Perform less work for :KEY-AND-VALUE hash-table weakness.
[sbcl.git] / src / runtime / gencgc.c
blob34a8eaa47f8ec5971b0be1b685287429f5e91e60
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <errno.h>
30 #include <string.h>
31 #include <inttypes.h>
32 #include "sbcl.h"
33 #if defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD)
34 #include "pthreads_win32.h"
35 #else
36 #include <signal.h>
37 #endif
38 #include "runtime.h"
39 #include "os.h"
40 #include "interr.h"
41 #include "globals.h"
42 #include "interrupt.h"
43 #include "validate.h"
44 #include "lispregs.h"
45 #include "arch.h"
46 #include "gc.h"
47 #include "gc-internal.h"
48 #include "gc-private.h"
49 #include "gencgc-private.h"
50 #include "thread.h"
51 #include "pseudo-atomic.h"
52 #include "alloc.h"
53 #include "genesis/gc-tables.h"
54 #include "genesis/vector.h"
55 #include "genesis/weak-pointer.h"
56 #include "genesis/fdefn.h"
57 #include "genesis/simple-fun.h"
58 #include "save.h"
59 #include "genesis/hash-table.h"
60 #include "genesis/instance.h"
61 #include "genesis/layout.h"
62 #include "gencgc.h"
63 #include "hopscotch.h"
64 #include "genesis/cons.h"
65 #include "forwarding-ptr.h"
67 /* forward declarations */
68 page_index_t gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t nbytes,
69 int page_type_flag);
73 * GC parameters
76 /* As usually configured, generations 0-5 are normal collected generations,
77 6 is pseudo-static (the objects in which are never moved nor reclaimed),
78 and 7 is scratch space used when collecting a generation without promotion,
79 wherein it is moved to generation 7 and back again.
81 enum {
82 SCRATCH_GENERATION = PSEUDO_STATIC_GENERATION+1,
83 NUM_GENERATIONS
86 /* Largest allocation seen since last GC. */
87 os_vm_size_t large_allocation = 0;
91 * debugging
94 /* the verbosity level. All non-error messages are disabled at level 0;
95 * and only a few rare messages are printed at level 1. */
96 #if QSHOW == 2
97 boolean gencgc_verbose = 1;
98 #else
99 boolean gencgc_verbose = 0;
100 #endif
102 /* FIXME: At some point enable the various error-checking things below
103 * and see what they say. */
105 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
106 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 2 to disable this kind of
107 * check. */
108 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 2;
110 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
111 boolean pre_verify_gen_0 = 0;
113 /* Should we check that newly allocated regions are zero filled? */
114 boolean gencgc_zero_check = 0;
116 /* Should we check that the free space is zero filled? */
117 /* Don't use this - you'll get more mileage out of READ_PROTECT_FREE_PAGES,
118 * because we zero-fill lazily. This switch should probably be removed. */
119 boolean gencgc_enable_verify_zero_fill = 0;
121 /* When loading a core, don't do a full scan of the memory for the
122 * memory region boundaries. (Set to true by coreparse.c if the core
123 * contained a pagetable entry).
125 boolean gencgc_partial_pickup = 0;
127 /* If defined, free pages are read-protected to ensure that nothing
128 * accesses them.
131 /* #define READ_PROTECT_FREE_PAGES */
135 * GC structures and variables
138 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
139 os_vm_size_t bytes_allocated = 0;
140 os_vm_size_t auto_gc_trigger = 0;
142 /* the source and destination generations. These are set before a GC starts
143 * scavenging. */
144 generation_index_t from_space;
145 generation_index_t new_space;
147 /* Set to 1 when in GC */
148 boolean gc_active_p = 0;
150 /* should the GC be conservative on stack. If false (only right before
151 * saving a core), don't scan the stack / mark pages dont_move. */
152 static boolean conservative_stack = 1;
154 /* An array of page structures is allocated on gc initialization.
155 * This helps to quickly map between an address and its page structure.
156 * page_table_pages is set from the size of the dynamic space. */
157 page_index_t page_table_pages;
158 struct page *page_table;
159 #ifdef LISP_FEATURE_SB_TRACEROOT
160 lispobj gc_object_watcher;
161 int gc_traceroot_criterion;
162 #endif
163 #ifdef PIN_GRANULARITY_LISPOBJ
164 int gc_n_stack_pins;
165 struct hopscotch_table pinned_objects;
166 #endif
168 /* This is always 0 except during gc_and_save() */
169 lispobj lisp_init_function;
171 /// Constants defined in gc-internal:
172 /// #define BOXED_PAGE_FLAG 1
173 /// #define UNBOXED_PAGE_FLAG 2
174 /// #define OPEN_REGION_PAGE_FLAG 4
176 /// Return true if 'allocated' bits are: {001, 010, 011}, false if 1zz or 000.
177 static inline boolean page_allocated_no_region_p(page_index_t page) {
178 return (page_table[page].allocated ^ OPEN_REGION_PAGE_FLAG) > OPEN_REGION_PAGE_FLAG;
181 static inline boolean page_free_p(page_index_t page) {
182 return (page_table[page].allocated == FREE_PAGE_FLAG);
185 static inline boolean page_boxed_p(page_index_t page) {
186 return (page_table[page].allocated & BOXED_PAGE_FLAG);
189 /// Return true if 'allocated' bits are: {001, 011}, false otherwise.
190 /// i.e. true of pages which could hold boxed or partially boxed objects.
191 static inline boolean page_boxed_no_region_p(page_index_t page) {
192 return (page_table[page].allocated & 5) == BOXED_PAGE_FLAG;
195 /// Return true if page MUST NOT hold boxed objects (including code).
196 static inline boolean page_unboxed_p(page_index_t page) {
197 /* Both flags set == boxed code page */
198 return (page_table[page].allocated & 3) == UNBOXED_PAGE_FLAG;
201 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
202 return (page_boxed_no_region_p(page)
203 && (page_bytes_used(page) != 0)
204 && !page_table[page].dont_move
205 && (page_table[page].gen == generation));
208 /* Calculate the start address for the given page number. */
209 inline char *
210 page_address(page_index_t page_num)
212 return (void*)(DYNAMIC_SPACE_START + (page_num * GENCGC_CARD_BYTES));
215 /* Calculate the address where the allocation region associated with
216 * the page starts. */
217 static inline void *
218 page_scan_start(page_index_t page_index)
220 return page_address(page_index)-page_scan_start_offset(page_index);
223 /* True if the page starts a contiguous block. */
224 static inline boolean
225 page_starts_contiguous_block_p(page_index_t page_index)
227 // Don't use the preprocessor macro: 0 means 0.
228 return page_table[page_index].scan_start_offset_ == 0;
231 /* True if the page is the last page in a contiguous block. */
232 static inline boolean
233 page_ends_contiguous_block_p(page_index_t page_index, generation_index_t gen)
235 // There is *always* a next page in the page table.
236 boolean answer = page_bytes_used(page_index) < GENCGC_CARD_BYTES
237 || page_starts_contiguous_block_p(page_index+1);
238 #ifdef DEBUG
239 boolean safe_answer =
240 (/* page doesn't fill block */
241 (page_bytes_used(page_index) < GENCGC_CARD_BYTES)
242 /* page is last allocated page */
243 || ((page_index + 1) >= last_free_page)
244 /* next page contains no data */
245 || !page_bytes_used(page_index + 1)
246 /* next page is in different generation */
247 || (page_table[page_index + 1].gen != gen)
248 /* next page starts its own contiguous block */
249 || (page_starts_contiguous_block_p(page_index + 1)));
250 gc_assert(answer == safe_answer);
251 #endif
252 return answer;
255 /* We maintain the invariant that pages with FREE_PAGE_FLAG have
256 * scan_start of zero, to optimize page_ends_contiguous_block_p().
257 * Clear all other flags as well, since they don't mean anything,
258 * and a store is simpler than a bitwise operation */
259 static inline void reset_page_flags(page_index_t page) {
260 page_table[page].scan_start_offset_ = 0;
261 // Any C compiler worth its salt should merge these into one store
262 page_table[page].allocated = page_table[page].write_protected
263 = page_table[page].write_protected_cleared
264 = page_table[page].dont_move = page_table[page].has_pins
265 = page_table[page].large_object = 0;
268 /// External function for calling from Lisp.
269 page_index_t ext_find_page_index(void *addr) { return find_page_index(addr); }
271 static os_vm_size_t
272 npage_bytes(page_index_t npages)
274 gc_assert(npages>=0);
275 return ((os_vm_size_t)npages)*GENCGC_CARD_BYTES;
278 /* Check that X is a higher address than Y and return offset from Y to
279 * X in bytes. */
280 static inline os_vm_size_t
281 addr_diff(void *x, void *y)
283 gc_assert(x >= y);
284 return (uintptr_t)x - (uintptr_t)y;
287 /* a structure to hold the state of a generation
289 * CAUTION: If you modify this, make sure to touch up the alien
290 * definition in src/code/gc.lisp accordingly. ...or better yes,
291 * deal with the FIXME there...
293 struct generation {
295 #if SEGREGATED_CODE
296 // A distinct start page per nonzero value of 'page_type_flag'.
297 // The zeroth index is the large object start page.
298 page_index_t alloc_start_page_[4];
299 #define alloc_large_start_page alloc_start_page_[0]
300 #define alloc_start_page alloc_start_page_[BOXED_PAGE_FLAG]
301 #define alloc_unboxed_start_page alloc_start_page_[UNBOXED_PAGE_FLAG]
302 #else
303 /* the first page that gc_alloc_large (boxed) considers on its next
304 * call. (Although it always allocates after the boxed_region.) */
305 page_index_t alloc_large_start_page;
307 /* the first page that gc_alloc() checks on its next call */
308 page_index_t alloc_start_page;
310 /* the first page that gc_alloc_unboxed() checks on its next call */
311 page_index_t alloc_unboxed_start_page;
312 #endif
314 /* the bytes allocated to this generation */
315 os_vm_size_t bytes_allocated;
317 /* the number of bytes at which to trigger a GC */
318 os_vm_size_t gc_trigger;
320 /* to calculate a new level for gc_trigger */
321 os_vm_size_t bytes_consed_between_gc;
323 /* the number of GCs since the last raise */
324 int num_gc;
326 /* the number of GCs to run on the generations before raising objects to the
327 * next generation */
328 int number_of_gcs_before_promotion;
330 /* the cumulative sum of the bytes allocated to this generation. It is
331 * cleared after a GC on this generations, and update before new
332 * objects are added from a GC of a younger generation. Dividing by
333 * the bytes_allocated will give the average age of the memory in
334 * this generation since its last GC. */
335 os_vm_size_t cum_sum_bytes_allocated;
337 /* a minimum average memory age before a GC will occur helps
338 * prevent a GC when a large number of new live objects have been
339 * added, in which case a GC could be a waste of time */
340 double minimum_age_before_gc;
343 /* an array of generation structures. There needs to be one more
344 * generation structure than actual generations as the oldest
345 * generation is temporarily raised then lowered. */
346 struct generation generations[NUM_GENERATIONS];
348 /* the oldest generation that is will currently be GCed by default.
349 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
351 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
353 * Setting this to 0 effectively disables the generational nature of
354 * the GC. In some applications generational GC may not be useful
355 * because there are no long-lived objects.
357 * An intermediate value could be handy after moving long-lived data
358 * into an older generation so an unnecessary GC of this long-lived
359 * data can be avoided. */
360 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
362 /* META: Is nobody aside from me bothered by this especially misleading
363 * use of the word "last"? It could mean either "ultimate" or "prior",
364 * but in fact means neither. It is the *FIRST* page that should be grabbed
365 * for more space, so it is min free page, or 1+ the max used page. */
366 /* The maximum free page in the heap is maintained and used to update
367 * ALLOCATION_POINTER which is used by the room function to limit its
368 * search of the heap. XX Gencgc obviously needs to be better
369 * integrated with the Lisp code. */
371 page_index_t last_free_page;
373 #ifdef LISP_FEATURE_SB_THREAD
374 /* This lock is to prevent multiple threads from simultaneously
375 * allocating new regions which overlap each other. Note that the
376 * majority of GC is single-threaded, but alloc() may be called from
377 * >1 thread at a time and must be thread-safe. This lock must be
378 * seized before all accesses to generations[] or to parts of
379 * page_table[] that other threads may want to see */
380 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
381 /* This lock is used to protect non-thread-local allocation. */
382 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
383 #endif
385 extern os_vm_size_t gencgc_release_granularity;
386 os_vm_size_t gencgc_release_granularity = GENCGC_RELEASE_GRANULARITY;
388 extern os_vm_size_t gencgc_alloc_granularity;
389 os_vm_size_t gencgc_alloc_granularity = GENCGC_ALLOC_GRANULARITY;
393 * miscellaneous heap functions
396 /* Count the number of pages which are write-protected within the
397 * given generation. */
398 static page_index_t
399 count_write_protect_generation_pages(generation_index_t generation)
401 page_index_t i, count = 0;
403 for (i = 0; i < last_free_page; i++)
404 if (!page_free_p(i)
405 && (page_table[i].gen == generation)
406 && page_table[i].write_protected)
407 count++;
408 return count;
411 /* Count the number of pages within the given generation. */
412 static page_index_t
413 count_generation_pages(generation_index_t generation)
415 page_index_t i;
416 page_index_t count = 0;
418 for (i = 0; i < last_free_page; i++)
419 if (!page_free_p(i) && page_table[i].gen == generation)
420 count++;
421 return count;
424 #if QSHOW
425 static page_index_t
426 count_dont_move_pages(void)
428 page_index_t i;
429 page_index_t count = 0;
430 for (i = 0; i < last_free_page; i++) {
431 if (!page_free_p(i) && page_table[i].dont_move) {
432 ++count;
435 return count;
437 #endif /* QSHOW */
439 /* Work through the pages and add up the number of bytes used for the
440 * given generation. */
441 static __attribute__((unused)) os_vm_size_t
442 count_generation_bytes_allocated (generation_index_t gen)
444 page_index_t i;
445 os_vm_size_t result = 0;
446 for (i = 0; i < last_free_page; i++) {
447 if (!page_free_p(i) && page_table[i].gen == gen)
448 result += page_bytes_used(i);
450 return result;
453 /* Return the average age of the memory in a generation. */
454 extern double
455 generation_average_age(generation_index_t gen)
457 if (generations[gen].bytes_allocated == 0)
458 return 0.0;
460 return
461 ((double)generations[gen].cum_sum_bytes_allocated)
462 / ((double)generations[gen].bytes_allocated);
465 #ifdef LISP_FEATURE_X86
466 extern void fpu_save(void *);
467 extern void fpu_restore(void *);
468 #endif
470 #define PAGE_INDEX_FMT PRIdPTR
472 extern void
473 write_generation_stats(FILE *file)
475 generation_index_t i;
477 #ifdef LISP_FEATURE_X86
478 int fpu_state[27];
480 /* Can end up here after calling alloc_tramp which doesn't prepare
481 * the x87 state, and the C ABI uses a different mode */
482 fpu_save(fpu_state);
483 #endif
485 /* Print the heap stats. */
486 fprintf(file,
487 " Gen StaPg UbSta LaSta Boxed Unbox LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
489 for (i = 0; i <= SCRATCH_GENERATION; i++) {
490 page_index_t j;
491 page_index_t boxed_cnt = 0;
492 page_index_t unboxed_cnt = 0;
493 page_index_t large_boxed_cnt = 0;
494 page_index_t large_unboxed_cnt = 0;
495 page_index_t pinned_cnt=0;
497 for (j = 0; j < last_free_page; j++)
498 if (page_table[j].gen == i) {
500 /* Count the number of boxed pages within the given
501 * generation. */
502 if (page_boxed_p(j)) {
503 if (page_table[j].large_object)
504 large_boxed_cnt++;
505 else
506 boxed_cnt++;
508 if(page_table[j].dont_move) pinned_cnt++;
509 /* Count the number of unboxed pages within the given
510 * generation. */
511 if (page_unboxed_p(j)) {
512 if (page_table[j].large_object)
513 large_unboxed_cnt++;
514 else
515 unboxed_cnt++;
519 gc_assert(generations[i].bytes_allocated
520 == count_generation_bytes_allocated(i));
521 fprintf(file,
522 " %1d: %5ld %5ld %5ld",
524 (long)generations[i].alloc_start_page,
525 (long)generations[i].alloc_unboxed_start_page,
526 (long)generations[i].alloc_large_start_page);
527 fprintf(file,
528 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT
529 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT,
530 boxed_cnt, unboxed_cnt, large_boxed_cnt,
531 large_unboxed_cnt, pinned_cnt);
532 fprintf(file,
533 " %8"OS_VM_SIZE_FMT
534 " %6"OS_VM_SIZE_FMT
535 " %8"OS_VM_SIZE_FMT
536 " %4"PAGE_INDEX_FMT" %3d %7.4f\n",
537 generations[i].bytes_allocated,
538 (npage_bytes(count_generation_pages(i)) - generations[i].bytes_allocated),
539 generations[i].gc_trigger,
540 count_write_protect_generation_pages(i),
541 generations[i].num_gc,
542 generation_average_age(i));
544 fprintf(file," Total bytes allocated = %"OS_VM_SIZE_FMT"\n", bytes_allocated);
545 fprintf(file," Dynamic-space-size bytes = %"OS_VM_SIZE_FMT"\n", dynamic_space_size);
547 #ifdef LISP_FEATURE_X86
548 fpu_restore(fpu_state);
549 #endif
552 extern void
553 write_heap_exhaustion_report(FILE *file, long available, long requested,
554 struct thread *thread)
556 fprintf(file,
557 "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
558 gc_active_p ? "garbage collection" : "allocation",
559 available,
560 requested);
561 write_generation_stats(file);
562 fprintf(file, "GC control variables:\n");
563 fprintf(file, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
564 read_TLS(GC_INHIBIT,thread)==NIL ? "false" : "true",
565 (read_TLS(GC_PENDING, thread) == T) ?
566 "true" : ((read_TLS(GC_PENDING, thread) == NIL) ?
567 "false" : "in progress"));
568 #ifdef LISP_FEATURE_SB_THREAD
569 fprintf(file, " *STOP-FOR-GC-PENDING* = %s\n",
570 read_TLS(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
571 #endif
574 extern void
575 print_generation_stats(void)
577 write_generation_stats(stderr);
580 extern char* gc_logfile;
581 char * gc_logfile = NULL;
583 extern void
584 log_generation_stats(char *logfile, char *header)
586 if (logfile) {
587 FILE * log = fopen(logfile, "a");
588 if (log) {
589 fprintf(log, "%s\n", header);
590 write_generation_stats(log);
591 fclose(log);
592 } else {
593 fprintf(stderr, "Could not open gc logfile: %s\n", logfile);
594 fflush(stderr);
599 extern void
600 report_heap_exhaustion(long available, long requested, struct thread *th)
602 if (gc_logfile) {
603 FILE * log = fopen(gc_logfile, "a");
604 if (log) {
605 write_heap_exhaustion_report(log, available, requested, th);
606 fclose(log);
607 } else {
608 fprintf(stderr, "Could not open gc logfile: %s\n", gc_logfile);
609 fflush(stderr);
612 /* Always to stderr as well. */
613 write_heap_exhaustion_report(stderr, available, requested, th);
617 #if defined(LISP_FEATURE_X86)
618 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
619 #endif
621 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
622 * if zeroing it ourselves, i.e. in practice give the memory back to the
623 * OS. Generally done after a large GC.
625 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
626 page_index_t i;
627 void *addr = page_address(start), *new_addr;
628 os_vm_size_t length = npage_bytes(1+end-start);
630 if (start > end)
631 return;
633 gc_assert(length >= gencgc_release_granularity);
634 gc_assert((length % gencgc_release_granularity) == 0);
636 #ifdef LISP_FEATURE_LINUX
637 // We use MADV_DONTNEED only on Linux due to differing semantics from BSD.
638 // Linux treats it as a demand that the memory be 0-filled, or refreshed
639 // from a file that backs the range. BSD takes it as a hint that you don't
640 // care if the memory has to brought in from swap when next accessed,
641 // i.e. it's not a request to make a user-visible alteration to memory.
642 // So in theory this can bring a page in from the core file, if we happen
643 // to hit a page that resides in the portion of memory mapped by coreparse.
644 // In practice this should not happen because objects from a core file can't
645 // become garbage. Except in save-lisp-and-die they can, and we must be
646 // cautious not to resurrect bytes that originally came from the file.
647 if ((os_vm_address_t)addr >= anon_dynamic_space_start) {
648 if (madvise(addr, length, MADV_DONTNEED) != 0)
649 lose("madvise failed\n");
650 } else
651 #endif
653 os_invalidate(addr, length);
654 new_addr = os_validate(NOT_MOVABLE, addr, length);
655 if (new_addr == NULL || new_addr != addr) {
656 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
657 start, new_addr);
661 for (i = start; i <= end; i++)
662 set_page_need_to_zero(i, 0);
665 /* Zero the pages from START to END (inclusive). Generally done just after
666 * a new region has been allocated.
668 static void
669 zero_pages(page_index_t start, page_index_t end) {
670 if (start > end)
671 return;
673 #if defined(LISP_FEATURE_X86)
674 fast_bzero(page_address(start), npage_bytes(1+end-start));
675 #else
676 bzero(page_address(start), npage_bytes(1+end-start));
677 #endif
681 static void
682 zero_and_mark_pages(page_index_t start, page_index_t end) {
683 page_index_t i;
685 zero_pages(start, end);
686 for (i = start; i <= end; i++)
687 set_page_need_to_zero(i, 0);
690 /* Zero the pages from START to END (inclusive), except for those
691 * pages that are known to already zeroed. Mark all pages in the
692 * ranges as non-zeroed.
694 static void
695 zero_dirty_pages(page_index_t start, page_index_t end) {
696 page_index_t i, j;
698 #ifdef READ_PROTECT_FREE_PAGES
699 os_protect(page_address(start), npage_bytes(1+end-start), OS_VM_PROT_ALL);
700 #endif
701 for (i = start; i <= end; i++) {
702 if (!page_need_to_zero(i)) continue;
703 for (j = i+1; (j <= end) && page_need_to_zero(j) ; j++)
704 ; /* empty body */
705 zero_pages(i, j-1);
706 i = j;
709 for (i = start; i <= end; i++) {
710 set_page_need_to_zero(i, 1);
716 * To support quick and inline allocation, regions of memory can be
717 * allocated and then allocated from with just a free pointer and a
718 * check against an end address.
720 * Since objects can be allocated to spaces with different properties
721 * e.g. boxed/unboxed, generation, ages; there may need to be many
722 * allocation regions.
724 * Each allocation region may start within a partly used page. Many
725 * features of memory use are noted on a page wise basis, e.g. the
726 * generation; so if a region starts within an existing allocated page
727 * it must be consistent with this page.
729 * During the scavenging of the newspace, objects will be transported
730 * into an allocation region, and pointers updated to point to this
731 * allocation region. It is possible that these pointers will be
732 * scavenged again before the allocation region is closed, e.g. due to
733 * trans_list which jumps all over the place to cleanup the list. It
734 * is important to be able to determine properties of all objects
735 * pointed to when scavenging, e.g to detect pointers to the oldspace.
736 * Thus it's important that the allocation regions have the correct
737 * properties set when allocated, and not just set when closed. The
738 * region allocation routines return regions with the specified
739 * properties, and grab all the pages, setting their properties
740 * appropriately, except that the amount used is not known.
742 * These regions are used to support quicker allocation using just a
743 * free pointer. The actual space used by the region is not reflected
744 * in the pages tables until it is closed. It can't be scavenged until
745 * closed.
747 * When finished with the region it should be closed, which will
748 * update the page tables for the actual space used returning unused
749 * space. Further it may be noted in the new regions which is
750 * necessary when scavenging the newspace.
752 * Large objects may be allocated directly without an allocation
753 * region, the page tables are updated immediately.
755 * Unboxed objects don't contain pointers to other objects and so
756 * don't need scavenging. Further they can't contain pointers to
757 * younger generations so WP is not needed. By allocating pages to
758 * unboxed objects the whole page never needs scavenging or
759 * write-protecting. */
761 /* We use either two or three regions for the current newspace generation. */
762 #if SEGREGATED_CODE
763 struct alloc_region gc_alloc_region[3];
764 #define boxed_region gc_alloc_region[BOXED_PAGE_FLAG-1]
765 #define unboxed_region gc_alloc_region[UNBOXED_PAGE_FLAG-1]
766 #define code_region gc_alloc_region[CODE_PAGE_FLAG-1]
767 #else
768 struct alloc_region boxed_region;
769 struct alloc_region unboxed_region;
770 #endif
772 /* The generation currently being allocated to. */
773 static generation_index_t gc_alloc_generation;
775 static inline page_index_t
776 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
778 if (!(page_type_flag >= 1 && page_type_flag <= 3))
779 lose("bad page_type_flag: %d", page_type_flag);
780 if (large)
781 return generations[generation].alloc_large_start_page;
782 #if SEGREGATED_CODE
783 return generations[generation].alloc_start_page_[page_type_flag];
784 #else
785 if (UNBOXED_PAGE_FLAG == page_type_flag)
786 return generations[generation].alloc_unboxed_start_page;
787 /* Both code and data. */
788 return generations[generation].alloc_start_page;
789 #endif
792 static inline void
793 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
794 page_index_t page)
796 if (!(page_type_flag >= 1 && page_type_flag <= 3))
797 lose("bad page_type_flag: %d", page_type_flag);
798 if (large)
799 generations[generation].alloc_large_start_page = page;
800 #if SEGREGATED_CODE
801 else
802 generations[generation].alloc_start_page_[page_type_flag] = page;
803 #else
804 else if (UNBOXED_PAGE_FLAG == page_type_flag)
805 generations[generation].alloc_unboxed_start_page = page;
806 else /* Both code and data. */
807 generations[generation].alloc_start_page = page;
808 #endif
811 /* Find a new region with room for at least the given number of bytes.
813 * It starts looking at the current generation's alloc_start_page. So
814 * may pick up from the previous region if there is enough space. This
815 * keeps the allocation contiguous when scavenging the newspace.
817 * The alloc_region should have been closed by a call to
818 * gc_alloc_update_page_tables(), and will thus be in an empty state.
820 * To assist the scavenging functions write-protected pages are not
821 * used. Free pages should not be write-protected.
823 * It is critical to the conservative GC that the start of regions be
824 * known. To help achieve this only small regions are allocated at a
825 * time.
827 * During scavenging, pointers may be found to within the current
828 * region and the page generation must be set so that pointers to the
829 * from space can be recognized. Therefore the generation of pages in
830 * the region are set to gc_alloc_generation. To prevent another
831 * allocation call using the same pages, all the pages in the region
832 * are allocated, although they will initially be empty.
834 static void
835 gc_alloc_new_region(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
837 page_index_t first_page;
838 page_index_t last_page;
839 page_index_t i;
840 int ret;
843 FSHOW((stderr,
844 "/alloc_new_region for %d bytes from gen %d\n",
845 nbytes, gc_alloc_generation));
848 /* Check that the region is in a reset state. */
849 gc_assert((alloc_region->first_page == 0)
850 && (alloc_region->last_page == -1)
851 && (alloc_region->free_pointer == alloc_region->end_addr));
852 ret = thread_mutex_lock(&free_pages_lock);
853 gc_assert(ret == 0);
854 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
855 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
857 /* Set up the alloc_region. */
858 alloc_region->first_page = first_page;
859 alloc_region->last_page = last_page;
860 alloc_region->start_addr = page_address(first_page) + page_bytes_used(first_page);
861 alloc_region->free_pointer = alloc_region->start_addr;
862 alloc_region->end_addr = page_address(last_page+1);
864 /* Set up the pages. */
866 /* The first page may have already been in use. */
867 /* If so, just assert that it's consistent, otherwise, set it up. */
868 if (page_bytes_used(first_page)) {
869 gc_assert(page_table[first_page].allocated == page_type_flag);
870 gc_assert(page_table[first_page].gen == gc_alloc_generation);
871 gc_dcheck(page_table[first_page].large_object == 0);
872 } else {
873 page_table[first_page].allocated = page_type_flag;
874 page_table[first_page].gen = gc_alloc_generation;
876 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
878 for (i = first_page+1; i <= last_page; i++) {
879 page_table[i].allocated = page_type_flag;
880 page_table[i].gen = gc_alloc_generation;
881 set_page_scan_start_offset(i,
882 addr_diff(page_address(i), alloc_region->start_addr));
883 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG;
885 /* Bump up last_free_page. */
886 if (last_page+1 > last_free_page) {
887 last_free_page = last_page+1;
888 /* do we only want to call this on special occasions? like for
889 * boxed_region? */
890 set_alloc_pointer((lispobj)page_address(last_free_page));
892 ret = thread_mutex_unlock(&free_pages_lock);
893 gc_assert(ret == 0);
895 /* If the first page was only partial, don't check whether it's
896 * zeroed (it won't be) and don't zero it (since the parts that
897 * we're interested in are guaranteed to be zeroed).
899 if (page_bytes_used(first_page)) {
900 first_page++;
903 zero_dirty_pages(first_page, last_page);
905 /* we can do this after releasing free_pages_lock */
906 if (gencgc_zero_check) {
907 lispobj *p;
908 for (p = alloc_region->start_addr;
909 (void*)p < alloc_region->end_addr; p++) {
910 if (*p != 0) {
911 lose("The new region is not zero at %p (start=%p, end=%p).\n",
912 p, alloc_region->start_addr, alloc_region->end_addr);
918 /* If the record_new_objects flag is 2 then all new regions created
919 * are recorded.
921 * If it's 1 then then it is only recorded if the first page of the
922 * current region is <= new_areas_ignore_page. This helps avoid
923 * unnecessary recording when doing full scavenge pass.
925 * The new_object structure holds the page, byte offset, and size of
926 * new regions of objects. Each new area is placed in the array of
927 * these structures pointer to by new_areas. new_areas_index holds the
928 * offset into new_areas.
930 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
931 * later code must detect this and handle it, probably by doing a full
932 * scavenge of a generation. */
933 #define NUM_NEW_AREAS 512
934 static int record_new_objects = 0;
935 static page_index_t new_areas_ignore_page;
936 struct new_area {
937 page_index_t page;
938 size_t offset;
939 size_t size;
941 static struct new_area (*new_areas)[];
942 static size_t new_areas_index;
943 size_t max_new_areas;
945 /* Add a new area to new_areas. */
946 static void
947 add_new_area(page_index_t first_page, size_t offset, size_t size)
949 size_t new_area_start, c;
950 ssize_t i;
952 /* Ignore if full. */
953 if (new_areas_index >= NUM_NEW_AREAS)
954 return;
956 switch (record_new_objects) {
957 case 0:
958 return;
959 case 1:
960 if (first_page > new_areas_ignore_page)
961 return;
962 break;
963 case 2:
964 break;
965 default:
966 gc_abort();
969 new_area_start = npage_bytes(first_page) + offset;
971 /* Search backwards for a prior area that this follows from. If
972 found this will save adding a new area. */
973 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
974 size_t area_end =
975 npage_bytes((*new_areas)[i].page)
976 + (*new_areas)[i].offset
977 + (*new_areas)[i].size;
978 /*FSHOW((stderr,
979 "/add_new_area S1 %d %d %d %d\n",
980 i, c, new_area_start, area_end));*/
981 if (new_area_start == area_end) {
982 /*FSHOW((stderr,
983 "/adding to [%d] %d %d %d with %d %d %d:\n",
985 (*new_areas)[i].page,
986 (*new_areas)[i].offset,
987 (*new_areas)[i].size,
988 first_page,
989 offset,
990 size);*/
991 (*new_areas)[i].size += size;
992 return;
996 (*new_areas)[new_areas_index].page = first_page;
997 (*new_areas)[new_areas_index].offset = offset;
998 (*new_areas)[new_areas_index].size = size;
999 /*FSHOW((stderr,
1000 "/new_area %d page %d offset %d size %d\n",
1001 new_areas_index, first_page, offset, size));*/
1002 new_areas_index++;
1004 /* Note the max new_areas used. */
1005 if (new_areas_index > max_new_areas)
1006 max_new_areas = new_areas_index;
1009 /* Update the tables for the alloc_region. The region may be added to
1010 * the new_areas.
1012 * When done the alloc_region is set up so that the next quick alloc
1013 * will fail safely and thus a new region will be allocated. Further
1014 * it is safe to try to re-update the page table of this reset
1015 * alloc_region. */
1016 void
1017 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
1019 /* Catch an unused alloc_region. */
1020 if (alloc_region->last_page == -1)
1021 return;
1023 page_index_t first_page = alloc_region->first_page;
1024 page_index_t next_page = first_page+1;
1025 char *page_base = page_address(first_page);
1026 char *free_pointer = alloc_region->free_pointer;
1028 // page_bytes_used() can be done without holding a lock. Nothing else
1029 // affects the usage on the first page of a region owned by this thread.
1030 page_bytes_t orig_first_page_bytes_used = page_bytes_used(first_page);
1031 gc_assert(alloc_region->start_addr == page_base + orig_first_page_bytes_used);
1033 int ret = thread_mutex_lock(&free_pages_lock);
1034 gc_assert(ret == 0);
1036 // Mark the region as closed on its first page.
1037 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1039 if (free_pointer != alloc_region->start_addr) {
1040 /* some bytes were allocated in the region */
1042 /* All the pages used need to be updated */
1044 /* Update the first page. */
1045 if (!orig_first_page_bytes_used)
1046 gc_assert(page_starts_contiguous_block_p(first_page));
1047 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1049 #if SEGREGATED_CODE
1050 gc_assert(page_table[first_page].allocated == page_type_flag);
1051 #else
1052 gc_assert(page_table[first_page].allocated & page_type_flag);
1053 #endif
1054 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1055 gc_assert(page_table[first_page].large_object == 0);
1057 /* Calculate the number of bytes used in this page. This is not
1058 * always the number of new bytes, unless it was free. */
1059 os_vm_size_t bytes_used = addr_diff(free_pointer, page_base);
1060 boolean more;
1061 if ((more = (bytes_used > GENCGC_CARD_BYTES)))
1062 bytes_used = GENCGC_CARD_BYTES;
1063 set_page_bytes_used(first_page, bytes_used);
1065 /* 'region_size' will be the sum of new bytes consumed by the region,
1066 * EXCLUDING any part of the first page already in use,
1067 * and any unused part of the final used page */
1068 os_vm_size_t region_size = bytes_used - orig_first_page_bytes_used;
1070 /* All the rest of the pages should be accounted for. */
1071 while (more) {
1072 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1073 #if SEGREGATED_CODE
1074 gc_assert(page_table[next_page].allocated == page_type_flag);
1075 #else
1076 gc_assert(page_table[next_page].allocated & page_type_flag);
1077 #endif
1078 gc_assert(page_bytes_used(next_page) == 0);
1079 gc_assert(page_table[next_page].gen == gc_alloc_generation);
1080 gc_assert(page_table[next_page].large_object == 0);
1081 page_base += GENCGC_CARD_BYTES;
1082 gc_assert(page_scan_start_offset(next_page) ==
1083 addr_diff(page_base, alloc_region->start_addr));
1085 /* Calculate the number of bytes used in this page. */
1086 bytes_used = addr_diff(free_pointer, page_base);
1087 if ((more = (bytes_used > GENCGC_CARD_BYTES)))
1088 bytes_used = GENCGC_CARD_BYTES;
1089 set_page_bytes_used(next_page, bytes_used);
1090 region_size += bytes_used;
1092 next_page++;
1095 // Now 'next_page' is 1 page beyond those fully accounted for.
1096 gc_assert(addr_diff(free_pointer, alloc_region->start_addr) == region_size);
1097 // Update the global totals
1098 bytes_allocated += region_size;
1099 generations[gc_alloc_generation].bytes_allocated += region_size;
1101 /* Set the generations alloc restart page to the last page of
1102 * the region. */
1103 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1105 /* Add the region to the new_areas if requested. */
1106 if (BOXED_PAGE_FLAG & page_type_flag)
1107 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1109 } else if (!orig_first_page_bytes_used) {
1110 /* The first page is completely unused. Unallocate it */
1111 reset_page_flags(first_page);
1114 /* Unallocate any unused pages. */
1115 while (next_page <= alloc_region->last_page) {
1116 gc_assert(page_bytes_used(next_page) == 0);
1117 reset_page_flags(next_page);
1118 next_page++;
1120 ret = thread_mutex_unlock(&free_pages_lock);
1121 gc_assert(ret == 0);
1123 /* alloc_region is per-thread, we're ok to do this unlocked */
1124 gc_set_region_empty(alloc_region);
1127 /* Allocate a possibly large object. */
1128 void *
1129 gc_alloc_large(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
1131 boolean more;
1132 page_index_t first_page, next_page, last_page;
1133 os_vm_size_t byte_cnt;
1134 os_vm_size_t bytes_used;
1135 int ret;
1137 ret = thread_mutex_lock(&free_pages_lock);
1138 gc_assert(ret == 0);
1140 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1141 // FIXME: really we want to try looking for space following the highest of
1142 // the last page of all other small object regions. That's impossible - there's
1143 // not enough information. At best we can skip some work in only the case where
1144 // the supplied region was the one most recently created. To do this right
1145 // would entail a malloc-like allocator at the page granularity.
1146 if (first_page <= alloc_region->last_page) {
1147 first_page = alloc_region->last_page+1;
1150 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1152 gc_assert(first_page > alloc_region->last_page);
1154 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1156 /* Large objects don't share pages with other objects. */
1157 gc_assert(page_bytes_used(first_page) == 0);
1159 /* Set up the pages. */
1160 page_table[first_page].allocated = page_type_flag;
1161 page_table[first_page].gen = gc_alloc_generation;
1162 page_table[first_page].large_object = 1;
1164 byte_cnt = 0;
1166 /* Calc. the number of bytes used in this page. This is not
1167 * always the number of new bytes, unless it was free. */
1168 more = 0;
1169 if ((bytes_used = nbytes) > GENCGC_CARD_BYTES) {
1170 bytes_used = GENCGC_CARD_BYTES;
1171 more = 1;
1173 set_page_bytes_used(first_page, bytes_used);
1174 byte_cnt += bytes_used;
1176 next_page = first_page+1;
1178 /* All the rest of the pages should be free. We need to set their
1179 * scan_start_offset pointer to the start of the region, and set
1180 * the bytes_used. */
1181 while (more) {
1182 gc_assert(page_free_p(next_page));
1183 gc_assert(page_bytes_used(next_page) == 0);
1184 page_table[next_page].allocated = page_type_flag;
1185 page_table[next_page].gen = gc_alloc_generation;
1186 page_table[next_page].large_object = 1;
1188 set_page_scan_start_offset(next_page, npage_bytes(next_page-first_page));
1190 /* Calculate the number of bytes used in this page. */
1191 more = 0;
1192 bytes_used = nbytes - byte_cnt;
1193 if (bytes_used > GENCGC_CARD_BYTES) {
1194 bytes_used = GENCGC_CARD_BYTES;
1195 more = 1;
1197 set_page_bytes_used(next_page, bytes_used);
1198 byte_cnt += bytes_used;
1199 next_page++;
1202 gc_assert(byte_cnt == (size_t)nbytes);
1204 bytes_allocated += nbytes;
1205 generations[gc_alloc_generation].bytes_allocated += nbytes;
1207 /* Add the region to the new_areas if requested. */
1208 if (BOXED_PAGE_FLAG & page_type_flag)
1209 add_new_area(first_page, 0, nbytes);
1211 /* Bump up last_free_page */
1212 if (last_page+1 > last_free_page) {
1213 last_free_page = last_page+1;
1214 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1216 ret = thread_mutex_unlock(&free_pages_lock);
1217 gc_assert(ret == 0);
1219 zero_dirty_pages(first_page, last_page);
1221 return page_address(first_page);
1224 static page_index_t gencgc_alloc_start_page = -1;
1226 void
1227 gc_heap_exhausted_error_or_lose (sword_t available, sword_t requested)
1229 struct thread *thread = arch_os_get_current_thread();
1230 /* Write basic information before doing anything else: if we don't
1231 * call to lisp this is a must, and even if we do there is always
1232 * the danger that we bounce back here before the error has been
1233 * handled, or indeed even printed.
1235 report_heap_exhaustion(available, requested, thread);
1236 if (gc_active_p || (available == 0)) {
1237 /* If we are in GC, or totally out of memory there is no way
1238 * to sanely transfer control to the lisp-side of things.
1240 lose("Heap exhausted, game over.");
1242 else {
1243 /* FIXME: assert free_pages_lock held */
1244 (void)thread_mutex_unlock(&free_pages_lock);
1245 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
1246 gc_assert(get_pseudo_atomic_atomic(thread));
1247 clear_pseudo_atomic_atomic(thread);
1248 if (get_pseudo_atomic_interrupted(thread))
1249 do_pending_interrupt();
1250 #endif
1251 /* Another issue is that signalling HEAP-EXHAUSTED error leads
1252 * to running user code at arbitrary places, even in a
1253 * WITHOUT-INTERRUPTS which may lead to a deadlock without
1254 * running out of the heap. So at this point all bets are
1255 * off. */
1256 if (read_TLS(INTERRUPTS_ENABLED,thread) == NIL)
1257 corruption_warning_and_maybe_lose
1258 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1259 /* available and requested should be double word aligned, thus
1260 they can passed as fixnums and shifted later. */
1261 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR), available, requested);
1262 lose("HEAP-EXHAUSTED-ERROR fell through");
1266 /* Test whether page 'index' can continue a non-large-object region
1267 * having specified 'gen' and 'allocated' values. */
1268 static inline boolean
1269 page_extensible_p(page_index_t index, generation_index_t gen, int allocated) {
1270 #ifdef LISP_FEATURE_BIG_ENDIAN /* TODO: implement the simpler test */
1271 /* Counterintuitively, gcc prefers to see sequential tests of the bitfields,
1272 * versus one test "!(p.large_object | p.write_protected | p.dont_move)".
1273 * When expressed as separate tests, it figures out that this can be optimized
1274 * as an AND. On the other hand, by attempting to *force* it to do that,
1275 * it shifts each field to the right to line them all up at bit index 0 to
1276 * test that 1 bit, which is a literal rendering of the user-written code.
1278 boolean result =
1279 page_table[index].allocated == allocated
1280 && page_table[index].gen == gen
1281 && !page_table[index].large_object
1282 && !page_table[index].write_protected
1283 && !page_table[index].dont_move;
1284 return result;
1285 #else
1286 /* Test all 5 conditions above as a single comparison against a mask.
1287 * (The C compiler doesn't understand how to do that)
1288 * Any bit that has a 1 in this mask must match the desired input.
1289 * The two 0 bits are for "has_pins" and "write_protected_cleared".
1290 * has_pins is irrelevant- it won't be 1 except during gc.
1291 * wp_cleared is probably 0, but needs to be masked out to be sure.
1292 * All other flag bits must be zero to pass the test.
1294 * large -\ /-- WP
1295 * v v
1296 * #b11111111_10101111
1297 * ^ ^^^
1298 * !move / \ allocated
1300 * The flags reside at 1 byte prior to 'gen' in the page structure.
1302 return (*(int16_t*)(&page_table[index].gen-1) & 0xFFAF) == ((gen<<8)|allocated);
1303 #endif
1306 /* Search for at least nbytes of space, possibly picking up any
1307 * remaining space on the tail of a page that was not fully used.
1309 * Non-small allocations are guaranteed to be page-aligned.
1311 page_index_t
1312 gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t bytes,
1313 int page_type_flag)
1315 page_index_t most_bytes_found_from = 0, most_bytes_found_to = 0;
1316 page_index_t first_page, last_page, restart_page = *restart_page_ptr;
1317 os_vm_size_t nbytes = bytes;
1318 os_vm_size_t nbytes_goal = nbytes;
1319 os_vm_size_t bytes_found = 0;
1320 os_vm_size_t most_bytes_found = 0;
1321 /* Note that this definition of "small" is not the complement
1322 * of "large" as used in gc_alloc_large(). That's fine.
1323 * The constraint we must respect is that a large object
1324 * MUST NOT share any of its pages with another object.
1325 * It should also be page-aligned, though that's not a restriction
1326 * per se, but a fairly obvious consequence of not sharing.
1328 boolean small_object = nbytes < GENCGC_CARD_BYTES;
1329 /* FIXME: assert(free_pages_lock is held); */
1331 if (nbytes_goal < gencgc_alloc_granularity)
1332 nbytes_goal = gencgc_alloc_granularity;
1333 #if !defined(LISP_FEATURE_64_BIT) && SEGREGATED_CODE
1334 // Increase the region size to avoid excessive fragmentation
1335 if (page_type_flag == CODE_PAGE_FLAG && nbytes_goal < 65536)
1336 nbytes_goal = 65536;
1337 #endif
1339 /* Toggled by gc_and_save for heap compaction, normally -1. */
1340 if (gencgc_alloc_start_page != -1) {
1341 restart_page = gencgc_alloc_start_page;
1344 /* FIXME: This is on bytes instead of nbytes pending cleanup of
1345 * long from the interface. */
1346 gc_assert(bytes>=0);
1347 first_page = restart_page;
1348 while (first_page < page_table_pages) {
1349 bytes_found = 0;
1350 if (page_free_p(first_page)) {
1351 gc_dcheck(!page_bytes_used(first_page));
1352 bytes_found = GENCGC_CARD_BYTES;
1353 } else if (small_object &&
1354 page_extensible_p(first_page, gc_alloc_generation, page_type_flag)) {
1355 bytes_found = GENCGC_CARD_BYTES - page_bytes_used(first_page);
1356 } else {
1357 first_page++;
1358 continue;
1361 gc_dcheck(!page_table[first_page].write_protected);
1362 /* page_free_p() can legally be used at index 'page_table_pages'
1363 * because the array dimension is 1+page_table_pages */
1364 for (last_page = first_page+1;
1365 bytes_found < nbytes_goal &&
1366 page_free_p(last_page) && last_page < page_table_pages;
1367 last_page++) {
1368 /* page_free_p() implies 0 bytes used, thus GENCGC_CARD_BYTES available.
1369 * It also implies !write_protected, and if the OS's conception were
1370 * otherwise, lossage would routinely occur in the fault handler) */
1371 bytes_found += GENCGC_CARD_BYTES;
1372 gc_dcheck(0 == page_bytes_used(last_page));
1373 gc_dcheck(!page_table[last_page].write_protected);
1376 if (bytes_found > most_bytes_found) {
1377 most_bytes_found = bytes_found;
1378 most_bytes_found_from = first_page;
1379 most_bytes_found_to = last_page;
1381 if (bytes_found >= nbytes_goal)
1382 break;
1384 first_page = last_page;
1387 bytes_found = most_bytes_found;
1388 restart_page = first_page + 1;
1390 /* Check for a failure */
1391 if (bytes_found < nbytes) {
1392 gc_assert(restart_page >= page_table_pages);
1393 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1396 gc_assert(most_bytes_found_to);
1397 *restart_page_ptr = most_bytes_found_from;
1398 return most_bytes_found_to-1;
1401 /* Allocate bytes. All the rest of the special-purpose allocation
1402 * functions will eventually call this */
1404 void *
1405 gc_alloc_with_region(sword_t nbytes,int page_type_flag, struct alloc_region *my_region,
1406 int quick_p)
1408 void *new_free_pointer;
1410 if (nbytes>=LARGE_OBJECT_SIZE)
1411 return gc_alloc_large(nbytes, page_type_flag, my_region);
1413 /* Check whether there is room in the current alloc region. */
1414 new_free_pointer = (char*)my_region->free_pointer + nbytes;
1416 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1417 my_region->free_pointer, new_free_pointer); */
1419 if (new_free_pointer <= my_region->end_addr) {
1420 /* If so then allocate from the current alloc region. */
1421 void *new_obj = my_region->free_pointer;
1422 my_region->free_pointer = new_free_pointer;
1424 /* Unless a `quick' alloc was requested, check whether the
1425 alloc region is almost empty. */
1426 if (!quick_p &&
1427 addr_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1428 /* If so, finished with the current region. */
1429 gc_alloc_update_page_tables(page_type_flag, my_region);
1430 /* Set up a new region. */
1431 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1434 return((void *)new_obj);
1437 /* Else not enough free space in the current region: retry with a
1438 * new region. */
1440 gc_alloc_update_page_tables(page_type_flag, my_region);
1441 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1442 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1445 /* Copy a large object. If the object is on a large object page then
1446 * it is simply promoted, else it is copied.
1448 * Bignums and vectors may have shrunk. If the object is not copied
1449 * the space needs to be reclaimed, and the page_tables corrected.
1451 * Code objects can't shrink, but it's not worth adding an extra test
1452 * for large code just to avoid the loop that performs adjustment, so
1453 * go through the adjustment motions even though nothing happens.
1455 * An object that is on non-large object pages will never move
1456 * to large object pages, thus ensuring that the assignment of
1457 * '.large_object = 0' in prepare_for_final_gc() is meaningful.
1458 * The saved core should have no large object pages.
1460 lispobj
1461 copy_large_object(lispobj object, sword_t nwords, int page_type_flag)
1463 lispobj *new;
1464 page_index_t first_page;
1465 boolean boxedp = page_type_flag != UNBOXED_PAGE_FLAG;
1467 CHECK_COPY_PRECONDITIONS(object, nwords);
1469 if ((nwords > 1024*1024) && gencgc_verbose) {
1470 FSHOW((stderr, "/general_copy_large_object: %d bytes\n",
1471 nwords*N_WORD_BYTES));
1474 /* Check whether it's a large object. */
1475 first_page = find_page_index((void *)object);
1476 gc_assert(first_page >= 0);
1478 // An objects that shrank but was allocated on a large-object page
1479 // is a candidate for copying if its current size is non-large.
1480 if (page_table[first_page].large_object
1481 && nwords >= LARGE_OBJECT_SIZE / N_WORD_BYTES) {
1482 /* Promote the object. Note: Unboxed objects may have been
1483 * allocated to a BOXED region so it may be necessary to
1484 * change the region to UNBOXED. */
1485 os_vm_size_t remaining_bytes;
1486 os_vm_size_t bytes_freed;
1487 page_index_t next_page;
1488 page_bytes_t old_bytes_used;
1490 /* FIXME: This comment is somewhat stale.
1492 * Note: Any page write-protection must be removed, else a
1493 * later scavenge_newspace may incorrectly not scavenge these
1494 * pages. This would not be necessary if they are added to the
1495 * new areas, but let's do it for them all (they'll probably
1496 * be written anyway?). */
1498 gc_assert(page_starts_contiguous_block_p(first_page));
1499 next_page = first_page;
1500 remaining_bytes = nwords*N_WORD_BYTES;
1502 /* FIXME: can we share code with maybe_adjust_large_object ? */
1503 while (remaining_bytes > GENCGC_CARD_BYTES) {
1504 gc_assert(page_table[next_page].gen == from_space);
1505 gc_assert(page_table[next_page].large_object);
1506 gc_assert(page_scan_start_offset(next_page) ==
1507 npage_bytes(next_page-first_page));
1508 gc_assert(page_bytes_used(next_page) == GENCGC_CARD_BYTES);
1509 /* Should have been unprotected by unprotect_oldspace()
1510 * for boxed objects, and after promotion unboxed ones
1511 * should not be on protected pages at all. */
1512 gc_assert(!page_table[next_page].write_protected);
1514 if (boxedp)
1515 gc_assert(page_boxed_p(next_page));
1516 else {
1517 gc_assert(page_allocated_no_region_p(next_page));
1518 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1520 page_table[next_page].gen = new_space;
1522 remaining_bytes -= GENCGC_CARD_BYTES;
1523 next_page++;
1526 /* Now only one page remains, but the object may have shrunk so
1527 * there may be more unused pages which will be freed. */
1529 /* Object may have shrunk but shouldn't have grown - check. */
1530 gc_assert(page_bytes_used(next_page) >= remaining_bytes);
1532 page_table[next_page].gen = new_space;
1534 if (boxedp)
1535 gc_assert(page_boxed_p(next_page));
1536 else
1537 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1539 /* Adjust the bytes_used. */
1540 old_bytes_used = page_bytes_used(next_page);
1541 set_page_bytes_used(next_page, remaining_bytes);
1543 bytes_freed = old_bytes_used - remaining_bytes;
1545 /* Free any remaining pages; needs care. */
1546 next_page++;
1547 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
1548 (page_table[next_page].gen == from_space) &&
1549 /* FIXME: It is not obvious to me why this is necessary
1550 * as a loop condition: it seems to me that the
1551 * scan_start_offset test should be sufficient, but
1552 * experimentally that is not the case. --NS
1553 * 2011-11-28 */
1554 (boxedp ?
1555 page_boxed_p(next_page) :
1556 page_allocated_no_region_p(next_page)) &&
1557 page_table[next_page].large_object &&
1558 (page_scan_start_offset(next_page) ==
1559 npage_bytes(next_page - first_page))) {
1560 /* Checks out OK, free the page. Don't need to both zeroing
1561 * pages as this should have been done before shrinking the
1562 * object. These pages shouldn't be write-protected, even if
1563 * boxed they should be zero filled. */
1564 gc_assert(!page_table[next_page].write_protected);
1566 old_bytes_used = page_bytes_used(next_page);
1567 reset_page_flags(next_page);
1568 set_page_bytes_used(next_page, 0);
1569 bytes_freed += old_bytes_used;
1570 next_page++;
1573 if ((bytes_freed > 0) && gencgc_verbose) {
1574 FSHOW((stderr,
1575 "/general_copy_large_object bytes_freed=%"OS_VM_SIZE_FMT"\n",
1576 bytes_freed));
1579 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES
1580 + bytes_freed;
1581 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1582 bytes_allocated -= bytes_freed;
1584 /* Add the region to the new_areas if requested. */
1585 if (boxedp)
1586 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1588 return(object);
1590 } else {
1591 /* Allocate space. */
1592 new = gc_general_alloc(nwords*N_WORD_BYTES, page_type_flag, ALLOC_QUICK);
1594 /* Copy the object. */
1595 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1597 /* Return Lisp pointer of new object. */
1598 return make_lispobj(new, lowtag_of(object));
1602 /* to copy unboxed objects */
1603 lispobj
1604 copy_unboxed_object(lispobj object, sword_t nwords)
1606 return gc_general_copy_object(object, nwords, UNBOXED_PAGE_FLAG);
1610 * weak pointers
1613 static sword_t
1614 scav_weak_pointer(lispobj *where, lispobj object)
1616 struct weak_pointer * wp = (struct weak_pointer*)where;
1618 if (!wp->next && weak_pointer_breakable_p(wp)) {
1619 /* All weak pointers refer to objects at least as old as themselves,
1620 * because there is no slot setter for WEAK-POINTER-VALUE.
1621 * (i.e. You can't reference an object that didn't already exist,
1622 * assuming that users don't stuff a new value in via low-level hacks)
1623 * A weak pointer is breakable only if it points to an object in the
1624 * condemned generation, which must be as young as, or younger than
1625 * the weak pointer itself. Per the initial claim, it can't be younger.
1626 * So it must be in the same generation. Therefore, if the pointee
1627 * is condemned, the pointer itself must be condemned. Hence it must
1628 * not be on a write-protected page. Assert this, to be sure.
1629 * (This assertion is compiled out in a normal build,
1630 * so even if incorrect, it should be relatively harmless)
1632 gc_dcheck(!page_table[find_page_index(wp)].write_protected);
1633 add_to_weak_pointer_list(wp);
1636 /* Do not let GC scavenge the value slot of the weak pointer.
1637 * (That is why it is a weak pointer.) */
1639 return WEAK_POINTER_NWORDS;
1642 /* a faster version for searching the dynamic space. This will work even
1643 * if the object is in a current allocation region. */
1644 lispobj *
1645 search_dynamic_space(void *pointer)
1647 page_index_t page_index = find_page_index(pointer);
1648 lispobj *start;
1650 /* The address may be invalid, so do some checks. */
1651 if ((page_index == -1) || page_free_p(page_index))
1652 return NULL;
1653 start = (lispobj *)page_scan_start(page_index);
1654 return gc_search_space(start, pointer);
1657 #if !GENCGC_IS_PRECISE
1658 // Return the starting address of the object containing 'addr'
1659 // if and only if the object is one which would be evacuated from 'from_space'
1660 // were it allowed to be either discarded as garbage or moved.
1661 // 'addr_page_index' is the page containing 'addr' and must not be -1.
1662 // Return 0 if there is no such object - that is, if addr is past the
1663 // end of the used bytes, or its pages are not in 'from_space' etc.
1664 static lispobj*
1665 conservative_root_p(void *addr, page_index_t addr_page_index)
1667 /* quick check 1: Address is quite likely to have been invalid. */
1668 struct page* page = &page_table[addr_page_index];
1669 if (((uword_t)addr & (GENCGC_CARD_BYTES - 1)) > page_bytes_used(addr_page_index) ||
1670 #if SEGREGATED_CODE
1671 (!is_lisp_pointer((lispobj)addr) && page->allocated != CODE_PAGE_FLAG) ||
1672 #endif
1673 (compacting_p() && (page->gen != from_space ||
1674 (page->large_object && page->dont_move))))
1675 return 0;
1676 gc_assert(!(page->allocated & OPEN_REGION_PAGE_FLAG));
1678 #if SEGREGATED_CODE
1679 /* quick check 2: Unless the page can hold code, the pointer's lowtag must
1680 * correspond to the widetag of the object. The object header can safely
1681 * be read even if it turns out that the pointer is not valid,
1682 * because the pointer was in bounds for the page.
1683 * Note that this can falsely pass if looking at the interior of an unboxed
1684 * array that masquerades as a Lisp object header by pure luck.
1685 * But if this doesn't pass, there's no point in proceeding to the
1686 * definitive test which involves searching for the containing object. */
1688 if (page->allocated != CODE_PAGE_FLAG) {
1689 lispobj* obj = native_pointer((lispobj)addr);
1690 if (lowtag_of((lispobj)addr) == LIST_POINTER_LOWTAG) {
1691 if (!is_cons_half(obj[0]) || !is_cons_half(obj[1]))
1692 return 0;
1693 } else {
1694 unsigned char widetag = widetag_of(*obj);
1695 if (!other_immediate_lowtag_p(widetag) ||
1696 lowtag_of((lispobj)addr) != lowtag_for_widetag[widetag>>2])
1697 return 0;
1700 #endif
1702 /* Filter out anything which can't be a pointer to a Lisp object
1703 * (or, as a special case which also requires dont_move, a return
1704 * address referring to something in a CodeObject). This is
1705 * expensive but important, since it vastly reduces the
1706 * probability that random garbage will be bogusly interpreted as
1707 * a pointer which prevents a page from moving. */
1708 lispobj* object_start = search_dynamic_space(addr);
1709 if (!object_start) return 0;
1711 /* If the containing object is a code object and 'addr' points
1712 * anywhere beyond the boxed words,
1713 * presume it to be a valid unboxed return address. */
1714 if (instruction_ptr_p(addr, object_start))
1715 return object_start;
1717 /* Large object pages only contain ONE object, and it will never
1718 * be a CONS. However, arrays and bignums can be allocated larger
1719 * than necessary and then shrunk to fit, leaving what look like
1720 * (0 . 0) CONSes at the end. These appear valid to
1721 * properly_tagged_descriptor_p(), so pick them off here. */
1722 if (((lowtag_of((lispobj)addr) == LIST_POINTER_LOWTAG) &&
1723 page_table[addr_page_index].large_object)
1724 || !properly_tagged_descriptor_p(addr, object_start))
1725 return 0;
1727 return object_start;
1729 #endif
1731 /* Adjust large bignum and vector objects. This will adjust the
1732 * allocated region if the size has shrunk, and change boxed pages
1733 * into unboxed pages. The pages are not promoted here, and the
1734 * object is not added to the new_regions; this is really
1735 * only designed to be called from preserve_pointer(). Shouldn't fail
1736 * if this is missed, just may delay the moving of objects to unboxed
1737 * pages, and the freeing of pages. */
1738 static void
1739 maybe_adjust_large_object(page_index_t first_page, sword_t nwords)
1741 lispobj* where = (lispobj*)page_address(first_page);
1742 page_index_t next_page;
1744 uword_t remaining_bytes;
1745 uword_t bytes_freed;
1746 uword_t old_bytes_used;
1748 int page_type_flag;
1750 /* Check whether it's a vector or bignum object. */
1751 lispobj widetag = widetag_of(where[0]);
1752 if (widetag == SIMPLE_VECTOR_WIDETAG)
1753 page_type_flag = BOXED_PAGE_FLAG;
1754 else if (specialized_vector_widetag_p(widetag) || widetag == BIGNUM_WIDETAG)
1755 page_type_flag = UNBOXED_PAGE_FLAG;
1756 else
1757 return;
1759 /* Note: Any page write-protection must be removed, else a later
1760 * scavenge_newspace may incorrectly not scavenge these pages.
1761 * This would not be necessary if they are added to the new areas,
1762 * but lets do it for them all (they'll probably be written
1763 * anyway?). */
1765 gc_assert(page_starts_contiguous_block_p(first_page));
1767 next_page = first_page;
1768 remaining_bytes = nwords*N_WORD_BYTES;
1769 while (remaining_bytes > GENCGC_CARD_BYTES) {
1770 gc_assert(page_table[next_page].gen == from_space);
1771 // We can't assert that page_table[next_page].allocated is correct,
1772 // because unboxed objects are initially allocated on boxed pages.
1773 gc_assert(page_allocated_no_region_p(next_page));
1774 gc_assert(page_table[next_page].large_object);
1775 gc_assert(page_scan_start_offset(next_page) ==
1776 npage_bytes(next_page-first_page));
1777 gc_assert(page_bytes_used(next_page) == GENCGC_CARD_BYTES);
1779 // This affects only one object, since large objects don't share pages.
1780 page_table[next_page].allocated = page_type_flag;
1782 /* Shouldn't be write-protected at this stage. Essential that the
1783 * pages aren't. */
1784 gc_assert(!page_table[next_page].write_protected);
1785 remaining_bytes -= GENCGC_CARD_BYTES;
1786 next_page++;
1789 /* Now only one page remains, but the object may have shrunk so
1790 * there may be more unused pages which will be freed. */
1792 /* Object may have shrunk but shouldn't have grown - check. */
1793 gc_assert(page_bytes_used(next_page) >= remaining_bytes);
1795 page_table[next_page].allocated = page_type_flag;
1797 /* Adjust the bytes_used. */
1798 old_bytes_used = page_bytes_used(next_page);
1799 set_page_bytes_used(next_page, remaining_bytes);
1801 bytes_freed = old_bytes_used - remaining_bytes;
1803 /* Free any remaining pages; needs care. */
1804 next_page++;
1805 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
1806 (page_table[next_page].gen == from_space) &&
1807 page_allocated_no_region_p(next_page) &&
1808 page_table[next_page].large_object &&
1809 (page_scan_start_offset(next_page) ==
1810 npage_bytes(next_page - first_page))) {
1811 /* It checks out OK, free the page. We don't need to bother zeroing
1812 * pages as this should have been done before shrinking the
1813 * object. These pages shouldn't be write protected as they
1814 * should be zero filled. */
1815 gc_assert(!page_table[next_page].write_protected);
1817 old_bytes_used = page_bytes_used(next_page);
1818 reset_page_flags(next_page);
1819 set_page_bytes_used(next_page, 0);
1820 bytes_freed += old_bytes_used;
1821 next_page++;
1824 if ((bytes_freed > 0) && gencgc_verbose) {
1825 FSHOW((stderr,
1826 "/maybe_adjust_large_object() freed %d\n",
1827 bytes_freed));
1830 generations[from_space].bytes_allocated -= bytes_freed;
1831 bytes_allocated -= bytes_freed;
1833 return;
1836 #ifdef PIN_GRANULARITY_LISPOBJ
1837 /* After scavenging of the roots is done, we go back to the pinned objects
1838 * and look within them for pointers. While heap_scavenge() could certainly
1839 * do this, it would potentially lead to extra work, since we can't know
1840 * whether any given object has been examined at least once, since there is
1841 * no telltale forwarding-pointer. The easiest thing to do is defer all
1842 * pinned objects to a subsequent pass, as is done here.
1844 static void
1845 scavenge_pinned_ranges()
1847 int i;
1848 lispobj key;
1849 for_each_hopscotch_key(i, key, pinned_objects) {
1850 lispobj* obj = native_pointer(key);
1851 lispobj header = *obj;
1852 // Never invoke scavenger on a simple-fun, just code components.
1853 if (is_cons_half(header))
1854 scavenge(obj, 2);
1855 else if (widetag_of(header) != SIMPLE_FUN_WIDETAG)
1856 scavtab[widetag_of(header)](obj, header);
1860 /* Deposit filler objects on small object pinned pages
1861 * from the page start to the first pinned object and in between pairs
1862 * of pinned objects. Zero-fill bytes following the last pinned object.
1863 * Also ensure that no scan_start_offset points to a page in
1864 * oldspace that will be freed.
1866 static void
1867 wipe_nonpinned_words()
1869 void gc_heapsort_uwords(uword_t*, int);
1871 if (!pinned_objects.count)
1872 return;
1874 // Loop over the keys in pinned_objects and pack them densely into
1875 // the same array - pinned_objects.keys[] - but skip any simple-funs.
1876 // Admittedly this is abstraction breakage.
1877 int limit = hopscotch_max_key_index(pinned_objects);
1878 int n_pins = 0, i;
1879 for (i = 0; i <= limit; ++i) {
1880 lispobj key = pinned_objects.keys[i];
1881 if (key) {
1882 lispobj* obj = native_pointer(key);
1883 // No need to check for is_cons_half() - it will be false
1884 // on a simple-fun header, and that's the correct answer.
1885 if (widetag_of(*obj) != SIMPLE_FUN_WIDETAG)
1886 pinned_objects.keys[n_pins++] = (uword_t)obj;
1889 // Don't touch pinned_objects.count in case the reset function uses it
1890 // to decide how to resize for next use (which it doesn't, but could).
1891 gc_n_stack_pins = n_pins;
1892 // Order by ascending address, stopping short of the sentinel.
1893 gc_heapsort_uwords(pinned_objects.keys, n_pins);
1894 #if 0
1895 fprintf(stderr, "Sorted pin list:\n");
1896 for (i = 0; i < n_pins; ++i) {
1897 lispobj* obj = (lispobj*)pinned_objects.keys[i];
1898 lispobj word = *obj;
1899 int widetag = widetag_of(word);
1900 if (is_cons_half(word))
1901 fprintf(stderr, "%p: (cons)\n", obj);
1902 else
1903 fprintf(stderr, "%p: %d words (%s)\n", obj,
1904 (int)sizetab[widetag](obj), widetag_names[widetag>>2]);
1906 #endif
1908 #define page_base(x) ALIGN_DOWN(x, GENCGC_CARD_BYTES)
1909 // This macro asserts that space accounting happens exactly
1910 // once per affected page (a page with any pins, no matter how many)
1911 #define adjust_gen_usage(i) \
1912 gc_assert(page_table[i].has_pins); \
1913 page_table[i].has_pins = 0; \
1914 bytes_moved += page_bytes_used(i); \
1915 page_table[i].gen = new_space
1917 // Store a sentinel at the end. Even if n_pins = table capacity (unlikely),
1918 // it is safe to write one more word, because the hops[] array immediately
1919 // follows the keys[] array in memory. At worst, 2 elements of hops[]
1920 // are clobbered, which is irrelevant since the table has already been
1921 // rendered unusable by stealing its key array for a different purpose.
1922 pinned_objects.keys[n_pins] = ~(uword_t)0;
1924 // Each pinned object begets two ranges of bytes to be turned into filler:
1925 // - the range preceding it back to its page start or predecessor object
1926 // - the range after it, up to the lesser of page bytes used or successor object
1928 // Prime the loop
1929 uword_t fill_from = page_base(pinned_objects.keys[0]);
1930 os_vm_size_t bytes_moved = 0; // i.e. virtually moved
1931 os_vm_size_t bytes_freed = 0; // bytes after last pinned object per page
1933 for (i = 0; i < n_pins; ++i) {
1934 lispobj* obj = (lispobj*)pinned_objects.keys[i];
1935 page_index_t begin_page_index = find_page_index(obj);
1936 // Create a filler object occupying space from 'fill_from' up to but
1937 // excluding 'obj'. If obj directly abuts its predecessor then don't.
1938 if ((uword_t)obj > fill_from) {
1939 lispobj* filler = (lispobj*)fill_from;
1940 int nwords = obj - filler;
1941 if (page_table[begin_page_index].allocated != CODE_PAGE_FLAG) {
1942 // On pages holding non-code, the filler is an array
1943 filler[0] = SIMPLE_ARRAY_WORD_WIDETAG;
1944 filler[1] = make_fixnum(nwords - 2);
1945 } else if (nwords > 2) {
1946 // Otherwise try to keep a strict code/non-code distinction
1947 filler[0] = 2<<N_WIDETAG_BITS | CODE_HEADER_WIDETAG;
1948 filler[1] = make_fixnum((nwords - 2) * N_WORD_BYTES);
1949 filler[2] = 0;
1950 filler[3] = 0;
1951 } else {
1952 // But as an exception, use a NIL array for tiny code filler
1953 // (If the ENSURE-CODE/DATA-SEPARATION test fails again,
1954 // it may need to ignore these objects. Hasn't happened yet)
1955 filler[0] = SIMPLE_ARRAY_NIL_WIDETAG;
1956 filler[1] = make_fixnum(0xDEAD);
1959 if (fill_from == page_base((uword_t)obj)) {
1960 adjust_gen_usage(begin_page_index);
1961 // This pinned object started a new page of pins.
1962 // scan_start must not see any page prior to this page,
1963 // as those might be in oldspace and about to be marked free.
1964 set_page_scan_start_offset(begin_page_index, 0);
1966 // If 'obj' spans pages, move its successive page(s) to newspace and
1967 // ensure that those pages' scan_starts point at the same address
1968 // that this page's scan start does, which could be this page or earlier.
1969 size_t nwords = OBJECT_SIZE(*obj, obj);
1970 lispobj* obj_end = obj + nwords; // non-inclusive address bound
1971 page_index_t end_page_index = find_page_index(obj_end - 1); // inclusive bound
1973 if (end_page_index > begin_page_index) {
1974 char *scan_start = page_scan_start(begin_page_index);
1975 page_index_t index;
1976 for (index = begin_page_index + 1; index <= end_page_index; ++index) {
1977 set_page_scan_start_offset(index,
1978 addr_diff(page_address(index), scan_start));
1979 adjust_gen_usage(index);
1982 // Compute page base address of last page touched by this obj.
1983 uword_t obj_end_pageaddr = page_base((uword_t)obj_end - 1);
1984 // See if there's another pinned object on this page.
1985 // There is always a next object, due to the sentinel.
1986 if (pinned_objects.keys[i+1] < obj_end_pageaddr + GENCGC_CARD_BYTES) {
1987 // Next object starts within the same page.
1988 fill_from = (uword_t)obj_end;
1989 } else {
1990 // Next pinned object does not start on the same page this obj ends on.
1991 // Any bytes following 'obj' up to its page end are garbage.
1992 uword_t page_end = obj_end_pageaddr + page_bytes_used(end_page_index);
1993 long nbytes = page_end - (uword_t)obj_end;
1994 gc_assert(nbytes >= 0);
1995 if (nbytes) {
1996 // Bytes beyond a page's highest used byte must be zero.
1997 memset(obj_end, 0, nbytes);
1998 bytes_freed += nbytes;
1999 set_page_bytes_used(end_page_index,
2000 (uword_t)obj_end - obj_end_pageaddr);
2002 fill_from = page_base(pinned_objects.keys[i+1]);
2005 generations[from_space].bytes_allocated -= bytes_moved;
2006 generations[new_space].bytes_allocated += bytes_moved - bytes_freed;
2007 bytes_allocated -= bytes_freed;
2008 #undef adjust_gen_usage
2009 #undef page_base
2012 /* Add 'object' to the hashtable, and if the object is a code component,
2013 * then also add all of the embedded simple-funs.
2014 * The rationale for the extra work on code components is that without it,
2015 * every test of pinned_p() on an object would have to check if the pointer
2016 * is to a simple-fun - entailing an extra read of the header - and mapping
2017 * to its code component if so. Since more calls to pinned_p occur than to
2018 * pin_object, the extra burden should be on this function.
2019 * Experimentation bears out that this is the better technique.
2020 * Also, we wouldn't often expect code components in the collected generation
2021 * so the extra work here is quite minimal, even if it can generally add to
2022 * the number of keys in the hashtable.
2024 static void
2025 pin_object(lispobj* base_addr)
2027 lispobj object = compute_lispobj(base_addr);
2028 if (!hopscotch_containsp(&pinned_objects, object)) {
2029 hopscotch_insert(&pinned_objects, object, 1);
2030 struct code* maybe_code = (struct code*)native_pointer(object);
2031 if (widetag_of(maybe_code->header) == CODE_HEADER_WIDETAG) {
2032 for_each_simple_fun(i, fun, maybe_code, 0, {
2033 hopscotch_insert(&pinned_objects,
2034 make_lispobj(fun, FUN_POINTER_LOWTAG),
2040 #else
2041 # define scavenge_pinned_ranges()
2042 # define wipe_nonpinned_words()
2043 #endif
2045 /* Take a possible pointer to a Lisp object and mark its page in the
2046 * page_table so that it will not be relocated during a GC.
2048 * This involves locating the page it points to, then backing up to
2049 * the start of its region, then marking all pages dont_move from there
2050 * up to the first page that's not full or has a different generation
2052 * It is assumed that all the page static flags have been cleared at
2053 * the start of a GC.
2055 * It is also assumed that the current gc_alloc() region has been
2056 * flushed and the tables updated. */
2058 // TODO: there's probably a way to be a little more efficient here.
2059 // As things are, we start by finding the object that encloses 'addr',
2060 // then we see if 'addr' was a "valid" Lisp pointer to that object
2061 // - meaning we expect the correct lowtag on the pointer - except
2062 // that for code objects we don't require a correct lowtag
2063 // and we allow a pointer to anywhere in the object.
2065 // It should be possible to avoid calling search_dynamic_space
2066 // more of the time. First, check if the page pointed to might hold code.
2067 // If it does, then we continue regardless of the pointer's lowtag
2068 // (because of the special allowance). If the page definitely does *not*
2069 // hold code, then we require up front that the lowtake make sense,
2070 // by doing the same checks that are in properly_tagged_descriptor_p.
2072 // Problem: when code is allocated from a per-thread region,
2073 // does it ensure that the occupied pages are flagged as having code?
2075 #if defined(__GNUC__) && defined(MEMORY_SANITIZER)
2076 #define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
2077 #else
2078 #define NO_SANITIZE_MEMORY
2079 #endif
2081 static void NO_SANITIZE_MEMORY
2082 preserve_pointer(void *addr)
2084 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2085 /* Immobile space MUST be lower than dynamic space,
2086 or else this test needs to be revised */
2087 if (addr < (void*)IMMOBILE_SPACE_END) {
2088 extern void immobile_space_preserve_pointer(void*);
2089 immobile_space_preserve_pointer(addr);
2090 return;
2092 #endif
2093 page_index_t page = find_page_index(addr);
2094 lispobj *object_start;
2096 #if GENCGC_IS_PRECISE
2097 /* If we're in precise gencgc (non-x86oid as of this writing) then
2098 * we are only called on valid object pointers in the first place,
2099 * so we just have to do a bounds-check against the heap, a
2100 * generation check, and the already-pinned check. */
2101 if (page < 0 ||
2102 (compacting_p() && (page_table[page].gen != from_space ||
2103 (page_table[page].large_object &&
2104 page_table[page].dont_move))))
2105 return;
2106 object_start = native_pointer((lispobj)addr);
2107 switch (widetag_of(*object_start)) {
2108 case SIMPLE_FUN_WIDETAG:
2109 #ifdef RETURN_PC_WIDETAG
2110 case RETURN_PC_WIDETAG:
2111 #endif
2112 object_start = fun_code_header(object_start);
2114 #else
2115 if (page < 0 || (object_start = conservative_root_p(addr, page)) == NULL)
2116 return;
2117 #endif
2119 if (!compacting_p()) {
2120 /* Just mark it. No distinction between large and small objects. */
2121 gc_mark_obj(compute_lispobj(object_start));
2122 return;
2125 page_index_t first_page = find_page_index(object_start);
2126 size_t nwords = OBJECT_SIZE(*object_start, object_start);
2127 page_index_t last_page = find_page_index(object_start + nwords - 1);
2129 for (page = first_page; page <= last_page; ++page) {
2130 /* Oldspace pages were unprotected at start of GC.
2131 * Assert this here, because the previous logic used to,
2132 * and page protection bugs are scary */
2133 gc_assert(!page_table[page].write_protected);
2135 /* Mark the page static. */
2136 page_table[page].dont_move = 1;
2137 page_table[page].has_pins = !page_table[page].large_object;
2140 if (page_table[first_page].large_object)
2141 maybe_adjust_large_object(first_page, nwords);
2142 else
2143 pin_object(object_start);
2147 #define IN_REGION_P(a,kind) (kind##_region.start_addr<=a && a<=kind##_region.free_pointer)
2148 #if SEGREGATED_CODE
2149 #define IN_BOXED_REGION_P(a) IN_REGION_P(a,boxed)||IN_REGION_P(a,code)
2150 #else
2151 #define IN_BOXED_REGION_P(a) IN_REGION_P(a,boxed)
2152 #endif
2154 /* If the given page is not write-protected, then scan it for pointers
2155 * to younger generations or the top temp. generation, if no
2156 * suspicious pointers are found then the page is write-protected.
2158 * Care is taken to check for pointers to the current gc_alloc()
2159 * region if it is a younger generation or the temp. generation. This
2160 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2161 * the gc_alloc_generation does not need to be checked as this is only
2162 * called from scavenge_generation() when the gc_alloc generation is
2163 * younger, so it just checks if there is a pointer to the current
2164 * region.
2166 * We return 1 if the page was write-protected, else 0. */
2167 static int
2168 update_page_write_prot(page_index_t page)
2170 generation_index_t gen = page_table[page].gen;
2171 sword_t j;
2172 int wp_it = 1;
2173 void **page_addr = (void **)page_address(page);
2174 sword_t num_words = page_bytes_used(page) / N_WORD_BYTES;
2176 /* Shouldn't be a free page. */
2177 gc_assert(!page_free_p(page));
2178 gc_assert(page_bytes_used(page) != 0);
2180 if (!ENABLE_PAGE_PROTECTION) return 0;
2182 /* Skip if it's already write-protected, pinned, or unboxed */
2183 if (page_table[page].write_protected
2184 /* FIXME: What's the reason for not write-protecting pinned pages? */
2185 || page_table[page].dont_move
2186 || page_unboxed_p(page))
2187 return (0);
2189 /* Scan the page for pointers to younger generations or the
2190 * top temp. generation. */
2192 /* This is conservative: any word satisfying is_lisp_pointer() is
2193 * assumed to be a pointer. To do otherwise would require a family
2194 * of scavenge-like functions. */
2195 for (j = 0; j < num_words; j++) {
2196 void *ptr = *(page_addr+j);
2197 page_index_t index;
2198 lispobj __attribute__((unused)) header;
2200 if (!is_lisp_pointer((lispobj)ptr))
2201 continue;
2202 /* Check that it's in the dynamic space */
2203 if ((index = find_page_index(ptr)) != -1) {
2204 if (/* Does it point to a younger or the temp. generation? */
2205 ((page_bytes_used(index) != 0)
2206 && ((page_table[index].gen < gen)
2207 || (page_table[index].gen == SCRATCH_GENERATION)))
2209 /* Or does it point within a current gc_alloc() region? */
2210 || (IN_BOXED_REGION_P(ptr) || IN_REGION_P(ptr,unboxed))) {
2211 wp_it = 0;
2212 break;
2215 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2216 else if ((index = find_immobile_page_index(ptr)) >= 0 &&
2217 other_immediate_lowtag_p(header = *native_pointer((lispobj)ptr))) {
2218 // This is *possibly* a pointer to an object in immobile space,
2219 // given that above two conditions were satisfied.
2220 // But unlike in the dynamic space case, we need to read a byte
2221 // from the object to determine its generation, which requires care.
2222 // Consider an unboxed word that looks like a pointer to a word that
2223 // looks like fun-header-widetag. We can't naively back up to the
2224 // underlying code object since the alleged header might not be one.
2225 int obj_gen = gen; // Make comparison fail if we fall through
2226 if (lowtag_of((lispobj)ptr) == FUN_POINTER_LOWTAG &&
2227 widetag_of(header) == SIMPLE_FUN_WIDETAG) {
2228 lispobj* code = fun_code_header((lispobj)ptr - FUN_POINTER_LOWTAG);
2229 // This is a heuristic, since we're not actually looking for
2230 // an object boundary. Precise scanning of 'page' would obviate
2231 // the guard conditions here.
2232 if ((lispobj)code >= IMMOBILE_VARYOBJ_SUBSPACE_START
2233 && widetag_of(*code) == CODE_HEADER_WIDETAG)
2234 obj_gen = __immobile_obj_generation(code);
2235 } else {
2236 obj_gen = __immobile_obj_generation(native_pointer((lispobj)ptr));
2238 // A bogus generation number implies a not-really-pointer,
2239 // but it won't cause misbehavior.
2240 if (obj_gen < gen || obj_gen == SCRATCH_GENERATION) {
2241 wp_it = 0;
2242 break;
2245 #endif
2248 if (wp_it == 1)
2249 protect_page(page_addr, page);
2251 return (wp_it);
2254 /* Is this page holding a normal (non-hashtable) large-object
2255 * simple-vector? */
2256 static inline boolean large_simple_vector_p(page_index_t page) {
2257 if (!page_table[page].large_object)
2258 return 0;
2259 lispobj header = *(lispobj *)page_address(page);
2260 return widetag_of(header) == SIMPLE_VECTOR_WIDETAG &&
2261 is_vector_subtype(header, VectorNormal);
2265 /* Scavenge all generations from FROM to TO, inclusive, except for
2266 * new_space which needs special handling, as new objects may be
2267 * added which are not checked here - use scavenge_newspace generation.
2269 * Write-protected pages should not have any pointers to the
2270 * from_space so do need scavenging; thus write-protected pages are
2271 * not always scavenged. There is some code to check that these pages
2272 * are not written; but to check fully the write-protected pages need
2273 * to be scavenged by disabling the code to skip them.
2275 * Under the current scheme when a generation is GCed the younger
2276 * generations will be empty. So, when a generation is being GCed it
2277 * is only necessary to scavenge the older generations for pointers
2278 * not the younger. So a page that does not have pointers to younger
2279 * generations does not need to be scavenged.
2281 * The write-protection can be used to note pages that don't have
2282 * pointers to younger pages. But pages can be written without having
2283 * pointers to younger generations. After the pages are scavenged here
2284 * they can be scanned for pointers to younger generations and if
2285 * there are none the page can be write-protected.
2287 * One complication is when the newspace is the top temp. generation.
2289 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2290 * that none were written, which they shouldn't be as they should have
2291 * no pointers to younger generations. This breaks down for weak
2292 * pointers as the objects contain a link to the next and are written
2293 * if a weak pointer is scavenged. Still it's a useful check. */
2294 static void
2295 scavenge_generations(generation_index_t from, generation_index_t to)
2297 page_index_t i;
2298 page_index_t num_wp = 0;
2300 #define SC_GEN_CK 0
2301 #if SC_GEN_CK
2302 /* Clear the write_protected_cleared flags on all pages. */
2303 for (i = 0; i < page_table_pages; i++)
2304 page_table[i].write_protected_cleared = 0;
2305 #endif
2307 for (i = 0; i < last_free_page; i++) {
2308 generation_index_t generation = page_table[i].gen;
2309 if (page_boxed_p(i)
2310 && (page_bytes_used(i) != 0)
2311 && (generation != new_space)
2312 && (generation >= from)
2313 && (generation <= to)) {
2315 /* This should be the start of a region */
2316 gc_assert(page_starts_contiguous_block_p(i));
2318 if (large_simple_vector_p(i)) {
2319 /* Scavenge only the unprotected pages of a
2320 * large-object vector, other large objects could be
2321 * handled as well, but vectors are easier to deal
2322 * with and are more likely to grow to very large
2323 * sizes where avoiding scavenging the whole thing is
2324 * worthwile */
2325 if (!page_table[i].write_protected) {
2326 scavenge((lispobj*)page_address(i) + 2,
2327 GENCGC_CARD_BYTES / N_WORD_BYTES - 2);
2328 update_page_write_prot(i);
2330 while (!page_ends_contiguous_block_p(i, generation)) {
2331 ++i;
2332 if (!page_table[i].write_protected) {
2333 scavenge((lispobj*)page_address(i),
2334 page_bytes_used(i) / N_WORD_BYTES);
2335 update_page_write_prot(i);
2338 } else {
2339 page_index_t last_page, j;
2340 boolean write_protected = 1;
2341 /* Now work forward until the end of the region */
2342 for (last_page = i; ; last_page++) {
2343 write_protected =
2344 write_protected && page_table[last_page].write_protected;
2345 if (page_ends_contiguous_block_p(last_page, generation))
2346 break;
2348 if (!write_protected) {
2349 heap_scavenge((lispobj*)page_address(i),
2350 (lispobj*)(page_address(last_page)
2351 + page_bytes_used(last_page)));
2353 /* Now scan the pages and write protect those that
2354 * don't have pointers to younger generations. */
2355 if (ENABLE_PAGE_PROTECTION) {
2356 for (j = i; j <= last_page; j++) {
2357 num_wp += update_page_write_prot(j);
2360 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2361 FSHOW((stderr,
2362 "/write protected %d pages within generation %d\n",
2363 num_wp, generation));
2366 i = last_page;
2371 #if SC_GEN_CK
2372 /* Check that none of the write_protected pages in this generation
2373 * have been written to. */
2374 for (i = 0; i < page_table_pages; i++) {
2375 if ((page_bytes_used(i) != 0)
2376 && (page_table[i].gen == generation)
2377 && (page_table[i].write_protected_cleared != 0)) {
2378 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2379 FSHOW((stderr,
2380 "/page bytes_used=%d scan_start_offset=%lu dont_move=%d\n",
2381 page_bytes_used(i),
2382 scan_start_offset(page_table[i]),
2383 page_table[i].dont_move));
2384 lose("write to protected page %d in scavenge_generation()\n", i);
2387 #endif
2391 /* Scavenge a newspace generation. As it is scavenged new objects may
2392 * be allocated to it; these will also need to be scavenged. This
2393 * repeats until there are no more objects unscavenged in the
2394 * newspace generation.
2396 * To help improve the efficiency, areas written are recorded by
2397 * gc_alloc() and only these scavenged. Sometimes a little more will be
2398 * scavenged, but this causes no harm. An easy check is done that the
2399 * scavenged bytes equals the number allocated in the previous
2400 * scavenge.
2402 * Write-protected pages are not scanned except if they are marked
2403 * dont_move in which case they may have been promoted and still have
2404 * pointers to the from space.
2406 * Write-protected pages could potentially be written by alloc however
2407 * to avoid having to handle re-scavenging of write-protected pages
2408 * gc_alloc() does not write to write-protected pages.
2410 * New areas of objects allocated are recorded alternatively in the two
2411 * new_areas arrays below. */
2412 static struct new_area new_areas_1[NUM_NEW_AREAS];
2413 static struct new_area new_areas_2[NUM_NEW_AREAS];
2415 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2416 extern unsigned int immobile_scav_queue_count;
2417 extern void
2418 update_immobile_nursery_bits(),
2419 scavenge_immobile_roots(generation_index_t,generation_index_t),
2420 scavenge_immobile_newspace(),
2421 sweep_immobile_space(int raise),
2422 write_protect_immobile_space();
2423 #else
2424 #define immobile_scav_queue_count 0
2425 #endif
2427 /* Do one full scan of the new space generation. This is not enough to
2428 * complete the job as new objects may be added to the generation in
2429 * the process which are not scavenged. */
2430 static void
2431 scavenge_newspace_generation_one_scan(generation_index_t generation)
2433 page_index_t i;
2435 FSHOW((stderr,
2436 "/starting one full scan of newspace generation %d\n",
2437 generation));
2438 for (i = 0; i < last_free_page; i++) {
2439 /* Note that this skips over open regions when it encounters them. */
2440 if (page_boxed_p(i)
2441 && (page_bytes_used(i) != 0)
2442 && (page_table[i].gen == generation)
2443 && (!page_table[i].write_protected
2444 /* (This may be redundant as write_protected is now
2445 * cleared before promotion.) */
2446 || page_table[i].dont_move)) {
2447 page_index_t last_page;
2448 int all_wp=1;
2450 /* The scavenge will start at the scan_start_offset of
2451 * page i.
2453 * We need to find the full extent of this contiguous
2454 * block in case objects span pages.
2456 * Now work forward until the end of this contiguous area
2457 * is found. A small area is preferred as there is a
2458 * better chance of its pages being write-protected. */
2459 for (last_page = i; ;last_page++) {
2460 /* If all pages are write-protected and movable,
2461 * then no need to scavenge */
2462 all_wp=all_wp && page_table[last_page].write_protected &&
2463 !page_table[last_page].dont_move;
2465 /* Check whether this is the last page in this
2466 * contiguous block */
2467 if (page_ends_contiguous_block_p(last_page, generation))
2468 break;
2471 /* Do a limited check for write-protected pages. */
2472 if (!all_wp) {
2473 new_areas_ignore_page = last_page;
2474 heap_scavenge(page_scan_start(i),
2475 (lispobj*)(page_address(last_page)
2476 + page_bytes_used(last_page)));
2478 i = last_page;
2481 FSHOW((stderr,
2482 "/done with one full scan of newspace generation %d\n",
2483 generation));
2486 /* Do a complete scavenge of the newspace generation. */
2487 static void
2488 scavenge_newspace_generation(generation_index_t generation)
2490 size_t i;
2492 /* the new_areas array currently being written to by gc_alloc() */
2493 struct new_area (*current_new_areas)[] = &new_areas_1;
2494 size_t current_new_areas_index;
2496 /* the new_areas created by the previous scavenge cycle */
2497 struct new_area (*previous_new_areas)[] = NULL;
2498 size_t previous_new_areas_index;
2500 /* Flush the current regions updating the tables. */
2501 gc_alloc_update_all_page_tables(0);
2503 /* Turn on the recording of new areas by gc_alloc(). */
2504 new_areas = current_new_areas;
2505 new_areas_index = 0;
2507 /* Don't need to record new areas that get scavenged anyway during
2508 * scavenge_newspace_generation_one_scan. */
2509 record_new_objects = 1;
2511 /* Start with a full scavenge. */
2512 scavenge_newspace_generation_one_scan(generation);
2514 /* Record all new areas now. */
2515 record_new_objects = 2;
2517 /* Give a chance to weak hash tables to make other objects live.
2518 * FIXME: The algorithm implemented here for weak hash table gcing
2519 * is O(W^2+N) as Bruno Haible warns in
2520 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
2521 * see "Implementation 2". */
2522 scav_weak_hash_tables(weak_ht_alivep_funs, gc_scav_pair);
2524 /* Flush the current regions updating the tables. */
2525 gc_alloc_update_all_page_tables(0);
2527 /* Grab new_areas_index. */
2528 current_new_areas_index = new_areas_index;
2530 /*FSHOW((stderr,
2531 "The first scan is finished; current_new_areas_index=%d.\n",
2532 current_new_areas_index));*/
2534 while (current_new_areas_index > 0 || immobile_scav_queue_count) {
2535 /* Move the current to the previous new areas */
2536 previous_new_areas = current_new_areas;
2537 previous_new_areas_index = current_new_areas_index;
2539 /* Scavenge all the areas in previous new areas. Any new areas
2540 * allocated are saved in current_new_areas. */
2542 /* Allocate an array for current_new_areas; alternating between
2543 * new_areas_1 and 2 */
2544 if (previous_new_areas == &new_areas_1)
2545 current_new_areas = &new_areas_2;
2546 else
2547 current_new_areas = &new_areas_1;
2549 /* Set up for gc_alloc(). */
2550 new_areas = current_new_areas;
2551 new_areas_index = 0;
2553 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2554 scavenge_immobile_newspace();
2555 #endif
2556 /* Check whether previous_new_areas had overflowed. */
2557 if (previous_new_areas_index >= NUM_NEW_AREAS) {
2559 /* New areas of objects allocated have been lost so need to do a
2560 * full scan to be sure! If this becomes a problem try
2561 * increasing NUM_NEW_AREAS. */
2562 if (gencgc_verbose) {
2563 SHOW("new_areas overflow, doing full scavenge");
2566 /* Don't need to record new areas that get scavenged
2567 * anyway during scavenge_newspace_generation_one_scan. */
2568 record_new_objects = 1;
2570 scavenge_newspace_generation_one_scan(generation);
2572 /* Record all new areas now. */
2573 record_new_objects = 2;
2575 } else {
2577 /* Work through previous_new_areas. */
2578 for (i = 0; i < previous_new_areas_index; i++) {
2579 page_index_t page = (*previous_new_areas)[i].page;
2580 size_t offset = (*previous_new_areas)[i].offset;
2581 size_t size = (*previous_new_areas)[i].size;
2582 gc_assert(size % (2*N_WORD_BYTES) == 0);
2583 lispobj *start = (lispobj*)(page_address(page) + offset);
2584 heap_scavenge(start, (lispobj*)((char*)start + size));
2589 scav_weak_hash_tables(weak_ht_alivep_funs, gc_scav_pair);
2591 /* Flush the current regions updating the tables. */
2592 gc_alloc_update_all_page_tables(0);
2594 current_new_areas_index = new_areas_index;
2596 /*FSHOW((stderr,
2597 "The re-scan has finished; current_new_areas_index=%d.\n",
2598 current_new_areas_index));*/
2601 /* Turn off recording of areas allocated by gc_alloc(). */
2602 record_new_objects = 0;
2604 #ifdef SC_NS_GEN_CK
2606 page_index_t i;
2607 /* Check that none of the write_protected pages in this generation
2608 * have been written to. */
2609 for (i = 0; i < page_table_pages; i++) {
2610 if ((page_bytes_used(i) != 0)
2611 && (page_table[i].gen == generation)
2612 && (page_table[i].write_protected_cleared != 0)
2613 && (page_table[i].dont_move == 0)) {
2614 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
2615 i, generation, page_table[i].dont_move);
2619 #endif
2622 /* Un-write-protect all the pages in from_space. This is done at the
2623 * start of a GC else there may be many page faults while scavenging
2624 * the newspace (I've seen drive the system time to 99%). These pages
2625 * would need to be unprotected anyway before unmapping in
2626 * free_oldspace; not sure what effect this has on paging.. */
2627 static void
2628 unprotect_oldspace(void)
2630 page_index_t i;
2631 char *region_addr = 0;
2632 char *page_addr = 0;
2633 uword_t region_bytes = 0;
2635 for (i = 0; i < last_free_page; i++) {
2636 if ((page_bytes_used(i) != 0)
2637 && (page_table[i].gen == from_space)) {
2639 /* Remove any write-protection. We should be able to rely
2640 * on the write-protect flag to avoid redundant calls. */
2641 if (page_table[i].write_protected) {
2642 page_table[i].write_protected = 0;
2643 page_addr = page_address(i);
2644 if (!region_addr) {
2645 /* First region. */
2646 region_addr = page_addr;
2647 region_bytes = GENCGC_CARD_BYTES;
2648 } else if (region_addr + region_bytes == page_addr) {
2649 /* Region continue. */
2650 region_bytes += GENCGC_CARD_BYTES;
2651 } else {
2652 /* Unprotect previous region. */
2653 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2654 /* First page in new region. */
2655 region_addr = page_addr;
2656 region_bytes = GENCGC_CARD_BYTES;
2661 if (region_addr) {
2662 /* Unprotect last region. */
2663 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2667 /* Work through all the pages and free any in from_space. This
2668 * assumes that all objects have been copied or promoted to an older
2669 * generation. Bytes_allocated and the generation bytes_allocated
2670 * counter are updated. The number of bytes freed is returned. */
2671 static uword_t
2672 free_oldspace(void)
2674 uword_t bytes_freed = 0;
2675 page_index_t first_page, last_page;
2677 first_page = 0;
2679 do {
2680 /* Find a first page for the next region of pages. */
2681 while ((first_page < last_free_page)
2682 && ((page_bytes_used(first_page) == 0)
2683 || (page_table[first_page].gen != from_space)))
2684 first_page++;
2686 if (first_page >= last_free_page)
2687 break;
2689 /* Find the last page of this region. */
2690 last_page = first_page;
2692 do {
2693 /* Free the page. */
2694 bytes_freed += page_bytes_used(last_page);
2695 generations[page_table[last_page].gen].bytes_allocated -=
2696 page_bytes_used(last_page);
2697 reset_page_flags(last_page);
2698 set_page_bytes_used(last_page, 0);
2699 /* Should already be unprotected by unprotect_oldspace(). */
2700 gc_assert(!page_table[last_page].write_protected);
2701 last_page++;
2703 while ((last_page < last_free_page)
2704 && (page_bytes_used(last_page) != 0)
2705 && (page_table[last_page].gen == from_space));
2707 #ifdef TRAVERSE_FREED_OBJECTS
2708 /* At this point we could attempt to recycle unused TLS indices
2709 * as follows: For each now-garbage symbol that had a nonzero index,
2710 * return that index to a "free TLS index" pool, perhaps a linked list
2711 * or bitmap. Then either always try the free pool first (for better
2712 * locality) or if ALLOC-TLS-INDEX detects exhaustion (for speed). */
2714 lispobj* where = (lispobj*)page_address(first_page);
2715 lispobj* end = (lispobj*)page_address(last_page);
2716 while (where < end) {
2717 lispobj word = *where;
2718 if (forwarding_pointer_p(where)) {
2719 word = *native_pointer(forwarding_pointer_value(where));
2720 where += OBJECT_SIZE(word,
2721 native_pointer(forwarding_pointer_value(where)));
2722 } else if (is_cons_half(word)) {
2723 // Print something maybe
2724 where += 2;
2725 } else {
2726 // Print something maybe
2727 where += sizetab[widetag_of(word)](where);
2731 #endif
2733 #ifdef READ_PROTECT_FREE_PAGES
2734 os_protect(page_address(first_page),
2735 npage_bytes(last_page-first_page),
2736 OS_VM_PROT_NONE);
2737 #endif
2738 first_page = last_page;
2739 } while (first_page < last_free_page);
2741 bytes_allocated -= bytes_freed;
2742 return bytes_freed;
2745 #if 0
2746 /* Print some information about a pointer at the given address. */
2747 static void
2748 print_ptr(lispobj *addr)
2750 /* If addr is in the dynamic space then out the page information. */
2751 page_index_t pi1 = find_page_index((void*)addr);
2753 if (pi1 != -1)
2754 fprintf(stderr," %p: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
2755 addr,
2756 pi1,
2757 page_table[pi1].allocated,
2758 page_table[pi1].gen,
2759 page_bytes_used(pi1),
2760 scan_start_offset(page_table[pi1]),
2761 page_table[pi1].dont_move);
2762 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
2763 *(addr-4),
2764 *(addr-3),
2765 *(addr-2),
2766 *(addr-1),
2767 *(addr-0),
2768 *(addr+1),
2769 *(addr+2),
2770 *(addr+3),
2771 *(addr+4));
2773 #endif
2775 static int
2776 is_in_stack_space(lispobj ptr)
2778 /* For space verification: Pointers can be valid if they point
2779 * to a thread stack space. This would be faster if the thread
2780 * structures had page-table entries as if they were part of
2781 * the heap space. */
2782 /* Actually, no, how would that be faster?
2783 * If you have to examine thread structures, you have to examine
2784 * them all. This demands something like a binary search tree */
2785 struct thread *th;
2786 for_each_thread(th) {
2787 if ((th->control_stack_start <= (lispobj *)ptr) &&
2788 (th->control_stack_end >= (lispobj *)ptr)) {
2789 return 1;
2792 return 0;
2795 struct verify_state {
2796 lispobj *object_start, *object_end;
2797 lispobj *virtual_where;
2798 uword_t flags;
2799 int errors;
2800 generation_index_t object_gen;
2803 #define VERIFY_VERBOSE 1
2804 /* AGGRESSIVE = always call valid_lisp_pointer_p() on pointers.
2805 * Otherwise, do only a quick check that widetag/lowtag correspond */
2806 #define VERIFY_AGGRESSIVE 2
2807 /* VERIFYING_foo indicates internal state, not a caller's option */
2808 #define VERIFYING_HEAP_OBJECTS 8
2810 // NOTE: This function can produces false failure indications,
2811 // usually related to dynamic space pointing to the stack of a
2812 // dead thread, but there may be other reasons as well.
2813 static void
2814 verify_range(lispobj *where, sword_t nwords, struct verify_state *state)
2816 extern int valid_lisp_pointer_p(lispobj);
2817 boolean is_in_readonly_space =
2818 (READ_ONLY_SPACE_START <= (uword_t)where &&
2819 where < read_only_space_free_pointer);
2820 boolean is_in_immobile_space = 0;
2821 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2822 is_in_immobile_space =
2823 (IMMOBILE_SPACE_START <= (uword_t)where &&
2824 where < immobile_space_free_pointer);
2825 #endif
2827 lispobj *end = where + nwords;
2828 size_t count;
2829 for ( ; where < end ; where += count) {
2830 // Keep track of object boundaries, unless verifying a non-heap space.
2831 if (where > state->object_end && (state->flags & VERIFYING_HEAP_OBJECTS)) {
2832 state->object_start = where;
2833 state->object_end = where + OBJECT_SIZE(*where, where) - 1;
2835 count = 1;
2836 lispobj thing = *where;
2837 lispobj callee;
2839 if (is_lisp_pointer(thing)) {
2840 page_index_t page_index = find_page_index((void*)thing);
2841 boolean to_immobile_space = 0;
2842 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2843 to_immobile_space =
2844 (IMMOBILE_SPACE_START <= thing &&
2845 thing < (lispobj)immobile_fixedobj_free_pointer) ||
2846 (IMMOBILE_VARYOBJ_SUBSPACE_START <= thing &&
2847 thing < (lispobj)immobile_space_free_pointer);
2848 #endif
2850 /* unlike lose(), fprintf detects format mismatch, hence the casts */
2851 #define FAIL_IF(what, why) if (what) { \
2852 if (++state->errors > 25) lose("Too many errors"); \
2853 else fprintf(stderr, "Ptr %p @ %"OBJ_FMTX" sees %s\n", \
2854 (void*)(uintptr_t)thing, \
2855 (lispobj)(state->virtual_where ? state->virtual_where : where), \
2856 why); }
2858 /* Does it point to the dynamic space? */
2859 if (page_index != -1) {
2860 /* If it's within the dynamic space it should point to a used page. */
2861 FAIL_IF(page_free_p(page_index), "free page");
2862 FAIL_IF(!(page_table[page_index].allocated & OPEN_REGION_PAGE_FLAG)
2863 && (thing & (GENCGC_CARD_BYTES-1)) >= page_bytes_used(page_index),
2864 "unallocated space");
2865 /* Check that it doesn't point to a forwarding pointer! */
2866 FAIL_IF(*native_pointer(thing) == 0x01, "forwarding ptr");
2867 /* Check that its not in the RO space as it would then be a
2868 * pointer from the RO to the dynamic space. */
2869 FAIL_IF(is_in_readonly_space, "dynamic space from RO space");
2870 } else if (to_immobile_space) {
2871 // the object pointed to must not have been discarded as garbage
2872 FAIL_IF(!other_immediate_lowtag_p(*native_pointer(thing)) ||
2873 immobile_filler_p(native_pointer(thing)),
2874 "trashed object");
2876 /* Any pointer that points to non-static space is examined further.
2877 * You might think this should scan stacks first as a quick out,
2878 * but that would take time proportional to the number of threads. */
2879 if (page_index >= 0 || to_immobile_space) {
2880 int valid;
2881 /* If aggressive, or to/from immobile space, do a full search
2882 * (as entailed by valid_lisp_pointer_p) */
2883 if ((state->flags & VERIFY_AGGRESSIVE)
2884 || (is_in_immobile_space || to_immobile_space))
2885 valid = valid_lisp_pointer_p(thing);
2886 else {
2887 /* Efficiently decide whether 'thing' is plausible.
2888 * This MUST NOT use properly_tagged_descriptor_p() which
2889 * assumes a known good object base address, and would
2890 * "dangerously" scan a code component for embedded funs. */
2891 int lowtag = lowtag_of(thing);
2892 if (lowtag == LIST_POINTER_LOWTAG)
2893 valid = is_cons_half(CONS(thing)->car)
2894 && is_cons_half(CONS(thing)->cdr);
2895 else {
2896 lispobj word = *native_pointer(thing);
2897 valid = other_immediate_lowtag_p(word) &&
2898 lowtag_for_widetag[widetag_of(word)>>2] == lowtag;
2901 /* If 'thing' points to a stack, we can only hope that the frame
2902 * not clobbered, or the object at 'where' is unreachable. */
2903 FAIL_IF(!valid && !is_in_stack_space(thing), "junk");
2905 continue;
2907 int widetag = widetag_of(thing);
2908 if (is_lisp_immediate(thing) || widetag == NO_TLS_VALUE_MARKER_WIDETAG) {
2909 /* skip immediates */
2910 } else if (!(other_immediate_lowtag_p(widetag)
2911 && lowtag_for_widetag[widetag>>2])) {
2912 lose("Unhandled widetag %p at %p\n", widetag, where);
2913 } else if (unboxed_obj_widetag_p(widetag)) {
2914 count = sizetab[widetag](where);
2915 } else switch(widetag) {
2916 /* boxed or partially boxed objects */
2917 // FIXME: x86-64 can have partially unboxed FINs. The raw words
2918 // are at the moment valid fixnums by blind luck.
2919 case INSTANCE_WIDETAG:
2920 if (instance_layout(where)) {
2921 sword_t nslots = instance_length(thing) | 1;
2922 lispobj bitmap = LAYOUT(instance_layout(where))->bitmap;
2923 gc_assert(fixnump(bitmap)
2924 || widetag_of(*native_pointer(bitmap))==BIGNUM_WIDETAG);
2925 instance_scan((void (*)(lispobj*, sword_t, uword_t))verify_range,
2926 where+1, nslots, bitmap, (uintptr_t)state);
2927 count = 1 + nslots;
2929 break;
2930 case CODE_HEADER_WIDETAG:
2932 struct code *code = (struct code *) where;
2933 sword_t nheader_words = code_header_words(code->header);
2934 /* Scavenge the boxed section of the code data block */
2935 verify_range(where + 1, nheader_words - 1, state);
2937 /* Scavenge the boxed section of each function
2938 * object in the code data block. */
2939 for_each_simple_fun(i, fheaderp, code, 1, {
2940 #if defined(LISP_FEATURE_COMPACT_INSTANCE_HEADER)
2941 lispobj __attribute__((unused)) layout =
2942 function_layout((lispobj*)fheaderp);
2943 gc_assert(!layout || layout == SYMBOL(FUNCTION_LAYOUT)->value >> 32);
2944 #endif
2945 verify_range(SIMPLE_FUN_SCAV_START(fheaderp),
2946 SIMPLE_FUN_SCAV_NWORDS(fheaderp),
2947 state); });
2948 count = nheader_words + code_instruction_words(code->code_size);
2949 break;
2951 case FDEFN_WIDETAG:
2952 verify_range(where + 1, 2, state);
2953 callee = fdefn_callee_lispobj((struct fdefn*)where);
2954 /* For a more intelligible error, don't say that the word that
2955 * contains an errant pointer is in stack space if it isn't. */
2956 state->virtual_where = where + 3;
2957 verify_range(&callee, 1, state);
2958 state->virtual_where = 0;
2959 count = ALIGN_UP(sizeof (struct fdefn)/sizeof(lispobj), 2);
2960 break;
2964 static uword_t verify_space(lispobj start, lispobj* end, uword_t flags) {
2965 struct verify_state state;
2966 memset(&state, 0, sizeof state);
2967 state.flags = flags;
2968 verify_range((lispobj*)start, end-(lispobj*)start, &state);
2969 if (state.errors) lose("verify failed: %d error(s)", state.errors);
2970 return 0;
2972 static uword_t verify_gen_aux(lispobj start, lispobj* end, struct verify_state* state)
2974 verify_range((lispobj*)start, end-(lispobj*)start, state);
2975 return 0;
2977 static void verify_generation(generation_index_t generation, uword_t flags)
2979 struct verify_state state;
2980 memset(&state, 0, sizeof state);
2981 state.flags = flags;
2982 walk_generation((uword_t(*)(lispobj*,lispobj*,uword_t))verify_gen_aux,
2983 generation, (uword_t)&state);
2984 if (state.errors) lose("verify failed: %d error(s)", state.errors);
2987 void verify_gc(uword_t flags)
2989 int verbose = flags & VERIFY_VERBOSE;
2991 flags |= VERIFYING_HEAP_OBJECTS;
2993 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2994 # ifdef __linux__
2995 // Try this verification if immobile-space was compiled with extra debugging.
2996 // But weak symbols don't work on macOS.
2997 extern void __attribute__((weak)) check_varyobj_pages();
2998 if (&check_varyobj_pages) check_varyobj_pages();
2999 # endif
3000 if (verbose)
3001 printf("Verifying immobile space\n");
3002 verify_space(IMMOBILE_SPACE_START, immobile_fixedobj_free_pointer, flags);
3003 verify_space(IMMOBILE_VARYOBJ_SUBSPACE_START, immobile_space_free_pointer, flags);
3004 #endif
3005 struct thread *th;
3006 if (verbose)
3007 printf("Verifying binding stacks\n");
3008 for_each_thread(th) {
3009 verify_space((lispobj)th->binding_stack_start,
3010 (lispobj*)get_binding_stack_pointer(th),
3011 flags ^ VERIFYING_HEAP_OBJECTS);
3012 #ifdef LISP_FEATURE_SB_THREAD
3013 verify_space((lispobj)(th+1),
3014 (lispobj*)(SymbolValue(FREE_TLS_INDEX,0)
3015 + (char*)((union per_thread_data*)th)->dynamic_values),
3016 flags ^ VERIFYING_HEAP_OBJECTS);
3017 #endif
3019 if (verbose)
3020 printf("Verifying RO space\n");
3021 verify_space(READ_ONLY_SPACE_START, read_only_space_free_pointer, flags);
3022 if (verbose)
3023 printf("Verifying static space\n");
3024 verify_space(STATIC_SPACE_START, static_space_free_pointer, flags);
3025 if (verbose)
3026 printf("Verifying dynamic space\n");
3027 verify_generation(-1, flags);
3030 /* Call 'proc' with pairs of addresses demarcating ranges in the
3031 * specified generation.
3032 * Stop if any invocation returns non-zero, and return that value */
3033 uword_t
3034 walk_generation(uword_t (*proc)(lispobj*,lispobj*,uword_t),
3035 generation_index_t generation, uword_t extra)
3037 page_index_t i;
3038 int genmask = generation >= 0 ? 1 << generation : ~0;
3040 for (i = 0; i < last_free_page; i++) {
3041 if ((page_bytes_used(i) != 0) && ((1 << page_table[i].gen) & genmask)) {
3042 page_index_t last_page;
3044 /* This should be the start of a contiguous block */
3045 gc_assert(page_starts_contiguous_block_p(i));
3047 /* Need to find the full extent of this contiguous block in case
3048 objects span pages. */
3050 /* Now work forward until the end of this contiguous area is
3051 found. */
3052 for (last_page = i; ;last_page++)
3053 /* Check whether this is the last page in this contiguous
3054 * block. */
3055 if (page_ends_contiguous_block_p(last_page, page_table[i].gen))
3056 break;
3058 uword_t result =
3059 proc((lispobj*)page_address(i),
3060 (lispobj*)(page_bytes_used(last_page) + page_address(last_page)),
3061 extra);
3062 if (result) return result;
3064 i = last_page;
3067 return 0;
3070 /* Check that all the free space is zero filled. */
3071 static void
3072 verify_zero_fill(void)
3074 page_index_t page;
3076 for (page = 0; page < last_free_page; page++) {
3077 if (page_free_p(page)) {
3078 /* The whole page should be zero filled. */
3079 sword_t *start_addr = (sword_t *)page_address(page);
3080 sword_t i;
3081 for (i = 0; i < (sword_t)GENCGC_CARD_BYTES/N_WORD_BYTES; i++) {
3082 if (start_addr[i] != 0) {
3083 lose("free page not zero at %p\n", start_addr + i);
3086 } else {
3087 sword_t free_bytes = GENCGC_CARD_BYTES - page_bytes_used(page);
3088 if (free_bytes > 0) {
3089 sword_t *start_addr =
3090 (sword_t *)(page_address(page) + page_bytes_used(page));
3091 sword_t size = free_bytes / N_WORD_BYTES;
3092 sword_t i;
3093 for (i = 0; i < size; i++) {
3094 if (start_addr[i] != 0) {
3095 lose("free region not zero at %p\n", start_addr + i);
3103 /* External entry point for verify_zero_fill */
3104 void
3105 gencgc_verify_zero_fill(void)
3107 /* Flush the alloc regions updating the tables. */
3108 gc_alloc_update_all_page_tables(1);
3109 SHOW("verifying zero fill");
3110 verify_zero_fill();
3113 /* Write-protect all the dynamic boxed pages in the given generation. */
3114 static void
3115 write_protect_generation_pages(generation_index_t generation)
3117 page_index_t start;
3119 gc_assert(generation < SCRATCH_GENERATION);
3121 for (start = 0; start < last_free_page; start++) {
3122 if (protect_page_p(start, generation)) {
3123 void *page_start;
3124 page_index_t last;
3126 /* Note the page as protected in the page tables. */
3127 page_table[start].write_protected = 1;
3129 for (last = start + 1; last < last_free_page; last++) {
3130 if (!protect_page_p(last, generation))
3131 break;
3132 page_table[last].write_protected = 1;
3135 page_start = page_address(start);
3137 os_protect(page_start,
3138 npage_bytes(last - start),
3139 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3141 start = last;
3145 if (gencgc_verbose > 1) {
3146 FSHOW((stderr,
3147 "/write protected %d of %d pages in generation %d\n",
3148 count_write_protect_generation_pages(generation),
3149 count_generation_pages(generation),
3150 generation));
3154 #if !GENCGC_IS_PRECISE
3155 static void
3156 preserve_context_registers (void (*proc)(os_context_register_t), os_context_t *c)
3158 #ifdef LISP_FEATURE_SB_THREAD
3159 void **ptr;
3160 /* On Darwin the signal context isn't a contiguous block of memory,
3161 * so just preserve_pointering its contents won't be sufficient.
3163 #if defined(LISP_FEATURE_DARWIN)||defined(LISP_FEATURE_WIN32)
3164 #if defined LISP_FEATURE_X86
3165 proc(*os_context_register_addr(c,reg_EAX));
3166 proc(*os_context_register_addr(c,reg_ECX));
3167 proc(*os_context_register_addr(c,reg_EDX));
3168 proc(*os_context_register_addr(c,reg_EBX));
3169 proc(*os_context_register_addr(c,reg_ESI));
3170 proc(*os_context_register_addr(c,reg_EDI));
3171 proc(*os_context_pc_addr(c));
3172 #elif defined LISP_FEATURE_X86_64
3173 proc(*os_context_register_addr(c,reg_RAX));
3174 proc(*os_context_register_addr(c,reg_RCX));
3175 proc(*os_context_register_addr(c,reg_RDX));
3176 proc(*os_context_register_addr(c,reg_RBX));
3177 proc(*os_context_register_addr(c,reg_RSI));
3178 proc(*os_context_register_addr(c,reg_RDI));
3179 proc(*os_context_register_addr(c,reg_R8));
3180 proc(*os_context_register_addr(c,reg_R9));
3181 proc(*os_context_register_addr(c,reg_R10));
3182 proc(*os_context_register_addr(c,reg_R11));
3183 proc(*os_context_register_addr(c,reg_R12));
3184 proc(*os_context_register_addr(c,reg_R13));
3185 proc(*os_context_register_addr(c,reg_R14));
3186 proc(*os_context_register_addr(c,reg_R15));
3187 proc(*os_context_pc_addr(c));
3188 #else
3189 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3190 #endif
3191 #endif
3192 #if !defined(LISP_FEATURE_WIN32)
3193 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3194 proc((os_context_register_t)*ptr);
3196 #endif
3197 #endif // LISP_FEATURE_SB_THREAD
3199 #endif
3201 static void
3202 move_pinned_pages_to_newspace()
3204 page_index_t i;
3206 /* scavenge() will evacuate all oldspace pages, but no newspace
3207 * pages. Pinned pages are precisely those pages which must not
3208 * be evacuated, so move them to newspace directly. */
3210 for (i = 0; i < last_free_page; i++) {
3211 if (page_table[i].dont_move &&
3212 /* dont_move is cleared lazily, so test the 'gen' field as well. */
3213 page_table[i].gen == from_space) {
3214 if (page_table[i].has_pins) {
3215 // do not move to newspace after all, this will be word-wiped
3216 continue;
3218 page_table[i].gen = new_space;
3219 /* And since we're moving the pages wholesale, also adjust
3220 * the generation allocation counters. */
3221 int used = page_bytes_used(i);
3222 generations[new_space].bytes_allocated += used;
3223 generations[from_space].bytes_allocated -= used;
3228 #if defined(__GNUC__) && defined(ADDRESS_SANITIZER)
3229 #define NO_SANITIZE_ADDRESS __attribute__((no_sanitize_address))
3230 #else
3231 #define NO_SANITIZE_ADDRESS
3232 #endif
3234 /* Garbage collect a generation. If raise is 0 then the remains of the
3235 * generation are not raised to the next generation. */
3236 static void NO_SANITIZE_ADDRESS
3237 garbage_collect_generation(generation_index_t generation, int raise)
3239 page_index_t i;
3240 struct thread *th;
3242 gc_assert(generation <= PSEUDO_STATIC_GENERATION);
3244 /* The oldest generation can't be raised. */
3245 gc_assert(!raise || generation < HIGHEST_NORMAL_GENERATION);
3247 /* Check that weak hash tables were processed in the previous GC. */
3248 gc_assert(weak_hash_tables == NULL);
3249 gc_assert(weak_AND_hash_tables == NULL);
3251 /* Initialize the weak pointer list. */
3252 weak_pointers = NULL;
3254 /* When a generation is not being raised it is transported to a
3255 * temporary generation (NUM_GENERATIONS), and lowered when
3256 * done. Set up this new generation. There should be no pages
3257 * allocated to it yet. */
3258 if (!raise) {
3259 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3262 /* Set the global src and dest. generations */
3263 if (generation < PSEUDO_STATIC_GENERATION) {
3265 from_space = generation;
3266 if (raise)
3267 new_space = generation+1;
3268 else
3269 new_space = SCRATCH_GENERATION;
3271 /* Change to a new space for allocation, resetting the alloc_start_page */
3272 gc_alloc_generation = new_space;
3273 #if SEGREGATED_CODE
3274 bzero(generations[new_space].alloc_start_page_,
3275 sizeof generations[new_space].alloc_start_page_);
3276 #else
3277 generations[new_space].alloc_start_page = 0;
3278 generations[new_space].alloc_unboxed_start_page = 0;
3279 generations[new_space].alloc_large_start_page = 0;
3280 #endif
3282 #ifdef PIN_GRANULARITY_LISPOBJ
3283 hopscotch_reset(&pinned_objects);
3284 #endif
3285 /* Before any pointers are preserved, the dont_move flags on the
3286 * pages need to be cleared. */
3287 /* FIXME: consider moving this bitmap into its own range of words,
3288 * out of the page table. Then we can just bzero() it.
3289 * This will also obviate the extra test at the comment
3290 * "dont_move is cleared lazily" in move_pinned_pages_to_newspace().
3292 for (i = 0; i < last_free_page; i++)
3293 if(page_table[i].gen==from_space)
3294 page_table[i].dont_move = 0;
3296 /* Un-write-protect the old-space pages. This is essential for the
3297 * promoted pages as they may contain pointers into the old-space
3298 * which need to be scavenged. It also helps avoid unnecessary page
3299 * faults as forwarding pointers are written into them. They need to
3300 * be un-protected anyway before unmapping later. */
3301 if (ENABLE_PAGE_PROTECTION)
3302 unprotect_oldspace();
3304 } else { // "full" [sic] GC
3306 /* This is a full mark-and-sweep of all generations without compacting
3307 * and without returning free space to the allocator. The intent is to
3308 * break chains of objects causing accidental reachability.
3309 * Subsequent GC cycles will compact and reclaims space as usual. */
3310 from_space = new_space = -1;
3312 // Unprotect the dynamic space but leave page_table bits alone
3313 if (ENABLE_PAGE_PROTECTION)
3314 os_protect(page_address(0), npage_bytes(last_free_page),
3315 OS_VM_PROT_ALL);
3317 // Allocate pages from dynamic space for the work queue.
3318 extern void prepare_for_full_mark_phase();
3319 prepare_for_full_mark_phase();
3323 /* Scavenge the stacks' conservative roots. */
3325 /* there are potentially two stacks for each thread: the main
3326 * stack, which may contain Lisp pointers, and the alternate stack.
3327 * We don't ever run Lisp code on the altstack, but it may
3328 * host a sigcontext with lisp objects in it */
3330 /* what we need to do: (1) find the stack pointer for the main
3331 * stack; scavenge it (2) find the interrupt context on the
3332 * alternate stack that might contain lisp values, and scavenge
3333 * that */
3335 /* we assume that none of the preceding applies to the thread that
3336 * initiates GC. If you ever call GC from inside an altstack
3337 * handler, you will lose. */
3339 #if !GENCGC_IS_PRECISE
3340 /* And if we're saving a core, there's no point in being conservative. */
3341 if (conservative_stack) {
3342 for_each_thread(th) {
3343 void **ptr;
3344 void **esp=(void **)-1;
3345 if (th->state == STATE_DEAD)
3346 continue;
3347 # if defined(LISP_FEATURE_SB_SAFEPOINT)
3348 /* Conservative collect_garbage is always invoked with a
3349 * foreign C call or an interrupt handler on top of every
3350 * existing thread, so the stored SP in each thread
3351 * structure is valid, no matter which thread we are looking
3352 * at. For threads that were running Lisp code, the pitstop
3353 * and edge functions maintain this value within the
3354 * interrupt or exception handler. */
3355 esp = os_get_csp(th);
3356 assert_on_stack(th, esp);
3358 /* In addition to pointers on the stack, also preserve the
3359 * return PC, the only value from the context that we need
3360 * in addition to the SP. The return PC gets saved by the
3361 * foreign call wrapper, and removed from the control stack
3362 * into a register. */
3363 preserve_pointer(th->pc_around_foreign_call);
3365 /* And on platforms with interrupts: scavenge ctx registers. */
3367 /* Disabled on Windows, because it does not have an explicit
3368 * stack of `interrupt_contexts'. The reported CSP has been
3369 * chosen so that the current context on the stack is
3370 * covered by the stack scan. See also set_csp_from_context(). */
3371 # ifndef LISP_FEATURE_WIN32
3372 if (th != arch_os_get_current_thread()) {
3373 long k = fixnum_value(
3374 read_TLS(FREE_INTERRUPT_CONTEXT_INDEX,th));
3375 while (k > 0)
3376 preserve_context_registers((void(*)(os_context_register_t))preserve_pointer,
3377 th->interrupt_contexts[--k]);
3379 # endif
3380 # elif defined(LISP_FEATURE_SB_THREAD)
3381 sword_t i,free;
3382 if(th==arch_os_get_current_thread()) {
3383 /* Somebody is going to burn in hell for this, but casting
3384 * it in two steps shuts gcc up about strict aliasing. */
3385 esp = (void **)((void *)&raise);
3386 } else {
3387 void **esp1;
3388 free=fixnum_value(read_TLS(FREE_INTERRUPT_CONTEXT_INDEX,th));
3389 for(i=free-1;i>=0;i--) {
3390 os_context_t *c=th->interrupt_contexts[i];
3391 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3392 if (esp1>=(void **)th->control_stack_start &&
3393 esp1<(void **)th->control_stack_end) {
3394 if(esp1<esp) esp=esp1;
3395 preserve_context_registers((void(*)(os_context_register_t))preserve_pointer,
3400 # else
3401 esp = (void **)((void *)&raise);
3402 # endif
3403 if (!esp || esp == (void*) -1)
3404 lose("garbage_collect: no SP known for thread %x (OS %x)",
3405 th, th->os_thread);
3406 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
3407 preserve_pointer(*ptr);
3411 #else
3412 /* Non-x86oid systems don't have "conservative roots" as such, but
3413 * the same mechanism is used for objects pinned for use by alien
3414 * code. */
3415 for_each_thread(th) {
3416 lispobj pin_list = read_TLS(PINNED_OBJECTS,th);
3417 while (pin_list != NIL) {
3418 preserve_pointer((void*)(CONS(pin_list)->car));
3419 pin_list = CONS(pin_list)->cdr;
3422 #endif
3424 #if QSHOW
3425 if (gencgc_verbose > 1) {
3426 sword_t num_dont_move_pages = count_dont_move_pages();
3427 fprintf(stderr,
3428 "/non-movable pages due to conservative pointers = %ld (%lu bytes)\n",
3429 num_dont_move_pages,
3430 npage_bytes(num_dont_move_pages));
3432 #endif
3434 /* Now that all of the pinned (dont_move) pages are known, and
3435 * before we start to scavenge (and thus relocate) objects,
3436 * relocate the pinned pages to newspace, so that the scavenger
3437 * will not attempt to relocate their contents. */
3438 if (compacting_p())
3439 move_pinned_pages_to_newspace();
3441 /* Scavenge all the rest of the roots. */
3443 #if GENCGC_IS_PRECISE
3445 * If not x86, we need to scavenge the interrupt context(s) and the
3446 * control stack.
3449 struct thread *th;
3450 for_each_thread(th) {
3451 scavenge_interrupt_contexts(th);
3452 scavenge_control_stack(th);
3455 # ifdef LISP_FEATURE_SB_SAFEPOINT
3456 /* In this case, scrub all stacks right here from the GCing thread
3457 * instead of doing what the comment below says. Suboptimal, but
3458 * easier. */
3459 for_each_thread(th)
3460 scrub_thread_control_stack(th);
3461 # else
3462 /* Scrub the unscavenged control stack space, so that we can't run
3463 * into any stale pointers in a later GC (this is done by the
3464 * stop-for-gc handler in the other threads). */
3465 scrub_control_stack();
3466 # endif
3468 #endif
3470 /* Scavenge the Lisp functions of the interrupt handlers, taking
3471 * care to avoid SIG_DFL and SIG_IGN. */
3472 for (i = 0; i < NSIG; i++) {
3473 union interrupt_handler handler = interrupt_handlers[i];
3474 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3475 !ARE_SAME_HANDLER(handler.c, SIG_DFL) &&
3476 is_lisp_pointer(handler.lisp)) {
3477 if (compacting_p())
3478 scavenge((lispobj *)(interrupt_handlers + i), 1);
3479 else
3480 gc_mark_obj(handler.lisp);
3483 /* Scavenge the binding stacks. */
3485 struct thread *th;
3486 for_each_thread(th) {
3487 scav_binding_stack((lispobj*)th->binding_stack_start,
3488 (lispobj*)get_binding_stack_pointer(th),
3489 compacting_p() ? 0 : gc_mark_obj);
3490 #ifdef LISP_FEATURE_SB_THREAD
3491 /* do the tls as well */
3492 sword_t len;
3493 len=(SymbolValue(FREE_TLS_INDEX,0) >> WORD_SHIFT) -
3494 (sizeof (struct thread))/(sizeof (lispobj));
3495 if (compacting_p())
3496 scavenge((lispobj *) (th+1), len);
3497 else
3498 gc_mark_range((lispobj *) (th+1), len);
3499 #endif
3503 if (!compacting_p()) {
3504 extern void execute_full_mark_phase();
3505 extern void execute_full_sweep_phase();
3506 execute_full_mark_phase();
3507 execute_full_sweep_phase();
3508 goto maybe_verify;
3511 /* Scavenge static space. */
3512 if (gencgc_verbose > 1) {
3513 FSHOW((stderr,
3514 "/scavenge static space: %d bytes\n",
3515 (uword_t)static_space_free_pointer - STATIC_SPACE_START));
3517 heap_scavenge((lispobj*)STATIC_SPACE_START, static_space_free_pointer);
3519 /* All generations but the generation being GCed need to be
3520 * scavenged. The new_space generation needs special handling as
3521 * objects may be moved in - it is handled separately below. */
3522 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3523 scavenge_immobile_roots(generation+1, SCRATCH_GENERATION);
3524 #endif
3525 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
3527 #ifdef LISP_FEATURE_SB_TRACEROOT
3528 if (gc_object_watcher) scavenge(&gc_object_watcher, 1);
3529 #endif
3530 scavenge_pinned_ranges();
3531 /* The Lisp start function is stored in the core header, not a static
3532 * symbol. It is passed to gc_and_save() in this C variable */
3533 if (lisp_init_function) scavenge(&lisp_init_function, 1);
3535 /* Finally scavenge the new_space generation. Keep going until no
3536 * more objects are moved into the new generation */
3537 scavenge_newspace_generation(new_space);
3539 /* FIXME: I tried reenabling this check when debugging unrelated
3540 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3541 * Since the current GC code seems to work well, I'm guessing that
3542 * this debugging code is just stale, but I haven't tried to
3543 * figure it out. It should be figured out and then either made to
3544 * work or just deleted. */
3546 #define RESCAN_CHECK 0
3547 #if RESCAN_CHECK
3548 /* As a check re-scavenge the newspace once; no new objects should
3549 * be found. */
3551 os_vm_size_t old_bytes_allocated = bytes_allocated;
3552 os_vm_size_t bytes_allocated;
3554 /* Start with a full scavenge. */
3555 scavenge_newspace_generation_one_scan(new_space);
3557 /* Flush the current regions, updating the tables. */
3558 gc_alloc_update_all_page_tables(1);
3560 bytes_allocated = bytes_allocated - old_bytes_allocated;
3562 if (bytes_allocated != 0) {
3563 lose("Rescan of new_space allocated %d more bytes.\n",
3564 bytes_allocated);
3567 #endif
3569 scan_binding_stack();
3570 scan_weak_hash_tables(weak_ht_alivep_funs);
3571 scan_weak_pointers();
3572 wipe_nonpinned_words();
3573 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3574 // Do this last, because until wipe_nonpinned_words() happens,
3575 // not all page table entries have the 'gen' value updated,
3576 // which we need to correctly find all old->young pointers.
3577 sweep_immobile_space(raise);
3578 #endif
3580 gc_assert(boxed_region.last_page < 0);
3581 gc_assert(unboxed_region.last_page < 0);
3582 #if SEGREGATED_CODE
3583 gc_assert(gc_alloc_region[2].last_page < 0);
3584 #endif
3585 #ifdef PIN_GRANULARITY_LISPOBJ
3586 hopscotch_log_stats(&pinned_objects, "pins");
3587 #endif
3589 /* Free the pages in oldspace, but not those marked dont_move. */
3590 free_oldspace();
3592 /* If the GC is not raising the age then lower the generation back
3593 * to its normal generation number */
3594 if (!raise) {
3595 for (i = 0; i < last_free_page; i++)
3596 if ((page_bytes_used(i) != 0)
3597 && (page_table[i].gen == SCRATCH_GENERATION))
3598 page_table[i].gen = generation;
3599 gc_assert(generations[generation].bytes_allocated == 0);
3600 generations[generation].bytes_allocated =
3601 generations[SCRATCH_GENERATION].bytes_allocated;
3602 generations[SCRATCH_GENERATION].bytes_allocated = 0;
3605 /* Reset the alloc_start_page for generation. */
3606 #if SEGREGATED_CODE
3607 bzero(generations[generation].alloc_start_page_,
3608 sizeof generations[generation].alloc_start_page_);
3609 #else
3610 generations[generation].alloc_start_page = 0;
3611 generations[generation].alloc_unboxed_start_page = 0;
3612 generations[generation].alloc_large_start_page = 0;
3613 #endif
3615 /* Set the new gc trigger for the GCed generation. */
3616 generations[generation].gc_trigger =
3617 generations[generation].bytes_allocated
3618 + generations[generation].bytes_consed_between_gc;
3620 if (raise)
3621 generations[generation].num_gc = 0;
3622 else
3623 ++generations[generation].num_gc;
3625 maybe_verify:
3626 if (generation >= verify_gens) {
3627 if (gencgc_verbose) {
3628 SHOW("verifying");
3630 verify_gc(0);
3634 page_index_t
3635 find_last_free_page(void)
3637 page_index_t last_page = -1, i;
3639 for (i = 0; i < last_free_page; i++)
3640 if (page_bytes_used(i) != 0)
3641 last_page = i;
3643 /* The last free page is actually the first available page */
3644 return last_page + 1;
3647 void
3648 update_dynamic_space_free_pointer(void)
3650 set_alloc_pointer((lispobj)(page_address(find_last_free_page())));
3653 static void
3654 remap_page_range (page_index_t from, page_index_t to)
3656 /* There's a mysterious Solaris/x86 problem with using mmap
3657 * tricks for memory zeroing. See sbcl-devel thread
3658 * "Re: patch: standalone executable redux".
3660 #if defined(LISP_FEATURE_SUNOS)
3661 zero_and_mark_pages(from, to);
3662 #else
3663 const page_index_t
3664 release_granularity = gencgc_release_granularity/GENCGC_CARD_BYTES,
3665 release_mask = release_granularity-1,
3666 end = to+1,
3667 aligned_from = (from+release_mask)&~release_mask,
3668 aligned_end = (end&~release_mask);
3670 if (aligned_from < aligned_end) {
3671 zero_pages_with_mmap(aligned_from, aligned_end-1);
3672 if (aligned_from != from)
3673 zero_and_mark_pages(from, aligned_from-1);
3674 if (aligned_end != end)
3675 zero_and_mark_pages(aligned_end, end-1);
3676 } else {
3677 zero_and_mark_pages(from, to);
3679 #endif
3682 static void
3683 remap_free_pages (page_index_t from, page_index_t to)
3685 page_index_t first_page, last_page;
3687 for (first_page = from; first_page <= to; first_page++) {
3688 if (!page_free_p(first_page) || !page_need_to_zero(first_page))
3689 continue;
3691 last_page = first_page + 1;
3692 while (page_free_p(last_page) &&
3693 (last_page <= to) &&
3694 (page_need_to_zero(last_page)))
3695 last_page++;
3697 remap_page_range(first_page, last_page-1);
3699 first_page = last_page;
3703 generation_index_t small_generation_limit = 1;
3705 /* GC all generations newer than last_gen, raising the objects in each
3706 * to the next older generation - we finish when all generations below
3707 * last_gen are empty. Then if last_gen is due for a GC, or if
3708 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
3709 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3711 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
3712 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
3713 void
3714 collect_garbage(generation_index_t last_gen)
3716 generation_index_t gen = 0, i;
3717 boolean gc_mark_only = 0;
3718 int raise, more = 0;
3719 int gen_to_wp;
3720 /* The largest value of last_free_page seen since the time
3721 * remap_free_pages was called. */
3722 static page_index_t high_water_mark = 0;
3724 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
3725 log_generation_stats(gc_logfile, "=== GC Start ===");
3727 gc_active_p = 1;
3729 if (last_gen == 1+PSEUDO_STATIC_GENERATION) {
3730 // Pseudostatic space undergoes a non-moving collection
3731 last_gen = PSEUDO_STATIC_GENERATION;
3732 gc_mark_only = 1;
3733 } else if (last_gen > 1+PSEUDO_STATIC_GENERATION) {
3734 // This is a completely non-obvious thing to do, but whatever...
3735 FSHOW((stderr,
3736 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
3737 last_gen));
3738 last_gen = 0;
3741 /* Flush the alloc regions updating the tables. */
3742 gc_alloc_update_all_page_tables(1);
3744 /* Verify the new objects created by Lisp code. */
3745 if (pre_verify_gen_0) {
3746 FSHOW((stderr, "pre-checking generation 0\n"));
3747 verify_generation(0, 0);
3750 if (gencgc_verbose > 1)
3751 print_generation_stats();
3753 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3754 /* Immobile space generation bits are lazily updated for gen0
3755 (not touched on every object allocation) so do it now */
3756 update_immobile_nursery_bits();
3757 #endif
3759 if (gc_mark_only) {
3760 garbage_collect_generation(PSEUDO_STATIC_GENERATION, 0);
3761 goto finish;
3764 do {
3765 /* Collect the generation. */
3767 if (more || (gen >= gencgc_oldest_gen_to_gc)) {
3768 /* Never raise the oldest generation. Never raise the extra generation
3769 * collected due to more-flag. */
3770 raise = 0;
3771 more = 0;
3772 } else {
3773 raise =
3774 (gen < last_gen)
3775 || (generations[gen].num_gc >= generations[gen].number_of_gcs_before_promotion);
3776 /* If we would not normally raise this one, but we're
3777 * running low on space in comparison to the object-sizes
3778 * we've been seeing, raise it and collect the next one
3779 * too. */
3780 if (!raise && gen == last_gen) {
3781 more = (2*large_allocation) >= (dynamic_space_size - bytes_allocated);
3782 raise = more;
3786 if (gencgc_verbose > 1) {
3787 FSHOW((stderr,
3788 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
3789 gen,
3790 raise,
3791 generations[gen].bytes_allocated,
3792 generations[gen].gc_trigger,
3793 generations[gen].num_gc));
3796 /* If an older generation is being filled, then update its
3797 * memory age. */
3798 if (raise == 1) {
3799 generations[gen+1].cum_sum_bytes_allocated +=
3800 generations[gen+1].bytes_allocated;
3803 garbage_collect_generation(gen, raise);
3805 /* Reset the memory age cum_sum. */
3806 generations[gen].cum_sum_bytes_allocated = 0;
3808 if (gencgc_verbose > 1) {
3809 FSHOW((stderr, "GC of generation %d finished:\n", gen));
3810 print_generation_stats();
3813 gen++;
3814 } while ((gen <= gencgc_oldest_gen_to_gc)
3815 && ((gen < last_gen)
3816 || more
3817 || (raise
3818 && (generations[gen].bytes_allocated
3819 > generations[gen].gc_trigger)
3820 && (generation_average_age(gen)
3821 > generations[gen].minimum_age_before_gc))));
3823 /* Now if gen-1 was raised all generations before gen are empty.
3824 * If it wasn't raised then all generations before gen-1 are empty.
3826 * Now objects within this gen's pages cannot point to younger
3827 * generations unless they are written to. This can be exploited
3828 * by write-protecting the pages of gen; then when younger
3829 * generations are GCed only the pages which have been written
3830 * need scanning. */
3831 if (raise)
3832 gen_to_wp = gen;
3833 else
3834 gen_to_wp = gen - 1;
3836 /* There's not much point in WPing pages in generation 0 as it is
3837 * never scavenged (except promoted pages). */
3838 if ((gen_to_wp > 0) && ENABLE_PAGE_PROTECTION) {
3839 /* Check that they are all empty. */
3840 for (i = 0; i < gen_to_wp; i++) {
3841 if (generations[i].bytes_allocated)
3842 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
3843 gen_to_wp, i);
3845 write_protect_generation_pages(gen_to_wp);
3848 /* Set gc_alloc() back to generation 0. The current regions should
3849 * be flushed after the above GCs. */
3850 gc_assert(boxed_region.free_pointer == boxed_region.start_addr);
3851 gc_alloc_generation = 0;
3853 /* Save the high-water mark before updating last_free_page */
3854 if (last_free_page > high_water_mark)
3855 high_water_mark = last_free_page;
3857 update_dynamic_space_free_pointer();
3859 /* Update auto_gc_trigger. Make sure we trigger the next GC before
3860 * running out of heap! */
3861 if (bytes_consed_between_gcs <= (dynamic_space_size - bytes_allocated))
3862 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
3863 else
3864 auto_gc_trigger = bytes_allocated + (dynamic_space_size - bytes_allocated)/2;
3866 if(gencgc_verbose) {
3867 #define MESSAGE ("Next gc when %"OS_VM_SIZE_FMT" bytes have been consed\n")
3868 char buf[64];
3869 int n;
3870 // fprintf() can - and does - cause deadlock here.
3871 // snprintf() seems to work fine.
3872 n = snprintf(buf, sizeof buf, MESSAGE, auto_gc_trigger);
3873 ignore_value(write(2, buf, n));
3874 #undef MESSAGE
3877 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
3878 * back to the OS.
3880 if (gen > small_generation_limit) {
3881 if (last_free_page > high_water_mark)
3882 high_water_mark = last_free_page;
3883 remap_free_pages(0, high_water_mark);
3884 high_water_mark = 0;
3887 large_allocation = 0;
3888 finish:
3889 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3890 write_protect_immobile_space();
3891 #endif
3892 gc_active_p = 0;
3894 #ifdef LISP_FEATURE_SB_TRACEROOT
3895 if (gc_object_watcher) {
3896 extern void gc_prove_liveness(void(*)(), lispobj, int, uword_t*, int);
3897 gc_prove_liveness(preserve_context_registers,
3898 gc_object_watcher,
3899 gc_n_stack_pins, pinned_objects.keys,
3900 gc_traceroot_criterion);
3902 #endif
3904 log_generation_stats(gc_logfile, "=== GC End ===");
3905 SHOW("returning from collect_garbage");
3908 /* Initialization of gencgc metadata is split into three steps:
3909 * 1. gc_init() - allocation of a fixed-address space via mmap(),
3910 * failing which there's no reason to go on. (safepoint only)
3911 * 2. gc_allocate_ptes() - page table entries
3912 * 3. gencgc_pickup_dynamic() - calculation of scan start offsets
3913 * Steps (2) and (3) are combined in self-build because there is
3914 * no PAGE_TABLE_CORE_ENTRY_TYPE_CODE core entry. */
3915 void
3916 gc_init(void)
3918 #if defined(LISP_FEATURE_SB_SAFEPOINT)
3919 alloc_gc_page();
3920 #endif
3923 void gc_allocate_ptes()
3925 page_index_t i;
3927 /* Compute the number of pages needed for the dynamic space.
3928 * Dynamic space size should be aligned on page size. */
3929 page_table_pages = dynamic_space_size/GENCGC_CARD_BYTES;
3930 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
3932 /* Default nursery size to 5% of the total dynamic space size,
3933 * min 1Mb. */
3934 bytes_consed_between_gcs = dynamic_space_size/(os_vm_size_t)20;
3935 if (bytes_consed_between_gcs < (1024*1024))
3936 bytes_consed_between_gcs = 1024*1024;
3938 /* The page_table is allocated using "calloc" to zero-initialize it.
3939 * The C library typically implements this efficiently with mmap() if the
3940 * size is large enough. To further avoid touching each page structure
3941 * until first use, FREE_PAGE_FLAG must be 0, statically asserted here:
3944 /* Compile time assertion: If triggered, declares an array
3945 * of dimension -1 forcing a syntax error. The intent of the
3946 * assignment is to avoid an "unused variable" warning. */
3947 char __attribute__((unused)) assert_free_page_flag_0[(FREE_PAGE_FLAG) ? -1 : 1];
3949 /* An extra struct exists as the end as a sentinel. Its 'scan_start_offset'
3950 * and 'bytes_used' must be zero.
3951 * Doing so avoids testing in page_ends_contiguous_block_p() whether the
3952 * next page_index is within bounds, and whether that page contains data.
3954 page_table = calloc(1+page_table_pages, sizeof(struct page));
3955 gc_assert(page_table);
3957 hopscotch_init();
3958 #ifdef PIN_GRANULARITY_LISPOBJ
3959 hopscotch_create(&pinned_objects, HOPSCOTCH_HASH_FUN_DEFAULT, 0 /* hashset */,
3960 32 /* logical bin count */, 0 /* default range */);
3961 #endif
3963 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
3965 bytes_allocated = 0;
3967 /* Initialize the generations. */
3968 for (i = 0; i < NUM_GENERATIONS; i++) {
3969 generations[i].alloc_start_page = 0;
3970 generations[i].alloc_unboxed_start_page = 0;
3971 generations[i].alloc_large_start_page = 0;
3972 generations[i].bytes_allocated = 0;
3973 generations[i].gc_trigger = 2000000;
3974 generations[i].num_gc = 0;
3975 generations[i].cum_sum_bytes_allocated = 0;
3976 /* the tune-able parameters */
3977 generations[i].bytes_consed_between_gc
3978 = bytes_consed_between_gcs/(os_vm_size_t)HIGHEST_NORMAL_GENERATION;
3979 generations[i].number_of_gcs_before_promotion = 1;
3980 generations[i].minimum_age_before_gc = 0.75;
3983 /* Initialize gc_alloc. */
3984 gc_alloc_generation = 0;
3985 gc_set_region_empty(&boxed_region);
3986 gc_set_region_empty(&unboxed_region);
3987 #if SEGREGATED_CODE
3988 gc_set_region_empty(&code_region);
3989 #endif
3991 last_free_page = 0;
3994 /* Pick up the dynamic space from after a core load.
3996 * The ALLOCATION_POINTER points to the end of the dynamic space.
3999 static void
4000 gencgc_pickup_dynamic(void)
4002 page_index_t page = 0;
4003 char *alloc_ptr = (char *)get_alloc_pointer();
4004 lispobj *prev=(lispobj *)page_address(page);
4005 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4007 bytes_allocated = 0;
4009 do {
4010 lispobj *first,*ptr= (lispobj *)page_address(page);
4012 if (!gencgc_partial_pickup || !page_free_p(page)) {
4013 page_bytes_t bytes_used = GENCGC_CARD_BYTES;
4014 /* It is possible, though rare, for the saved page table
4015 * to contain free pages below alloc_ptr. */
4016 page_table[page].gen = gen;
4017 if (gencgc_partial_pickup)
4018 bytes_used = page_bytes_used(page);
4019 else
4020 set_page_bytes_used(page, GENCGC_CARD_BYTES);
4021 page_table[page].large_object = 0;
4022 page_table[page].write_protected = 0;
4023 page_table[page].write_protected_cleared = 0;
4024 page_table[page].dont_move = 0;
4025 set_page_need_to_zero(page, 1);
4027 bytes_allocated += bytes_used;
4030 if (!gencgc_partial_pickup) {
4031 #if SEGREGATED_CODE
4032 // Make the most general assumption: any page *might* contain code.
4033 page_table[page].allocated = CODE_PAGE_FLAG;
4034 #else
4035 page_table[page].allocated = BOXED_PAGE_FLAG;
4036 #endif
4037 first = gc_search_space3(ptr, prev, (ptr+2));
4038 if(ptr == first)
4039 prev=ptr;
4040 set_page_scan_start_offset(page, page_address(page) - (char*)prev);
4042 page++;
4043 } while (page_address(page) < alloc_ptr);
4045 last_free_page = page;
4047 generations[gen].bytes_allocated = bytes_allocated;
4049 gc_alloc_update_all_page_tables(1);
4050 if (ENABLE_PAGE_PROTECTION)
4051 write_protect_generation_pages(gen);
4054 void
4055 gc_initialize_pointers(void)
4057 /* !page_table_pages happens once only in self-build and not again */
4058 if (!page_table_pages)
4059 gc_allocate_ptes();
4060 gencgc_pickup_dynamic();
4064 /* alloc(..) is the external interface for memory allocation. It
4065 * allocates to generation 0. It is not called from within the garbage
4066 * collector as it is only external uses that need the check for heap
4067 * size (GC trigger) and to disable the interrupts (interrupts are
4068 * always disabled during a GC).
4070 * The vops that call alloc(..) assume that the returned space is zero-filled.
4071 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4073 * The check for a GC trigger is only performed when the current
4074 * region is full, so in most cases it's not needed. */
4076 static inline lispobj *
4077 general_alloc_internal(sword_t nbytes, int page_type_flag, struct alloc_region *region,
4078 struct thread *thread)
4080 #ifndef LISP_FEATURE_WIN32
4081 lispobj alloc_signal;
4082 #endif
4083 void *new_obj;
4084 void *new_free_pointer;
4085 os_vm_size_t trigger_bytes = 0;
4087 gc_assert(nbytes > 0);
4089 /* Check for alignment allocation problems. */
4090 gc_assert((((uword_t)region->free_pointer & LOWTAG_MASK) == 0)
4091 && ((nbytes & LOWTAG_MASK) == 0));
4093 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
4094 /* Must be inside a PA section. */
4095 gc_assert(get_pseudo_atomic_atomic(thread));
4096 #endif
4098 if ((os_vm_size_t) nbytes > large_allocation)
4099 large_allocation = nbytes;
4101 /* maybe we can do this quickly ... */
4102 new_free_pointer = (char*)region->free_pointer + nbytes;
4103 if (new_free_pointer <= region->end_addr) {
4104 new_obj = (void*)(region->free_pointer);
4105 region->free_pointer = new_free_pointer;
4106 return(new_obj); /* yup */
4109 /* We don't want to count nbytes against auto_gc_trigger unless we
4110 * have to: it speeds up the tenuring of objects and slows down
4111 * allocation. However, unless we do so when allocating _very_
4112 * large objects we are in danger of exhausting the heap without
4113 * running sufficient GCs.
4115 if ((os_vm_size_t) nbytes >= bytes_consed_between_gcs)
4116 trigger_bytes = nbytes;
4118 /* we have to go the long way around, it seems. Check whether we
4119 * should GC in the near future
4121 if (auto_gc_trigger && (bytes_allocated+trigger_bytes > auto_gc_trigger)) {
4122 /* Don't flood the system with interrupts if the need to gc is
4123 * already noted. This can happen for example when SUB-GC
4124 * allocates or after a gc triggered in a WITHOUT-GCING. */
4125 if (read_TLS(GC_PENDING,thread) == NIL) {
4126 /* set things up so that GC happens when we finish the PA
4127 * section */
4128 write_TLS(GC_PENDING,T,thread);
4129 if (read_TLS(GC_INHIBIT,thread) == NIL) {
4130 #ifdef LISP_FEATURE_SB_SAFEPOINT
4131 thread_register_gc_trigger();
4132 #else
4133 set_pseudo_atomic_interrupted(thread);
4134 #if GENCGC_IS_PRECISE
4135 /* PPC calls alloc() from a trap
4136 * look up the most context if it's from a trap. */
4138 os_context_t *context =
4139 thread->interrupt_data->allocation_trap_context;
4140 maybe_save_gc_mask_and_block_deferrables
4141 (context ? os_context_sigmask_addr(context) : NULL);
4143 #else
4144 maybe_save_gc_mask_and_block_deferrables(NULL);
4145 #endif
4146 #endif
4150 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4152 #ifndef LISP_FEATURE_WIN32
4153 /* for sb-prof, and not supported on Windows yet */
4154 alloc_signal = read_TLS(ALLOC_SIGNAL,thread);
4155 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4156 if ((sword_t) alloc_signal <= 0) {
4157 write_TLS(ALLOC_SIGNAL, T, thread);
4158 raise(SIGPROF);
4159 } else {
4160 write_TLS(ALLOC_SIGNAL,
4161 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4162 thread);
4165 #endif
4167 return (new_obj);
4170 lispobj *
4171 general_alloc(sword_t nbytes, int page_type_flag)
4173 struct thread *thread = arch_os_get_current_thread();
4174 /* Select correct region, and call general_alloc_internal with it.
4175 * For other then boxed allocation we must lock first, since the
4176 * region is shared. */
4177 #if SEGREGATED_CODE
4178 if (page_type_flag == BOXED_PAGE_FLAG) {
4179 #else
4180 if (BOXED_PAGE_FLAG & page_type_flag) {
4181 #endif
4182 #ifdef LISP_FEATURE_SB_THREAD
4183 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4184 #else
4185 struct alloc_region *region = &boxed_region;
4186 #endif
4187 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4188 #if SEGREGATED_CODE
4189 } else if (page_type_flag == UNBOXED_PAGE_FLAG ||
4190 page_type_flag == CODE_PAGE_FLAG) {
4191 struct alloc_region *region =
4192 page_type_flag == CODE_PAGE_FLAG ? &code_region : &unboxed_region;
4193 #else
4194 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4195 struct alloc_region *region = &unboxed_region;
4196 #endif
4197 lispobj * obj;
4198 int result;
4199 result = thread_mutex_lock(&allocation_lock);
4200 gc_assert(!result);
4201 obj = general_alloc_internal(nbytes, page_type_flag, region, thread);
4202 result = thread_mutex_unlock(&allocation_lock);
4203 gc_assert(!result);
4204 return obj;
4205 } else {
4206 lose("bad page type flag: %d", page_type_flag);
4210 lispobj AMD64_SYSV_ABI *
4211 alloc(sword_t nbytes)
4213 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4214 struct thread *self = arch_os_get_current_thread();
4215 int was_pseudo_atomic = get_pseudo_atomic_atomic(self);
4216 if (!was_pseudo_atomic)
4217 set_pseudo_atomic_atomic(self);
4218 #else
4219 gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4220 #endif
4222 lispobj *result = general_alloc(nbytes, BOXED_PAGE_FLAG);
4224 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4225 if (!was_pseudo_atomic)
4226 clear_pseudo_atomic_atomic(self);
4227 #endif
4229 return result;
4233 * shared support for the OS-dependent signal handlers which
4234 * catch GENCGC-related write-protect violations
4236 void unhandled_sigmemoryfault(void* addr);
4238 /* Depending on which OS we're running under, different signals might
4239 * be raised for a violation of write protection in the heap. This
4240 * function factors out the common generational GC magic which needs
4241 * to invoked in this case, and should be called from whatever signal
4242 * handler is appropriate for the OS we're running under.
4244 * Return true if this signal is a normal generational GC thing that
4245 * we were able to handle, or false if it was abnormal and control
4246 * should fall through to the general SIGSEGV/SIGBUS/whatever logic.
4248 * We have two control flags for this: one causes us to ignore faults
4249 * on unprotected pages completely, and the second complains to stderr
4250 * but allows us to continue without losing.
4252 extern boolean ignore_memoryfaults_on_unprotected_pages;
4253 boolean ignore_memoryfaults_on_unprotected_pages = 0;
4255 extern boolean continue_after_memoryfault_on_unprotected_pages;
4256 boolean continue_after_memoryfault_on_unprotected_pages = 0;
4259 gencgc_handle_wp_violation(void* fault_addr)
4261 page_index_t page_index = find_page_index(fault_addr);
4263 #if QSHOW_SIGNALS
4264 FSHOW((stderr,
4265 "heap WP violation? fault_addr=%p, page_index=%"PAGE_INDEX_FMT"\n",
4266 fault_addr, page_index));
4267 #endif
4269 /* Check whether the fault is within the dynamic space. */
4270 if (page_index == (-1)) {
4271 #ifdef LISP_FEATURE_IMMOBILE_SPACE
4272 extern int immobile_space_handle_wp_violation(void*);
4273 if (immobile_space_handle_wp_violation(fault_addr))
4274 return 1;
4275 #endif
4277 /* It can be helpful to be able to put a breakpoint on this
4278 * case to help diagnose low-level problems. */
4279 unhandled_sigmemoryfault(fault_addr);
4281 /* not within the dynamic space -- not our responsibility */
4282 return 0;
4284 } else {
4285 int ret;
4286 ret = thread_mutex_lock(&free_pages_lock);
4287 gc_assert(ret == 0);
4288 if (page_table[page_index].write_protected) {
4289 unprotect_page_index(page_index);
4290 } else if (!ignore_memoryfaults_on_unprotected_pages) {
4291 /* The only acceptable reason for this signal on a heap
4292 * access is that GENCGC write-protected the page.
4293 * However, if two CPUs hit a wp page near-simultaneously,
4294 * we had better not have the second one lose here if it
4295 * does this test after the first one has already set wp=0
4297 if(page_table[page_index].write_protected_cleared != 1) {
4298 void lisp_backtrace(int frames);
4299 lisp_backtrace(10);
4300 fprintf(stderr,
4301 "Fault @ %p, page %"PAGE_INDEX_FMT" not marked as write-protected:\n"
4302 " boxed_region.first_page: %"PAGE_INDEX_FMT","
4303 " boxed_region.last_page %"PAGE_INDEX_FMT"\n"
4304 " page.scan_start_offset: %"OS_VM_SIZE_FMT"\n"
4305 " page.bytes_used: %u\n"
4306 " page.allocated: %d\n"
4307 " page.write_protected: %d\n"
4308 " page.write_protected_cleared: %d\n"
4309 " page.generation: %d\n",
4310 fault_addr,
4311 page_index,
4312 boxed_region.first_page,
4313 boxed_region.last_page,
4314 page_scan_start_offset(page_index),
4315 page_bytes_used(page_index),
4316 page_table[page_index].allocated,
4317 page_table[page_index].write_protected,
4318 page_table[page_index].write_protected_cleared,
4319 page_table[page_index].gen);
4320 if (!continue_after_memoryfault_on_unprotected_pages)
4321 lose("Feh.\n");
4324 ret = thread_mutex_unlock(&free_pages_lock);
4325 gc_assert(ret == 0);
4326 /* Don't worry, we can handle it. */
4327 return 1;
4330 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4331 * it's not just a case of the program hitting the write barrier, and
4332 * are about to let Lisp deal with it. It's basically just a
4333 * convenient place to set a gdb breakpoint. */
4334 void
4335 unhandled_sigmemoryfault(void *addr)
4338 static void
4339 update_thread_page_tables(struct thread *th)
4341 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4342 #if defined(LISP_FEATURE_SB_SAFEPOINT_STRICTLY) && !defined(LISP_FEATURE_WIN32)
4343 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->sprof_alloc_region);
4344 #endif
4347 /* GC is single-threaded and all memory allocations during a
4348 collection happen in the GC thread, so it is sufficient to update
4349 all the the page tables once at the beginning of a collection and
4350 update only page tables of the GC thread during the collection. */
4351 void gc_alloc_update_all_page_tables(int for_all_threads)
4353 /* Flush the alloc regions updating the tables. */
4354 struct thread *th;
4355 if (for_all_threads) {
4356 for_each_thread(th) {
4357 update_thread_page_tables(th);
4360 else {
4361 th = arch_os_get_current_thread();
4362 if (th) {
4363 update_thread_page_tables(th);
4366 #if SEGREGATED_CODE
4367 gc_alloc_update_page_tables(CODE_PAGE_FLAG, &code_region);
4368 #endif
4369 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4370 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4373 void
4374 gc_set_region_empty(struct alloc_region *region)
4376 region->first_page = 0;
4377 region->last_page = -1;
4378 region->start_addr = page_address(0);
4379 region->free_pointer = page_address(0);
4380 region->end_addr = page_address(0);
4383 static void
4384 zero_all_free_pages() /* called only by gc_and_save() */
4386 page_index_t i;
4388 for (i = 0; i < last_free_page; i++) {
4389 if (page_free_p(i)) {
4390 #ifdef READ_PROTECT_FREE_PAGES
4391 os_protect(page_address(i), GENCGC_CARD_BYTES, OS_VM_PROT_ALL);
4392 #endif
4393 zero_pages(i, i);
4398 /* Things to do before doing a final GC before saving a core (without
4399 * purify).
4401 * + Pages in large_object pages aren't moved by the GC, so we need to
4402 * unset that flag from all pages.
4403 * + The pseudo-static generation isn't normally collected, but it seems
4404 * reasonable to collect it at least when saving a core. So move the
4405 * pages to a normal generation.
4407 static void
4408 prepare_for_final_gc ()
4410 page_index_t i;
4412 #ifdef LISP_FEATURE_IMMOBILE_SPACE
4413 extern void prepare_immobile_space_for_final_gc();
4414 prepare_immobile_space_for_final_gc ();
4415 #endif
4416 for (i = 0; i < last_free_page; i++) {
4417 page_table[i].large_object = 0;
4418 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4419 int used = page_bytes_used(i);
4420 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4421 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4422 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4425 #ifdef PINNED_OBJECTS
4426 struct thread *th;
4427 for_each_thread(th) {
4428 write_TLS(PINNED_OBJECTS, NIL, th);
4430 #endif
4433 /* Set this switch to 1 for coalescing of strings dumped to fasl,
4434 * or 2 for coalescing of those,
4435 * plus literal strings in code compiled to memory. */
4436 char gc_coalesce_string_literals = 0;
4438 /* Do a non-conservative GC, and then save a core with the initial
4439 * function being set to the value of 'lisp_init_function' */
4440 void
4441 gc_and_save(char *filename, boolean prepend_runtime,
4442 boolean save_runtime_options, boolean compressed,
4443 int compression_level, int application_type)
4445 FILE *file;
4446 void *runtime_bytes = NULL;
4447 size_t runtime_size;
4448 extern void coalesce_similar_objects();
4449 extern struct lisp_startup_options lisp_startup_options;
4450 boolean verbose = !lisp_startup_options.noinform;
4452 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4453 &runtime_size);
4454 if (file == NULL)
4455 return;
4457 conservative_stack = 0;
4459 /* The filename might come from Lisp, and be moved by the now
4460 * non-conservative GC. */
4461 filename = strdup(filename);
4463 /* We're committed to process death at this point, and interrupts can not
4464 * possibly be handled in Lisp. Let the installed handler closures become
4465 * garbage, since new ones will be made by ENABLE-INTERRUPT on restart */
4466 #ifndef LISP_FEATURE_WIN32
4468 int i;
4469 for (i=0; i<NSIG; ++i)
4470 if (lowtag_of(interrupt_handlers[i].lisp) == FUN_POINTER_LOWTAG)
4471 interrupt_handlers[i].lisp = 0;
4473 #endif
4475 /* Collect twice: once into relatively high memory, and then back
4476 * into low memory. This compacts the retained data into the lower
4477 * pages, minimizing the size of the core file.
4479 prepare_for_final_gc();
4480 gencgc_alloc_start_page = last_free_page;
4481 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4483 // We always coalesce copyable numbers. Addional coalescing is done
4484 // only on request, in which case a message is shown (unless verbose=0).
4485 if (gc_coalesce_string_literals && verbose) {
4486 printf("[coalescing similar vectors... ");
4487 fflush(stdout);
4489 coalesce_similar_objects();
4490 if (gc_coalesce_string_literals && verbose)
4491 printf("done]\n");
4493 /* FIXME: now that relocate_heap() works, can we just memmove() everything
4494 * down and perform a relocation instead of a collection? */
4495 prepare_for_final_gc();
4496 gencgc_alloc_start_page = -1;
4497 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4499 if (prepend_runtime)
4500 save_runtime_to_filehandle(file, runtime_bytes, runtime_size,
4501 application_type);
4503 /* The dumper doesn't know that pages need to be zeroed before use. */
4504 zero_all_free_pages();
4505 do_destructive_cleanup_before_save(lisp_init_function);
4507 save_to_filehandle(file, filename, lisp_init_function,
4508 prepend_runtime, save_runtime_options,
4509 compressed ? compression_level : COMPRESSION_LEVEL_NONE);
4510 /* Oops. Save still managed to fail. Since we've mangled the stack
4511 * beyond hope, there's not much we can do.
4512 * (beyond FUNCALLing lisp_init_function, but I suspect that's
4513 * going to be rather unsatisfactory too... */
4514 lose("Attempt to save core after non-conservative GC failed.\n");
4517 /* Convert corefile ptes to corresponding 'struct page' */
4518 boolean gc_load_corefile_ptes(char data[], ssize_t bytes_read,
4519 page_index_t npages, page_index_t* ppage)
4521 page_index_t page = *ppage;
4522 int i = 0;
4523 struct corefile_pte pte;
4525 while (bytes_read) {
4526 bytes_read -= sizeof(struct corefile_pte);
4527 memcpy(&pte, data+i*sizeof (struct corefile_pte), sizeof pte);
4528 set_page_bytes_used(page, pte.bytes_used);
4529 // Low 2 bits of the corefile_pte hold the 'allocated' flag.
4530 // The other bits become the scan_start_offset
4531 set_page_scan_start_offset(page, pte.sso & ~0x03);
4532 page_table[page].allocated = pte.sso & 0x03;
4533 if (++page == npages)
4534 return 0; // No more to go
4535 ++i;
4537 *ppage = page;
4538 return 1; // More to go
4541 /* Prepare the array of corefile_ptes for save */
4542 void gc_store_corefile_ptes(struct corefile_pte *ptes)
4544 page_index_t i;
4545 for (i = 0; i < last_free_page; i++) {
4546 /* Thanks to alignment requirements, the two low bits
4547 * are always zero, so we can use them to store the
4548 * allocation type -- region is always closed, so only
4549 * the two low bits of allocation flags matter. */
4550 uword_t word = page_scan_start_offset(i);
4551 gc_assert((word & 0x03) == 0);
4552 ptes[i].sso = word | (0x03 & page_table[i].allocated);
4553 ptes[i].bytes_used = page_bytes_used(i);