))), OTHER_POINTER_LOWTAG);
354 /* This will cause the function's header to be replaced with a
355 * forwarding pointer. */
357 ptrans_code(code);
359 /* So we can just return that. */
360 return function->header;
362 else {
363 /* It's some kind of closure-like thing. */
364 nwords = CEILING(1 + HeaderValue(header), 2);
365 old = (lispobj *)native_pointer(thing);
367 /* Allocate the new one. FINs *must* not go in read_only
368 * space. Closures can; they never change */
370 new = newspace_alloc
371 (nwords,(widetag_of(header)!=FUNCALLABLE_INSTANCE_HEADER_WIDETAG));
373 /* Copy it. */
374 bcopy(old, new, nwords * sizeof(lispobj));
376 /* Deposit forwarding pointer. */
377 result = make_lispobj(new, lowtag_of(thing));
378 *old = result;
380 /* Scavenge it. */
381 pscav(new, nwords, 0);
383 return result;
387 static lispobj
388 ptrans_returnpc(lispobj thing, lispobj header)
390 lispobj code, new;
392 /* Find the corresponding code object. */
393 code = thing - HeaderValue(header)*sizeof(lispobj);
395 /* Make sure it's been transported. */
396 new = *(lispobj *)native_pointer(code);
397 if (!forwarding_pointer_p(new))
398 new = ptrans_code(code);
400 /* Maintain the offset: */
401 return new + (thing - code);
404 #define WORDS_PER_CONS CEILING(sizeof(struct cons) / sizeof(lispobj), 2)
406 static lispobj
407 ptrans_list(lispobj thing, boolean constant)
409 struct cons *old, *new, *orig;
410 long length;
412 orig = (struct cons *) newspace_alloc(0,constant);
413 length = 0;
415 do {
416 /* Allocate a new cons cell. */
417 old = (struct cons *)native_pointer(thing);
418 new = (struct cons *) newspace_alloc(WORDS_PER_CONS,constant);
420 /* Copy the cons cell and keep a pointer to the cdr. */
421 new->car = old->car;
422 thing = new->cdr = old->cdr;
424 /* Set up the forwarding pointer. */
425 *(lispobj *)old = make_lispobj(new, LIST_POINTER_LOWTAG);
427 /* And count this cell. */
428 length++;
429 } while (lowtag_of(thing) == LIST_POINTER_LOWTAG &&
430 dynamic_pointer_p(thing) &&
431 !(forwarding_pointer_p(*(lispobj *)native_pointer(thing))));
433 /* Scavenge the list we just copied. */
434 pscav((lispobj *)orig, length * WORDS_PER_CONS, constant);
436 return make_lispobj(orig, LIST_POINTER_LOWTAG);
439 static lispobj
440 ptrans_otherptr(lispobj thing, lispobj header, boolean constant)
442 switch (widetag_of(header)) {
443 /* FIXME: this needs a reindent */
444 case BIGNUM_WIDETAG:
445 case SINGLE_FLOAT_WIDETAG:
446 case DOUBLE_FLOAT_WIDETAG:
447 #ifdef LONG_FLOAT_WIDETAG
448 case LONG_FLOAT_WIDETAG:
449 #endif
450 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
451 case COMPLEX_SINGLE_FLOAT_WIDETAG:
452 #endif
453 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
454 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
455 #endif
456 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
457 case COMPLEX_LONG_FLOAT_WIDETAG:
458 #endif
459 case SAP_WIDETAG:
460 return ptrans_unboxed(thing, header);
461 case RATIO_WIDETAG:
462 case COMPLEX_WIDETAG:
463 case SIMPLE_ARRAY_WIDETAG:
464 case COMPLEX_BASE_STRING_WIDETAG:
465 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
466 case COMPLEX_CHARACTER_STRING_WIDETAG:
467 #endif
468 case COMPLEX_BIT_VECTOR_WIDETAG:
469 case COMPLEX_VECTOR_NIL_WIDETAG:
470 case COMPLEX_VECTOR_WIDETAG:
471 case COMPLEX_ARRAY_WIDETAG:
472 return ptrans_boxed(thing, header, constant);
474 case VALUE_CELL_HEADER_WIDETAG:
475 case WEAK_POINTER_WIDETAG:
476 return ptrans_boxed(thing, header, 0);
478 case SYMBOL_HEADER_WIDETAG:
479 return ptrans_boxed(thing, header, 0);
481 case SIMPLE_ARRAY_NIL_WIDETAG:
482 return ptrans_vector(thing, 0, 0, 0, constant);
484 case SIMPLE_BASE_STRING_WIDETAG:
485 return ptrans_vector(thing, 8, 1, 0, constant);
487 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
488 case SIMPLE_CHARACTER_STRING_WIDETAG:
489 return ptrans_vector(thing, 32, 1, 0, constant);
490 #endif
492 case SIMPLE_BIT_VECTOR_WIDETAG:
493 return ptrans_vector(thing, 1, 0, 0, constant);
495 case SIMPLE_VECTOR_WIDETAG:
496 return ptrans_vector(thing, N_WORD_BITS, 0, 1, constant);
498 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
499 return ptrans_vector(thing, 2, 0, 0, constant);
501 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
502 return ptrans_vector(thing, 4, 0, 0, constant);
504 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
505 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
506 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
507 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
508 #endif
509 return ptrans_vector(thing, 8, 0, 0, constant);
511 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
512 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
513 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
514 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
515 #endif
516 return ptrans_vector(thing, 16, 0, 0, constant);
518 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
519 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
520 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
521 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
522 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
523 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
524 #endif
525 return ptrans_vector(thing, 32, 0, 0, constant);
527 #if N_WORD_BITS == 64
528 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
529 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
530 #endif
531 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
532 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
533 #endif
534 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
535 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
536 #endif
537 return ptrans_vector(thing, 64, 0, 0, constant);
538 #endif
540 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
541 return ptrans_vector(thing, 32, 0, 0, constant);
543 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
544 return ptrans_vector(thing, 64, 0, 0, constant);
546 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
547 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
548 #ifdef LISP_FEATURE_SPARC
549 return ptrans_vector(thing, 128, 0, 0, constant);
550 #endif
551 #endif
553 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
554 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
555 return ptrans_vector(thing, 64, 0, 0, constant);
556 #endif
558 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
559 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
560 return ptrans_vector(thing, 128, 0, 0, constant);
561 #endif
563 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
564 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
565 #ifdef LISP_FEATURE_SPARC
566 return ptrans_vector(thing, 256, 0, 0, constant);
567 #endif
568 #endif
570 case CODE_HEADER_WIDETAG:
571 return ptrans_code(thing);
573 case RETURN_PC_HEADER_WIDETAG:
574 return ptrans_returnpc(thing, header);
576 case FDEFN_WIDETAG:
577 return ptrans_fdefn(thing, header);
579 default:
580 fprintf(stderr, "Invalid widetag: %d\n", widetag_of(header));
581 /* Should only come across other pointers to the above stuff. */
582 gc_abort();
583 return NIL;
587 static long
588 pscav_fdefn(struct fdefn *fdefn)
590 boolean fix_func;
592 fix_func = ((char *)(fdefn->fun+FUN_RAW_ADDR_OFFSET) == fdefn->raw_addr);
593 pscav(&fdefn->name, 1, 1);
594 pscav(&fdefn->fun, 1, 0);
595 if (fix_func)
596 fdefn->raw_addr = (char *)(fdefn->fun + FUN_RAW_ADDR_OFFSET);
597 return sizeof(struct fdefn) / sizeof(lispobj);
600 static lispobj *
601 pscav(lispobj *addr, long nwords, boolean constant)
603 lispobj thing, *thingp, header;
604 long count = 0; /* (0 = dummy init value to stop GCC warning) */
605 struct vector *vector;
607 while (nwords > 0) {
608 thing = *addr;
609 if (is_lisp_pointer(thing)) {
610 /* It's a pointer. Is it something we might have to move? */
611 if (dynamic_pointer_p(thing)) {
612 /* Maybe. Have we already moved it? */
613 thingp = (lispobj *)native_pointer(thing);
614 header = *thingp;
615 if (is_lisp_pointer(header) && forwarding_pointer_p(header))
616 /* Yep, so just copy the forwarding pointer. */
617 thing = header;
618 else {
619 /* Nope, copy the object. */
620 switch (lowtag_of(thing)) {
621 case FUN_POINTER_LOWTAG:
622 thing = ptrans_func(thing, header);
623 break;
625 case LIST_POINTER_LOWTAG:
626 thing = ptrans_list(thing, constant);
627 break;
629 case INSTANCE_POINTER_LOWTAG:
630 thing = ptrans_instance(thing, header, constant);
631 break;
633 case OTHER_POINTER_LOWTAG:
634 thing = ptrans_otherptr(thing, header, constant);
635 break;
637 default:
638 /* It was a pointer, but not one of them? */
639 gc_abort();
642 *addr = thing;
644 count = 1;
646 #if N_WORD_BITS == 64
647 else if (widetag_of(thing) == SINGLE_FLOAT_WIDETAG) {
648 count = 1;
650 #endif
651 else if (thing & FIXNUM_TAG_MASK) {
652 /* It's an other immediate. Maybe the header for an unboxed */
653 /* object. */
654 switch (widetag_of(thing)) {
655 case BIGNUM_WIDETAG:
656 case SINGLE_FLOAT_WIDETAG:
657 case DOUBLE_FLOAT_WIDETAG:
658 #ifdef LONG_FLOAT_WIDETAG
659 case LONG_FLOAT_WIDETAG:
660 #endif
661 case SAP_WIDETAG:
662 /* It's an unboxed simple object. */
663 count = CEILING(HeaderValue(thing)+1, 2);
664 break;
666 case SIMPLE_VECTOR_WIDETAG:
667 if (HeaderValue(thing) == subtype_VectorValidHashing) {
668 struct hash_table *hash_table =
669 (struct hash_table *)native_pointer(addr[2]);
670 hash_table->needs_rehash_p = T;
672 count = 2;
673 break;
675 case SIMPLE_ARRAY_NIL_WIDETAG:
676 count = 2;
677 break;
679 case SIMPLE_BASE_STRING_WIDETAG:
680 vector = (struct vector *)addr;
681 count = CEILING(NWORDS(fixnum_value(vector->length)+1,8)+2,2);
682 break;
684 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
685 case SIMPLE_CHARACTER_STRING_WIDETAG:
686 vector = (struct vector *)addr;
687 count = CEILING(NWORDS(fixnum_value(vector->length)+1,32)+2,2);
688 break;
689 #endif
691 case SIMPLE_BIT_VECTOR_WIDETAG:
692 vector = (struct vector *)addr;
693 count = CEILING(NWORDS(fixnum_value(vector->length),1)+2,2);
694 break;
696 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
697 vector = (struct vector *)addr;
698 count = CEILING(NWORDS(fixnum_value(vector->length),2)+2,2);
699 break;
701 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
702 vector = (struct vector *)addr;
703 count = CEILING(NWORDS(fixnum_value(vector->length),4)+2,2);
704 break;
706 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
707 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
708 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
709 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
710 #endif
711 vector = (struct vector *)addr;
712 count = CEILING(NWORDS(fixnum_value(vector->length),8)+2,2);
713 break;
715 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
716 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
717 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
718 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
719 #endif
720 vector = (struct vector *)addr;
721 count = CEILING(NWORDS(fixnum_value(vector->length),16)+2,2);
722 break;
724 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
726 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
727 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
729 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
730 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
731 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
732 #endif
733 vector = (struct vector *)addr;
734 count = CEILING(NWORDS(fixnum_value(vector->length),32)+2,2);
735 break;
737 #if N_WORD_BITS == 64
738 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
739 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
740 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
741 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
742 #endif
743 vector = (struct vector *)addr;
744 count = CEILING(NWORDS(fixnum_value(vector->length),64)+2,2);
745 break;
746 #endif
748 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
749 vector = (struct vector *)addr;
750 count = CEILING(NWORDS(fixnum_value(vector->length), 32) + 2,
752 break;
754 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
755 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
756 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
757 #endif
758 vector = (struct vector *)addr;
759 count = CEILING(NWORDS(fixnum_value(vector->length), 64) + 2,
761 break;
763 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
764 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
765 vector = (struct vector *)addr;
766 #ifdef LISP_FEATURE_SPARC
767 count = fixnum_value(vector->length)*4+2;
768 #endif
769 break;
770 #endif
772 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
773 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
774 vector = (struct vector *)addr;
775 count = CEILING(NWORDS(fixnum_value(vector->length), 128) + 2,
777 break;
778 #endif
780 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
781 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
782 vector = (struct vector *)addr;
783 #ifdef LISP_FEATURE_SPARC
784 count = fixnum_value(vector->length)*8+2;
785 #endif
786 break;
787 #endif
789 case CODE_HEADER_WIDETAG:
790 gc_abort(); /* no code headers in static space */
791 break;
793 case SIMPLE_FUN_HEADER_WIDETAG:
794 case RETURN_PC_HEADER_WIDETAG:
795 /* We should never hit any of these, 'cause they occur
796 * buried in the middle of code objects. */
797 gc_abort();
798 break;
800 case WEAK_POINTER_WIDETAG:
801 /* Weak pointers get preserved during purify, 'cause I
802 * don't feel like figuring out how to break them. */
803 pscav(addr+1, 2, constant);
804 count = 4;
805 break;
807 case FDEFN_WIDETAG:
808 /* We have to handle fdefn objects specially, so we
809 * can fix up the raw function address. */
810 count = pscav_fdefn((struct fdefn *)addr);
811 break;
813 case INSTANCE_HEADER_WIDETAG:
815 struct instance *instance = (struct instance *) addr;
816 struct layout *layout
817 = (struct layout *) native_pointer(instance->slots[0]);
818 long nuntagged = fixnum_value(layout->n_untagged_slots);
819 long nslots = HeaderValue(*addr);
820 pscav(addr + 1, nslots - nuntagged, constant);
821 count = CEILING(1 + nslots, 2);
823 break;
825 default:
826 count = 1;
827 break;
830 else {
831 /* It's a fixnum. */
832 count = 1;
835 addr += count;
836 nwords -= count;
839 return addr;
843 purify(lispobj static_roots, lispobj read_only_roots)
845 lispobj *clean;
846 long count, i;
847 struct later *laters, *next;
848 struct thread *thread;
850 if(all_threads->next) {
851 /* FIXME: there should be _some_ sensible error reporting
852 * convention. See following comment too */
853 fprintf(stderr,"Can't purify when more than one thread exists\n");
854 fflush(stderr);
855 return 0;
858 #ifdef PRINTNOISE
859 printf("[doing purification:");
860 fflush(stdout);
861 #endif
863 for_each_thread(thread)
864 if (fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread)) != 0) {
865 /* FIXME: 1. What does this mean? 2. It shouldn't be reporting
866 * its error simply by a. printing a string b. to stdout instead
867 * of stderr. */
868 printf(" Ack! Can't purify interrupt contexts. ");
869 fflush(stdout);
870 return 0;
873 dynamic_space_purify_pointer = dynamic_space_free_pointer;
875 read_only_end = read_only_free =
876 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
877 static_end = static_free =
878 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
880 #ifdef PRINTNOISE
881 printf(" roots");
882 fflush(stdout);
883 #endif
885 pscav(&static_roots, 1, 0);
886 pscav(&read_only_roots, 1, 1);
888 #ifdef PRINTNOISE
889 printf(" handlers");
890 fflush(stdout);
891 #endif
892 pscav((lispobj *) interrupt_handlers,
893 sizeof(interrupt_handlers) / sizeof(lispobj),
896 #ifdef PRINTNOISE
897 printf(" stack");
898 fflush(stdout);
899 #endif
900 pscav((lispobj *)all_threads->control_stack_start,
901 access_control_stack_pointer(all_threads) -
902 all_threads->control_stack_start,
905 #ifdef PRINTNOISE
906 printf(" bindings");
907 fflush(stdout);
908 #endif
910 pscav( (lispobj *)all_threads->binding_stack_start,
911 (lispobj *)get_binding_stack_pointer(all_threads) -
912 all_threads->binding_stack_start,
915 /* The original CMU CL code had scavenge-read-only-space code
916 * controlled by the Lisp-level variable
917 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
918 * wasn't documented under what circumstances it was useful or
919 * safe to turn it on, so it's been turned off in SBCL. If you
920 * want/need this functionality, and can test and document it,
921 * please submit a patch. */
922 #if 0
923 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != UNBOUND_MARKER_WIDETAG
924 && SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
925 unsigned read_only_space_size =
926 (lispobj *)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
927 (lispobj *)READ_ONLY_SPACE_START;
928 fprintf(stderr,
929 "scavenging read only space: %d bytes\n",
930 read_only_space_size * sizeof(lispobj));
931 pscav( (lispobj *)READ_ONLY_SPACE_START, read_only_space_size, 0);
933 #endif
935 #ifdef PRINTNOISE
936 printf(" static");
937 fflush(stdout);
938 #endif
939 clean = (lispobj *)STATIC_SPACE_START;
940 do {
941 while (clean != static_free)
942 clean = pscav(clean, static_free - clean, 0);
943 laters = later_blocks;
944 count = later_count;
945 later_blocks = NULL;
946 later_count = 0;
947 while (laters != NULL) {
948 for (i = 0; i < count; i++) {
949 if (laters->u[i].count == 0) {
951 } else if (laters->u[i].count <= LATERMAXCOUNT) {
952 pscav(laters->u[i+1].ptr, laters->u[i].count, 1);
953 i++;
954 } else {
955 pscav(laters->u[i].ptr, 1, 1);
958 next = laters->next;
959 free(laters);
960 laters = next;
961 count = LATERBLOCKSIZE;
963 } while (clean != static_free || later_blocks != NULL);
965 #ifdef PRINTNOISE
966 printf(" cleanup");
967 fflush(stdout);
968 #endif
969 #ifdef LISP_FEATURE_HPUX
970 clear_auto_gc_trigger(); /* restore mmap as it was given by os */
971 #endif
973 os_zero((os_vm_address_t) current_dynamic_space, dynamic_space_size);
975 /* Zero the stack. */
976 os_zero((os_vm_address_t) access_control_stack_pointer(all_threads),
977 (os_vm_size_t)
978 ((all_threads->control_stack_end -
979 access_control_stack_pointer(all_threads)) * sizeof(lispobj)));
981 /* It helps to update the heap free pointers so that free_heap can
982 * verify after it's done. */
983 SetSymbolValue(READ_ONLY_SPACE_FREE_POINTER, (lispobj)read_only_free,0);
984 SetSymbolValue(STATIC_SPACE_FREE_POINTER, (lispobj)static_free,0);
986 dynamic_space_free_pointer = current_dynamic_space;
987 set_auto_gc_trigger(bytes_consed_between_gcs);
989 /* Blast away instruction cache */
990 os_flush_icache((os_vm_address_t)READ_ONLY_SPACE_START, READ_ONLY_SPACE_SIZE);
991 os_flush_icache((os_vm_address_t)STATIC_SPACE_START, STATIC_SPACE_SIZE);
993 #ifdef PRINTNOISE
994 printf(" done]\n");
995 fflush(stdout);
996 #endif
997 return 0;
999 #else /* LISP_FEATURE_GENCGC */
1001 purify(lispobj static_roots, lispobj read_only_roots)
1003 lose("purify called for GENCGC. This should not happen.");
1005 #endif /* LISP_FEATURE_GENCGC */