1.0.12.19: runtime cleanups by Daniel Lowe
[sbcl.git] / src / runtime / gencgc.c
bloba43d374a8e0cdb6b724c1a9c3f901b445762f6b8
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <signal.h>
30 #include <errno.h>
31 #include <string.h>
32 #include "sbcl.h"
33 #include "runtime.h"
34 #include "os.h"
35 #include "interr.h"
36 #include "globals.h"
37 #include "interrupt.h"
38 #include "validate.h"
39 #include "lispregs.h"
40 #include "arch.h"
41 #include "fixnump.h"
42 #include "gc.h"
43 #include "gc-internal.h"
44 #include "thread.h"
45 #include "alloc.h"
46 #include "genesis/vector.h"
47 #include "genesis/weak-pointer.h"
48 #include "genesis/fdefn.h"
49 #include "genesis/simple-fun.h"
50 #include "save.h"
51 #include "genesis/hash-table.h"
52 #include "genesis/instance.h"
53 #include "genesis/layout.h"
54 #include "gencgc.h"
55 #if defined(LUTEX_WIDETAG)
56 #include "pthread-lutex.h"
57 #endif
59 /* forward declarations */
60 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
61 int unboxed);
65 * GC parameters
68 /* Generations 0-5 are normal collected generations, 6 is only used as
69 * scratch space by the collector, and should never get collected.
71 enum {
72 HIGHEST_NORMAL_GENERATION = 5,
73 PSEUDO_STATIC_GENERATION,
74 SCRATCH_GENERATION,
75 NUM_GENERATIONS
78 /* Should we use page protection to help avoid the scavenging of pages
79 * that don't have pointers to younger generations? */
80 boolean enable_page_protection = 1;
82 /* the minimum size (in bytes) for a large object*/
83 unsigned long large_object_size = 4 * PAGE_BYTES;
87 * debugging
90 /* the verbosity level. All non-error messages are disabled at level 0;
91 * and only a few rare messages are printed at level 1. */
92 #ifdef QSHOW
93 boolean gencgc_verbose = 1;
94 #else
95 boolean gencgc_verbose = 0;
96 #endif
98 /* FIXME: At some point enable the various error-checking things below
99 * and see what they say. */
101 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
102 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
103 * check. */
104 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
106 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
107 boolean pre_verify_gen_0 = 0;
109 /* Should we check for bad pointers after gc_free_heap is called
110 * from Lisp PURIFY? */
111 boolean verify_after_free_heap = 0;
113 /* Should we print a note when code objects are found in the dynamic space
114 * during a heap verify? */
115 boolean verify_dynamic_code_check = 0;
117 /* Should we check code objects for fixup errors after they are transported? */
118 boolean check_code_fixups = 0;
120 /* Should we check that newly allocated regions are zero filled? */
121 boolean gencgc_zero_check = 0;
123 /* Should we check that the free space is zero filled? */
124 boolean gencgc_enable_verify_zero_fill = 0;
126 /* Should we check that free pages are zero filled during gc_free_heap
127 * called after Lisp PURIFY? */
128 boolean gencgc_zero_check_during_free_heap = 0;
130 /* When loading a core, don't do a full scan of the memory for the
131 * memory region boundaries. (Set to true by coreparse.c if the core
132 * contained a pagetable entry).
134 boolean gencgc_partial_pickup = 0;
136 /* If defined, free pages are read-protected to ensure that nothing
137 * accesses them.
140 /* #define READ_PROTECT_FREE_PAGES */
144 * GC structures and variables
147 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
148 unsigned long bytes_allocated = 0;
149 unsigned long auto_gc_trigger = 0;
151 /* the source and destination generations. These are set before a GC starts
152 * scavenging. */
153 generation_index_t from_space;
154 generation_index_t new_space;
156 /* Set to 1 when in GC */
157 boolean gc_active_p = 0;
159 /* should the GC be conservative on stack. If false (only right before
160 * saving a core), don't scan the stack / mark pages dont_move. */
161 static boolean conservative_stack = 1;
163 /* An array of page structures is allocated on gc initialization.
164 * This helps quickly map between an address its page structure.
165 * page_table_pages is set from the size of the dynamic space. */
166 unsigned page_table_pages;
167 struct page *page_table;
169 /* To map addresses to page structures the address of the first page
170 * is needed. */
171 static void *heap_base = NULL;
173 /* Calculate the start address for the given page number. */
174 inline void *
175 page_address(page_index_t page_num)
177 return (heap_base + (page_num * PAGE_BYTES));
180 /* Find the page index within the page_table for the given
181 * address. Return -1 on failure. */
182 inline page_index_t
183 find_page_index(void *addr)
185 page_index_t index = addr-heap_base;
187 if (index >= 0) {
188 index = ((unsigned long)index)/PAGE_BYTES;
189 if (index < page_table_pages)
190 return (index);
193 return (-1);
196 /* a structure to hold the state of a generation */
197 struct generation {
199 /* the first page that gc_alloc() checks on its next call */
200 page_index_t alloc_start_page;
202 /* the first page that gc_alloc_unboxed() checks on its next call */
203 page_index_t alloc_unboxed_start_page;
205 /* the first page that gc_alloc_large (boxed) considers on its next
206 * call. (Although it always allocates after the boxed_region.) */
207 page_index_t alloc_large_start_page;
209 /* the first page that gc_alloc_large (unboxed) considers on its
210 * next call. (Although it always allocates after the
211 * current_unboxed_region.) */
212 page_index_t alloc_large_unboxed_start_page;
214 /* the bytes allocated to this generation */
215 long bytes_allocated;
217 /* the number of bytes at which to trigger a GC */
218 long gc_trigger;
220 /* to calculate a new level for gc_trigger */
221 long bytes_consed_between_gc;
223 /* the number of GCs since the last raise */
224 int num_gc;
226 /* the average age after which a GC will raise objects to the
227 * next generation */
228 int trigger_age;
230 /* the cumulative sum of the bytes allocated to this generation. It is
231 * cleared after a GC on this generations, and update before new
232 * objects are added from a GC of a younger generation. Dividing by
233 * the bytes_allocated will give the average age of the memory in
234 * this generation since its last GC. */
235 long cum_sum_bytes_allocated;
237 /* a minimum average memory age before a GC will occur helps
238 * prevent a GC when a large number of new live objects have been
239 * added, in which case a GC could be a waste of time */
240 double min_av_mem_age;
242 /* A linked list of lutex structures in this generation, used for
243 * implementing lutex finalization. */
244 #ifdef LUTEX_WIDETAG
245 struct lutex *lutexes;
246 #else
247 void *lutexes;
248 #endif
251 /* an array of generation structures. There needs to be one more
252 * generation structure than actual generations as the oldest
253 * generation is temporarily raised then lowered. */
254 struct generation generations[NUM_GENERATIONS];
256 /* the oldest generation that is will currently be GCed by default.
257 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
259 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
261 * Setting this to 0 effectively disables the generational nature of
262 * the GC. In some applications generational GC may not be useful
263 * because there are no long-lived objects.
265 * An intermediate value could be handy after moving long-lived data
266 * into an older generation so an unnecessary GC of this long-lived
267 * data can be avoided. */
268 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
270 /* The maximum free page in the heap is maintained and used to update
271 * ALLOCATION_POINTER which is used by the room function to limit its
272 * search of the heap. XX Gencgc obviously needs to be better
273 * integrated with the Lisp code. */
274 page_index_t last_free_page;
276 /* This lock is to prevent multiple threads from simultaneously
277 * allocating new regions which overlap each other. Note that the
278 * majority of GC is single-threaded, but alloc() may be called from
279 * >1 thread at a time and must be thread-safe. This lock must be
280 * seized before all accesses to generations[] or to parts of
281 * page_table[] that other threads may want to see */
283 #ifdef LISP_FEATURE_SB_THREAD
284 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
285 #endif
289 * miscellaneous heap functions
292 /* Count the number of pages which are write-protected within the
293 * given generation. */
294 static long
295 count_write_protect_generation_pages(generation_index_t generation)
297 page_index_t i;
298 long count = 0;
300 for (i = 0; i < last_free_page; i++)
301 if ((page_table[i].allocated != FREE_PAGE_FLAG)
302 && (page_table[i].gen == generation)
303 && (page_table[i].write_protected == 1))
304 count++;
305 return count;
308 /* Count the number of pages within the given generation. */
309 static long
310 count_generation_pages(generation_index_t generation)
312 page_index_t i;
313 long count = 0;
315 for (i = 0; i < last_free_page; i++)
316 if ((page_table[i].allocated != FREE_PAGE_FLAG)
317 && (page_table[i].gen == generation))
318 count++;
319 return count;
322 #ifdef QSHOW
323 static long
324 count_dont_move_pages(void)
326 page_index_t i;
327 long count = 0;
328 for (i = 0; i < last_free_page; i++) {
329 if ((page_table[i].allocated != FREE_PAGE_FLAG)
330 && (page_table[i].dont_move != 0)) {
331 ++count;
334 return count;
336 #endif /* QSHOW */
338 /* Work through the pages and add up the number of bytes used for the
339 * given generation. */
340 static long
341 count_generation_bytes_allocated (generation_index_t gen)
343 page_index_t i;
344 long result = 0;
345 for (i = 0; i < last_free_page; i++) {
346 if ((page_table[i].allocated != FREE_PAGE_FLAG)
347 && (page_table[i].gen == gen))
348 result += page_table[i].bytes_used;
350 return result;
353 /* Return the average age of the memory in a generation. */
354 static double
355 gen_av_mem_age(generation_index_t gen)
357 if (generations[gen].bytes_allocated == 0)
358 return 0.0;
360 return
361 ((double)generations[gen].cum_sum_bytes_allocated)
362 / ((double)generations[gen].bytes_allocated);
365 /* The verbose argument controls how much to print: 0 for normal
366 * level of detail; 1 for debugging. */
367 static void
368 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
370 generation_index_t i, gens;
372 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
373 #define FPU_STATE_SIZE 27
374 int fpu_state[FPU_STATE_SIZE];
375 #elif defined(LISP_FEATURE_PPC)
376 #define FPU_STATE_SIZE 32
377 long long fpu_state[FPU_STATE_SIZE];
378 #endif
380 /* This code uses the FP instructions which may be set up for Lisp
381 * so they need to be saved and reset for C. */
382 fpu_save(fpu_state);
384 /* highest generation to print */
385 if (verbose)
386 gens = SCRATCH_GENERATION;
387 else
388 gens = PSEUDO_STATIC_GENERATION;
390 /* Print the heap stats. */
391 fprintf(stderr,
392 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
394 for (i = 0; i < gens; i++) {
395 page_index_t j;
396 long boxed_cnt = 0;
397 long unboxed_cnt = 0;
398 long large_boxed_cnt = 0;
399 long large_unboxed_cnt = 0;
400 long pinned_cnt=0;
402 for (j = 0; j < last_free_page; j++)
403 if (page_table[j].gen == i) {
405 /* Count the number of boxed pages within the given
406 * generation. */
407 if (page_table[j].allocated & BOXED_PAGE_FLAG) {
408 if (page_table[j].large_object)
409 large_boxed_cnt++;
410 else
411 boxed_cnt++;
413 if(page_table[j].dont_move) pinned_cnt++;
414 /* Count the number of unboxed pages within the given
415 * generation. */
416 if (page_table[j].allocated & UNBOXED_PAGE_FLAG) {
417 if (page_table[j].large_object)
418 large_unboxed_cnt++;
419 else
420 unboxed_cnt++;
424 gc_assert(generations[i].bytes_allocated
425 == count_generation_bytes_allocated(i));
426 fprintf(stderr,
427 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
429 generations[i].alloc_start_page,
430 generations[i].alloc_unboxed_start_page,
431 generations[i].alloc_large_start_page,
432 generations[i].alloc_large_unboxed_start_page,
433 boxed_cnt,
434 unboxed_cnt,
435 large_boxed_cnt,
436 large_unboxed_cnt,
437 pinned_cnt,
438 generations[i].bytes_allocated,
439 (count_generation_pages(i)*PAGE_BYTES - generations[i].bytes_allocated),
440 generations[i].gc_trigger,
441 count_write_protect_generation_pages(i),
442 generations[i].num_gc,
443 gen_av_mem_age(i));
445 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
447 fpu_restore(fpu_state);
451 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
452 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
453 #endif
455 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
456 * if zeroing it ourselves, i.e. in practice give the memory back to the
457 * OS. Generally done after a large GC.
459 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
460 int i;
461 void *addr = (void *) page_address(start), *new_addr;
462 size_t length = PAGE_BYTES*(1+end-start);
464 if (start > end)
465 return;
467 os_invalidate(addr, length);
468 new_addr = os_validate(addr, length);
469 if (new_addr == NULL || new_addr != addr) {
470 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x", start, new_addr);
473 for (i = start; i <= end; i++) {
474 page_table[i].need_to_zero = 0;
478 /* Zero the pages from START to END (inclusive). Generally done just after
479 * a new region has been allocated.
481 static void
482 zero_pages(page_index_t start, page_index_t end) {
483 if (start > end)
484 return;
486 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
487 fast_bzero(page_address(start), PAGE_BYTES*(1+end-start));
488 #else
489 bzero(page_address(start), PAGE_BYTES*(1+end-start));
490 #endif
494 /* Zero the pages from START to END (inclusive), except for those
495 * pages that are known to already zeroed. Mark all pages in the
496 * ranges as non-zeroed.
498 static void
499 zero_dirty_pages(page_index_t start, page_index_t end) {
500 page_index_t i;
502 for (i = start; i <= end; i++) {
503 if (page_table[i].need_to_zero == 1) {
504 zero_pages(start, end);
505 break;
509 for (i = start; i <= end; i++) {
510 page_table[i].need_to_zero = 1;
516 * To support quick and inline allocation, regions of memory can be
517 * allocated and then allocated from with just a free pointer and a
518 * check against an end address.
520 * Since objects can be allocated to spaces with different properties
521 * e.g. boxed/unboxed, generation, ages; there may need to be many
522 * allocation regions.
524 * Each allocation region may start within a partly used page. Many
525 * features of memory use are noted on a page wise basis, e.g. the
526 * generation; so if a region starts within an existing allocated page
527 * it must be consistent with this page.
529 * During the scavenging of the newspace, objects will be transported
530 * into an allocation region, and pointers updated to point to this
531 * allocation region. It is possible that these pointers will be
532 * scavenged again before the allocation region is closed, e.g. due to
533 * trans_list which jumps all over the place to cleanup the list. It
534 * is important to be able to determine properties of all objects
535 * pointed to when scavenging, e.g to detect pointers to the oldspace.
536 * Thus it's important that the allocation regions have the correct
537 * properties set when allocated, and not just set when closed. The
538 * region allocation routines return regions with the specified
539 * properties, and grab all the pages, setting their properties
540 * appropriately, except that the amount used is not known.
542 * These regions are used to support quicker allocation using just a
543 * free pointer. The actual space used by the region is not reflected
544 * in the pages tables until it is closed. It can't be scavenged until
545 * closed.
547 * When finished with the region it should be closed, which will
548 * update the page tables for the actual space used returning unused
549 * space. Further it may be noted in the new regions which is
550 * necessary when scavenging the newspace.
552 * Large objects may be allocated directly without an allocation
553 * region, the page tables are updated immediately.
555 * Unboxed objects don't contain pointers to other objects and so
556 * don't need scavenging. Further they can't contain pointers to
557 * younger generations so WP is not needed. By allocating pages to
558 * unboxed objects the whole page never needs scavenging or
559 * write-protecting. */
561 /* We are only using two regions at present. Both are for the current
562 * newspace generation. */
563 struct alloc_region boxed_region;
564 struct alloc_region unboxed_region;
566 /* The generation currently being allocated to. */
567 static generation_index_t gc_alloc_generation;
569 /* Find a new region with room for at least the given number of bytes.
571 * It starts looking at the current generation's alloc_start_page. So
572 * may pick up from the previous region if there is enough space. This
573 * keeps the allocation contiguous when scavenging the newspace.
575 * The alloc_region should have been closed by a call to
576 * gc_alloc_update_page_tables(), and will thus be in an empty state.
578 * To assist the scavenging functions write-protected pages are not
579 * used. Free pages should not be write-protected.
581 * It is critical to the conservative GC that the start of regions be
582 * known. To help achieve this only small regions are allocated at a
583 * time.
585 * During scavenging, pointers may be found to within the current
586 * region and the page generation must be set so that pointers to the
587 * from space can be recognized. Therefore the generation of pages in
588 * the region are set to gc_alloc_generation. To prevent another
589 * allocation call using the same pages, all the pages in the region
590 * are allocated, although they will initially be empty.
592 static void
593 gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
595 page_index_t first_page;
596 page_index_t last_page;
597 long bytes_found;
598 page_index_t i;
599 int ret;
602 FSHOW((stderr,
603 "/alloc_new_region for %d bytes from gen %d\n",
604 nbytes, gc_alloc_generation));
607 /* Check that the region is in a reset state. */
608 gc_assert((alloc_region->first_page == 0)
609 && (alloc_region->last_page == -1)
610 && (alloc_region->free_pointer == alloc_region->end_addr));
611 ret = thread_mutex_lock(&free_pages_lock);
612 gc_assert(ret == 0);
613 if (unboxed) {
614 first_page =
615 generations[gc_alloc_generation].alloc_unboxed_start_page;
616 } else {
617 first_page =
618 generations[gc_alloc_generation].alloc_start_page;
620 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
621 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
622 + PAGE_BYTES*(last_page-first_page);
624 /* Set up the alloc_region. */
625 alloc_region->first_page = first_page;
626 alloc_region->last_page = last_page;
627 alloc_region->start_addr = page_table[first_page].bytes_used
628 + page_address(first_page);
629 alloc_region->free_pointer = alloc_region->start_addr;
630 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
632 /* Set up the pages. */
634 /* The first page may have already been in use. */
635 if (page_table[first_page].bytes_used == 0) {
636 if (unboxed)
637 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
638 else
639 page_table[first_page].allocated = BOXED_PAGE_FLAG;
640 page_table[first_page].gen = gc_alloc_generation;
641 page_table[first_page].large_object = 0;
642 page_table[first_page].first_object_offset = 0;
645 if (unboxed)
646 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
647 else
648 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
649 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
651 gc_assert(page_table[first_page].gen == gc_alloc_generation);
652 gc_assert(page_table[first_page].large_object == 0);
654 for (i = first_page+1; i <= last_page; i++) {
655 if (unboxed)
656 page_table[i].allocated = UNBOXED_PAGE_FLAG;
657 else
658 page_table[i].allocated = BOXED_PAGE_FLAG;
659 page_table[i].gen = gc_alloc_generation;
660 page_table[i].large_object = 0;
661 /* This may not be necessary for unboxed regions (think it was
662 * broken before!) */
663 page_table[i].first_object_offset =
664 alloc_region->start_addr - page_address(i);
665 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
667 /* Bump up last_free_page. */
668 if (last_page+1 > last_free_page) {
669 last_free_page = last_page+1;
670 /* do we only want to call this on special occasions? like for boxed_region? */
671 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
673 ret = thread_mutex_unlock(&free_pages_lock);
674 gc_assert(ret == 0);
676 /* we can do this after releasing free_pages_lock */
677 if (gencgc_zero_check) {
678 long *p;
679 for (p = (long *)alloc_region->start_addr;
680 p < (long *)alloc_region->end_addr; p++) {
681 if (*p != 0) {
682 /* KLUDGE: It would be nice to use %lx and explicit casts
683 * (long) in code like this, so that it is less likely to
684 * break randomly when running on a machine with different
685 * word sizes. -- WHN 19991129 */
686 lose("The new region at %x is not zero.\n", p);
691 #ifdef READ_PROTECT_FREE_PAGES
692 os_protect(page_address(first_page),
693 PAGE_BYTES*(1+last_page-first_page),
694 OS_VM_PROT_ALL);
695 #endif
697 /* If the first page was only partial, don't check whether it's
698 * zeroed (it won't be) and don't zero it (since the parts that
699 * we're interested in are guaranteed to be zeroed).
701 if (page_table[first_page].bytes_used) {
702 first_page++;
705 zero_dirty_pages(first_page, last_page);
708 /* If the record_new_objects flag is 2 then all new regions created
709 * are recorded.
711 * If it's 1 then then it is only recorded if the first page of the
712 * current region is <= new_areas_ignore_page. This helps avoid
713 * unnecessary recording when doing full scavenge pass.
715 * The new_object structure holds the page, byte offset, and size of
716 * new regions of objects. Each new area is placed in the array of
717 * these structures pointer to by new_areas. new_areas_index holds the
718 * offset into new_areas.
720 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
721 * later code must detect this and handle it, probably by doing a full
722 * scavenge of a generation. */
723 #define NUM_NEW_AREAS 512
724 static int record_new_objects = 0;
725 static page_index_t new_areas_ignore_page;
726 struct new_area {
727 page_index_t page;
728 long offset;
729 long size;
731 static struct new_area (*new_areas)[];
732 static long new_areas_index;
733 long max_new_areas;
735 /* Add a new area to new_areas. */
736 static void
737 add_new_area(page_index_t first_page, long offset, long size)
739 unsigned long new_area_start,c;
740 long i;
742 /* Ignore if full. */
743 if (new_areas_index >= NUM_NEW_AREAS)
744 return;
746 switch (record_new_objects) {
747 case 0:
748 return;
749 case 1:
750 if (first_page > new_areas_ignore_page)
751 return;
752 break;
753 case 2:
754 break;
755 default:
756 gc_abort();
759 new_area_start = PAGE_BYTES*first_page + offset;
761 /* Search backwards for a prior area that this follows from. If
762 found this will save adding a new area. */
763 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
764 unsigned long area_end =
765 PAGE_BYTES*((*new_areas)[i].page)
766 + (*new_areas)[i].offset
767 + (*new_areas)[i].size;
768 /*FSHOW((stderr,
769 "/add_new_area S1 %d %d %d %d\n",
770 i, c, new_area_start, area_end));*/
771 if (new_area_start == area_end) {
772 /*FSHOW((stderr,
773 "/adding to [%d] %d %d %d with %d %d %d:\n",
775 (*new_areas)[i].page,
776 (*new_areas)[i].offset,
777 (*new_areas)[i].size,
778 first_page,
779 offset,
780 size);*/
781 (*new_areas)[i].size += size;
782 return;
786 (*new_areas)[new_areas_index].page = first_page;
787 (*new_areas)[new_areas_index].offset = offset;
788 (*new_areas)[new_areas_index].size = size;
789 /*FSHOW((stderr,
790 "/new_area %d page %d offset %d size %d\n",
791 new_areas_index, first_page, offset, size));*/
792 new_areas_index++;
794 /* Note the max new_areas used. */
795 if (new_areas_index > max_new_areas)
796 max_new_areas = new_areas_index;
799 /* Update the tables for the alloc_region. The region may be added to
800 * the new_areas.
802 * When done the alloc_region is set up so that the next quick alloc
803 * will fail safely and thus a new region will be allocated. Further
804 * it is safe to try to re-update the page table of this reset
805 * alloc_region. */
806 void
807 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
809 int more;
810 page_index_t first_page;
811 page_index_t next_page;
812 int bytes_used;
813 long orig_first_page_bytes_used;
814 long region_size;
815 long byte_cnt;
816 int ret;
819 first_page = alloc_region->first_page;
821 /* Catch an unused alloc_region. */
822 if ((first_page == 0) && (alloc_region->last_page == -1))
823 return;
825 next_page = first_page+1;
827 ret = thread_mutex_lock(&free_pages_lock);
828 gc_assert(ret == 0);
829 if (alloc_region->free_pointer != alloc_region->start_addr) {
830 /* some bytes were allocated in the region */
831 orig_first_page_bytes_used = page_table[first_page].bytes_used;
833 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
835 /* All the pages used need to be updated */
837 /* Update the first page. */
839 /* If the page was free then set up the gen, and
840 * first_object_offset. */
841 if (page_table[first_page].bytes_used == 0)
842 gc_assert(page_table[first_page].first_object_offset == 0);
843 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
845 if (unboxed)
846 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
847 else
848 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
849 gc_assert(page_table[first_page].gen == gc_alloc_generation);
850 gc_assert(page_table[first_page].large_object == 0);
852 byte_cnt = 0;
854 /* Calculate the number of bytes used in this page. This is not
855 * always the number of new bytes, unless it was free. */
856 more = 0;
857 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>PAGE_BYTES) {
858 bytes_used = PAGE_BYTES;
859 more = 1;
861 page_table[first_page].bytes_used = bytes_used;
862 byte_cnt += bytes_used;
865 /* All the rest of the pages should be free. We need to set their
866 * first_object_offset pointer to the start of the region, and set
867 * the bytes_used. */
868 while (more) {
869 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
870 if (unboxed)
871 gc_assert(page_table[next_page].allocated==UNBOXED_PAGE_FLAG);
872 else
873 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
874 gc_assert(page_table[next_page].bytes_used == 0);
875 gc_assert(page_table[next_page].gen == gc_alloc_generation);
876 gc_assert(page_table[next_page].large_object == 0);
878 gc_assert(page_table[next_page].first_object_offset ==
879 alloc_region->start_addr - page_address(next_page));
881 /* Calculate the number of bytes used in this page. */
882 more = 0;
883 if ((bytes_used = (alloc_region->free_pointer
884 - page_address(next_page)))>PAGE_BYTES) {
885 bytes_used = PAGE_BYTES;
886 more = 1;
888 page_table[next_page].bytes_used = bytes_used;
889 byte_cnt += bytes_used;
891 next_page++;
894 region_size = alloc_region->free_pointer - alloc_region->start_addr;
895 bytes_allocated += region_size;
896 generations[gc_alloc_generation].bytes_allocated += region_size;
898 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
900 /* Set the generations alloc restart page to the last page of
901 * the region. */
902 if (unboxed)
903 generations[gc_alloc_generation].alloc_unboxed_start_page =
904 next_page-1;
905 else
906 generations[gc_alloc_generation].alloc_start_page = next_page-1;
908 /* Add the region to the new_areas if requested. */
909 if (!unboxed)
910 add_new_area(first_page,orig_first_page_bytes_used, region_size);
913 FSHOW((stderr,
914 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
915 region_size,
916 gc_alloc_generation));
918 } else {
919 /* There are no bytes allocated. Unallocate the first_page if
920 * there are 0 bytes_used. */
921 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
922 if (page_table[first_page].bytes_used == 0)
923 page_table[first_page].allocated = FREE_PAGE_FLAG;
926 /* Unallocate any unused pages. */
927 while (next_page <= alloc_region->last_page) {
928 gc_assert(page_table[next_page].bytes_used == 0);
929 page_table[next_page].allocated = FREE_PAGE_FLAG;
930 next_page++;
932 ret = thread_mutex_unlock(&free_pages_lock);
933 gc_assert(ret == 0);
935 /* alloc_region is per-thread, we're ok to do this unlocked */
936 gc_set_region_empty(alloc_region);
939 static inline void *gc_quick_alloc(long nbytes);
941 /* Allocate a possibly large object. */
942 void *
943 gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
945 page_index_t first_page;
946 page_index_t last_page;
947 int orig_first_page_bytes_used;
948 long byte_cnt;
949 int more;
950 long bytes_used;
951 page_index_t next_page;
952 int ret;
954 ret = thread_mutex_lock(&free_pages_lock);
955 gc_assert(ret == 0);
957 if (unboxed) {
958 first_page =
959 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
960 } else {
961 first_page = generations[gc_alloc_generation].alloc_large_start_page;
963 if (first_page <= alloc_region->last_page) {
964 first_page = alloc_region->last_page+1;
967 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
969 gc_assert(first_page > alloc_region->last_page);
970 if (unboxed)
971 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
972 last_page;
973 else
974 generations[gc_alloc_generation].alloc_large_start_page = last_page;
976 /* Set up the pages. */
977 orig_first_page_bytes_used = page_table[first_page].bytes_used;
979 /* If the first page was free then set up the gen, and
980 * first_object_offset. */
981 if (page_table[first_page].bytes_used == 0) {
982 if (unboxed)
983 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
984 else
985 page_table[first_page].allocated = BOXED_PAGE_FLAG;
986 page_table[first_page].gen = gc_alloc_generation;
987 page_table[first_page].first_object_offset = 0;
988 page_table[first_page].large_object = 1;
991 if (unboxed)
992 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
993 else
994 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
995 gc_assert(page_table[first_page].gen == gc_alloc_generation);
996 gc_assert(page_table[first_page].large_object == 1);
998 byte_cnt = 0;
1000 /* Calc. the number of bytes used in this page. This is not
1001 * always the number of new bytes, unless it was free. */
1002 more = 0;
1003 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1004 bytes_used = PAGE_BYTES;
1005 more = 1;
1007 page_table[first_page].bytes_used = bytes_used;
1008 byte_cnt += bytes_used;
1010 next_page = first_page+1;
1012 /* All the rest of the pages should be free. We need to set their
1013 * first_object_offset pointer to the start of the region, and
1014 * set the bytes_used. */
1015 while (more) {
1016 gc_assert(page_table[next_page].allocated == FREE_PAGE_FLAG);
1017 gc_assert(page_table[next_page].bytes_used == 0);
1018 if (unboxed)
1019 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1020 else
1021 page_table[next_page].allocated = BOXED_PAGE_FLAG;
1022 page_table[next_page].gen = gc_alloc_generation;
1023 page_table[next_page].large_object = 1;
1025 page_table[next_page].first_object_offset =
1026 orig_first_page_bytes_used - PAGE_BYTES*(next_page-first_page);
1028 /* Calculate the number of bytes used in this page. */
1029 more = 0;
1030 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > PAGE_BYTES) {
1031 bytes_used = PAGE_BYTES;
1032 more = 1;
1034 page_table[next_page].bytes_used = bytes_used;
1035 page_table[next_page].write_protected=0;
1036 page_table[next_page].dont_move=0;
1037 byte_cnt += bytes_used;
1038 next_page++;
1041 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1043 bytes_allocated += nbytes;
1044 generations[gc_alloc_generation].bytes_allocated += nbytes;
1046 /* Add the region to the new_areas if requested. */
1047 if (!unboxed)
1048 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1050 /* Bump up last_free_page */
1051 if (last_page+1 > last_free_page) {
1052 last_free_page = last_page+1;
1053 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
1055 ret = thread_mutex_unlock(&free_pages_lock);
1056 gc_assert(ret == 0);
1058 #ifdef READ_PROTECT_FREE_PAGES
1059 os_protect(page_address(first_page),
1060 PAGE_BYTES*(1+last_page-first_page),
1061 OS_VM_PROT_ALL);
1062 #endif
1064 zero_dirty_pages(first_page, last_page);
1066 return page_address(first_page);
1069 static page_index_t gencgc_alloc_start_page = -1;
1071 void
1072 gc_heap_exhausted_error_or_lose (long available, long requested)
1074 /* Write basic information before doing anything else: if we don't
1075 * call to lisp this is a must, and even if we do there is always
1076 * the danger that we bounce back here before the error has been
1077 * handled, or indeed even printed.
1079 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1080 gc_active_p ? "garbage collection" : "allocation", available, requested);
1081 if (gc_active_p || (available == 0)) {
1082 /* If we are in GC, or totally out of memory there is no way
1083 * to sanely transfer control to the lisp-side of things.
1085 struct thread *thread = arch_os_get_current_thread();
1086 print_generation_stats(1);
1087 fprintf(stderr, "GC control variables:\n");
1088 fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1089 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
1090 SymbolValue(GC_PENDING,thread)==NIL ? "false" : "true");
1091 #ifdef LISP_FEATURE_SB_THREAD
1092 fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
1093 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
1094 #endif
1095 lose("Heap exhausted, game over.");
1097 else {
1098 /* FIXME: assert free_pages_lock held */
1099 (void)thread_mutex_unlock(&free_pages_lock);
1100 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1101 alloc_number(available), alloc_number(requested));
1102 lose("HEAP-EXHAUSTED-ERROR fell through");
1106 page_index_t
1107 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes, int unboxed)
1109 page_index_t first_page;
1110 page_index_t last_page;
1111 long region_size;
1112 page_index_t restart_page=*restart_page_ptr;
1113 long bytes_found;
1114 long num_pages;
1115 int large_p=(nbytes>=large_object_size);
1116 /* FIXME: assert(free_pages_lock is held); */
1118 /* Search for a contiguous free space of at least nbytes. If it's
1119 * a large object then align it on a page boundary by searching
1120 * for a free page. */
1122 if (gencgc_alloc_start_page != -1) {
1123 restart_page = gencgc_alloc_start_page;
1126 do {
1127 first_page = restart_page;
1128 if (large_p)
1129 while ((first_page < page_table_pages)
1130 && (page_table[first_page].allocated != FREE_PAGE_FLAG))
1131 first_page++;
1132 else
1133 while (first_page < page_table_pages) {
1134 if(page_table[first_page].allocated == FREE_PAGE_FLAG)
1135 break;
1136 if((page_table[first_page].allocated ==
1137 (unboxed ? UNBOXED_PAGE_FLAG : BOXED_PAGE_FLAG)) &&
1138 (page_table[first_page].large_object == 0) &&
1139 (page_table[first_page].gen == gc_alloc_generation) &&
1140 (page_table[first_page].bytes_used < (PAGE_BYTES-32)) &&
1141 (page_table[first_page].write_protected == 0) &&
1142 (page_table[first_page].dont_move == 0)) {
1143 break;
1145 first_page++;
1148 if (first_page >= page_table_pages)
1149 gc_heap_exhausted_error_or_lose(0, nbytes);
1151 gc_assert(page_table[first_page].write_protected == 0);
1153 last_page = first_page;
1154 bytes_found = PAGE_BYTES - page_table[first_page].bytes_used;
1155 num_pages = 1;
1156 while (((bytes_found < nbytes)
1157 || (!large_p && (num_pages < 2)))
1158 && (last_page < (page_table_pages-1))
1159 && (page_table[last_page+1].allocated == FREE_PAGE_FLAG)) {
1160 last_page++;
1161 num_pages++;
1162 bytes_found += PAGE_BYTES;
1163 gc_assert(page_table[last_page].write_protected == 0);
1166 region_size = (PAGE_BYTES - page_table[first_page].bytes_used)
1167 + PAGE_BYTES*(last_page-first_page);
1169 gc_assert(bytes_found == region_size);
1170 restart_page = last_page + 1;
1171 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1173 /* Check for a failure */
1174 if ((restart_page >= page_table_pages) && (bytes_found < nbytes))
1175 gc_heap_exhausted_error_or_lose(bytes_found, nbytes);
1177 *restart_page_ptr=first_page;
1179 return last_page;
1182 /* Allocate bytes. All the rest of the special-purpose allocation
1183 * functions will eventually call this */
1185 void *
1186 gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
1187 int quick_p)
1189 void *new_free_pointer;
1191 if(nbytes>=large_object_size)
1192 return gc_alloc_large(nbytes,unboxed_p,my_region);
1194 /* Check whether there is room in the current alloc region. */
1195 new_free_pointer = my_region->free_pointer + nbytes;
1197 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1198 my_region->free_pointer, new_free_pointer); */
1200 if (new_free_pointer <= my_region->end_addr) {
1201 /* If so then allocate from the current alloc region. */
1202 void *new_obj = my_region->free_pointer;
1203 my_region->free_pointer = new_free_pointer;
1205 /* Unless a `quick' alloc was requested, check whether the
1206 alloc region is almost empty. */
1207 if (!quick_p &&
1208 (my_region->end_addr - my_region->free_pointer) <= 32) {
1209 /* If so, finished with the current region. */
1210 gc_alloc_update_page_tables(unboxed_p, my_region);
1211 /* Set up a new region. */
1212 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1215 return((void *)new_obj);
1218 /* Else not enough free space in the current region: retry with a
1219 * new region. */
1221 gc_alloc_update_page_tables(unboxed_p, my_region);
1222 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1223 return gc_alloc_with_region(nbytes,unboxed_p,my_region,0);
1226 /* these are only used during GC: all allocation from the mutator calls
1227 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1228 * region */
1230 void *
1231 gc_general_alloc(long nbytes,int unboxed_p,int quick_p)
1233 struct alloc_region *my_region =
1234 unboxed_p ? &unboxed_region : &boxed_region;
1235 return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
1238 static inline void *
1239 gc_quick_alloc(long nbytes)
1241 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1244 static inline void *
1245 gc_quick_alloc_large(long nbytes)
1247 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1250 static inline void *
1251 gc_alloc_unboxed(long nbytes)
1253 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1256 static inline void *
1257 gc_quick_alloc_unboxed(long nbytes)
1259 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1262 static inline void *
1263 gc_quick_alloc_large_unboxed(long nbytes)
1265 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1269 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1272 extern long (*scavtab[256])(lispobj *where, lispobj object);
1273 extern lispobj (*transother[256])(lispobj object);
1274 extern long (*sizetab[256])(lispobj *where);
1276 /* Copy a large boxed object. If the object is in a large object
1277 * region then it is simply promoted, else it is copied. If it's large
1278 * enough then it's copied to a large object region.
1280 * Vectors may have shrunk. If the object is not copied the space
1281 * needs to be reclaimed, and the page_tables corrected. */
1282 lispobj
1283 copy_large_object(lispobj object, long nwords)
1285 int tag;
1286 lispobj *new;
1287 page_index_t first_page;
1289 gc_assert(is_lisp_pointer(object));
1290 gc_assert(from_space_p(object));
1291 gc_assert((nwords & 0x01) == 0);
1294 /* Check whether it's in a large object region. */
1295 first_page = find_page_index((void *)object);
1296 gc_assert(first_page >= 0);
1298 if (page_table[first_page].large_object) {
1300 /* Promote the object. */
1302 long remaining_bytes;
1303 page_index_t next_page;
1304 long bytes_freed;
1305 long old_bytes_used;
1307 /* Note: Any page write-protection must be removed, else a
1308 * later scavenge_newspace may incorrectly not scavenge these
1309 * pages. This would not be necessary if they are added to the
1310 * new areas, but let's do it for them all (they'll probably
1311 * be written anyway?). */
1313 gc_assert(page_table[first_page].first_object_offset == 0);
1315 next_page = first_page;
1316 remaining_bytes = nwords*N_WORD_BYTES;
1317 while (remaining_bytes > PAGE_BYTES) {
1318 gc_assert(page_table[next_page].gen == from_space);
1319 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1320 gc_assert(page_table[next_page].large_object);
1321 gc_assert(page_table[next_page].first_object_offset==
1322 -PAGE_BYTES*(next_page-first_page));
1323 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1325 page_table[next_page].gen = new_space;
1327 /* Remove any write-protection. We should be able to rely
1328 * on the write-protect flag to avoid redundant calls. */
1329 if (page_table[next_page].write_protected) {
1330 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1331 page_table[next_page].write_protected = 0;
1333 remaining_bytes -= PAGE_BYTES;
1334 next_page++;
1337 /* Now only one page remains, but the object may have shrunk
1338 * so there may be more unused pages which will be freed. */
1340 /* The object may have shrunk but shouldn't have grown. */
1341 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1343 page_table[next_page].gen = new_space;
1344 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1346 /* Adjust the bytes_used. */
1347 old_bytes_used = page_table[next_page].bytes_used;
1348 page_table[next_page].bytes_used = remaining_bytes;
1350 bytes_freed = old_bytes_used - remaining_bytes;
1352 /* Free any remaining pages; needs care. */
1353 next_page++;
1354 while ((old_bytes_used == PAGE_BYTES) &&
1355 (page_table[next_page].gen == from_space) &&
1356 (page_table[next_page].allocated == BOXED_PAGE_FLAG) &&
1357 page_table[next_page].large_object &&
1358 (page_table[next_page].first_object_offset ==
1359 -(next_page - first_page)*PAGE_BYTES)) {
1360 /* Checks out OK, free the page. Don't need to bother zeroing
1361 * pages as this should have been done before shrinking the
1362 * object. These pages shouldn't be write-protected as they
1363 * should be zero filled. */
1364 gc_assert(page_table[next_page].write_protected == 0);
1366 old_bytes_used = page_table[next_page].bytes_used;
1367 page_table[next_page].allocated = FREE_PAGE_FLAG;
1368 page_table[next_page].bytes_used = 0;
1369 bytes_freed += old_bytes_used;
1370 next_page++;
1373 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords +
1374 bytes_freed;
1375 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1376 bytes_allocated -= bytes_freed;
1378 /* Add the region to the new_areas if requested. */
1379 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1381 return(object);
1382 } else {
1383 /* Get tag of object. */
1384 tag = lowtag_of(object);
1386 /* Allocate space. */
1387 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1389 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1391 /* Return Lisp pointer of new object. */
1392 return ((lispobj) new) | tag;
1396 /* to copy unboxed objects */
1397 lispobj
1398 copy_unboxed_object(lispobj object, long nwords)
1400 long tag;
1401 lispobj *new;
1403 gc_assert(is_lisp_pointer(object));
1404 gc_assert(from_space_p(object));
1405 gc_assert((nwords & 0x01) == 0);
1407 /* Get tag of object. */
1408 tag = lowtag_of(object);
1410 /* Allocate space. */
1411 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1413 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1415 /* Return Lisp pointer of new object. */
1416 return ((lispobj) new) | tag;
1419 /* to copy large unboxed objects
1421 * If the object is in a large object region then it is simply
1422 * promoted, else it is copied. If it's large enough then it's copied
1423 * to a large object region.
1425 * Bignums and vectors may have shrunk. If the object is not copied
1426 * the space needs to be reclaimed, and the page_tables corrected.
1428 * KLUDGE: There's a lot of cut-and-paste duplication between this
1429 * function and copy_large_object(..). -- WHN 20000619 */
1430 lispobj
1431 copy_large_unboxed_object(lispobj object, long nwords)
1433 int tag;
1434 lispobj *new;
1435 page_index_t first_page;
1437 gc_assert(is_lisp_pointer(object));
1438 gc_assert(from_space_p(object));
1439 gc_assert((nwords & 0x01) == 0);
1441 if ((nwords > 1024*1024) && gencgc_verbose)
1442 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*N_WORD_BYTES));
1444 /* Check whether it's a large object. */
1445 first_page = find_page_index((void *)object);
1446 gc_assert(first_page >= 0);
1448 if (page_table[first_page].large_object) {
1449 /* Promote the object. Note: Unboxed objects may have been
1450 * allocated to a BOXED region so it may be necessary to
1451 * change the region to UNBOXED. */
1452 long remaining_bytes;
1453 page_index_t next_page;
1454 long bytes_freed;
1455 long old_bytes_used;
1457 gc_assert(page_table[first_page].first_object_offset == 0);
1459 next_page = first_page;
1460 remaining_bytes = nwords*N_WORD_BYTES;
1461 while (remaining_bytes > PAGE_BYTES) {
1462 gc_assert(page_table[next_page].gen == from_space);
1463 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1464 || (page_table[next_page].allocated == BOXED_PAGE_FLAG));
1465 gc_assert(page_table[next_page].large_object);
1466 gc_assert(page_table[next_page].first_object_offset==
1467 -PAGE_BYTES*(next_page-first_page));
1468 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1470 page_table[next_page].gen = new_space;
1471 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1472 remaining_bytes -= PAGE_BYTES;
1473 next_page++;
1476 /* Now only one page remains, but the object may have shrunk so
1477 * there may be more unused pages which will be freed. */
1479 /* Object may have shrunk but shouldn't have grown - check. */
1480 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1482 page_table[next_page].gen = new_space;
1483 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1485 /* Adjust the bytes_used. */
1486 old_bytes_used = page_table[next_page].bytes_used;
1487 page_table[next_page].bytes_used = remaining_bytes;
1489 bytes_freed = old_bytes_used - remaining_bytes;
1491 /* Free any remaining pages; needs care. */
1492 next_page++;
1493 while ((old_bytes_used == PAGE_BYTES) &&
1494 (page_table[next_page].gen == from_space) &&
1495 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1496 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
1497 page_table[next_page].large_object &&
1498 (page_table[next_page].first_object_offset ==
1499 -(next_page - first_page)*PAGE_BYTES)) {
1500 /* Checks out OK, free the page. Don't need to both zeroing
1501 * pages as this should have been done before shrinking the
1502 * object. These pages shouldn't be write-protected, even if
1503 * boxed they should be zero filled. */
1504 gc_assert(page_table[next_page].write_protected == 0);
1506 old_bytes_used = page_table[next_page].bytes_used;
1507 page_table[next_page].allocated = FREE_PAGE_FLAG;
1508 page_table[next_page].bytes_used = 0;
1509 bytes_freed += old_bytes_used;
1510 next_page++;
1513 if ((bytes_freed > 0) && gencgc_verbose)
1514 FSHOW((stderr,
1515 "/copy_large_unboxed bytes_freed=%d\n",
1516 bytes_freed));
1518 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES + bytes_freed;
1519 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1520 bytes_allocated -= bytes_freed;
1522 return(object);
1524 else {
1525 /* Get tag of object. */
1526 tag = lowtag_of(object);
1528 /* Allocate space. */
1529 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1531 /* Copy the object. */
1532 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1534 /* Return Lisp pointer of new object. */
1535 return ((lispobj) new) | tag;
1544 * code and code-related objects
1547 static lispobj trans_fun_header(lispobj object);
1548 static lispobj trans_boxed(lispobj object);
1551 /* Scan a x86 compiled code object, looking for possible fixups that
1552 * have been missed after a move.
1554 * Two types of fixups are needed:
1555 * 1. Absolute fixups to within the code object.
1556 * 2. Relative fixups to outside the code object.
1558 * Currently only absolute fixups to the constant vector, or to the
1559 * code area are checked. */
1560 void
1561 sniff_code_object(struct code *code, unsigned long displacement)
1563 #ifdef LISP_FEATURE_X86
1564 long nheader_words, ncode_words, nwords;
1565 void *p;
1566 void *constants_start_addr = NULL, *constants_end_addr;
1567 void *code_start_addr, *code_end_addr;
1568 int fixup_found = 0;
1570 if (!check_code_fixups)
1571 return;
1573 ncode_words = fixnum_value(code->code_size);
1574 nheader_words = HeaderValue(*(lispobj *)code);
1575 nwords = ncode_words + nheader_words;
1577 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1578 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1579 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1580 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1582 /* Work through the unboxed code. */
1583 for (p = code_start_addr; p < code_end_addr; p++) {
1584 void *data = *(void **)p;
1585 unsigned d1 = *((unsigned char *)p - 1);
1586 unsigned d2 = *((unsigned char *)p - 2);
1587 unsigned d3 = *((unsigned char *)p - 3);
1588 unsigned d4 = *((unsigned char *)p - 4);
1589 #ifdef QSHOW
1590 unsigned d5 = *((unsigned char *)p - 5);
1591 unsigned d6 = *((unsigned char *)p - 6);
1592 #endif
1594 /* Check for code references. */
1595 /* Check for a 32 bit word that looks like an absolute
1596 reference to within the code adea of the code object. */
1597 if ((data >= (code_start_addr-displacement))
1598 && (data < (code_end_addr-displacement))) {
1599 /* function header */
1600 if ((d4 == 0x5e)
1601 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1602 /* Skip the function header */
1603 p += 6*4 - 4 - 1;
1604 continue;
1606 /* the case of PUSH imm32 */
1607 if (d1 == 0x68) {
1608 fixup_found = 1;
1609 FSHOW((stderr,
1610 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1611 p, d6, d5, d4, d3, d2, d1, data));
1612 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1614 /* the case of MOV [reg-8],imm32 */
1615 if ((d3 == 0xc7)
1616 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1617 || d2==0x45 || d2==0x46 || d2==0x47)
1618 && (d1 == 0xf8)) {
1619 fixup_found = 1;
1620 FSHOW((stderr,
1621 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1622 p, d6, d5, d4, d3, d2, d1, data));
1623 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1625 /* the case of LEA reg,[disp32] */
1626 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1627 fixup_found = 1;
1628 FSHOW((stderr,
1629 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1630 p, d6, d5, d4, d3, d2, d1, data));
1631 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1635 /* Check for constant references. */
1636 /* Check for a 32 bit word that looks like an absolute
1637 reference to within the constant vector. Constant references
1638 will be aligned. */
1639 if ((data >= (constants_start_addr-displacement))
1640 && (data < (constants_end_addr-displacement))
1641 && (((unsigned)data & 0x3) == 0)) {
1642 /* Mov eax,m32 */
1643 if (d1 == 0xa1) {
1644 fixup_found = 1;
1645 FSHOW((stderr,
1646 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1647 p, d6, d5, d4, d3, d2, d1, data));
1648 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1651 /* the case of MOV m32,EAX */
1652 if (d1 == 0xa3) {
1653 fixup_found = 1;
1654 FSHOW((stderr,
1655 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1656 p, d6, d5, d4, d3, d2, d1, data));
1657 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1660 /* the case of CMP m32,imm32 */
1661 if ((d1 == 0x3d) && (d2 == 0x81)) {
1662 fixup_found = 1;
1663 FSHOW((stderr,
1664 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1665 p, d6, d5, d4, d3, d2, d1, data));
1666 /* XX Check this */
1667 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1670 /* Check for a mod=00, r/m=101 byte. */
1671 if ((d1 & 0xc7) == 5) {
1672 /* Cmp m32,reg */
1673 if (d2 == 0x39) {
1674 fixup_found = 1;
1675 FSHOW((stderr,
1676 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1677 p, d6, d5, d4, d3, d2, d1, data));
1678 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1680 /* the case of CMP reg32,m32 */
1681 if (d2 == 0x3b) {
1682 fixup_found = 1;
1683 FSHOW((stderr,
1684 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1685 p, d6, d5, d4, d3, d2, d1, data));
1686 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1688 /* the case of MOV m32,reg32 */
1689 if (d2 == 0x89) {
1690 fixup_found = 1;
1691 FSHOW((stderr,
1692 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1693 p, d6, d5, d4, d3, d2, d1, data));
1694 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1696 /* the case of MOV reg32,m32 */
1697 if (d2 == 0x8b) {
1698 fixup_found = 1;
1699 FSHOW((stderr,
1700 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1701 p, d6, d5, d4, d3, d2, d1, data));
1702 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1704 /* the case of LEA reg32,m32 */
1705 if (d2 == 0x8d) {
1706 fixup_found = 1;
1707 FSHOW((stderr,
1708 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1709 p, d6, d5, d4, d3, d2, d1, data));
1710 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1716 /* If anything was found, print some information on the code
1717 * object. */
1718 if (fixup_found) {
1719 FSHOW((stderr,
1720 "/compiled code object at %x: header words = %d, code words = %d\n",
1721 code, nheader_words, ncode_words));
1722 FSHOW((stderr,
1723 "/const start = %x, end = %x\n",
1724 constants_start_addr, constants_end_addr));
1725 FSHOW((stderr,
1726 "/code start = %x, end = %x\n",
1727 code_start_addr, code_end_addr));
1729 #endif
1732 void
1733 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1735 /* x86-64 uses pc-relative addressing instead of this kludge */
1736 #ifndef LISP_FEATURE_X86_64
1737 long nheader_words, ncode_words, nwords;
1738 void *constants_start_addr, *constants_end_addr;
1739 void *code_start_addr, *code_end_addr;
1740 lispobj fixups = NIL;
1741 unsigned long displacement = (unsigned long)new_code - (unsigned long)old_code;
1742 struct vector *fixups_vector;
1744 ncode_words = fixnum_value(new_code->code_size);
1745 nheader_words = HeaderValue(*(lispobj *)new_code);
1746 nwords = ncode_words + nheader_words;
1747 /* FSHOW((stderr,
1748 "/compiled code object at %x: header words = %d, code words = %d\n",
1749 new_code, nheader_words, ncode_words)); */
1750 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1751 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1752 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1753 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1755 FSHOW((stderr,
1756 "/const start = %x, end = %x\n",
1757 constants_start_addr,constants_end_addr));
1758 FSHOW((stderr,
1759 "/code start = %x; end = %x\n",
1760 code_start_addr,code_end_addr));
1763 /* The first constant should be a pointer to the fixups for this
1764 code objects. Check. */
1765 fixups = new_code->constants[0];
1767 /* It will be 0 or the unbound-marker if there are no fixups (as
1768 * will be the case if the code object has been purified, for
1769 * example) and will be an other pointer if it is valid. */
1770 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1771 !is_lisp_pointer(fixups)) {
1772 /* Check for possible errors. */
1773 if (check_code_fixups)
1774 sniff_code_object(new_code, displacement);
1776 return;
1779 fixups_vector = (struct vector *)native_pointer(fixups);
1781 /* Could be pointing to a forwarding pointer. */
1782 /* FIXME is this always in from_space? if so, could replace this code with
1783 * forwarding_pointer_p/forwarding_pointer_value */
1784 if (is_lisp_pointer(fixups) &&
1785 (find_page_index((void*)fixups_vector) != -1) &&
1786 (fixups_vector->header == 0x01)) {
1787 /* If so, then follow it. */
1788 /*SHOW("following pointer to a forwarding pointer");*/
1789 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1792 /*SHOW("got fixups");*/
1794 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1795 /* Got the fixups for the code block. Now work through the vector,
1796 and apply a fixup at each address. */
1797 long length = fixnum_value(fixups_vector->length);
1798 long i;
1799 for (i = 0; i < length; i++) {
1800 unsigned long offset = fixups_vector->data[i];
1801 /* Now check the current value of offset. */
1802 unsigned long old_value =
1803 *(unsigned long *)((unsigned long)code_start_addr + offset);
1805 /* If it's within the old_code object then it must be an
1806 * absolute fixup (relative ones are not saved) */
1807 if ((old_value >= (unsigned long)old_code)
1808 && (old_value < ((unsigned long)old_code + nwords*N_WORD_BYTES)))
1809 /* So add the dispacement. */
1810 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1811 old_value + displacement;
1812 else
1813 /* It is outside the old code object so it must be a
1814 * relative fixup (absolute fixups are not saved). So
1815 * subtract the displacement. */
1816 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1817 old_value - displacement;
1819 } else {
1820 /* This used to just print a note to stderr, but a bogus fixup seems to
1821 * indicate real heap corruption, so a hard hailure is in order. */
1822 lose("fixup vector %p has a bad widetag: %d\n", fixups_vector, widetag_of(fixups_vector->header));
1825 /* Check for possible errors. */
1826 if (check_code_fixups) {
1827 sniff_code_object(new_code,displacement);
1829 #endif
1833 static lispobj
1834 trans_boxed_large(lispobj object)
1836 lispobj header;
1837 unsigned long length;
1839 gc_assert(is_lisp_pointer(object));
1841 header = *((lispobj *) native_pointer(object));
1842 length = HeaderValue(header) + 1;
1843 length = CEILING(length, 2);
1845 return copy_large_object(object, length);
1848 /* Doesn't seem to be used, delete it after the grace period. */
1849 #if 0
1850 static lispobj
1851 trans_unboxed_large(lispobj object)
1853 lispobj header;
1854 unsigned long length;
1856 gc_assert(is_lisp_pointer(object));
1858 header = *((lispobj *) native_pointer(object));
1859 length = HeaderValue(header) + 1;
1860 length = CEILING(length, 2);
1862 return copy_large_unboxed_object(object, length);
1864 #endif
1868 * Lutexes. Using the normal finalization machinery for finalizing
1869 * lutexes is tricky, since the finalization depends on working lutexes.
1870 * So we track the lutexes in the GC and finalize them manually.
1873 #if defined(LUTEX_WIDETAG)
1876 * Start tracking LUTEX in the GC, by adding it to the linked list of
1877 * lutexes in the nursery generation. The caller is responsible for
1878 * locking, and GCs must be inhibited until the registration is
1879 * complete.
1881 void
1882 gencgc_register_lutex (struct lutex *lutex) {
1883 int index = find_page_index(lutex);
1884 generation_index_t gen;
1885 struct lutex *head;
1887 /* This lutex is in static space, so we don't need to worry about
1888 * finalizing it.
1890 if (index == -1)
1891 return;
1893 gen = page_table[index].gen;
1895 gc_assert(gen >= 0);
1896 gc_assert(gen < NUM_GENERATIONS);
1898 head = generations[gen].lutexes;
1900 lutex->gen = gen;
1901 lutex->next = head;
1902 lutex->prev = NULL;
1903 if (head)
1904 head->prev = lutex;
1905 generations[gen].lutexes = lutex;
1909 * Stop tracking LUTEX in the GC by removing it from the appropriate
1910 * linked lists. This will only be called during GC, so no locking is
1911 * needed.
1913 void
1914 gencgc_unregister_lutex (struct lutex *lutex) {
1915 if (lutex->prev) {
1916 lutex->prev->next = lutex->next;
1917 } else {
1918 generations[lutex->gen].lutexes = lutex->next;
1921 if (lutex->next) {
1922 lutex->next->prev = lutex->prev;
1925 lutex->next = NULL;
1926 lutex->prev = NULL;
1927 lutex->gen = -1;
1931 * Mark all lutexes in generation GEN as not live.
1933 static void
1934 unmark_lutexes (generation_index_t gen) {
1935 struct lutex *lutex = generations[gen].lutexes;
1937 while (lutex) {
1938 lutex->live = 0;
1939 lutex = lutex->next;
1944 * Finalize all lutexes in generation GEN that have not been marked live.
1946 static void
1947 reap_lutexes (generation_index_t gen) {
1948 struct lutex *lutex = generations[gen].lutexes;
1950 while (lutex) {
1951 struct lutex *next = lutex->next;
1952 if (!lutex->live) {
1953 lutex_destroy((tagged_lutex_t) lutex);
1954 gencgc_unregister_lutex(lutex);
1956 lutex = next;
1961 * Mark LUTEX as live.
1963 static void
1964 mark_lutex (lispobj tagged_lutex) {
1965 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
1967 lutex->live = 1;
1971 * Move all lutexes in generation FROM to generation TO.
1973 static void
1974 move_lutexes (generation_index_t from, generation_index_t to) {
1975 struct lutex *tail = generations[from].lutexes;
1977 /* Nothing to move */
1978 if (!tail)
1979 return;
1981 /* Change the generation of the lutexes in FROM. */
1982 while (tail->next) {
1983 tail->gen = to;
1984 tail = tail->next;
1986 tail->gen = to;
1988 /* Link the last lutex in the FROM list to the start of the TO list */
1989 tail->next = generations[to].lutexes;
1991 /* And vice versa */
1992 if (generations[to].lutexes) {
1993 generations[to].lutexes->prev = tail;
1996 /* And update the generations structures to match this */
1997 generations[to].lutexes = generations[from].lutexes;
1998 generations[from].lutexes = NULL;
2001 static long
2002 scav_lutex(lispobj *where, lispobj object)
2004 mark_lutex((lispobj) where);
2006 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2009 static lispobj
2010 trans_lutex(lispobj object)
2012 struct lutex *lutex = (struct lutex *) native_pointer(object);
2013 lispobj copied;
2014 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2015 gc_assert(is_lisp_pointer(object));
2016 copied = copy_object(object, words);
2018 /* Update the links, since the lutex moved in memory. */
2019 if (lutex->next) {
2020 lutex->next->prev = (struct lutex *) native_pointer(copied);
2023 if (lutex->prev) {
2024 lutex->prev->next = (struct lutex *) native_pointer(copied);
2025 } else {
2026 generations[lutex->gen].lutexes =
2027 (struct lutex *) native_pointer(copied);
2030 return copied;
2033 static long
2034 size_lutex(lispobj *where)
2036 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2038 #endif /* LUTEX_WIDETAG */
2042 * weak pointers
2045 /* XX This is a hack adapted from cgc.c. These don't work too
2046 * efficiently with the gencgc as a list of the weak pointers is
2047 * maintained within the objects which causes writes to the pages. A
2048 * limited attempt is made to avoid unnecessary writes, but this needs
2049 * a re-think. */
2050 #define WEAK_POINTER_NWORDS \
2051 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2053 static long
2054 scav_weak_pointer(lispobj *where, lispobj object)
2056 /* Since we overwrite the 'next' field, we have to make
2057 * sure not to do so for pointers already in the list.
2058 * Instead of searching the list of weak_pointers each
2059 * time, we ensure that next is always NULL when the weak
2060 * pointer isn't in the list, and not NULL otherwise.
2061 * Since we can't use NULL to denote end of list, we
2062 * use a pointer back to the same weak_pointer.
2064 struct weak_pointer * wp = (struct weak_pointer*)where;
2066 if (NULL == wp->next) {
2067 wp->next = weak_pointers;
2068 weak_pointers = wp;
2069 if (NULL == wp->next)
2070 wp->next = wp;
2073 /* Do not let GC scavenge the value slot of the weak pointer.
2074 * (That is why it is a weak pointer.) */
2076 return WEAK_POINTER_NWORDS;
2080 lispobj *
2081 search_read_only_space(void *pointer)
2083 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2084 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2085 if ((pointer < (void *)start) || (pointer >= (void *)end))
2086 return NULL;
2087 return (gc_search_space(start,
2088 (((lispobj *)pointer)+2)-start,
2089 (lispobj *) pointer));
2092 lispobj *
2093 search_static_space(void *pointer)
2095 lispobj *start = (lispobj *)STATIC_SPACE_START;
2096 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2097 if ((pointer < (void *)start) || (pointer >= (void *)end))
2098 return NULL;
2099 return (gc_search_space(start,
2100 (((lispobj *)pointer)+2)-start,
2101 (lispobj *) pointer));
2104 /* a faster version for searching the dynamic space. This will work even
2105 * if the object is in a current allocation region. */
2106 lispobj *
2107 search_dynamic_space(void *pointer)
2109 page_index_t page_index = find_page_index(pointer);
2110 lispobj *start;
2112 /* The address may be invalid, so do some checks. */
2113 if ((page_index == -1) ||
2114 (page_table[page_index].allocated == FREE_PAGE_FLAG))
2115 return NULL;
2116 start = (lispobj *)((void *)page_address(page_index)
2117 + page_table[page_index].first_object_offset);
2118 return (gc_search_space(start,
2119 (((lispobj *)pointer)+2)-start,
2120 (lispobj *)pointer));
2123 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2125 /* Helper for valid_lisp_pointer_p and
2126 * possibly_valid_dynamic_space_pointer.
2128 * pointer is the pointer to validate, and start_addr is the address
2129 * of the enclosing object.
2131 static int
2132 looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
2134 /* We need to allow raw pointers into Code objects for return
2135 * addresses. This will also pick up pointers to functions in code
2136 * objects. */
2137 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG)
2138 /* XXX could do some further checks here */
2139 return 1;
2141 if (!is_lisp_pointer((lispobj)pointer)) {
2142 return 0;
2145 /* Check that the object pointed to is consistent with the pointer
2146 * low tag. */
2147 switch (lowtag_of((lispobj)pointer)) {
2148 case FUN_POINTER_LOWTAG:
2149 /* Start_addr should be the enclosing code object, or a closure
2150 * header. */
2151 switch (widetag_of(*start_addr)) {
2152 case CODE_HEADER_WIDETAG:
2153 /* This case is probably caught above. */
2154 break;
2155 case CLOSURE_HEADER_WIDETAG:
2156 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2157 if ((unsigned long)pointer !=
2158 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2159 if (gencgc_verbose)
2160 FSHOW((stderr,
2161 "/Wf2: %x %x %x\n",
2162 pointer, start_addr, *start_addr));
2163 return 0;
2165 break;
2166 default:
2167 if (gencgc_verbose)
2168 FSHOW((stderr,
2169 "/Wf3: %x %x %x\n",
2170 pointer, start_addr, *start_addr));
2171 return 0;
2173 break;
2174 case LIST_POINTER_LOWTAG:
2175 if ((unsigned long)pointer !=
2176 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2177 if (gencgc_verbose)
2178 FSHOW((stderr,
2179 "/Wl1: %x %x %x\n",
2180 pointer, start_addr, *start_addr));
2181 return 0;
2183 /* Is it plausible cons? */
2184 if ((is_lisp_pointer(start_addr[0])
2185 || (fixnump(start_addr[0]))
2186 || (widetag_of(start_addr[0]) == CHARACTER_WIDETAG)
2187 #if N_WORD_BITS == 64
2188 || (widetag_of(start_addr[0]) == SINGLE_FLOAT_WIDETAG)
2189 #endif
2190 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
2191 && (is_lisp_pointer(start_addr[1])
2192 || (fixnump(start_addr[1]))
2193 || (widetag_of(start_addr[1]) == CHARACTER_WIDETAG)
2194 #if N_WORD_BITS == 64
2195 || (widetag_of(start_addr[1]) == SINGLE_FLOAT_WIDETAG)
2196 #endif
2197 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
2198 break;
2199 else {
2200 if (gencgc_verbose)
2201 FSHOW((stderr,
2202 "/Wl2: %x %x %x\n",
2203 pointer, start_addr, *start_addr));
2204 return 0;
2206 case INSTANCE_POINTER_LOWTAG:
2207 if ((unsigned long)pointer !=
2208 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2209 if (gencgc_verbose)
2210 FSHOW((stderr,
2211 "/Wi1: %x %x %x\n",
2212 pointer, start_addr, *start_addr));
2213 return 0;
2215 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2216 if (gencgc_verbose)
2217 FSHOW((stderr,
2218 "/Wi2: %x %x %x\n",
2219 pointer, start_addr, *start_addr));
2220 return 0;
2222 break;
2223 case OTHER_POINTER_LOWTAG:
2224 if ((unsigned long)pointer !=
2225 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2226 if (gencgc_verbose)
2227 FSHOW((stderr,
2228 "/Wo1: %x %x %x\n",
2229 pointer, start_addr, *start_addr));
2230 return 0;
2232 /* Is it plausible? Not a cons. XXX should check the headers. */
2233 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2234 if (gencgc_verbose)
2235 FSHOW((stderr,
2236 "/Wo2: %x %x %x\n",
2237 pointer, start_addr, *start_addr));
2238 return 0;
2240 switch (widetag_of(start_addr[0])) {
2241 case UNBOUND_MARKER_WIDETAG:
2242 case NO_TLS_VALUE_MARKER_WIDETAG:
2243 case CHARACTER_WIDETAG:
2244 #if N_WORD_BITS == 64
2245 case SINGLE_FLOAT_WIDETAG:
2246 #endif
2247 if (gencgc_verbose)
2248 FSHOW((stderr,
2249 "*Wo3: %x %x %x\n",
2250 pointer, start_addr, *start_addr));
2251 return 0;
2253 /* only pointed to by function pointers? */
2254 case CLOSURE_HEADER_WIDETAG:
2255 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2256 if (gencgc_verbose)
2257 FSHOW((stderr,
2258 "*Wo4: %x %x %x\n",
2259 pointer, start_addr, *start_addr));
2260 return 0;
2262 case INSTANCE_HEADER_WIDETAG:
2263 if (gencgc_verbose)
2264 FSHOW((stderr,
2265 "*Wo5: %x %x %x\n",
2266 pointer, start_addr, *start_addr));
2267 return 0;
2269 /* the valid other immediate pointer objects */
2270 case SIMPLE_VECTOR_WIDETAG:
2271 case RATIO_WIDETAG:
2272 case COMPLEX_WIDETAG:
2273 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2274 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2275 #endif
2276 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2277 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2278 #endif
2279 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2280 case COMPLEX_LONG_FLOAT_WIDETAG:
2281 #endif
2282 case SIMPLE_ARRAY_WIDETAG:
2283 case COMPLEX_BASE_STRING_WIDETAG:
2284 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2285 case COMPLEX_CHARACTER_STRING_WIDETAG:
2286 #endif
2287 case COMPLEX_VECTOR_NIL_WIDETAG:
2288 case COMPLEX_BIT_VECTOR_WIDETAG:
2289 case COMPLEX_VECTOR_WIDETAG:
2290 case COMPLEX_ARRAY_WIDETAG:
2291 case VALUE_CELL_HEADER_WIDETAG:
2292 case SYMBOL_HEADER_WIDETAG:
2293 case FDEFN_WIDETAG:
2294 case CODE_HEADER_WIDETAG:
2295 case BIGNUM_WIDETAG:
2296 #if N_WORD_BITS != 64
2297 case SINGLE_FLOAT_WIDETAG:
2298 #endif
2299 case DOUBLE_FLOAT_WIDETAG:
2300 #ifdef LONG_FLOAT_WIDETAG
2301 case LONG_FLOAT_WIDETAG:
2302 #endif
2303 case SIMPLE_BASE_STRING_WIDETAG:
2304 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2305 case SIMPLE_CHARACTER_STRING_WIDETAG:
2306 #endif
2307 case SIMPLE_BIT_VECTOR_WIDETAG:
2308 case SIMPLE_ARRAY_NIL_WIDETAG:
2309 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2310 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2311 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2312 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2313 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2314 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2315 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2316 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2317 #endif
2318 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2319 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2320 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2321 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2322 #endif
2323 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2324 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2325 #endif
2326 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2327 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2328 #endif
2329 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2330 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2331 #endif
2332 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2333 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2334 #endif
2335 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2336 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2337 #endif
2338 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2339 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2340 #endif
2341 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2342 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2343 #endif
2344 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2345 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2346 #endif
2347 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2348 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2349 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2350 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2351 #endif
2352 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2353 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2354 #endif
2355 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2356 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2357 #endif
2358 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2359 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2360 #endif
2361 case SAP_WIDETAG:
2362 case WEAK_POINTER_WIDETAG:
2363 #ifdef LUTEX_WIDETAG
2364 case LUTEX_WIDETAG:
2365 #endif
2366 break;
2368 default:
2369 if (gencgc_verbose)
2370 FSHOW((stderr,
2371 "/Wo6: %x %x %x\n",
2372 pointer, start_addr, *start_addr));
2373 return 0;
2375 break;
2376 default:
2377 if (gencgc_verbose)
2378 FSHOW((stderr,
2379 "*W?: %x %x %x\n",
2380 pointer, start_addr, *start_addr));
2381 return 0;
2384 /* looks good */
2385 return 1;
2388 /* Used by the debugger to validate possibly bogus pointers before
2389 * calling MAKE-LISP-OBJ on them.
2391 * FIXME: We would like to make this perfect, because if the debugger
2392 * constructs a reference to a bugs lisp object, and it ends up in a
2393 * location scavenged by the GC all hell breaks loose.
2395 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2396 * and return true for all valid pointers, this could actually be eager
2397 * and lie about a few pointers without bad results... but that should
2398 * be reflected in the name.
2401 valid_lisp_pointer_p(lispobj *pointer)
2403 lispobj *start;
2404 if (((start=search_dynamic_space(pointer))!=NULL) ||
2405 ((start=search_static_space(pointer))!=NULL) ||
2406 ((start=search_read_only_space(pointer))!=NULL))
2407 return looks_like_valid_lisp_pointer_p(pointer, start);
2408 else
2409 return 0;
2412 /* Is there any possibility that pointer is a valid Lisp object
2413 * reference, and/or something else (e.g. subroutine call return
2414 * address) which should prevent us from moving the referred-to thing?
2415 * This is called from preserve_pointers() */
2416 static int
2417 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2419 lispobj *start_addr;
2421 /* Find the object start address. */
2422 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2423 return 0;
2426 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2429 /* Adjust large bignum and vector objects. This will adjust the
2430 * allocated region if the size has shrunk, and move unboxed objects
2431 * into unboxed pages. The pages are not promoted here, and the
2432 * promoted region is not added to the new_regions; this is really
2433 * only designed to be called from preserve_pointer(). Shouldn't fail
2434 * if this is missed, just may delay the moving of objects to unboxed
2435 * pages, and the freeing of pages. */
2436 static void
2437 maybe_adjust_large_object(lispobj *where)
2439 page_index_t first_page;
2440 page_index_t next_page;
2441 long nwords;
2443 long remaining_bytes;
2444 long bytes_freed;
2445 long old_bytes_used;
2447 int boxed;
2449 /* Check whether it's a vector or bignum object. */
2450 switch (widetag_of(where[0])) {
2451 case SIMPLE_VECTOR_WIDETAG:
2452 boxed = BOXED_PAGE_FLAG;
2453 break;
2454 case BIGNUM_WIDETAG:
2455 case SIMPLE_BASE_STRING_WIDETAG:
2456 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2457 case SIMPLE_CHARACTER_STRING_WIDETAG:
2458 #endif
2459 case SIMPLE_BIT_VECTOR_WIDETAG:
2460 case SIMPLE_ARRAY_NIL_WIDETAG:
2461 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2462 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2463 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2464 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2465 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2466 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2467 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2468 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2469 #endif
2470 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2471 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2472 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2473 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2474 #endif
2475 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2476 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2477 #endif
2478 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2479 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2480 #endif
2481 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2482 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2483 #endif
2484 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2485 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2486 #endif
2487 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2488 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2489 #endif
2490 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2491 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2492 #endif
2493 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2494 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2495 #endif
2496 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2497 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2498 #endif
2499 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2500 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2501 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2502 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2503 #endif
2504 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2505 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2506 #endif
2507 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2508 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2509 #endif
2510 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2511 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2512 #endif
2513 boxed = UNBOXED_PAGE_FLAG;
2514 break;
2515 default:
2516 return;
2519 /* Find its current size. */
2520 nwords = (sizetab[widetag_of(where[0])])(where);
2522 first_page = find_page_index((void *)where);
2523 gc_assert(first_page >= 0);
2525 /* Note: Any page write-protection must be removed, else a later
2526 * scavenge_newspace may incorrectly not scavenge these pages.
2527 * This would not be necessary if they are added to the new areas,
2528 * but lets do it for them all (they'll probably be written
2529 * anyway?). */
2531 gc_assert(page_table[first_page].first_object_offset == 0);
2533 next_page = first_page;
2534 remaining_bytes = nwords*N_WORD_BYTES;
2535 while (remaining_bytes > PAGE_BYTES) {
2536 gc_assert(page_table[next_page].gen == from_space);
2537 gc_assert((page_table[next_page].allocated == BOXED_PAGE_FLAG)
2538 || (page_table[next_page].allocated == UNBOXED_PAGE_FLAG));
2539 gc_assert(page_table[next_page].large_object);
2540 gc_assert(page_table[next_page].first_object_offset ==
2541 -PAGE_BYTES*(next_page-first_page));
2542 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2544 page_table[next_page].allocated = boxed;
2546 /* Shouldn't be write-protected at this stage. Essential that the
2547 * pages aren't. */
2548 gc_assert(!page_table[next_page].write_protected);
2549 remaining_bytes -= PAGE_BYTES;
2550 next_page++;
2553 /* Now only one page remains, but the object may have shrunk so
2554 * there may be more unused pages which will be freed. */
2556 /* Object may have shrunk but shouldn't have grown - check. */
2557 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2559 page_table[next_page].allocated = boxed;
2560 gc_assert(page_table[next_page].allocated ==
2561 page_table[first_page].allocated);
2563 /* Adjust the bytes_used. */
2564 old_bytes_used = page_table[next_page].bytes_used;
2565 page_table[next_page].bytes_used = remaining_bytes;
2567 bytes_freed = old_bytes_used - remaining_bytes;
2569 /* Free any remaining pages; needs care. */
2570 next_page++;
2571 while ((old_bytes_used == PAGE_BYTES) &&
2572 (page_table[next_page].gen == from_space) &&
2573 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
2574 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
2575 page_table[next_page].large_object &&
2576 (page_table[next_page].first_object_offset ==
2577 -(next_page - first_page)*PAGE_BYTES)) {
2578 /* It checks out OK, free the page. We don't need to both zeroing
2579 * pages as this should have been done before shrinking the
2580 * object. These pages shouldn't be write protected as they
2581 * should be zero filled. */
2582 gc_assert(page_table[next_page].write_protected == 0);
2584 old_bytes_used = page_table[next_page].bytes_used;
2585 page_table[next_page].allocated = FREE_PAGE_FLAG;
2586 page_table[next_page].bytes_used = 0;
2587 bytes_freed += old_bytes_used;
2588 next_page++;
2591 if ((bytes_freed > 0) && gencgc_verbose) {
2592 FSHOW((stderr,
2593 "/maybe_adjust_large_object() freed %d\n",
2594 bytes_freed));
2597 generations[from_space].bytes_allocated -= bytes_freed;
2598 bytes_allocated -= bytes_freed;
2600 return;
2603 /* Take a possible pointer to a Lisp object and mark its page in the
2604 * page_table so that it will not be relocated during a GC.
2606 * This involves locating the page it points to, then backing up to
2607 * the start of its region, then marking all pages dont_move from there
2608 * up to the first page that's not full or has a different generation
2610 * It is assumed that all the page static flags have been cleared at
2611 * the start of a GC.
2613 * It is also assumed that the current gc_alloc() region has been
2614 * flushed and the tables updated. */
2616 static void
2617 preserve_pointer(void *addr)
2619 page_index_t addr_page_index = find_page_index(addr);
2620 page_index_t first_page;
2621 page_index_t i;
2622 unsigned int region_allocation;
2624 /* quick check 1: Address is quite likely to have been invalid. */
2625 if ((addr_page_index == -1)
2626 || (page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2627 || (page_table[addr_page_index].bytes_used == 0)
2628 || (page_table[addr_page_index].gen != from_space)
2629 /* Skip if already marked dont_move. */
2630 || (page_table[addr_page_index].dont_move != 0))
2631 return;
2632 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2633 /* (Now that we know that addr_page_index is in range, it's
2634 * safe to index into page_table[] with it.) */
2635 region_allocation = page_table[addr_page_index].allocated;
2637 /* quick check 2: Check the offset within the page.
2640 if (((unsigned long)addr & (PAGE_BYTES - 1)) > page_table[addr_page_index].bytes_used)
2641 return;
2643 /* Filter out anything which can't be a pointer to a Lisp object
2644 * (or, as a special case which also requires dont_move, a return
2645 * address referring to something in a CodeObject). This is
2646 * expensive but important, since it vastly reduces the
2647 * probability that random garbage will be bogusly interpreted as
2648 * a pointer which prevents a page from moving. */
2649 if (!(possibly_valid_dynamic_space_pointer(addr)))
2650 return;
2652 /* Find the beginning of the region. Note that there may be
2653 * objects in the region preceding the one that we were passed a
2654 * pointer to: if this is the case, we will write-protect all the
2655 * previous objects' pages too. */
2657 #if 0
2658 /* I think this'd work just as well, but without the assertions.
2659 * -dan 2004.01.01 */
2660 first_page=
2661 find_page_index(page_address(addr_page_index)+
2662 page_table[addr_page_index].first_object_offset);
2663 #else
2664 first_page = addr_page_index;
2665 while (page_table[first_page].first_object_offset != 0) {
2666 --first_page;
2667 /* Do some checks. */
2668 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2669 gc_assert(page_table[first_page].gen == from_space);
2670 gc_assert(page_table[first_page].allocated == region_allocation);
2672 #endif
2674 /* Adjust any large objects before promotion as they won't be
2675 * copied after promotion. */
2676 if (page_table[first_page].large_object) {
2677 maybe_adjust_large_object(page_address(first_page));
2678 /* If a large object has shrunk then addr may now point to a
2679 * free area in which case it's ignored here. Note it gets
2680 * through the valid pointer test above because the tail looks
2681 * like conses. */
2682 if ((page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2683 || (page_table[addr_page_index].bytes_used == 0)
2684 /* Check the offset within the page. */
2685 || (((unsigned long)addr & (PAGE_BYTES - 1))
2686 > page_table[addr_page_index].bytes_used)) {
2687 FSHOW((stderr,
2688 "weird? ignore ptr 0x%x to freed area of large object\n",
2689 addr));
2690 return;
2692 /* It may have moved to unboxed pages. */
2693 region_allocation = page_table[first_page].allocated;
2696 /* Now work forward until the end of this contiguous area is found,
2697 * marking all pages as dont_move. */
2698 for (i = first_page; ;i++) {
2699 gc_assert(page_table[i].allocated == region_allocation);
2701 /* Mark the page static. */
2702 page_table[i].dont_move = 1;
2704 /* Move the page to the new_space. XX I'd rather not do this
2705 * but the GC logic is not quite able to copy with the static
2706 * pages remaining in the from space. This also requires the
2707 * generation bytes_allocated counters be updated. */
2708 page_table[i].gen = new_space;
2709 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2710 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2712 /* It is essential that the pages are not write protected as
2713 * they may have pointers into the old-space which need
2714 * scavenging. They shouldn't be write protected at this
2715 * stage. */
2716 gc_assert(!page_table[i].write_protected);
2718 /* Check whether this is the last page in this contiguous block.. */
2719 if ((page_table[i].bytes_used < PAGE_BYTES)
2720 /* ..or it is PAGE_BYTES and is the last in the block */
2721 || (page_table[i+1].allocated == FREE_PAGE_FLAG)
2722 || (page_table[i+1].bytes_used == 0) /* next page free */
2723 || (page_table[i+1].gen != from_space) /* diff. gen */
2724 || (page_table[i+1].first_object_offset == 0))
2725 break;
2728 /* Check that the page is now static. */
2729 gc_assert(page_table[addr_page_index].dont_move != 0);
2732 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2735 /* If the given page is not write-protected, then scan it for pointers
2736 * to younger generations or the top temp. generation, if no
2737 * suspicious pointers are found then the page is write-protected.
2739 * Care is taken to check for pointers to the current gc_alloc()
2740 * region if it is a younger generation or the temp. generation. This
2741 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2742 * the gc_alloc_generation does not need to be checked as this is only
2743 * called from scavenge_generation() when the gc_alloc generation is
2744 * younger, so it just checks if there is a pointer to the current
2745 * region.
2747 * We return 1 if the page was write-protected, else 0. */
2748 static int
2749 update_page_write_prot(page_index_t page)
2751 generation_index_t gen = page_table[page].gen;
2752 long j;
2753 int wp_it = 1;
2754 void **page_addr = (void **)page_address(page);
2755 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2757 /* Shouldn't be a free page. */
2758 gc_assert(page_table[page].allocated != FREE_PAGE_FLAG);
2759 gc_assert(page_table[page].bytes_used != 0);
2761 /* Skip if it's already write-protected, pinned, or unboxed */
2762 if (page_table[page].write_protected
2763 /* FIXME: What's the reason for not write-protecting pinned pages? */
2764 || page_table[page].dont_move
2765 || (page_table[page].allocated & UNBOXED_PAGE_FLAG))
2766 return (0);
2768 /* Scan the page for pointers to younger generations or the
2769 * top temp. generation. */
2771 for (j = 0; j < num_words; j++) {
2772 void *ptr = *(page_addr+j);
2773 page_index_t index = find_page_index(ptr);
2775 /* Check that it's in the dynamic space */
2776 if (index != -1)
2777 if (/* Does it point to a younger or the temp. generation? */
2778 ((page_table[index].allocated != FREE_PAGE_FLAG)
2779 && (page_table[index].bytes_used != 0)
2780 && ((page_table[index].gen < gen)
2781 || (page_table[index].gen == SCRATCH_GENERATION)))
2783 /* Or does it point within a current gc_alloc() region? */
2784 || ((boxed_region.start_addr <= ptr)
2785 && (ptr <= boxed_region.free_pointer))
2786 || ((unboxed_region.start_addr <= ptr)
2787 && (ptr <= unboxed_region.free_pointer))) {
2788 wp_it = 0;
2789 break;
2793 if (wp_it == 1) {
2794 /* Write-protect the page. */
2795 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2797 os_protect((void *)page_addr,
2798 PAGE_BYTES,
2799 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2801 /* Note the page as protected in the page tables. */
2802 page_table[page].write_protected = 1;
2805 return (wp_it);
2808 /* Scavenge all generations from FROM to TO, inclusive, except for
2809 * new_space which needs special handling, as new objects may be
2810 * added which are not checked here - use scavenge_newspace generation.
2812 * Write-protected pages should not have any pointers to the
2813 * from_space so do need scavenging; thus write-protected pages are
2814 * not always scavenged. There is some code to check that these pages
2815 * are not written; but to check fully the write-protected pages need
2816 * to be scavenged by disabling the code to skip them.
2818 * Under the current scheme when a generation is GCed the younger
2819 * generations will be empty. So, when a generation is being GCed it
2820 * is only necessary to scavenge the older generations for pointers
2821 * not the younger. So a page that does not have pointers to younger
2822 * generations does not need to be scavenged.
2824 * The write-protection can be used to note pages that don't have
2825 * pointers to younger pages. But pages can be written without having
2826 * pointers to younger generations. After the pages are scavenged here
2827 * they can be scanned for pointers to younger generations and if
2828 * there are none the page can be write-protected.
2830 * One complication is when the newspace is the top temp. generation.
2832 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2833 * that none were written, which they shouldn't be as they should have
2834 * no pointers to younger generations. This breaks down for weak
2835 * pointers as the objects contain a link to the next and are written
2836 * if a weak pointer is scavenged. Still it's a useful check. */
2837 static void
2838 scavenge_generations(generation_index_t from, generation_index_t to)
2840 page_index_t i;
2841 int num_wp = 0;
2843 #define SC_GEN_CK 0
2844 #if SC_GEN_CK
2845 /* Clear the write_protected_cleared flags on all pages. */
2846 for (i = 0; i < page_table_pages; i++)
2847 page_table[i].write_protected_cleared = 0;
2848 #endif
2850 for (i = 0; i < last_free_page; i++) {
2851 generation_index_t generation = page_table[i].gen;
2852 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2853 && (page_table[i].bytes_used != 0)
2854 && (generation != new_space)
2855 && (generation >= from)
2856 && (generation <= to)) {
2857 page_index_t last_page,j;
2858 int write_protected=1;
2860 /* This should be the start of a region */
2861 gc_assert(page_table[i].first_object_offset == 0);
2863 /* Now work forward until the end of the region */
2864 for (last_page = i; ; last_page++) {
2865 write_protected =
2866 write_protected && page_table[last_page].write_protected;
2867 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2868 /* Or it is PAGE_BYTES and is the last in the block */
2869 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2870 || (page_table[last_page+1].bytes_used == 0)
2871 || (page_table[last_page+1].gen != generation)
2872 || (page_table[last_page+1].first_object_offset == 0))
2873 break;
2875 if (!write_protected) {
2876 scavenge(page_address(i),
2877 (page_table[last_page].bytes_used +
2878 (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
2880 /* Now scan the pages and write protect those that
2881 * don't have pointers to younger generations. */
2882 if (enable_page_protection) {
2883 for (j = i; j <= last_page; j++) {
2884 num_wp += update_page_write_prot(j);
2887 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2888 FSHOW((stderr,
2889 "/write protected %d pages within generation %d\n",
2890 num_wp, generation));
2893 i = last_page;
2897 #if SC_GEN_CK
2898 /* Check that none of the write_protected pages in this generation
2899 * have been written to. */
2900 for (i = 0; i < page_table_pages; i++) {
2901 if ((page_table[i].allocation != FREE_PAGE_FLAG)
2902 && (page_table[i].bytes_used != 0)
2903 && (page_table[i].gen == generation)
2904 && (page_table[i].write_protected_cleared != 0)) {
2905 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2906 FSHOW((stderr,
2907 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2908 page_table[i].bytes_used,
2909 page_table[i].first_object_offset,
2910 page_table[i].dont_move));
2911 lose("write to protected page %d in scavenge_generation()\n", i);
2914 #endif
2918 /* Scavenge a newspace generation. As it is scavenged new objects may
2919 * be allocated to it; these will also need to be scavenged. This
2920 * repeats until there are no more objects unscavenged in the
2921 * newspace generation.
2923 * To help improve the efficiency, areas written are recorded by
2924 * gc_alloc() and only these scavenged. Sometimes a little more will be
2925 * scavenged, but this causes no harm. An easy check is done that the
2926 * scavenged bytes equals the number allocated in the previous
2927 * scavenge.
2929 * Write-protected pages are not scanned except if they are marked
2930 * dont_move in which case they may have been promoted and still have
2931 * pointers to the from space.
2933 * Write-protected pages could potentially be written by alloc however
2934 * to avoid having to handle re-scavenging of write-protected pages
2935 * gc_alloc() does not write to write-protected pages.
2937 * New areas of objects allocated are recorded alternatively in the two
2938 * new_areas arrays below. */
2939 static struct new_area new_areas_1[NUM_NEW_AREAS];
2940 static struct new_area new_areas_2[NUM_NEW_AREAS];
2942 /* Do one full scan of the new space generation. This is not enough to
2943 * complete the job as new objects may be added to the generation in
2944 * the process which are not scavenged. */
2945 static void
2946 scavenge_newspace_generation_one_scan(generation_index_t generation)
2948 page_index_t i;
2950 FSHOW((stderr,
2951 "/starting one full scan of newspace generation %d\n",
2952 generation));
2953 for (i = 0; i < last_free_page; i++) {
2954 /* Note that this skips over open regions when it encounters them. */
2955 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2956 && (page_table[i].bytes_used != 0)
2957 && (page_table[i].gen == generation)
2958 && ((page_table[i].write_protected == 0)
2959 /* (This may be redundant as write_protected is now
2960 * cleared before promotion.) */
2961 || (page_table[i].dont_move == 1))) {
2962 page_index_t last_page;
2963 int all_wp=1;
2965 /* The scavenge will start at the first_object_offset of page i.
2967 * We need to find the full extent of this contiguous
2968 * block in case objects span pages.
2970 * Now work forward until the end of this contiguous area
2971 * is found. A small area is preferred as there is a
2972 * better chance of its pages being write-protected. */
2973 for (last_page = i; ;last_page++) {
2974 /* If all pages are write-protected and movable,
2975 * then no need to scavenge */
2976 all_wp=all_wp && page_table[last_page].write_protected &&
2977 !page_table[last_page].dont_move;
2979 /* Check whether this is the last page in this
2980 * contiguous block */
2981 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2982 /* Or it is PAGE_BYTES and is the last in the block */
2983 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2984 || (page_table[last_page+1].bytes_used == 0)
2985 || (page_table[last_page+1].gen != generation)
2986 || (page_table[last_page+1].first_object_offset == 0))
2987 break;
2990 /* Do a limited check for write-protected pages. */
2991 if (!all_wp) {
2992 long size;
2994 size = (page_table[last_page].bytes_used
2995 + (last_page-i)*PAGE_BYTES
2996 - page_table[i].first_object_offset)/N_WORD_BYTES;
2997 new_areas_ignore_page = last_page;
2999 scavenge(page_address(i) +
3000 page_table[i].first_object_offset,
3001 size);
3004 i = last_page;
3007 FSHOW((stderr,
3008 "/done with one full scan of newspace generation %d\n",
3009 generation));
3012 /* Do a complete scavenge of the newspace generation. */
3013 static void
3014 scavenge_newspace_generation(generation_index_t generation)
3016 long i;
3018 /* the new_areas array currently being written to by gc_alloc() */
3019 struct new_area (*current_new_areas)[] = &new_areas_1;
3020 long current_new_areas_index;
3022 /* the new_areas created by the previous scavenge cycle */
3023 struct new_area (*previous_new_areas)[] = NULL;
3024 long previous_new_areas_index;
3026 /* Flush the current regions updating the tables. */
3027 gc_alloc_update_all_page_tables();
3029 /* Turn on the recording of new areas by gc_alloc(). */
3030 new_areas = current_new_areas;
3031 new_areas_index = 0;
3033 /* Don't need to record new areas that get scavenged anyway during
3034 * scavenge_newspace_generation_one_scan. */
3035 record_new_objects = 1;
3037 /* Start with a full scavenge. */
3038 scavenge_newspace_generation_one_scan(generation);
3040 /* Record all new areas now. */
3041 record_new_objects = 2;
3043 /* Give a chance to weak hash tables to make other objects live.
3044 * FIXME: The algorithm implemented here for weak hash table gcing
3045 * is O(W^2+N) as Bruno Haible warns in
3046 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3047 * see "Implementation 2". */
3048 scav_weak_hash_tables();
3050 /* Flush the current regions updating the tables. */
3051 gc_alloc_update_all_page_tables();
3053 /* Grab new_areas_index. */
3054 current_new_areas_index = new_areas_index;
3056 /*FSHOW((stderr,
3057 "The first scan is finished; current_new_areas_index=%d.\n",
3058 current_new_areas_index));*/
3060 while (current_new_areas_index > 0) {
3061 /* Move the current to the previous new areas */
3062 previous_new_areas = current_new_areas;
3063 previous_new_areas_index = current_new_areas_index;
3065 /* Scavenge all the areas in previous new areas. Any new areas
3066 * allocated are saved in current_new_areas. */
3068 /* Allocate an array for current_new_areas; alternating between
3069 * new_areas_1 and 2 */
3070 if (previous_new_areas == &new_areas_1)
3071 current_new_areas = &new_areas_2;
3072 else
3073 current_new_areas = &new_areas_1;
3075 /* Set up for gc_alloc(). */
3076 new_areas = current_new_areas;
3077 new_areas_index = 0;
3079 /* Check whether previous_new_areas had overflowed. */
3080 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3082 /* New areas of objects allocated have been lost so need to do a
3083 * full scan to be sure! If this becomes a problem try
3084 * increasing NUM_NEW_AREAS. */
3085 if (gencgc_verbose)
3086 SHOW("new_areas overflow, doing full scavenge");
3088 /* Don't need to record new areas that get scavenged
3089 * anyway during scavenge_newspace_generation_one_scan. */
3090 record_new_objects = 1;
3092 scavenge_newspace_generation_one_scan(generation);
3094 /* Record all new areas now. */
3095 record_new_objects = 2;
3097 scav_weak_hash_tables();
3099 /* Flush the current regions updating the tables. */
3100 gc_alloc_update_all_page_tables();
3102 } else {
3104 /* Work through previous_new_areas. */
3105 for (i = 0; i < previous_new_areas_index; i++) {
3106 long page = (*previous_new_areas)[i].page;
3107 long offset = (*previous_new_areas)[i].offset;
3108 long size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3109 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3110 scavenge(page_address(page)+offset, size);
3113 scav_weak_hash_tables();
3115 /* Flush the current regions updating the tables. */
3116 gc_alloc_update_all_page_tables();
3119 current_new_areas_index = new_areas_index;
3121 /*FSHOW((stderr,
3122 "The re-scan has finished; current_new_areas_index=%d.\n",
3123 current_new_areas_index));*/
3126 /* Turn off recording of areas allocated by gc_alloc(). */
3127 record_new_objects = 0;
3129 #if SC_NS_GEN_CK
3130 /* Check that none of the write_protected pages in this generation
3131 * have been written to. */
3132 for (i = 0; i < page_table_pages; i++) {
3133 if ((page_table[i].allocation != FREE_PAGE_FLAG)
3134 && (page_table[i].bytes_used != 0)
3135 && (page_table[i].gen == generation)
3136 && (page_table[i].write_protected_cleared != 0)
3137 && (page_table[i].dont_move == 0)) {
3138 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3139 i, generation, page_table[i].dont_move);
3142 #endif
3145 /* Un-write-protect all the pages in from_space. This is done at the
3146 * start of a GC else there may be many page faults while scavenging
3147 * the newspace (I've seen drive the system time to 99%). These pages
3148 * would need to be unprotected anyway before unmapping in
3149 * free_oldspace; not sure what effect this has on paging.. */
3150 static void
3151 unprotect_oldspace(void)
3153 page_index_t i;
3155 for (i = 0; i < last_free_page; i++) {
3156 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3157 && (page_table[i].bytes_used != 0)
3158 && (page_table[i].gen == from_space)) {
3159 void *page_start;
3161 page_start = (void *)page_address(i);
3163 /* Remove any write-protection. We should be able to rely
3164 * on the write-protect flag to avoid redundant calls. */
3165 if (page_table[i].write_protected) {
3166 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3167 page_table[i].write_protected = 0;
3173 /* Work through all the pages and free any in from_space. This
3174 * assumes that all objects have been copied or promoted to an older
3175 * generation. Bytes_allocated and the generation bytes_allocated
3176 * counter are updated. The number of bytes freed is returned. */
3177 static long
3178 free_oldspace(void)
3180 long bytes_freed = 0;
3181 page_index_t first_page, last_page;
3183 first_page = 0;
3185 do {
3186 /* Find a first page for the next region of pages. */
3187 while ((first_page < last_free_page)
3188 && ((page_table[first_page].allocated == FREE_PAGE_FLAG)
3189 || (page_table[first_page].bytes_used == 0)
3190 || (page_table[first_page].gen != from_space)))
3191 first_page++;
3193 if (first_page >= last_free_page)
3194 break;
3196 /* Find the last page of this region. */
3197 last_page = first_page;
3199 do {
3200 /* Free the page. */
3201 bytes_freed += page_table[last_page].bytes_used;
3202 generations[page_table[last_page].gen].bytes_allocated -=
3203 page_table[last_page].bytes_used;
3204 page_table[last_page].allocated = FREE_PAGE_FLAG;
3205 page_table[last_page].bytes_used = 0;
3207 /* Remove any write-protection. We should be able to rely
3208 * on the write-protect flag to avoid redundant calls. */
3210 void *page_start = (void *)page_address(last_page);
3212 if (page_table[last_page].write_protected) {
3213 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3214 page_table[last_page].write_protected = 0;
3217 last_page++;
3219 while ((last_page < last_free_page)
3220 && (page_table[last_page].allocated != FREE_PAGE_FLAG)
3221 && (page_table[last_page].bytes_used != 0)
3222 && (page_table[last_page].gen == from_space));
3224 #ifdef READ_PROTECT_FREE_PAGES
3225 os_protect(page_address(first_page),
3226 PAGE_BYTES*(last_page-first_page),
3227 OS_VM_PROT_NONE);
3228 #endif
3229 first_page = last_page;
3230 } while (first_page < last_free_page);
3232 bytes_allocated -= bytes_freed;
3233 return bytes_freed;
3236 #if 0
3237 /* Print some information about a pointer at the given address. */
3238 static void
3239 print_ptr(lispobj *addr)
3241 /* If addr is in the dynamic space then out the page information. */
3242 page_index_t pi1 = find_page_index((void*)addr);
3244 if (pi1 != -1)
3245 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3246 (unsigned long) addr,
3247 pi1,
3248 page_table[pi1].allocated,
3249 page_table[pi1].gen,
3250 page_table[pi1].bytes_used,
3251 page_table[pi1].first_object_offset,
3252 page_table[pi1].dont_move);
3253 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3254 *(addr-4),
3255 *(addr-3),
3256 *(addr-2),
3257 *(addr-1),
3258 *(addr-0),
3259 *(addr+1),
3260 *(addr+2),
3261 *(addr+3),
3262 *(addr+4));
3264 #endif
3266 static void
3267 verify_space(lispobj *start, size_t words)
3269 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3270 int is_in_readonly_space =
3271 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3272 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3274 while (words > 0) {
3275 size_t count = 1;
3276 lispobj thing = *(lispobj*)start;
3278 if (is_lisp_pointer(thing)) {
3279 page_index_t page_index = find_page_index((void*)thing);
3280 long to_readonly_space =
3281 (READ_ONLY_SPACE_START <= thing &&
3282 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3283 long to_static_space =
3284 (STATIC_SPACE_START <= thing &&
3285 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3287 /* Does it point to the dynamic space? */
3288 if (page_index != -1) {
3289 /* If it's within the dynamic space it should point to a used
3290 * page. XX Could check the offset too. */
3291 if ((page_table[page_index].allocated != FREE_PAGE_FLAG)
3292 && (page_table[page_index].bytes_used == 0))
3293 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3294 /* Check that it doesn't point to a forwarding pointer! */
3295 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3296 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3298 /* Check that its not in the RO space as it would then be a
3299 * pointer from the RO to the dynamic space. */
3300 if (is_in_readonly_space) {
3301 lose("ptr to dynamic space %x from RO space %x\n",
3302 thing, start);
3304 /* Does it point to a plausible object? This check slows
3305 * it down a lot (so it's commented out).
3307 * "a lot" is serious: it ate 50 minutes cpu time on
3308 * my duron 950 before I came back from lunch and
3309 * killed it.
3311 * FIXME: Add a variable to enable this
3312 * dynamically. */
3314 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3315 lose("ptr %x to invalid object %x\n", thing, start);
3318 } else {
3319 /* Verify that it points to another valid space. */
3320 if (!to_readonly_space && !to_static_space) {
3321 lose("Ptr %x @ %x sees junk.\n", thing, start);
3324 } else {
3325 if (!(fixnump(thing))) {
3326 /* skip fixnums */
3327 switch(widetag_of(*start)) {
3329 /* boxed objects */
3330 case SIMPLE_VECTOR_WIDETAG:
3331 case RATIO_WIDETAG:
3332 case COMPLEX_WIDETAG:
3333 case SIMPLE_ARRAY_WIDETAG:
3334 case COMPLEX_BASE_STRING_WIDETAG:
3335 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3336 case COMPLEX_CHARACTER_STRING_WIDETAG:
3337 #endif
3338 case COMPLEX_VECTOR_NIL_WIDETAG:
3339 case COMPLEX_BIT_VECTOR_WIDETAG:
3340 case COMPLEX_VECTOR_WIDETAG:
3341 case COMPLEX_ARRAY_WIDETAG:
3342 case CLOSURE_HEADER_WIDETAG:
3343 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3344 case VALUE_CELL_HEADER_WIDETAG:
3345 case SYMBOL_HEADER_WIDETAG:
3346 case CHARACTER_WIDETAG:
3347 #if N_WORD_BITS == 64
3348 case SINGLE_FLOAT_WIDETAG:
3349 #endif
3350 case UNBOUND_MARKER_WIDETAG:
3351 case FDEFN_WIDETAG:
3352 count = 1;
3353 break;
3355 case INSTANCE_HEADER_WIDETAG:
3357 lispobj nuntagged;
3358 long ntotal = HeaderValue(thing);
3359 lispobj layout = ((struct instance *)start)->slots[0];
3360 if (!layout) {
3361 count = 1;
3362 break;
3364 nuntagged = ((struct layout *)native_pointer(layout))->n_untagged_slots;
3365 verify_space(start + 1, ntotal - fixnum_value(nuntagged));
3366 count = ntotal + 1;
3367 break;
3369 case CODE_HEADER_WIDETAG:
3371 lispobj object = *start;
3372 struct code *code;
3373 long nheader_words, ncode_words, nwords;
3374 lispobj fheaderl;
3375 struct simple_fun *fheaderp;
3377 code = (struct code *) start;
3379 /* Check that it's not in the dynamic space.
3380 * FIXME: Isn't is supposed to be OK for code
3381 * objects to be in the dynamic space these days? */
3382 if (is_in_dynamic_space
3383 /* It's ok if it's byte compiled code. The trace
3384 * table offset will be a fixnum if it's x86
3385 * compiled code - check.
3387 * FIXME: #^#@@! lack of abstraction here..
3388 * This line can probably go away now that
3389 * there's no byte compiler, but I've got
3390 * too much to worry about right now to try
3391 * to make sure. -- WHN 2001-10-06 */
3392 && fixnump(code->trace_table_offset)
3393 /* Only when enabled */
3394 && verify_dynamic_code_check) {
3395 FSHOW((stderr,
3396 "/code object at %x in the dynamic space\n",
3397 start));
3400 ncode_words = fixnum_value(code->code_size);
3401 nheader_words = HeaderValue(object);
3402 nwords = ncode_words + nheader_words;
3403 nwords = CEILING(nwords, 2);
3404 /* Scavenge the boxed section of the code data block */
3405 verify_space(start + 1, nheader_words - 1);
3407 /* Scavenge the boxed section of each function
3408 * object in the code data block. */
3409 fheaderl = code->entry_points;
3410 while (fheaderl != NIL) {
3411 fheaderp =
3412 (struct simple_fun *) native_pointer(fheaderl);
3413 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3414 verify_space(&fheaderp->name, 1);
3415 verify_space(&fheaderp->arglist, 1);
3416 verify_space(&fheaderp->type, 1);
3417 fheaderl = fheaderp->next;
3419 count = nwords;
3420 break;
3423 /* unboxed objects */
3424 case BIGNUM_WIDETAG:
3425 #if N_WORD_BITS != 64
3426 case SINGLE_FLOAT_WIDETAG:
3427 #endif
3428 case DOUBLE_FLOAT_WIDETAG:
3429 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3430 case LONG_FLOAT_WIDETAG:
3431 #endif
3432 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3433 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3434 #endif
3435 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3436 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3437 #endif
3438 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3439 case COMPLEX_LONG_FLOAT_WIDETAG:
3440 #endif
3441 case SIMPLE_BASE_STRING_WIDETAG:
3442 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3443 case SIMPLE_CHARACTER_STRING_WIDETAG:
3444 #endif
3445 case SIMPLE_BIT_VECTOR_WIDETAG:
3446 case SIMPLE_ARRAY_NIL_WIDETAG:
3447 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3448 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3449 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3450 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3451 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3452 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3453 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3454 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3455 #endif
3456 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3457 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3458 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3459 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3460 #endif
3461 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3462 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3463 #endif
3464 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3465 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3466 #endif
3467 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3468 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3469 #endif
3470 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3471 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3472 #endif
3473 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3474 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3475 #endif
3476 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3477 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3478 #endif
3479 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3480 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3481 #endif
3482 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3483 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3484 #endif
3485 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3486 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3487 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3488 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3489 #endif
3490 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3491 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3492 #endif
3493 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3494 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3495 #endif
3496 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3497 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3498 #endif
3499 case SAP_WIDETAG:
3500 case WEAK_POINTER_WIDETAG:
3501 #ifdef LUTEX_WIDETAG
3502 case LUTEX_WIDETAG:
3503 #endif
3504 count = (sizetab[widetag_of(*start)])(start);
3505 break;
3507 default:
3508 FSHOW((stderr,
3509 "/Unhandled widetag 0x%x at 0x%x\n",
3510 widetag_of(*start), start));
3511 fflush(stderr);
3512 gc_abort();
3516 start += count;
3517 words -= count;
3521 static void
3522 verify_gc(void)
3524 /* FIXME: It would be nice to make names consistent so that
3525 * foo_size meant size *in* *bytes* instead of size in some
3526 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3527 * Some counts of lispobjs are called foo_count; it might be good
3528 * to grep for all foo_size and rename the appropriate ones to
3529 * foo_count. */
3530 long read_only_space_size =
3531 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3532 - (lispobj*)READ_ONLY_SPACE_START;
3533 long static_space_size =
3534 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3535 - (lispobj*)STATIC_SPACE_START;
3536 struct thread *th;
3537 for_each_thread(th) {
3538 long binding_stack_size =
3539 (lispobj*)get_binding_stack_pointer(th)
3540 - (lispobj*)th->binding_stack_start;
3541 verify_space(th->binding_stack_start, binding_stack_size);
3543 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3544 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3547 static void
3548 verify_generation(generation_index_t generation)
3550 page_index_t i;
3552 for (i = 0; i < last_free_page; i++) {
3553 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3554 && (page_table[i].bytes_used != 0)
3555 && (page_table[i].gen == generation)) {
3556 page_index_t last_page;
3557 int region_allocation = page_table[i].allocated;
3559 /* This should be the start of a contiguous block */
3560 gc_assert(page_table[i].first_object_offset == 0);
3562 /* Need to find the full extent of this contiguous block in case
3563 objects span pages. */
3565 /* Now work forward until the end of this contiguous area is
3566 found. */
3567 for (last_page = i; ;last_page++)
3568 /* Check whether this is the last page in this contiguous
3569 * block. */
3570 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3571 /* Or it is PAGE_BYTES and is the last in the block */
3572 || (page_table[last_page+1].allocated != region_allocation)
3573 || (page_table[last_page+1].bytes_used == 0)
3574 || (page_table[last_page+1].gen != generation)
3575 || (page_table[last_page+1].first_object_offset == 0))
3576 break;
3578 verify_space(page_address(i), (page_table[last_page].bytes_used
3579 + (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
3580 i = last_page;
3585 /* Check that all the free space is zero filled. */
3586 static void
3587 verify_zero_fill(void)
3589 page_index_t page;
3591 for (page = 0; page < last_free_page; page++) {
3592 if (page_table[page].allocated == FREE_PAGE_FLAG) {
3593 /* The whole page should be zero filled. */
3594 long *start_addr = (long *)page_address(page);
3595 long size = 1024;
3596 long i;
3597 for (i = 0; i < size; i++) {
3598 if (start_addr[i] != 0) {
3599 lose("free page not zero at %x\n", start_addr + i);
3602 } else {
3603 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3604 if (free_bytes > 0) {
3605 long *start_addr = (long *)((unsigned long)page_address(page)
3606 + page_table[page].bytes_used);
3607 long size = free_bytes / N_WORD_BYTES;
3608 long i;
3609 for (i = 0; i < size; i++) {
3610 if (start_addr[i] != 0) {
3611 lose("free region not zero at %x\n", start_addr + i);
3619 /* External entry point for verify_zero_fill */
3620 void
3621 gencgc_verify_zero_fill(void)
3623 /* Flush the alloc regions updating the tables. */
3624 gc_alloc_update_all_page_tables();
3625 SHOW("verifying zero fill");
3626 verify_zero_fill();
3629 static void
3630 verify_dynamic_space(void)
3632 generation_index_t i;
3634 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3635 verify_generation(i);
3637 if (gencgc_enable_verify_zero_fill)
3638 verify_zero_fill();
3641 /* Write-protect all the dynamic boxed pages in the given generation. */
3642 static void
3643 write_protect_generation_pages(generation_index_t generation)
3645 page_index_t start;
3647 gc_assert(generation < SCRATCH_GENERATION);
3649 for (start = 0; start < last_free_page; start++) {
3650 if ((page_table[start].allocated == BOXED_PAGE_FLAG)
3651 && (page_table[start].bytes_used != 0)
3652 && !page_table[start].dont_move
3653 && (page_table[start].gen == generation)) {
3654 void *page_start;
3655 page_index_t last;
3657 /* Note the page as protected in the page tables. */
3658 page_table[start].write_protected = 1;
3660 for (last = start + 1; last < last_free_page; last++) {
3661 if ((page_table[last].allocated != BOXED_PAGE_FLAG)
3662 || (page_table[last].bytes_used == 0)
3663 || page_table[last].dont_move
3664 || (page_table[last].gen != generation))
3665 break;
3666 page_table[last].write_protected = 1;
3669 page_start = (void *)page_address(start);
3671 os_protect(page_start,
3672 PAGE_BYTES * (last - start),
3673 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3675 start = last;
3679 if (gencgc_verbose > 1) {
3680 FSHOW((stderr,
3681 "/write protected %d of %d pages in generation %d\n",
3682 count_write_protect_generation_pages(generation),
3683 count_generation_pages(generation),
3684 generation));
3688 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3690 static void
3691 scavenge_control_stack()
3693 unsigned long control_stack_size;
3695 /* This is going to be a big problem when we try to port threads
3696 * to PPC... CLH */
3697 struct thread *th = arch_os_get_current_thread();
3698 lispobj *control_stack =
3699 (lispobj *)(th->control_stack_start);
3701 control_stack_size = current_control_stack_pointer - control_stack;
3702 scavenge(control_stack, control_stack_size);
3705 /* Scavenging Interrupt Contexts */
3707 static int boxed_registers[] = BOXED_REGISTERS;
3709 static void
3710 scavenge_interrupt_context(os_context_t * context)
3712 int i;
3714 #ifdef reg_LIP
3715 unsigned long lip;
3716 unsigned long lip_offset;
3717 int lip_register_pair;
3718 #endif
3719 unsigned long pc_code_offset;
3721 #ifdef ARCH_HAS_LINK_REGISTER
3722 unsigned long lr_code_offset;
3723 #endif
3724 #ifdef ARCH_HAS_NPC_REGISTER
3725 unsigned long npc_code_offset;
3726 #endif
3728 #ifdef reg_LIP
3729 /* Find the LIP's register pair and calculate it's offset */
3730 /* before we scavenge the context. */
3733 * I (RLT) think this is trying to find the boxed register that is
3734 * closest to the LIP address, without going past it. Usually, it's
3735 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3737 lip = *os_context_register_addr(context, reg_LIP);
3738 lip_offset = 0x7FFFFFFF;
3739 lip_register_pair = -1;
3740 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3741 unsigned long reg;
3742 long offset;
3743 int index;
3745 index = boxed_registers[i];
3746 reg = *os_context_register_addr(context, index);
3747 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3748 offset = lip - reg;
3749 if (offset < lip_offset) {
3750 lip_offset = offset;
3751 lip_register_pair = index;
3755 #endif /* reg_LIP */
3757 /* Compute the PC's offset from the start of the CODE */
3758 /* register. */
3759 pc_code_offset = *os_context_pc_addr(context) - *os_context_register_addr(context, reg_CODE);
3760 #ifdef ARCH_HAS_NPC_REGISTER
3761 npc_code_offset = *os_context_npc_addr(context) - *os_context_register_addr(context, reg_CODE);
3762 #endif /* ARCH_HAS_NPC_REGISTER */
3764 #ifdef ARCH_HAS_LINK_REGISTER
3765 lr_code_offset =
3766 *os_context_lr_addr(context) -
3767 *os_context_register_addr(context, reg_CODE);
3768 #endif
3770 /* Scanvenge all boxed registers in the context. */
3771 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3772 int index;
3773 lispobj foo;
3775 index = boxed_registers[i];
3776 foo = *os_context_register_addr(context, index);
3777 scavenge(&foo, 1);
3778 *os_context_register_addr(context, index) = foo;
3780 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3783 #ifdef reg_LIP
3784 /* Fix the LIP */
3787 * But what happens if lip_register_pair is -1? *os_context_register_addr on Solaris
3788 * (see solaris_register_address in solaris-os.c) will return
3789 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3790 * that what we really want? My guess is that that is not what we
3791 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3792 * all. But maybe it doesn't really matter if LIP is trashed?
3794 if (lip_register_pair >= 0) {
3795 *os_context_register_addr(context, reg_LIP) =
3796 *os_context_register_addr(context, lip_register_pair) + lip_offset;
3798 #endif /* reg_LIP */
3800 /* Fix the PC if it was in from space */
3801 if (from_space_p(*os_context_pc_addr(context)))
3802 *os_context_pc_addr(context) = *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3804 #ifdef ARCH_HAS_LINK_REGISTER
3805 /* Fix the LR ditto; important if we're being called from
3806 * an assembly routine that expects to return using blr, otherwise
3807 * harmless */
3808 if (from_space_p(*os_context_lr_addr(context)))
3809 *os_context_lr_addr(context) =
3810 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3811 #endif
3813 #ifdef ARCH_HAS_NPC_REGISTER
3814 if (from_space_p(*os_context_npc_addr(context)))
3815 *os_context_npc_addr(context) = *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3816 #endif /* ARCH_HAS_NPC_REGISTER */
3819 void
3820 scavenge_interrupt_contexts(void)
3822 int i, index;
3823 os_context_t *context;
3825 struct thread *th=arch_os_get_current_thread();
3827 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3829 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3830 printf("Number of active contexts: %d\n", index);
3831 #endif
3833 for (i = 0; i < index; i++) {
3834 context = th->interrupt_contexts[i];
3835 scavenge_interrupt_context(context);
3839 #endif
3841 #if defined(LISP_FEATURE_SB_THREAD)
3842 static void
3843 preserve_context_registers (os_context_t *c)
3845 void **ptr;
3846 /* On Darwin the signal context isn't a contiguous block of memory,
3847 * so just preserve_pointering its contents won't be sufficient.
3849 #if defined(LISP_FEATURE_DARWIN)
3850 #if defined LISP_FEATURE_X86
3851 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3852 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3853 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3854 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3855 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3856 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3857 preserve_pointer((void*)*os_context_pc_addr(c));
3858 #elif defined LISP_FEATURE_X86_64
3859 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3860 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3861 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3862 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3863 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3864 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3865 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3866 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3867 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3868 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3869 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3870 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3871 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3872 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3873 preserve_pointer((void*)*os_context_pc_addr(c));
3874 #else
3875 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3876 #endif
3877 #endif
3878 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3879 preserve_pointer(*ptr);
3882 #endif
3884 /* Garbage collect a generation. If raise is 0 then the remains of the
3885 * generation are not raised to the next generation. */
3886 static void
3887 garbage_collect_generation(generation_index_t generation, int raise)
3889 unsigned long bytes_freed;
3890 page_index_t i;
3891 unsigned long static_space_size;
3892 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3893 struct thread *th;
3894 #endif
3895 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3897 /* The oldest generation can't be raised. */
3898 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3900 /* Check if weak hash tables were processed in the previous GC. */
3901 gc_assert(weak_hash_tables == NULL);
3903 /* Initialize the weak pointer list. */
3904 weak_pointers = NULL;
3906 #ifdef LUTEX_WIDETAG
3907 unmark_lutexes(generation);
3908 #endif
3910 /* When a generation is not being raised it is transported to a
3911 * temporary generation (NUM_GENERATIONS), and lowered when
3912 * done. Set up this new generation. There should be no pages
3913 * allocated to it yet. */
3914 if (!raise) {
3915 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3918 /* Set the global src and dest. generations */
3919 from_space = generation;
3920 if (raise)
3921 new_space = generation+1;
3922 else
3923 new_space = SCRATCH_GENERATION;
3925 /* Change to a new space for allocation, resetting the alloc_start_page */
3926 gc_alloc_generation = new_space;
3927 generations[new_space].alloc_start_page = 0;
3928 generations[new_space].alloc_unboxed_start_page = 0;
3929 generations[new_space].alloc_large_start_page = 0;
3930 generations[new_space].alloc_large_unboxed_start_page = 0;
3932 /* Before any pointers are preserved, the dont_move flags on the
3933 * pages need to be cleared. */
3934 for (i = 0; i < last_free_page; i++)
3935 if(page_table[i].gen==from_space)
3936 page_table[i].dont_move = 0;
3938 /* Un-write-protect the old-space pages. This is essential for the
3939 * promoted pages as they may contain pointers into the old-space
3940 * which need to be scavenged. It also helps avoid unnecessary page
3941 * faults as forwarding pointers are written into them. They need to
3942 * be un-protected anyway before unmapping later. */
3943 unprotect_oldspace();
3945 /* Scavenge the stacks' conservative roots. */
3947 /* there are potentially two stacks for each thread: the main
3948 * stack, which may contain Lisp pointers, and the alternate stack.
3949 * We don't ever run Lisp code on the altstack, but it may
3950 * host a sigcontext with lisp objects in it */
3952 /* what we need to do: (1) find the stack pointer for the main
3953 * stack; scavenge it (2) find the interrupt context on the
3954 * alternate stack that might contain lisp values, and scavenge
3955 * that */
3957 /* we assume that none of the preceding applies to the thread that
3958 * initiates GC. If you ever call GC from inside an altstack
3959 * handler, you will lose. */
3961 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3962 /* And if we're saving a core, there's no point in being conservative. */
3963 if (conservative_stack) {
3964 for_each_thread(th) {
3965 void **ptr;
3966 void **esp=(void **)-1;
3967 #ifdef LISP_FEATURE_SB_THREAD
3968 long i,free;
3969 if(th==arch_os_get_current_thread()) {
3970 /* Somebody is going to burn in hell for this, but casting
3971 * it in two steps shuts gcc up about strict aliasing. */
3972 esp = (void **)((void *)&raise);
3973 } else {
3974 void **esp1;
3975 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3976 for(i=free-1;i>=0;i--) {
3977 os_context_t *c=th->interrupt_contexts[i];
3978 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3979 if (esp1>=(void **)th->control_stack_start &&
3980 esp1<(void **)th->control_stack_end) {
3981 if(esp1<esp) esp=esp1;
3982 preserve_context_registers(c);
3986 #else
3987 esp = (void **)((void *)&raise);
3988 #endif
3989 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
3990 preserve_pointer(*ptr);
3994 #endif
3996 #ifdef QSHOW
3997 if (gencgc_verbose > 1) {
3998 long num_dont_move_pages = count_dont_move_pages();
3999 fprintf(stderr,
4000 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
4001 num_dont_move_pages,
4002 num_dont_move_pages * PAGE_BYTES);
4004 #endif
4006 /* Scavenge all the rest of the roots. */
4008 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
4010 * If not x86, we need to scavenge the interrupt context(s) and the
4011 * control stack.
4013 scavenge_interrupt_contexts();
4014 scavenge_control_stack();
4015 #endif
4017 /* Scavenge the Lisp functions of the interrupt handlers, taking
4018 * care to avoid SIG_DFL and SIG_IGN. */
4019 for (i = 0; i < NSIG; i++) {
4020 union interrupt_handler handler = interrupt_handlers[i];
4021 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
4022 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
4023 scavenge((lispobj *)(interrupt_handlers + i), 1);
4026 /* Scavenge the binding stacks. */
4028 struct thread *th;
4029 for_each_thread(th) {
4030 long len= (lispobj *)get_binding_stack_pointer(th) -
4031 th->binding_stack_start;
4032 scavenge((lispobj *) th->binding_stack_start,len);
4033 #ifdef LISP_FEATURE_SB_THREAD
4034 /* do the tls as well */
4035 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4036 (sizeof (struct thread))/(sizeof (lispobj));
4037 scavenge((lispobj *) (th+1),len);
4038 #endif
4042 /* The original CMU CL code had scavenge-read-only-space code
4043 * controlled by the Lisp-level variable
4044 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4045 * wasn't documented under what circumstances it was useful or
4046 * safe to turn it on, so it's been turned off in SBCL. If you
4047 * want/need this functionality, and can test and document it,
4048 * please submit a patch. */
4049 #if 0
4050 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4051 unsigned long read_only_space_size =
4052 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4053 (lispobj*)READ_ONLY_SPACE_START;
4054 FSHOW((stderr,
4055 "/scavenge read only space: %d bytes\n",
4056 read_only_space_size * sizeof(lispobj)));
4057 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4059 #endif
4061 /* Scavenge static space. */
4062 static_space_size =
4063 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4064 (lispobj *)STATIC_SPACE_START;
4065 if (gencgc_verbose > 1) {
4066 FSHOW((stderr,
4067 "/scavenge static space: %d bytes\n",
4068 static_space_size * sizeof(lispobj)));
4070 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4072 /* All generations but the generation being GCed need to be
4073 * scavenged. The new_space generation needs special handling as
4074 * objects may be moved in - it is handled separately below. */
4075 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4077 /* Finally scavenge the new_space generation. Keep going until no
4078 * more objects are moved into the new generation */
4079 scavenge_newspace_generation(new_space);
4081 /* FIXME: I tried reenabling this check when debugging unrelated
4082 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4083 * Since the current GC code seems to work well, I'm guessing that
4084 * this debugging code is just stale, but I haven't tried to
4085 * figure it out. It should be figured out and then either made to
4086 * work or just deleted. */
4087 #define RESCAN_CHECK 0
4088 #if RESCAN_CHECK
4089 /* As a check re-scavenge the newspace once; no new objects should
4090 * be found. */
4092 long old_bytes_allocated = bytes_allocated;
4093 long bytes_allocated;
4095 /* Start with a full scavenge. */
4096 scavenge_newspace_generation_one_scan(new_space);
4098 /* Flush the current regions, updating the tables. */
4099 gc_alloc_update_all_page_tables();
4101 bytes_allocated = bytes_allocated - old_bytes_allocated;
4103 if (bytes_allocated != 0) {
4104 lose("Rescan of new_space allocated %d more bytes.\n",
4105 bytes_allocated);
4108 #endif
4110 scan_weak_hash_tables();
4111 scan_weak_pointers();
4113 /* Flush the current regions, updating the tables. */
4114 gc_alloc_update_all_page_tables();
4116 /* Free the pages in oldspace, but not those marked dont_move. */
4117 bytes_freed = free_oldspace();
4119 /* If the GC is not raising the age then lower the generation back
4120 * to its normal generation number */
4121 if (!raise) {
4122 for (i = 0; i < last_free_page; i++)
4123 if ((page_table[i].bytes_used != 0)
4124 && (page_table[i].gen == SCRATCH_GENERATION))
4125 page_table[i].gen = generation;
4126 gc_assert(generations[generation].bytes_allocated == 0);
4127 generations[generation].bytes_allocated =
4128 generations[SCRATCH_GENERATION].bytes_allocated;
4129 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4132 /* Reset the alloc_start_page for generation. */
4133 generations[generation].alloc_start_page = 0;
4134 generations[generation].alloc_unboxed_start_page = 0;
4135 generations[generation].alloc_large_start_page = 0;
4136 generations[generation].alloc_large_unboxed_start_page = 0;
4138 if (generation >= verify_gens) {
4139 if (gencgc_verbose)
4140 SHOW("verifying");
4141 verify_gc();
4142 verify_dynamic_space();
4145 /* Set the new gc trigger for the GCed generation. */
4146 generations[generation].gc_trigger =
4147 generations[generation].bytes_allocated
4148 + generations[generation].bytes_consed_between_gc;
4150 if (raise)
4151 generations[generation].num_gc = 0;
4152 else
4153 ++generations[generation].num_gc;
4155 #ifdef LUTEX_WIDETAG
4156 reap_lutexes(generation);
4157 if (raise)
4158 move_lutexes(generation, generation+1);
4159 #endif
4162 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4163 long
4164 update_dynamic_space_free_pointer(void)
4166 page_index_t last_page = -1, i;
4168 for (i = 0; i < last_free_page; i++)
4169 if ((page_table[i].allocated != FREE_PAGE_FLAG)
4170 && (page_table[i].bytes_used != 0))
4171 last_page = i;
4173 last_free_page = last_page+1;
4175 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
4176 return 0; /* dummy value: return something ... */
4179 static void
4180 remap_free_pages (page_index_t from, page_index_t to)
4182 page_index_t first_page, last_page;
4184 for (first_page = from; first_page <= to; first_page++) {
4185 if (page_table[first_page].allocated != FREE_PAGE_FLAG ||
4186 page_table[first_page].need_to_zero == 0) {
4187 continue;
4190 last_page = first_page + 1;
4191 while (page_table[last_page].allocated == FREE_PAGE_FLAG &&
4192 last_page < to &&
4193 page_table[last_page].need_to_zero == 1) {
4194 last_page++;
4197 /* There's a mysterious Solaris/x86 problem with using mmap
4198 * tricks for memory zeroing. See sbcl-devel thread
4199 * "Re: patch: standalone executable redux".
4201 #if defined(LISP_FEATURE_SUNOS)
4202 zero_pages(first_page, last_page-1);
4203 #else
4204 zero_pages_with_mmap(first_page, last_page-1);
4205 #endif
4207 first_page = last_page;
4211 generation_index_t small_generation_limit = 1;
4213 /* GC all generations newer than last_gen, raising the objects in each
4214 * to the next older generation - we finish when all generations below
4215 * last_gen are empty. Then if last_gen is due for a GC, or if
4216 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4217 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4219 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4220 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4221 void
4222 collect_garbage(generation_index_t last_gen)
4224 generation_index_t gen = 0, i;
4225 int raise;
4226 int gen_to_wp;
4227 /* The largest value of last_free_page seen since the time
4228 * remap_free_pages was called. */
4229 static page_index_t high_water_mark = 0;
4231 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4233 gc_active_p = 1;
4235 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4236 FSHOW((stderr,
4237 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4238 last_gen));
4239 last_gen = 0;
4242 /* Flush the alloc regions updating the tables. */
4243 gc_alloc_update_all_page_tables();
4245 /* Verify the new objects created by Lisp code. */
4246 if (pre_verify_gen_0) {
4247 FSHOW((stderr, "pre-checking generation 0\n"));
4248 verify_generation(0);
4251 if (gencgc_verbose > 1)
4252 print_generation_stats(0);
4254 do {
4255 /* Collect the generation. */
4257 if (gen >= gencgc_oldest_gen_to_gc) {
4258 /* Never raise the oldest generation. */
4259 raise = 0;
4260 } else {
4261 raise =
4262 (gen < last_gen)
4263 || (generations[gen].num_gc >= generations[gen].trigger_age);
4266 if (gencgc_verbose > 1) {
4267 FSHOW((stderr,
4268 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4269 gen,
4270 raise,
4271 generations[gen].bytes_allocated,
4272 generations[gen].gc_trigger,
4273 generations[gen].num_gc));
4276 /* If an older generation is being filled, then update its
4277 * memory age. */
4278 if (raise == 1) {
4279 generations[gen+1].cum_sum_bytes_allocated +=
4280 generations[gen+1].bytes_allocated;
4283 garbage_collect_generation(gen, raise);
4285 /* Reset the memory age cum_sum. */
4286 generations[gen].cum_sum_bytes_allocated = 0;
4288 if (gencgc_verbose > 1) {
4289 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4290 print_generation_stats(0);
4293 gen++;
4294 } while ((gen <= gencgc_oldest_gen_to_gc)
4295 && ((gen < last_gen)
4296 || ((gen <= gencgc_oldest_gen_to_gc)
4297 && raise
4298 && (generations[gen].bytes_allocated
4299 > generations[gen].gc_trigger)
4300 && (gen_av_mem_age(gen)
4301 > generations[gen].min_av_mem_age))));
4303 /* Now if gen-1 was raised all generations before gen are empty.
4304 * If it wasn't raised then all generations before gen-1 are empty.
4306 * Now objects within this gen's pages cannot point to younger
4307 * generations unless they are written to. This can be exploited
4308 * by write-protecting the pages of gen; then when younger
4309 * generations are GCed only the pages which have been written
4310 * need scanning. */
4311 if (raise)
4312 gen_to_wp = gen;
4313 else
4314 gen_to_wp = gen - 1;
4316 /* There's not much point in WPing pages in generation 0 as it is
4317 * never scavenged (except promoted pages). */
4318 if ((gen_to_wp > 0) && enable_page_protection) {
4319 /* Check that they are all empty. */
4320 for (i = 0; i < gen_to_wp; i++) {
4321 if (generations[i].bytes_allocated)
4322 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4323 gen_to_wp, i);
4325 write_protect_generation_pages(gen_to_wp);
4328 /* Set gc_alloc() back to generation 0. The current regions should
4329 * be flushed after the above GCs. */
4330 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4331 gc_alloc_generation = 0;
4333 /* Save the high-water mark before updating last_free_page */
4334 if (last_free_page > high_water_mark)
4335 high_water_mark = last_free_page;
4337 update_dynamic_space_free_pointer();
4339 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4340 if(gencgc_verbose)
4341 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4342 auto_gc_trigger);
4344 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4345 * back to the OS.
4347 if (gen > small_generation_limit) {
4348 if (last_free_page > high_water_mark)
4349 high_water_mark = last_free_page;
4350 remap_free_pages(0, high_water_mark);
4351 high_water_mark = 0;
4354 gc_active_p = 0;
4356 SHOW("returning from collect_garbage");
4359 /* This is called by Lisp PURIFY when it is finished. All live objects
4360 * will have been moved to the RO and Static heaps. The dynamic space
4361 * will need a full re-initialization. We don't bother having Lisp
4362 * PURIFY flush the current gc_alloc() region, as the page_tables are
4363 * re-initialized, and every page is zeroed to be sure. */
4364 void
4365 gc_free_heap(void)
4367 page_index_t page;
4369 if (gencgc_verbose > 1)
4370 SHOW("entering gc_free_heap");
4372 for (page = 0; page < page_table_pages; page++) {
4373 /* Skip free pages which should already be zero filled. */
4374 if (page_table[page].allocated != FREE_PAGE_FLAG) {
4375 void *page_start, *addr;
4377 /* Mark the page free. The other slots are assumed invalid
4378 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4379 * should not be write-protected -- except that the
4380 * generation is used for the current region but it sets
4381 * that up. */
4382 page_table[page].allocated = FREE_PAGE_FLAG;
4383 page_table[page].bytes_used = 0;
4385 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure about this change. */
4386 /* Zero the page. */
4387 page_start = (void *)page_address(page);
4389 /* First, remove any write-protection. */
4390 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4391 page_table[page].write_protected = 0;
4393 os_invalidate(page_start,PAGE_BYTES);
4394 addr = os_validate(page_start,PAGE_BYTES);
4395 if (addr == NULL || addr != page_start) {
4396 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4397 page_start,
4398 addr);
4400 #else
4401 page_table[page].write_protected = 0;
4402 #endif
4403 } else if (gencgc_zero_check_during_free_heap) {
4404 /* Double-check that the page is zero filled. */
4405 long *page_start;
4406 page_index_t i;
4407 gc_assert(page_table[page].allocated == FREE_PAGE_FLAG);
4408 gc_assert(page_table[page].bytes_used == 0);
4409 page_start = (long *)page_address(page);
4410 for (i=0; i<1024; i++) {
4411 if (page_start[i] != 0) {
4412 lose("free region not zero at %x\n", page_start + i);
4418 bytes_allocated = 0;
4420 /* Initialize the generations. */
4421 for (page = 0; page < NUM_GENERATIONS; page++) {
4422 generations[page].alloc_start_page = 0;
4423 generations[page].alloc_unboxed_start_page = 0;
4424 generations[page].alloc_large_start_page = 0;
4425 generations[page].alloc_large_unboxed_start_page = 0;
4426 generations[page].bytes_allocated = 0;
4427 generations[page].gc_trigger = 2000000;
4428 generations[page].num_gc = 0;
4429 generations[page].cum_sum_bytes_allocated = 0;
4430 generations[page].lutexes = NULL;
4433 if (gencgc_verbose > 1)
4434 print_generation_stats(0);
4436 /* Initialize gc_alloc(). */
4437 gc_alloc_generation = 0;
4439 gc_set_region_empty(&boxed_region);
4440 gc_set_region_empty(&unboxed_region);
4442 last_free_page = 0;
4443 set_alloc_pointer((lispobj)((char *)heap_base));
4445 if (verify_after_free_heap) {
4446 /* Check whether purify has left any bad pointers. */
4447 if (gencgc_verbose)
4448 SHOW("checking after free_heap\n");
4449 verify_gc();
4453 void
4454 gc_init(void)
4456 page_index_t i;
4458 /* Compute the number of pages needed for the dynamic space.
4459 * Dynamic space size should be aligned on page size. */
4460 page_table_pages = dynamic_space_size/PAGE_BYTES;
4461 gc_assert(dynamic_space_size == (size_t) page_table_pages*PAGE_BYTES);
4463 page_table = calloc(page_table_pages, sizeof(struct page));
4464 gc_assert(page_table);
4466 gc_init_tables();
4467 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4468 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4470 #ifdef LUTEX_WIDETAG
4471 scavtab[LUTEX_WIDETAG] = scav_lutex;
4472 transother[LUTEX_WIDETAG] = trans_lutex;
4473 sizetab[LUTEX_WIDETAG] = size_lutex;
4474 #endif
4476 heap_base = (void*)DYNAMIC_SPACE_START;
4478 /* Initialize each page structure. */
4479 for (i = 0; i < page_table_pages; i++) {
4480 /* Initialize all pages as free. */
4481 page_table[i].allocated = FREE_PAGE_FLAG;
4482 page_table[i].bytes_used = 0;
4484 /* Pages are not write-protected at startup. */
4485 page_table[i].write_protected = 0;
4488 bytes_allocated = 0;
4490 /* Initialize the generations.
4492 * FIXME: very similar to code in gc_free_heap(), should be shared */
4493 for (i = 0; i < NUM_GENERATIONS; i++) {
4494 generations[i].alloc_start_page = 0;
4495 generations[i].alloc_unboxed_start_page = 0;
4496 generations[i].alloc_large_start_page = 0;
4497 generations[i].alloc_large_unboxed_start_page = 0;
4498 generations[i].bytes_allocated = 0;
4499 generations[i].gc_trigger = 2000000;
4500 generations[i].num_gc = 0;
4501 generations[i].cum_sum_bytes_allocated = 0;
4502 /* the tune-able parameters */
4503 generations[i].bytes_consed_between_gc = 2000000;
4504 generations[i].trigger_age = 1;
4505 generations[i].min_av_mem_age = 0.75;
4506 generations[i].lutexes = NULL;
4509 /* Initialize gc_alloc. */
4510 gc_alloc_generation = 0;
4511 gc_set_region_empty(&boxed_region);
4512 gc_set_region_empty(&unboxed_region);
4514 last_free_page = 0;
4517 /* Pick up the dynamic space from after a core load.
4519 * The ALLOCATION_POINTER points to the end of the dynamic space.
4522 static void
4523 gencgc_pickup_dynamic(void)
4525 page_index_t page = 0;
4526 long alloc_ptr = get_alloc_pointer();
4527 lispobj *prev=(lispobj *)page_address(page);
4528 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4530 do {
4531 lispobj *first,*ptr= (lispobj *)page_address(page);
4532 page_table[page].allocated = BOXED_PAGE_FLAG;
4533 page_table[page].gen = gen;
4534 page_table[page].bytes_used = PAGE_BYTES;
4535 page_table[page].large_object = 0;
4536 page_table[page].write_protected = 0;
4537 page_table[page].write_protected_cleared = 0;
4538 page_table[page].dont_move = 0;
4539 page_table[page].need_to_zero = 1;
4541 if (!gencgc_partial_pickup) {
4542 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4543 if(ptr == first) prev=ptr;
4544 page_table[page].first_object_offset =
4545 (void *)prev - page_address(page);
4547 page++;
4548 } while ((long)page_address(page) < alloc_ptr);
4550 #ifdef LUTEX_WIDETAG
4551 /* Lutexes have been registered in generation 0 by coreparse, and
4552 * need to be moved to the right one manually.
4554 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4555 #endif
4557 last_free_page = page;
4559 generations[gen].bytes_allocated = PAGE_BYTES*page;
4560 bytes_allocated = PAGE_BYTES*page;
4562 gc_alloc_update_all_page_tables();
4563 write_protect_generation_pages(gen);
4566 void
4567 gc_initialize_pointers(void)
4569 gencgc_pickup_dynamic();
4575 /* alloc(..) is the external interface for memory allocation. It
4576 * allocates to generation 0. It is not called from within the garbage
4577 * collector as it is only external uses that need the check for heap
4578 * size (GC trigger) and to disable the interrupts (interrupts are
4579 * always disabled during a GC).
4581 * The vops that call alloc(..) assume that the returned space is zero-filled.
4582 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4584 * The check for a GC trigger is only performed when the current
4585 * region is full, so in most cases it's not needed. */
4587 lispobj *
4588 alloc(long nbytes)
4590 struct thread *thread=arch_os_get_current_thread();
4591 struct alloc_region *region=
4592 #ifdef LISP_FEATURE_SB_THREAD
4593 thread ? &(thread->alloc_region) : &boxed_region;
4594 #else
4595 &boxed_region;
4596 #endif
4597 #ifndef LISP_FEATURE_WIN32
4598 lispobj alloc_signal;
4599 #endif
4600 void *new_obj;
4601 void *new_free_pointer;
4603 gc_assert(nbytes>0);
4605 /* Check for alignment allocation problems. */
4606 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4607 && ((nbytes & LOWTAG_MASK) == 0));
4609 #if 0
4610 if(all_threads)
4611 /* there are a few places in the C code that allocate data in the
4612 * heap before Lisp starts. This is before interrupts are enabled,
4613 * so we don't need to check for pseudo-atomic */
4614 #ifdef LISP_FEATURE_SB_THREAD
4615 if(!get_psuedo_atomic_atomic(th)) {
4616 register u32 fs;
4617 fprintf(stderr, "fatal error in thread 0x%x, tid=%ld\n",
4618 th,th->os_thread);
4619 __asm__("movl %fs,%0" : "=r" (fs) : );
4620 fprintf(stderr, "fs is %x, th->tls_cookie=%x \n",
4621 debug_get_fs(),th->tls_cookie);
4622 lose("If you see this message before 2004.01.31, mail details to sbcl-devel\n");
4624 #else
4625 gc_assert(get_pseudo_atomic_atomic(th));
4626 #endif
4627 #endif
4629 /* maybe we can do this quickly ... */
4630 new_free_pointer = region->free_pointer + nbytes;
4631 if (new_free_pointer <= region->end_addr) {
4632 new_obj = (void*)(region->free_pointer);
4633 region->free_pointer = new_free_pointer;
4634 return(new_obj); /* yup */
4637 /* we have to go the long way around, it seems. Check whether
4638 * we should GC in the near future
4640 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4641 gc_assert(get_pseudo_atomic_atomic(thread));
4642 /* Don't flood the system with interrupts if the need to gc is
4643 * already noted. This can happen for example when SUB-GC
4644 * allocates or after a gc triggered in a WITHOUT-GCING. */
4645 if (SymbolValue(GC_PENDING,thread) == NIL) {
4646 /* set things up so that GC happens when we finish the PA
4647 * section */
4648 SetSymbolValue(GC_PENDING,T,thread);
4649 if (SymbolValue(GC_INHIBIT,thread) == NIL)
4650 set_pseudo_atomic_interrupted(thread);
4653 new_obj = gc_alloc_with_region(nbytes,0,region,0);
4655 #ifndef LISP_FEATURE_WIN32
4656 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4657 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4658 if ((signed long) alloc_signal <= 0) {
4659 #ifdef LISP_FEATURE_SB_THREAD
4660 kill_thread_safely(thread->os_thread, SIGPROF);
4661 #else
4662 raise(SIGPROF);
4663 #endif
4664 } else {
4665 SetSymbolValue(ALLOC_SIGNAL,
4666 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4667 thread);
4670 #endif
4672 return (new_obj);
4676 * shared support for the OS-dependent signal handlers which
4677 * catch GENCGC-related write-protect violations
4680 void unhandled_sigmemoryfault(void* addr);
4682 /* Depending on which OS we're running under, different signals might
4683 * be raised for a violation of write protection in the heap. This
4684 * function factors out the common generational GC magic which needs
4685 * to invoked in this case, and should be called from whatever signal
4686 * handler is appropriate for the OS we're running under.
4688 * Return true if this signal is a normal generational GC thing that
4689 * we were able to handle, or false if it was abnormal and control
4690 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4693 gencgc_handle_wp_violation(void* fault_addr)
4695 page_index_t page_index = find_page_index(fault_addr);
4697 #ifdef QSHOW_SIGNALS
4698 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4699 fault_addr, page_index));
4700 #endif
4702 /* Check whether the fault is within the dynamic space. */
4703 if (page_index == (-1)) {
4705 /* It can be helpful to be able to put a breakpoint on this
4706 * case to help diagnose low-level problems. */
4707 unhandled_sigmemoryfault(fault_addr);
4709 /* not within the dynamic space -- not our responsibility */
4710 return 0;
4712 } else {
4713 if (page_table[page_index].write_protected) {
4714 /* Unprotect the page. */
4715 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4716 page_table[page_index].write_protected_cleared = 1;
4717 page_table[page_index].write_protected = 0;
4718 } else {
4719 /* The only acceptable reason for this signal on a heap
4720 * access is that GENCGC write-protected the page.
4721 * However, if two CPUs hit a wp page near-simultaneously,
4722 * we had better not have the second one lose here if it
4723 * does this test after the first one has already set wp=0
4725 if(page_table[page_index].write_protected_cleared != 1)
4726 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4727 page_index, boxed_region.first_page, boxed_region.last_page);
4729 /* Don't worry, we can handle it. */
4730 return 1;
4733 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4734 * it's not just a case of the program hitting the write barrier, and
4735 * are about to let Lisp deal with it. It's basically just a
4736 * convenient place to set a gdb breakpoint. */
4737 void
4738 unhandled_sigmemoryfault(void *addr)
4741 void gc_alloc_update_all_page_tables(void)
4743 /* Flush the alloc regions updating the tables. */
4744 struct thread *th;
4745 for_each_thread(th)
4746 gc_alloc_update_page_tables(0, &th->alloc_region);
4747 gc_alloc_update_page_tables(1, &unboxed_region);
4748 gc_alloc_update_page_tables(0, &boxed_region);
4751 void
4752 gc_set_region_empty(struct alloc_region *region)
4754 region->first_page = 0;
4755 region->last_page = -1;
4756 region->start_addr = page_address(0);
4757 region->free_pointer = page_address(0);
4758 region->end_addr = page_address(0);
4761 static void
4762 zero_all_free_pages()
4764 page_index_t i;
4766 for (i = 0; i < last_free_page; i++) {
4767 if (page_table[i].allocated == FREE_PAGE_FLAG) {
4768 #ifdef READ_PROTECT_FREE_PAGES
4769 os_protect(page_address(i),
4770 PAGE_BYTES,
4771 OS_VM_PROT_ALL);
4772 #endif
4773 zero_pages(i, i);
4778 /* Things to do before doing a final GC before saving a core (without
4779 * purify).
4781 * + Pages in large_object pages aren't moved by the GC, so we need to
4782 * unset that flag from all pages.
4783 * + The pseudo-static generation isn't normally collected, but it seems
4784 * reasonable to collect it at least when saving a core. So move the
4785 * pages to a normal generation.
4787 static void
4788 prepare_for_final_gc ()
4790 page_index_t i;
4791 for (i = 0; i < last_free_page; i++) {
4792 page_table[i].large_object = 0;
4793 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4794 int used = page_table[i].bytes_used;
4795 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4796 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4797 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4803 /* Do a non-conservative GC, and then save a core with the initial
4804 * function being set to the value of the static symbol
4805 * SB!VM:RESTART-LISP-FUNCTION */
4806 void
4807 gc_and_save(char *filename, int prepend_runtime)
4809 FILE *file;
4810 void *runtime_bytes = NULL;
4811 size_t runtime_size;
4813 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4814 &runtime_size);
4815 if (file == NULL)
4816 return;
4818 conservative_stack = 0;
4820 /* The filename might come from Lisp, and be moved by the now
4821 * non-conservative GC. */
4822 filename = strdup(filename);
4824 /* Collect twice: once into relatively high memory, and then back
4825 * into low memory. This compacts the retained data into the lower
4826 * pages, minimizing the size of the core file.
4828 prepare_for_final_gc();
4829 gencgc_alloc_start_page = last_free_page;
4830 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4832 prepare_for_final_gc();
4833 gencgc_alloc_start_page = -1;
4834 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4836 if (prepend_runtime)
4837 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4839 /* The dumper doesn't know that pages need to be zeroed before use. */
4840 zero_all_free_pages();
4841 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4842 prepend_runtime);
4843 /* Oops. Save still managed to fail. Since we've mangled the stack
4844 * beyond hope, there's not much we can do.
4845 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4846 * going to be rather unsatisfactory too... */
4847 lose("Attempt to save core after non-conservative GC failed.\n");