explicit structure sharing in typed accessor function definitions
[sbcl.git] / src / runtime / gencgc.c
blob6e681229a247050dc1c5339b0162e6d7bcd760ce
1 /*
2 * GENerational Conservative Garbage Collector for SBCL
3 */
5 /*
6 * This software is part of the SBCL system. See the README file for
7 * more information.
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
23 * as
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <errno.h>
30 #include <string.h>
31 #include "sbcl.h"
32 #if defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD)
33 #include "pthreads_win32.h"
34 #else
35 #include <signal.h>
36 #endif
37 #include "runtime.h"
38 #include "os.h"
39 #include "interr.h"
40 #include "globals.h"
41 #include "interrupt.h"
42 #include "validate.h"
43 #include "lispregs.h"
44 #include "arch.h"
45 #include "gc.h"
46 #include "gc-internal.h"
47 #include "thread.h"
48 #include "pseudo-atomic.h"
49 #include "alloc.h"
50 #include "genesis/vector.h"
51 #include "genesis/weak-pointer.h"
52 #include "genesis/fdefn.h"
53 #include "genesis/simple-fun.h"
54 #include "save.h"
55 #include "genesis/hash-table.h"
56 #include "genesis/instance.h"
57 #include "genesis/layout.h"
58 #include "gencgc.h"
59 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
60 #include "genesis/cons.h"
61 #endif
63 /* forward declarations */
64 page_index_t gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t nbytes,
65 int page_type_flag);
69 * GC parameters
72 /* As usually configured, generations 0-5 are normal collected generations,
73 6 is pseudo-static (the objects in which are never moved nor reclaimed),
74 and 7 is scratch space used when collecting a generation without promotion,
75 wherein it is moved to generation 7 and back again.
77 enum {
78 SCRATCH_GENERATION = PSEUDO_STATIC_GENERATION+1,
79 NUM_GENERATIONS
82 /* Should we use page protection to help avoid the scavenging of pages
83 * that don't have pointers to younger generations? */
84 boolean enable_page_protection = 1;
86 /* the minimum size (in bytes) for a large object*/
87 /* NB this logic is unfortunately copied in 'compiler/x86-64/macros.lisp' */
88 #if (GENCGC_ALLOC_GRANULARITY >= PAGE_BYTES) && (GENCGC_ALLOC_GRANULARITY >= GENCGC_CARD_BYTES)
89 os_vm_size_t large_object_size = 4 * GENCGC_ALLOC_GRANULARITY;
90 #elif (GENCGC_CARD_BYTES >= PAGE_BYTES) && (GENCGC_CARD_BYTES >= GENCGC_ALLOC_GRANULARITY)
91 os_vm_size_t large_object_size = 4 * GENCGC_CARD_BYTES;
92 #else
93 os_vm_size_t large_object_size = 4 * PAGE_BYTES;
94 #endif
96 /* Largest allocation seen since last GC. */
97 os_vm_size_t large_allocation = 0;
101 * debugging
104 /* the verbosity level. All non-error messages are disabled at level 0;
105 * and only a few rare messages are printed at level 1. */
106 #if QSHOW == 2
107 boolean gencgc_verbose = 1;
108 #else
109 boolean gencgc_verbose = 0;
110 #endif
112 /* FIXME: At some point enable the various error-checking things below
113 * and see what they say. */
115 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
116 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
117 * check. */
118 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
120 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
121 boolean pre_verify_gen_0 = 0;
123 /* Should we check for bad pointers after gc_free_heap is called
124 * from Lisp PURIFY? */
125 boolean verify_after_free_heap = 0;
127 /* Should we print a note when code objects are found in the dynamic space
128 * during a heap verify? */
129 boolean verify_dynamic_code_check = 0;
131 #ifdef LISP_FEATURE_X86
132 /* Should we check code objects for fixup errors after they are transported? */
133 boolean check_code_fixups = 0;
134 #endif
136 /* Should we check that newly allocated regions are zero filled? */
137 boolean gencgc_zero_check = 0;
139 /* Should we check that the free space is zero filled? */
140 boolean gencgc_enable_verify_zero_fill = 0;
142 /* Should we check that free pages are zero filled during gc_free_heap
143 * called after Lisp PURIFY? */
144 boolean gencgc_zero_check_during_free_heap = 0;
146 /* When loading a core, don't do a full scan of the memory for the
147 * memory region boundaries. (Set to true by coreparse.c if the core
148 * contained a pagetable entry).
150 boolean gencgc_partial_pickup = 0;
152 /* If defined, free pages are read-protected to ensure that nothing
153 * accesses them.
156 /* #define READ_PROTECT_FREE_PAGES */
160 * GC structures and variables
163 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
164 os_vm_size_t bytes_allocated = 0;
165 os_vm_size_t auto_gc_trigger = 0;
167 /* the source and destination generations. These are set before a GC starts
168 * scavenging. */
169 generation_index_t from_space;
170 generation_index_t new_space;
172 /* Set to 1 when in GC */
173 boolean gc_active_p = 0;
175 /* should the GC be conservative on stack. If false (only right before
176 * saving a core), don't scan the stack / mark pages dont_move. */
177 static boolean conservative_stack = 1;
179 /* An array of page structures is allocated on gc initialization.
180 * This helps to quickly map between an address and its page structure.
181 * page_table_pages is set from the size of the dynamic space. */
182 page_index_t page_table_pages;
183 struct page *page_table;
185 /* In GC cards that have conservative pointers to them, should we wipe out
186 * dwords in there that are not used, so that they do not act as false
187 * root to other things in the heap from then on? This is a new feature
188 * but in testing it is both reliable and no noticeable slowdown. */
189 int do_wipe_p = 1;
191 /* a value that we use to wipe out unused words in GC cards that
192 * live alongside conservatively to pointed words. */
193 const lispobj wipe_with = 0;
195 static inline boolean page_allocated_p(page_index_t page) {
196 return (page_table[page].allocated != FREE_PAGE_FLAG);
199 static inline boolean page_no_region_p(page_index_t page) {
200 return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
203 static inline boolean page_allocated_no_region_p(page_index_t page) {
204 return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
205 && page_no_region_p(page));
208 static inline boolean page_free_p(page_index_t page) {
209 return (page_table[page].allocated == FREE_PAGE_FLAG);
212 static inline boolean page_boxed_p(page_index_t page) {
213 return (page_table[page].allocated & BOXED_PAGE_FLAG);
216 static inline boolean page_boxed_no_region_p(page_index_t page) {
217 return page_boxed_p(page) && page_no_region_p(page);
220 static inline boolean page_unboxed_p(page_index_t page) {
221 /* Both flags set == boxed code page */
222 return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
223 && !page_boxed_p(page));
226 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
227 return (page_boxed_no_region_p(page)
228 && (page_table[page].bytes_used != 0)
229 && !page_table[page].dont_move
230 && (page_table[page].gen == generation));
233 /* To map addresses to page structures the address of the first page
234 * is needed. */
235 void *heap_base = NULL;
237 /* Calculate the start address for the given page number. */
238 inline void *
239 page_address(page_index_t page_num)
241 return (heap_base + (page_num * GENCGC_CARD_BYTES));
244 /* Calculate the address where the allocation region associated with
245 * the page starts. */
246 static inline void *
247 page_scan_start(page_index_t page_index)
249 return page_address(page_index)-page_table[page_index].scan_start_offset;
252 /* True if the page starts a contiguous block. */
253 static inline boolean
254 page_starts_contiguous_block_p(page_index_t page_index)
256 return page_table[page_index].scan_start_offset == 0;
259 /* True if the page is the last page in a contiguous block. */
260 static inline boolean
261 page_ends_contiguous_block_p(page_index_t page_index, generation_index_t gen)
263 return (/* page doesn't fill block */
264 (page_table[page_index].bytes_used < GENCGC_CARD_BYTES)
265 /* page is last allocated page */
266 || ((page_index + 1) >= last_free_page)
267 /* next page free */
268 || page_free_p(page_index + 1)
269 /* next page contains no data */
270 || (page_table[page_index + 1].bytes_used == 0)
271 /* next page is in different generation */
272 || (page_table[page_index + 1].gen != gen)
273 /* next page starts its own contiguous block */
274 || (page_starts_contiguous_block_p(page_index + 1)));
277 /* Find the page index within the page_table for the given
278 * address. Return -1 on failure. */
279 inline page_index_t
280 find_page_index(void *addr)
282 if (addr >= heap_base) {
283 page_index_t index = ((pointer_sized_uint_t)addr -
284 (pointer_sized_uint_t)heap_base) / GENCGC_CARD_BYTES;
285 if (index < page_table_pages)
286 return (index);
288 return (-1);
291 static os_vm_size_t
292 npage_bytes(page_index_t npages)
294 gc_assert(npages>=0);
295 return ((os_vm_size_t)npages)*GENCGC_CARD_BYTES;
298 /* Check that X is a higher address than Y and return offset from Y to
299 * X in bytes. */
300 static inline os_vm_size_t
301 void_diff(void *x, void *y)
303 gc_assert(x >= y);
304 return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
307 /* a structure to hold the state of a generation
309 * CAUTION: If you modify this, make sure to touch up the alien
310 * definition in src/code/gc.lisp accordingly. ...or better yes,
311 * deal with the FIXME there...
313 struct generation {
315 /* the first page that gc_alloc() checks on its next call */
316 page_index_t alloc_start_page;
318 /* the first page that gc_alloc_unboxed() checks on its next call */
319 page_index_t alloc_unboxed_start_page;
321 /* the first page that gc_alloc_large (boxed) considers on its next
322 * call. (Although it always allocates after the boxed_region.) */
323 page_index_t alloc_large_start_page;
325 /* the first page that gc_alloc_large (unboxed) considers on its
326 * next call. (Although it always allocates after the
327 * current_unboxed_region.) */
328 page_index_t alloc_large_unboxed_start_page;
330 /* the bytes allocated to this generation */
331 os_vm_size_t bytes_allocated;
333 /* the number of bytes at which to trigger a GC */
334 os_vm_size_t gc_trigger;
336 /* to calculate a new level for gc_trigger */
337 os_vm_size_t bytes_consed_between_gc;
339 /* the number of GCs since the last raise */
340 int num_gc;
342 /* the number of GCs to run on the generations before raising objects to the
343 * next generation */
344 int number_of_gcs_before_promotion;
346 /* the cumulative sum of the bytes allocated to this generation. It is
347 * cleared after a GC on this generations, and update before new
348 * objects are added from a GC of a younger generation. Dividing by
349 * the bytes_allocated will give the average age of the memory in
350 * this generation since its last GC. */
351 os_vm_size_t cum_sum_bytes_allocated;
353 /* a minimum average memory age before a GC will occur helps
354 * prevent a GC when a large number of new live objects have been
355 * added, in which case a GC could be a waste of time */
356 double minimum_age_before_gc;
359 /* an array of generation structures. There needs to be one more
360 * generation structure than actual generations as the oldest
361 * generation is temporarily raised then lowered. */
362 struct generation generations[NUM_GENERATIONS];
364 /* the oldest generation that is will currently be GCed by default.
365 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
367 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
369 * Setting this to 0 effectively disables the generational nature of
370 * the GC. In some applications generational GC may not be useful
371 * because there are no long-lived objects.
373 * An intermediate value could be handy after moving long-lived data
374 * into an older generation so an unnecessary GC of this long-lived
375 * data can be avoided. */
376 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
378 /* The maximum free page in the heap is maintained and used to update
379 * ALLOCATION_POINTER which is used by the room function to limit its
380 * search of the heap. XX Gencgc obviously needs to be better
381 * integrated with the Lisp code. */
382 page_index_t last_free_page;
384 #ifdef LISP_FEATURE_SB_THREAD
385 /* This lock is to prevent multiple threads from simultaneously
386 * allocating new regions which overlap each other. Note that the
387 * majority of GC is single-threaded, but alloc() may be called from
388 * >1 thread at a time and must be thread-safe. This lock must be
389 * seized before all accesses to generations[] or to parts of
390 * page_table[] that other threads may want to see */
391 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
392 /* This lock is used to protect non-thread-local allocation. */
393 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
394 #endif
396 extern os_vm_size_t gencgc_release_granularity;
397 os_vm_size_t gencgc_release_granularity = GENCGC_RELEASE_GRANULARITY;
399 extern os_vm_size_t gencgc_alloc_granularity;
400 os_vm_size_t gencgc_alloc_granularity = GENCGC_ALLOC_GRANULARITY;
404 * miscellaneous heap functions
407 /* Count the number of pages which are write-protected within the
408 * given generation. */
409 static page_index_t
410 count_write_protect_generation_pages(generation_index_t generation)
412 page_index_t i, count = 0;
414 for (i = 0; i < last_free_page; i++)
415 if (page_allocated_p(i)
416 && (page_table[i].gen == generation)
417 && (page_table[i].write_protected == 1))
418 count++;
419 return count;
422 /* Count the number of pages within the given generation. */
423 static page_index_t
424 count_generation_pages(generation_index_t generation)
426 page_index_t i;
427 page_index_t count = 0;
429 for (i = 0; i < last_free_page; i++)
430 if (page_allocated_p(i)
431 && (page_table[i].gen == generation))
432 count++;
433 return count;
436 #if QSHOW
437 static page_index_t
438 count_dont_move_pages(void)
440 page_index_t i;
441 page_index_t count = 0;
442 for (i = 0; i < last_free_page; i++) {
443 if (page_allocated_p(i)
444 && (page_table[i].dont_move != 0)) {
445 ++count;
448 return count;
450 #endif /* QSHOW */
452 /* Work through the pages and add up the number of bytes used for the
453 * given generation. */
454 static os_vm_size_t
455 count_generation_bytes_allocated (generation_index_t gen)
457 page_index_t i;
458 os_vm_size_t result = 0;
459 for (i = 0; i < last_free_page; i++) {
460 if (page_allocated_p(i)
461 && (page_table[i].gen == gen))
462 result += page_table[i].bytes_used;
464 return result;
467 /* Return the average age of the memory in a generation. */
468 extern double
469 generation_average_age(generation_index_t gen)
471 if (generations[gen].bytes_allocated == 0)
472 return 0.0;
474 return
475 ((double)generations[gen].cum_sum_bytes_allocated)
476 / ((double)generations[gen].bytes_allocated);
479 extern void
480 write_generation_stats(FILE *file)
482 generation_index_t i;
484 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
485 #define FPU_STATE_SIZE 27
486 int fpu_state[FPU_STATE_SIZE];
487 #elif defined(LISP_FEATURE_PPC)
488 #define FPU_STATE_SIZE 32
489 long long fpu_state[FPU_STATE_SIZE];
490 #elif defined(LISP_FEATURE_SPARC)
492 * 32 (single-precision) FP registers, and the FP state register.
493 * But Sparc V9 has 32 double-precision registers (equivalent to 64
494 * single-precision, but can't be accessed), so we leave enough room
495 * for that.
497 #define FPU_STATE_SIZE (((32 + 32 + 1) + 1)/2)
498 long long fpu_state[FPU_STATE_SIZE];
499 #elif defined(LISP_FEATURE_ARM)
500 #define FPU_STATE_SIZE 8
501 long long fpu_state[FPU_STATE_SIZE];
502 #endif
504 /* This code uses the FP instructions which may be set up for Lisp
505 * so they need to be saved and reset for C. */
506 fpu_save(fpu_state);
508 /* Print the heap stats. */
509 fprintf(file,
510 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
512 for (i = 0; i < SCRATCH_GENERATION; i++) {
513 page_index_t j;
514 page_index_t boxed_cnt = 0;
515 page_index_t unboxed_cnt = 0;
516 page_index_t large_boxed_cnt = 0;
517 page_index_t large_unboxed_cnt = 0;
518 page_index_t pinned_cnt=0;
520 for (j = 0; j < last_free_page; j++)
521 if (page_table[j].gen == i) {
523 /* Count the number of boxed pages within the given
524 * generation. */
525 if (page_boxed_p(j)) {
526 if (page_table[j].large_object)
527 large_boxed_cnt++;
528 else
529 boxed_cnt++;
531 if(page_table[j].dont_move) pinned_cnt++;
532 /* Count the number of unboxed pages within the given
533 * generation. */
534 if (page_unboxed_p(j)) {
535 if (page_table[j].large_object)
536 large_unboxed_cnt++;
537 else
538 unboxed_cnt++;
542 gc_assert(generations[i].bytes_allocated
543 == count_generation_bytes_allocated(i));
544 fprintf(file,
545 " %1d: %5ld %5ld %5ld %5ld",
547 generations[i].alloc_start_page,
548 generations[i].alloc_unboxed_start_page,
549 generations[i].alloc_large_start_page,
550 generations[i].alloc_large_unboxed_start_page);
551 fprintf(file,
552 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT
553 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT,
554 boxed_cnt, unboxed_cnt, large_boxed_cnt,
555 large_unboxed_cnt, pinned_cnt);
556 fprintf(file,
557 " %8"OS_VM_SIZE_FMT
558 " %5"OS_VM_SIZE_FMT
559 " %8"OS_VM_SIZE_FMT
560 " %4"PAGE_INDEX_FMT" %3d %7.4f\n",
561 generations[i].bytes_allocated,
562 (npage_bytes(count_generation_pages(i)) - generations[i].bytes_allocated),
563 generations[i].gc_trigger,
564 count_write_protect_generation_pages(i),
565 generations[i].num_gc,
566 generation_average_age(i));
568 fprintf(file," Total bytes allocated = %"OS_VM_SIZE_FMT"\n", bytes_allocated);
569 fprintf(file," Dynamic-space-size bytes = %"OS_VM_SIZE_FMT"\n", dynamic_space_size);
571 fpu_restore(fpu_state);
574 extern void
575 write_heap_exhaustion_report(FILE *file, long available, long requested,
576 struct thread *thread)
578 fprintf(file,
579 "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
580 gc_active_p ? "garbage collection" : "allocation",
581 available,
582 requested);
583 write_generation_stats(file);
584 fprintf(file, "GC control variables:\n");
585 fprintf(file, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
586 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
587 (SymbolValue(GC_PENDING, thread) == T) ?
588 "true" : ((SymbolValue(GC_PENDING, thread) == NIL) ?
589 "false" : "in progress"));
590 #ifdef LISP_FEATURE_SB_THREAD
591 fprintf(file, " *STOP-FOR-GC-PENDING* = %s\n",
592 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
593 #endif
596 extern void
597 print_generation_stats(void)
599 write_generation_stats(stderr);
602 extern char* gc_logfile;
603 char * gc_logfile = NULL;
605 extern void
606 log_generation_stats(char *logfile, char *header)
608 if (logfile) {
609 FILE * log = fopen(logfile, "a");
610 if (log) {
611 fprintf(log, "%s\n", header);
612 write_generation_stats(log);
613 fclose(log);
614 } else {
615 fprintf(stderr, "Could not open gc logfile: %s\n", logfile);
616 fflush(stderr);
621 extern void
622 report_heap_exhaustion(long available, long requested, struct thread *th)
624 if (gc_logfile) {
625 FILE * log = fopen(gc_logfile, "a");
626 if (log) {
627 write_heap_exhaustion_report(log, available, requested, th);
628 fclose(log);
629 } else {
630 fprintf(stderr, "Could not open gc logfile: %s\n", gc_logfile);
631 fflush(stderr);
634 /* Always to stderr as well. */
635 write_heap_exhaustion_report(stderr, available, requested, th);
639 #if defined(LISP_FEATURE_X86)
640 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
641 #endif
643 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
644 * if zeroing it ourselves, i.e. in practice give the memory back to the
645 * OS. Generally done after a large GC.
647 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
648 page_index_t i;
649 void *addr = page_address(start), *new_addr;
650 os_vm_size_t length = npage_bytes(1+end-start);
652 if (start > end)
653 return;
655 gc_assert(length >= gencgc_release_granularity);
656 gc_assert((length % gencgc_release_granularity) == 0);
658 os_invalidate(addr, length);
659 new_addr = os_validate(addr, length);
660 if (new_addr == NULL || new_addr != addr) {
661 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
662 start, new_addr);
665 for (i = start; i <= end; i++) {
666 page_table[i].need_to_zero = 0;
670 /* Zero the pages from START to END (inclusive). Generally done just after
671 * a new region has been allocated.
673 static void
674 zero_pages(page_index_t start, page_index_t end) {
675 if (start > end)
676 return;
678 #if defined(LISP_FEATURE_X86)
679 fast_bzero(page_address(start), npage_bytes(1+end-start));
680 #else
681 bzero(page_address(start), npage_bytes(1+end-start));
682 #endif
686 static void
687 zero_and_mark_pages(page_index_t start, page_index_t end) {
688 page_index_t i;
690 zero_pages(start, end);
691 for (i = start; i <= end; i++)
692 page_table[i].need_to_zero = 0;
695 /* Zero the pages from START to END (inclusive), except for those
696 * pages that are known to already zeroed. Mark all pages in the
697 * ranges as non-zeroed.
699 static void
700 zero_dirty_pages(page_index_t start, page_index_t end) {
701 page_index_t i, j;
703 for (i = start; i <= end; i++) {
704 if (!page_table[i].need_to_zero) continue;
705 for (j = i+1; (j <= end) && (page_table[j].need_to_zero); j++);
706 zero_pages(i, j-1);
707 i = j;
710 for (i = start; i <= end; i++) {
711 page_table[i].need_to_zero = 1;
717 * To support quick and inline allocation, regions of memory can be
718 * allocated and then allocated from with just a free pointer and a
719 * check against an end address.
721 * Since objects can be allocated to spaces with different properties
722 * e.g. boxed/unboxed, generation, ages; there may need to be many
723 * allocation regions.
725 * Each allocation region may start within a partly used page. Many
726 * features of memory use are noted on a page wise basis, e.g. the
727 * generation; so if a region starts within an existing allocated page
728 * it must be consistent with this page.
730 * During the scavenging of the newspace, objects will be transported
731 * into an allocation region, and pointers updated to point to this
732 * allocation region. It is possible that these pointers will be
733 * scavenged again before the allocation region is closed, e.g. due to
734 * trans_list which jumps all over the place to cleanup the list. It
735 * is important to be able to determine properties of all objects
736 * pointed to when scavenging, e.g to detect pointers to the oldspace.
737 * Thus it's important that the allocation regions have the correct
738 * properties set when allocated, and not just set when closed. The
739 * region allocation routines return regions with the specified
740 * properties, and grab all the pages, setting their properties
741 * appropriately, except that the amount used is not known.
743 * These regions are used to support quicker allocation using just a
744 * free pointer. The actual space used by the region is not reflected
745 * in the pages tables until it is closed. It can't be scavenged until
746 * closed.
748 * When finished with the region it should be closed, which will
749 * update the page tables for the actual space used returning unused
750 * space. Further it may be noted in the new regions which is
751 * necessary when scavenging the newspace.
753 * Large objects may be allocated directly without an allocation
754 * region, the page tables are updated immediately.
756 * Unboxed objects don't contain pointers to other objects and so
757 * don't need scavenging. Further they can't contain pointers to
758 * younger generations so WP is not needed. By allocating pages to
759 * unboxed objects the whole page never needs scavenging or
760 * write-protecting. */
762 /* We are only using two regions at present. Both are for the current
763 * newspace generation. */
764 struct alloc_region boxed_region;
765 struct alloc_region unboxed_region;
767 /* The generation currently being allocated to. */
768 static generation_index_t gc_alloc_generation;
770 static inline page_index_t
771 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
773 if (large) {
774 if (UNBOXED_PAGE_FLAG == page_type_flag) {
775 return generations[generation].alloc_large_unboxed_start_page;
776 } else if (BOXED_PAGE_FLAG & page_type_flag) {
777 /* Both code and data. */
778 return generations[generation].alloc_large_start_page;
779 } else {
780 lose("bad page type flag: %d", page_type_flag);
782 } else {
783 if (UNBOXED_PAGE_FLAG == page_type_flag) {
784 return generations[generation].alloc_unboxed_start_page;
785 } else if (BOXED_PAGE_FLAG & page_type_flag) {
786 /* Both code and data. */
787 return generations[generation].alloc_start_page;
788 } else {
789 lose("bad page_type_flag: %d", page_type_flag);
794 static inline void
795 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
796 page_index_t page)
798 if (large) {
799 if (UNBOXED_PAGE_FLAG == page_type_flag) {
800 generations[generation].alloc_large_unboxed_start_page = page;
801 } else if (BOXED_PAGE_FLAG & page_type_flag) {
802 /* Both code and data. */
803 generations[generation].alloc_large_start_page = page;
804 } else {
805 lose("bad page type flag: %d", page_type_flag);
807 } else {
808 if (UNBOXED_PAGE_FLAG == page_type_flag) {
809 generations[generation].alloc_unboxed_start_page = page;
810 } else if (BOXED_PAGE_FLAG & page_type_flag) {
811 /* Both code and data. */
812 generations[generation].alloc_start_page = page;
813 } else {
814 lose("bad page type flag: %d", page_type_flag);
819 /* Find a new region with room for at least the given number of bytes.
821 * It starts looking at the current generation's alloc_start_page. So
822 * may pick up from the previous region if there is enough space. This
823 * keeps the allocation contiguous when scavenging the newspace.
825 * The alloc_region should have been closed by a call to
826 * gc_alloc_update_page_tables(), and will thus be in an empty state.
828 * To assist the scavenging functions write-protected pages are not
829 * used. Free pages should not be write-protected.
831 * It is critical to the conservative GC that the start of regions be
832 * known. To help achieve this only small regions are allocated at a
833 * time.
835 * During scavenging, pointers may be found to within the current
836 * region and the page generation must be set so that pointers to the
837 * from space can be recognized. Therefore the generation of pages in
838 * the region are set to gc_alloc_generation. To prevent another
839 * allocation call using the same pages, all the pages in the region
840 * are allocated, although they will initially be empty.
842 static void
843 gc_alloc_new_region(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
845 page_index_t first_page;
846 page_index_t last_page;
847 os_vm_size_t bytes_found;
848 page_index_t i;
849 int ret;
852 FSHOW((stderr,
853 "/alloc_new_region for %d bytes from gen %d\n",
854 nbytes, gc_alloc_generation));
857 /* Check that the region is in a reset state. */
858 gc_assert((alloc_region->first_page == 0)
859 && (alloc_region->last_page == -1)
860 && (alloc_region->free_pointer == alloc_region->end_addr));
861 ret = thread_mutex_lock(&free_pages_lock);
862 gc_assert(ret == 0);
863 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
864 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
865 bytes_found=(GENCGC_CARD_BYTES - page_table[first_page].bytes_used)
866 + npage_bytes(last_page-first_page);
868 /* Set up the alloc_region. */
869 alloc_region->first_page = first_page;
870 alloc_region->last_page = last_page;
871 alloc_region->start_addr = page_table[first_page].bytes_used
872 + page_address(first_page);
873 alloc_region->free_pointer = alloc_region->start_addr;
874 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
876 /* Set up the pages. */
878 /* The first page may have already been in use. */
879 if (page_table[first_page].bytes_used == 0) {
880 page_table[first_page].allocated = page_type_flag;
881 page_table[first_page].gen = gc_alloc_generation;
882 page_table[first_page].large_object = 0;
883 page_table[first_page].scan_start_offset = 0;
884 // wiping should have free()ed and :=NULL
885 gc_assert(page_table[first_page].dontmove_dwords == NULL);
888 gc_assert(page_table[first_page].allocated == page_type_flag);
889 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
891 gc_assert(page_table[first_page].gen == gc_alloc_generation);
892 gc_assert(page_table[first_page].large_object == 0);
894 for (i = first_page+1; i <= last_page; i++) {
895 page_table[i].allocated = page_type_flag;
896 page_table[i].gen = gc_alloc_generation;
897 page_table[i].large_object = 0;
898 /* This may not be necessary for unboxed regions (think it was
899 * broken before!) */
900 page_table[i].scan_start_offset =
901 void_diff(page_address(i),alloc_region->start_addr);
902 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
904 /* Bump up last_free_page. */
905 if (last_page+1 > last_free_page) {
906 last_free_page = last_page+1;
907 /* do we only want to call this on special occasions? like for
908 * boxed_region? */
909 set_alloc_pointer((lispobj)page_address(last_free_page));
911 ret = thread_mutex_unlock(&free_pages_lock);
912 gc_assert(ret == 0);
914 #ifdef READ_PROTECT_FREE_PAGES
915 os_protect(page_address(first_page),
916 npage_bytes(1+last_page-first_page),
917 OS_VM_PROT_ALL);
918 #endif
920 /* If the first page was only partial, don't check whether it's
921 * zeroed (it won't be) and don't zero it (since the parts that
922 * we're interested in are guaranteed to be zeroed).
924 if (page_table[first_page].bytes_used) {
925 first_page++;
928 zero_dirty_pages(first_page, last_page);
930 /* we can do this after releasing free_pages_lock */
931 if (gencgc_zero_check) {
932 word_t *p;
933 for (p = (word_t *)alloc_region->start_addr;
934 p < (word_t *)alloc_region->end_addr; p++) {
935 if (*p != 0) {
936 lose("The new region is not zero at %p (start=%p, end=%p).\n",
937 p, alloc_region->start_addr, alloc_region->end_addr);
943 /* If the record_new_objects flag is 2 then all new regions created
944 * are recorded.
946 * If it's 1 then then it is only recorded if the first page of the
947 * current region is <= new_areas_ignore_page. This helps avoid
948 * unnecessary recording when doing full scavenge pass.
950 * The new_object structure holds the page, byte offset, and size of
951 * new regions of objects. Each new area is placed in the array of
952 * these structures pointer to by new_areas. new_areas_index holds the
953 * offset into new_areas.
955 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
956 * later code must detect this and handle it, probably by doing a full
957 * scavenge of a generation. */
958 #define NUM_NEW_AREAS 512
959 static int record_new_objects = 0;
960 static page_index_t new_areas_ignore_page;
961 struct new_area {
962 page_index_t page;
963 size_t offset;
964 size_t size;
966 static struct new_area (*new_areas)[];
967 static size_t new_areas_index;
968 size_t max_new_areas;
970 /* Add a new area to new_areas. */
971 static void
972 add_new_area(page_index_t first_page, size_t offset, size_t size)
974 size_t new_area_start, c;
975 ssize_t i;
977 /* Ignore if full. */
978 if (new_areas_index >= NUM_NEW_AREAS)
979 return;
981 switch (record_new_objects) {
982 case 0:
983 return;
984 case 1:
985 if (first_page > new_areas_ignore_page)
986 return;
987 break;
988 case 2:
989 break;
990 default:
991 gc_abort();
994 new_area_start = npage_bytes(first_page) + offset;
996 /* Search backwards for a prior area that this follows from. If
997 found this will save adding a new area. */
998 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
999 size_t area_end =
1000 npage_bytes((*new_areas)[i].page)
1001 + (*new_areas)[i].offset
1002 + (*new_areas)[i].size;
1003 /*FSHOW((stderr,
1004 "/add_new_area S1 %d %d %d %d\n",
1005 i, c, new_area_start, area_end));*/
1006 if (new_area_start == area_end) {
1007 /*FSHOW((stderr,
1008 "/adding to [%d] %d %d %d with %d %d %d:\n",
1010 (*new_areas)[i].page,
1011 (*new_areas)[i].offset,
1012 (*new_areas)[i].size,
1013 first_page,
1014 offset,
1015 size);*/
1016 (*new_areas)[i].size += size;
1017 return;
1021 (*new_areas)[new_areas_index].page = first_page;
1022 (*new_areas)[new_areas_index].offset = offset;
1023 (*new_areas)[new_areas_index].size = size;
1024 /*FSHOW((stderr,
1025 "/new_area %d page %d offset %d size %d\n",
1026 new_areas_index, first_page, offset, size));*/
1027 new_areas_index++;
1029 /* Note the max new_areas used. */
1030 if (new_areas_index > max_new_areas)
1031 max_new_areas = new_areas_index;
1034 /* Update the tables for the alloc_region. The region may be added to
1035 * the new_areas.
1037 * When done the alloc_region is set up so that the next quick alloc
1038 * will fail safely and thus a new region will be allocated. Further
1039 * it is safe to try to re-update the page table of this reset
1040 * alloc_region. */
1041 void
1042 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
1044 boolean more;
1045 page_index_t first_page;
1046 page_index_t next_page;
1047 os_vm_size_t bytes_used;
1048 os_vm_size_t region_size;
1049 os_vm_size_t byte_cnt;
1050 page_bytes_t orig_first_page_bytes_used;
1051 int ret;
1054 first_page = alloc_region->first_page;
1056 /* Catch an unused alloc_region. */
1057 if ((first_page == 0) && (alloc_region->last_page == -1))
1058 return;
1060 next_page = first_page+1;
1062 ret = thread_mutex_lock(&free_pages_lock);
1063 gc_assert(ret == 0);
1064 if (alloc_region->free_pointer != alloc_region->start_addr) {
1065 /* some bytes were allocated in the region */
1066 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1068 gc_assert(alloc_region->start_addr ==
1069 (page_address(first_page)
1070 + page_table[first_page].bytes_used));
1072 /* All the pages used need to be updated */
1074 /* Update the first page. */
1076 /* If the page was free then set up the gen, and
1077 * scan_start_offset. */
1078 if (page_table[first_page].bytes_used == 0)
1079 gc_assert(page_starts_contiguous_block_p(first_page));
1080 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1082 gc_assert(page_table[first_page].allocated & page_type_flag);
1083 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1084 gc_assert(page_table[first_page].large_object == 0);
1086 byte_cnt = 0;
1088 /* Calculate the number of bytes used in this page. This is not
1089 * always the number of new bytes, unless it was free. */
1090 more = 0;
1091 if ((bytes_used = void_diff(alloc_region->free_pointer,
1092 page_address(first_page)))
1093 >GENCGC_CARD_BYTES) {
1094 bytes_used = GENCGC_CARD_BYTES;
1095 more = 1;
1097 page_table[first_page].bytes_used = bytes_used;
1098 byte_cnt += bytes_used;
1101 /* All the rest of the pages should be free. We need to set
1102 * their scan_start_offset pointer to the start of the
1103 * region, and set the bytes_used. */
1104 while (more) {
1105 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1106 gc_assert(page_table[next_page].allocated & page_type_flag);
1107 gc_assert(page_table[next_page].bytes_used == 0);
1108 gc_assert(page_table[next_page].gen == gc_alloc_generation);
1109 gc_assert(page_table[next_page].large_object == 0);
1111 gc_assert(page_table[next_page].scan_start_offset ==
1112 void_diff(page_address(next_page),
1113 alloc_region->start_addr));
1115 /* Calculate the number of bytes used in this page. */
1116 more = 0;
1117 if ((bytes_used = void_diff(alloc_region->free_pointer,
1118 page_address(next_page)))>GENCGC_CARD_BYTES) {
1119 bytes_used = GENCGC_CARD_BYTES;
1120 more = 1;
1122 page_table[next_page].bytes_used = bytes_used;
1123 byte_cnt += bytes_used;
1125 next_page++;
1128 region_size = void_diff(alloc_region->free_pointer,
1129 alloc_region->start_addr);
1130 bytes_allocated += region_size;
1131 generations[gc_alloc_generation].bytes_allocated += region_size;
1133 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1135 /* Set the generations alloc restart page to the last page of
1136 * the region. */
1137 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1139 /* Add the region to the new_areas if requested. */
1140 if (BOXED_PAGE_FLAG & page_type_flag)
1141 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1144 FSHOW((stderr,
1145 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1146 region_size,
1147 gc_alloc_generation));
1149 } else {
1150 /* There are no bytes allocated. Unallocate the first_page if
1151 * there are 0 bytes_used. */
1152 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1153 if (page_table[first_page].bytes_used == 0)
1154 page_table[first_page].allocated = FREE_PAGE_FLAG;
1157 /* Unallocate any unused pages. */
1158 while (next_page <= alloc_region->last_page) {
1159 gc_assert(page_table[next_page].bytes_used == 0);
1160 page_table[next_page].allocated = FREE_PAGE_FLAG;
1161 next_page++;
1163 ret = thread_mutex_unlock(&free_pages_lock);
1164 gc_assert(ret == 0);
1166 /* alloc_region is per-thread, we're ok to do this unlocked */
1167 gc_set_region_empty(alloc_region);
1170 static inline void *gc_quick_alloc(word_t nbytes);
1172 /* Allocate a possibly large object. */
1173 void *
1174 gc_alloc_large(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
1176 boolean more;
1177 page_index_t first_page, next_page, last_page;
1178 page_bytes_t orig_first_page_bytes_used;
1179 os_vm_size_t byte_cnt;
1180 os_vm_size_t bytes_used;
1181 int ret;
1183 ret = thread_mutex_lock(&free_pages_lock);
1184 gc_assert(ret == 0);
1186 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1187 if (first_page <= alloc_region->last_page) {
1188 first_page = alloc_region->last_page+1;
1191 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1193 gc_assert(first_page > alloc_region->last_page);
1195 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1197 /* Set up the pages. */
1198 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1200 /* If the first page was free then set up the gen, and
1201 * scan_start_offset. */
1202 if (page_table[first_page].bytes_used == 0) {
1203 page_table[first_page].allocated = page_type_flag;
1204 page_table[first_page].gen = gc_alloc_generation;
1205 page_table[first_page].scan_start_offset = 0;
1206 page_table[first_page].large_object = 1;
1209 gc_assert(page_table[first_page].allocated == page_type_flag);
1210 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1211 gc_assert(page_table[first_page].large_object == 1);
1213 byte_cnt = 0;
1215 /* Calc. the number of bytes used in this page. This is not
1216 * always the number of new bytes, unless it was free. */
1217 more = 0;
1218 if ((bytes_used = nbytes+orig_first_page_bytes_used) > GENCGC_CARD_BYTES) {
1219 bytes_used = GENCGC_CARD_BYTES;
1220 more = 1;
1222 page_table[first_page].bytes_used = bytes_used;
1223 byte_cnt += bytes_used;
1225 next_page = first_page+1;
1227 /* All the rest of the pages should be free. We need to set their
1228 * scan_start_offset pointer to the start of the region, and set
1229 * the bytes_used. */
1230 while (more) {
1231 gc_assert(page_free_p(next_page));
1232 gc_assert(page_table[next_page].bytes_used == 0);
1233 page_table[next_page].allocated = page_type_flag;
1234 page_table[next_page].gen = gc_alloc_generation;
1235 page_table[next_page].large_object = 1;
1237 page_table[next_page].scan_start_offset =
1238 npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1240 /* Calculate the number of bytes used in this page. */
1241 more = 0;
1242 bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1243 if (bytes_used > GENCGC_CARD_BYTES) {
1244 bytes_used = GENCGC_CARD_BYTES;
1245 more = 1;
1247 page_table[next_page].bytes_used = bytes_used;
1248 page_table[next_page].write_protected=0;
1249 page_table[next_page].dont_move=0;
1250 byte_cnt += bytes_used;
1251 next_page++;
1254 gc_assert((byte_cnt-orig_first_page_bytes_used) == (size_t)nbytes);
1256 bytes_allocated += nbytes;
1257 generations[gc_alloc_generation].bytes_allocated += nbytes;
1259 /* Add the region to the new_areas if requested. */
1260 if (BOXED_PAGE_FLAG & page_type_flag)
1261 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1263 /* Bump up last_free_page */
1264 if (last_page+1 > last_free_page) {
1265 last_free_page = last_page+1;
1266 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1268 ret = thread_mutex_unlock(&free_pages_lock);
1269 gc_assert(ret == 0);
1271 #ifdef READ_PROTECT_FREE_PAGES
1272 os_protect(page_address(first_page),
1273 npage_bytes(1+last_page-first_page),
1274 OS_VM_PROT_ALL);
1275 #endif
1277 zero_dirty_pages(first_page, last_page);
1279 return page_address(first_page);
1282 static page_index_t gencgc_alloc_start_page = -1;
1284 void
1285 gc_heap_exhausted_error_or_lose (sword_t available, sword_t requested)
1287 struct thread *thread = arch_os_get_current_thread();
1288 /* Write basic information before doing anything else: if we don't
1289 * call to lisp this is a must, and even if we do there is always
1290 * the danger that we bounce back here before the error has been
1291 * handled, or indeed even printed.
1293 report_heap_exhaustion(available, requested, thread);
1294 if (gc_active_p || (available == 0)) {
1295 /* If we are in GC, or totally out of memory there is no way
1296 * to sanely transfer control to the lisp-side of things.
1298 lose("Heap exhausted, game over.");
1300 else {
1301 /* FIXME: assert free_pages_lock held */
1302 (void)thread_mutex_unlock(&free_pages_lock);
1303 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
1304 gc_assert(get_pseudo_atomic_atomic(thread));
1305 clear_pseudo_atomic_atomic(thread);
1306 if (get_pseudo_atomic_interrupted(thread))
1307 do_pending_interrupt();
1308 #endif
1309 /* Another issue is that signalling HEAP-EXHAUSTED error leads
1310 * to running user code at arbitrary places, even in a
1311 * WITHOUT-INTERRUPTS which may lead to a deadlock without
1312 * running out of the heap. So at this point all bets are
1313 * off. */
1314 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
1315 corruption_warning_and_maybe_lose
1316 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1317 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1318 alloc_number(available), alloc_number(requested));
1319 lose("HEAP-EXHAUSTED-ERROR fell through");
1323 page_index_t
1324 gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t bytes,
1325 int page_type_flag)
1327 page_index_t most_bytes_found_from = 0, most_bytes_found_to = 0;
1328 page_index_t first_page, last_page, restart_page = *restart_page_ptr;
1329 os_vm_size_t nbytes = bytes;
1330 os_vm_size_t nbytes_goal = nbytes;
1331 os_vm_size_t bytes_found = 0;
1332 os_vm_size_t most_bytes_found = 0;
1333 boolean small_object = nbytes < GENCGC_CARD_BYTES;
1334 /* FIXME: assert(free_pages_lock is held); */
1336 if (nbytes_goal < gencgc_alloc_granularity)
1337 nbytes_goal = gencgc_alloc_granularity;
1339 /* Toggled by gc_and_save for heap compaction, normally -1. */
1340 if (gencgc_alloc_start_page != -1) {
1341 restart_page = gencgc_alloc_start_page;
1344 /* FIXME: This is on bytes instead of nbytes pending cleanup of
1345 * long from the interface. */
1346 gc_assert(bytes>=0);
1347 /* Search for a page with at least nbytes of space. We prefer
1348 * not to split small objects on multiple pages, to reduce the
1349 * number of contiguous allocation regions spaning multiple
1350 * pages: this helps avoid excessive conservativism.
1352 * For other objects, we guarantee that they start on their own
1353 * page boundary.
1355 first_page = restart_page;
1356 while (first_page < page_table_pages) {
1357 bytes_found = 0;
1358 if (page_free_p(first_page)) {
1359 gc_assert(0 == page_table[first_page].bytes_used);
1360 bytes_found = GENCGC_CARD_BYTES;
1361 } else if (small_object &&
1362 (page_table[first_page].allocated == page_type_flag) &&
1363 (page_table[first_page].large_object == 0) &&
1364 (page_table[first_page].gen == gc_alloc_generation) &&
1365 (page_table[first_page].write_protected == 0) &&
1366 (page_table[first_page].dont_move == 0)) {
1367 bytes_found = GENCGC_CARD_BYTES - page_table[first_page].bytes_used;
1368 if (bytes_found < nbytes) {
1369 if (bytes_found > most_bytes_found)
1370 most_bytes_found = bytes_found;
1371 first_page++;
1372 continue;
1374 } else {
1375 first_page++;
1376 continue;
1379 gc_assert(page_table[first_page].write_protected == 0);
1380 for (last_page = first_page+1;
1381 ((last_page < page_table_pages) &&
1382 page_free_p(last_page) &&
1383 (bytes_found < nbytes_goal));
1384 last_page++) {
1385 bytes_found += GENCGC_CARD_BYTES;
1386 gc_assert(0 == page_table[last_page].bytes_used);
1387 gc_assert(0 == page_table[last_page].write_protected);
1390 if (bytes_found > most_bytes_found) {
1391 most_bytes_found = bytes_found;
1392 most_bytes_found_from = first_page;
1393 most_bytes_found_to = last_page;
1395 if (bytes_found >= nbytes_goal)
1396 break;
1398 first_page = last_page;
1401 bytes_found = most_bytes_found;
1402 restart_page = first_page + 1;
1404 /* Check for a failure */
1405 if (bytes_found < nbytes) {
1406 gc_assert(restart_page >= page_table_pages);
1407 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1410 gc_assert(most_bytes_found_to);
1411 *restart_page_ptr = most_bytes_found_from;
1412 return most_bytes_found_to-1;
1415 /* Allocate bytes. All the rest of the special-purpose allocation
1416 * functions will eventually call this */
1418 void *
1419 gc_alloc_with_region(sword_t nbytes,int page_type_flag, struct alloc_region *my_region,
1420 int quick_p)
1422 void *new_free_pointer;
1424 if ((size_t)nbytes>=large_object_size)
1425 return gc_alloc_large(nbytes, page_type_flag, my_region);
1427 /* Check whether there is room in the current alloc region. */
1428 new_free_pointer = my_region->free_pointer + nbytes;
1430 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1431 my_region->free_pointer, new_free_pointer); */
1433 if (new_free_pointer <= my_region->end_addr) {
1434 /* If so then allocate from the current alloc region. */
1435 void *new_obj = my_region->free_pointer;
1436 my_region->free_pointer = new_free_pointer;
1438 /* Unless a `quick' alloc was requested, check whether the
1439 alloc region is almost empty. */
1440 if (!quick_p &&
1441 void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1442 /* If so, finished with the current region. */
1443 gc_alloc_update_page_tables(page_type_flag, my_region);
1444 /* Set up a new region. */
1445 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1448 return((void *)new_obj);
1451 /* Else not enough free space in the current region: retry with a
1452 * new region. */
1454 gc_alloc_update_page_tables(page_type_flag, my_region);
1455 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1456 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1459 /* these are only used during GC: all allocation from the mutator calls
1460 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1461 * region */
1463 static inline void *
1464 gc_quick_alloc(word_t nbytes)
1466 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
1469 static inline void *
1470 gc_alloc_unboxed(word_t nbytes)
1472 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
1475 static inline void *
1476 gc_quick_alloc_unboxed(word_t nbytes)
1478 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1481 /* Copy a large object. If the object is in a large object region then
1482 * it is simply promoted, else it is copied. If it's large enough then
1483 * it's copied to a large object region.
1485 * Bignums and vectors may have shrunk. If the object is not copied
1486 * the space needs to be reclaimed, and the page_tables corrected. */
1487 static lispobj
1488 general_copy_large_object(lispobj object, word_t nwords, boolean boxedp)
1490 int tag;
1491 lispobj *new;
1492 page_index_t first_page;
1494 gc_assert(is_lisp_pointer(object));
1495 gc_assert(from_space_p(object));
1496 gc_assert((nwords & 0x01) == 0);
1498 if ((nwords > 1024*1024) && gencgc_verbose) {
1499 FSHOW((stderr, "/general_copy_large_object: %d bytes\n",
1500 nwords*N_WORD_BYTES));
1503 /* Check whether it's a large object. */
1504 first_page = find_page_index((void *)object);
1505 gc_assert(first_page >= 0);
1507 if (page_table[first_page].large_object) {
1508 /* Promote the object. Note: Unboxed objects may have been
1509 * allocated to a BOXED region so it may be necessary to
1510 * change the region to UNBOXED. */
1511 os_vm_size_t remaining_bytes;
1512 os_vm_size_t bytes_freed;
1513 page_index_t next_page;
1514 page_bytes_t old_bytes_used;
1516 /* FIXME: This comment is somewhat stale.
1518 * Note: Any page write-protection must be removed, else a
1519 * later scavenge_newspace may incorrectly not scavenge these
1520 * pages. This would not be necessary if they are added to the
1521 * new areas, but let's do it for them all (they'll probably
1522 * be written anyway?). */
1524 gc_assert(page_starts_contiguous_block_p(first_page));
1525 next_page = first_page;
1526 remaining_bytes = nwords*N_WORD_BYTES;
1528 while (remaining_bytes > GENCGC_CARD_BYTES) {
1529 gc_assert(page_table[next_page].gen == from_space);
1530 gc_assert(page_table[next_page].large_object);
1531 gc_assert(page_table[next_page].scan_start_offset ==
1532 npage_bytes(next_page-first_page));
1533 gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
1534 /* Should have been unprotected by unprotect_oldspace()
1535 * for boxed objects, and after promotion unboxed ones
1536 * should not be on protected pages at all. */
1537 gc_assert(!page_table[next_page].write_protected);
1539 if (boxedp)
1540 gc_assert(page_boxed_p(next_page));
1541 else {
1542 gc_assert(page_allocated_no_region_p(next_page));
1543 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1545 page_table[next_page].gen = new_space;
1547 remaining_bytes -= GENCGC_CARD_BYTES;
1548 next_page++;
1551 /* Now only one page remains, but the object may have shrunk so
1552 * there may be more unused pages which will be freed. */
1554 /* Object may have shrunk but shouldn't have grown - check. */
1555 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1557 page_table[next_page].gen = new_space;
1559 if (boxedp)
1560 gc_assert(page_boxed_p(next_page));
1561 else
1562 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1564 /* Adjust the bytes_used. */
1565 old_bytes_used = page_table[next_page].bytes_used;
1566 page_table[next_page].bytes_used = remaining_bytes;
1568 bytes_freed = old_bytes_used - remaining_bytes;
1570 /* Free any remaining pages; needs care. */
1571 next_page++;
1572 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
1573 (page_table[next_page].gen == from_space) &&
1574 /* FIXME: It is not obvious to me why this is necessary
1575 * as a loop condition: it seems to me that the
1576 * scan_start_offset test should be sufficient, but
1577 * experimentally that is not the case. --NS
1578 * 2011-11-28 */
1579 (boxedp ?
1580 page_boxed_p(next_page) :
1581 page_allocated_no_region_p(next_page)) &&
1582 page_table[next_page].large_object &&
1583 (page_table[next_page].scan_start_offset ==
1584 npage_bytes(next_page - first_page))) {
1585 /* Checks out OK, free the page. Don't need to both zeroing
1586 * pages as this should have been done before shrinking the
1587 * object. These pages shouldn't be write-protected, even if
1588 * boxed they should be zero filled. */
1589 gc_assert(page_table[next_page].write_protected == 0);
1591 old_bytes_used = page_table[next_page].bytes_used;
1592 page_table[next_page].allocated = FREE_PAGE_FLAG;
1593 page_table[next_page].bytes_used = 0;
1594 bytes_freed += old_bytes_used;
1595 next_page++;
1598 if ((bytes_freed > 0) && gencgc_verbose) {
1599 FSHOW((stderr,
1600 "/general_copy_large_object bytes_freed=%"OS_VM_SIZE_FMT"\n",
1601 bytes_freed));
1604 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES
1605 + bytes_freed;
1606 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1607 bytes_allocated -= bytes_freed;
1609 /* Add the region to the new_areas if requested. */
1610 if (boxedp)
1611 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1613 return(object);
1615 } else {
1616 /* Get tag of object. */
1617 tag = lowtag_of(object);
1619 /* Allocate space. */
1620 new = gc_general_alloc(nwords*N_WORD_BYTES,
1621 (boxedp ? BOXED_PAGE_FLAG : UNBOXED_PAGE_FLAG),
1622 ALLOC_QUICK);
1624 /* Copy the object. */
1625 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1627 /* Return Lisp pointer of new object. */
1628 return ((lispobj) new) | tag;
1632 lispobj
1633 copy_large_object(lispobj object, sword_t nwords)
1635 return general_copy_large_object(object, nwords, 1);
1638 lispobj
1639 copy_large_unboxed_object(lispobj object, sword_t nwords)
1641 return general_copy_large_object(object, nwords, 0);
1644 /* to copy unboxed objects */
1645 lispobj
1646 copy_unboxed_object(lispobj object, sword_t nwords)
1648 return gc_general_copy_object(object, nwords, UNBOXED_PAGE_FLAG);
1653 * code and code-related objects
1656 static lispobj trans_fun_header(lispobj object);
1657 static lispobj trans_boxed(lispobj object);
1660 /* Scan a x86 compiled code object, looking for possible fixups that
1661 * have been missed after a move.
1663 * Two types of fixups are needed:
1664 * 1. Absolute fixups to within the code object.
1665 * 2. Relative fixups to outside the code object.
1667 * Currently only absolute fixups to the constant vector, or to the
1668 * code area are checked. */
1669 #ifdef LISP_FEATURE_X86
1670 void
1671 sniff_code_object(struct code *code, os_vm_size_t displacement)
1673 sword_t nheader_words, ncode_words, nwords;
1674 os_vm_address_t constants_start_addr = NULL, constants_end_addr, p;
1675 os_vm_address_t code_start_addr, code_end_addr;
1676 os_vm_address_t code_addr = (os_vm_address_t)code;
1677 int fixup_found = 0;
1679 if (!check_code_fixups)
1680 return;
1682 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1684 ncode_words = fixnum_word_value(code->code_size);
1685 nheader_words = HeaderValue(*(lispobj *)code);
1686 nwords = ncode_words + nheader_words;
1688 constants_start_addr = code_addr + 5*N_WORD_BYTES;
1689 constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1690 code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1691 code_end_addr = code_addr + nwords*N_WORD_BYTES;
1693 /* Work through the unboxed code. */
1694 for (p = code_start_addr; p < code_end_addr; p++) {
1695 void *data = *(void **)p;
1696 unsigned d1 = *((unsigned char *)p - 1);
1697 unsigned d2 = *((unsigned char *)p - 2);
1698 unsigned d3 = *((unsigned char *)p - 3);
1699 unsigned d4 = *((unsigned char *)p - 4);
1700 #if QSHOW
1701 unsigned d5 = *((unsigned char *)p - 5);
1702 unsigned d6 = *((unsigned char *)p - 6);
1703 #endif
1705 /* Check for code references. */
1706 /* Check for a 32 bit word that looks like an absolute
1707 reference to within the code adea of the code object. */
1708 if ((data >= (void*)(code_start_addr-displacement))
1709 && (data < (void*)(code_end_addr-displacement))) {
1710 /* function header */
1711 if ((d4 == 0x5e)
1712 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1713 (unsigned)code)) {
1714 /* Skip the function header */
1715 p += 6*4 - 4 - 1;
1716 continue;
1718 /* the case of PUSH imm32 */
1719 if (d1 == 0x68) {
1720 fixup_found = 1;
1721 FSHOW((stderr,
1722 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1723 p, d6, d5, d4, d3, d2, d1, data));
1724 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1726 /* the case of MOV [reg-8],imm32 */
1727 if ((d3 == 0xc7)
1728 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1729 || d2==0x45 || d2==0x46 || d2==0x47)
1730 && (d1 == 0xf8)) {
1731 fixup_found = 1;
1732 FSHOW((stderr,
1733 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1734 p, d6, d5, d4, d3, d2, d1, data));
1735 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1737 /* the case of LEA reg,[disp32] */
1738 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1739 fixup_found = 1;
1740 FSHOW((stderr,
1741 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1742 p, d6, d5, d4, d3, d2, d1, data));
1743 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1747 /* Check for constant references. */
1748 /* Check for a 32 bit word that looks like an absolute
1749 reference to within the constant vector. Constant references
1750 will be aligned. */
1751 if ((data >= (void*)(constants_start_addr-displacement))
1752 && (data < (void*)(constants_end_addr-displacement))
1753 && (((unsigned)data & 0x3) == 0)) {
1754 /* Mov eax,m32 */
1755 if (d1 == 0xa1) {
1756 fixup_found = 1;
1757 FSHOW((stderr,
1758 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1759 p, d6, d5, d4, d3, d2, d1, data));
1760 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1763 /* the case of MOV m32,EAX */
1764 if (d1 == 0xa3) {
1765 fixup_found = 1;
1766 FSHOW((stderr,
1767 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1768 p, d6, d5, d4, d3, d2, d1, data));
1769 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1772 /* the case of CMP m32,imm32 */
1773 if ((d1 == 0x3d) && (d2 == 0x81)) {
1774 fixup_found = 1;
1775 FSHOW((stderr,
1776 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1777 p, d6, d5, d4, d3, d2, d1, data));
1778 /* XX Check this */
1779 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1782 /* Check for a mod=00, r/m=101 byte. */
1783 if ((d1 & 0xc7) == 5) {
1784 /* Cmp m32,reg */
1785 if (d2 == 0x39) {
1786 fixup_found = 1;
1787 FSHOW((stderr,
1788 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1789 p, d6, d5, d4, d3, d2, d1, data));
1790 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1792 /* the case of CMP reg32,m32 */
1793 if (d2 == 0x3b) {
1794 fixup_found = 1;
1795 FSHOW((stderr,
1796 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1797 p, d6, d5, d4, d3, d2, d1, data));
1798 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1800 /* the case of MOV m32,reg32 */
1801 if (d2 == 0x89) {
1802 fixup_found = 1;
1803 FSHOW((stderr,
1804 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1805 p, d6, d5, d4, d3, d2, d1, data));
1806 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1808 /* the case of MOV reg32,m32 */
1809 if (d2 == 0x8b) {
1810 fixup_found = 1;
1811 FSHOW((stderr,
1812 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1813 p, d6, d5, d4, d3, d2, d1, data));
1814 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1816 /* the case of LEA reg32,m32 */
1817 if (d2 == 0x8d) {
1818 fixup_found = 1;
1819 FSHOW((stderr,
1820 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1821 p, d6, d5, d4, d3, d2, d1, data));
1822 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1828 /* If anything was found, print some information on the code
1829 * object. */
1830 if (fixup_found) {
1831 FSHOW((stderr,
1832 "/compiled code object at %x: header words = %d, code words = %d\n",
1833 code, nheader_words, ncode_words));
1834 FSHOW((stderr,
1835 "/const start = %x, end = %x\n",
1836 constants_start_addr, constants_end_addr));
1837 FSHOW((stderr,
1838 "/code start = %x, end = %x\n",
1839 code_start_addr, code_end_addr));
1842 #endif
1844 #ifdef LISP_FEATURE_X86
1845 void
1846 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1848 sword_t nheader_words, ncode_words, nwords;
1849 os_vm_address_t constants_start_addr, constants_end_addr;
1850 os_vm_address_t code_start_addr, code_end_addr;
1851 os_vm_address_t code_addr = (os_vm_address_t)new_code;
1852 os_vm_address_t old_addr = (os_vm_address_t)old_code;
1853 os_vm_size_t displacement = code_addr - old_addr;
1854 lispobj fixups = NIL;
1855 struct vector *fixups_vector;
1857 ncode_words = fixnum_word_value(new_code->code_size);
1858 nheader_words = HeaderValue(*(lispobj *)new_code);
1859 nwords = ncode_words + nheader_words;
1860 /* FSHOW((stderr,
1861 "/compiled code object at %x: header words = %d, code words = %d\n",
1862 new_code, nheader_words, ncode_words)); */
1863 constants_start_addr = code_addr + 5*N_WORD_BYTES;
1864 constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1865 code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1866 code_end_addr = code_addr + nwords*N_WORD_BYTES;
1868 FSHOW((stderr,
1869 "/const start = %x, end = %x\n",
1870 constants_start_addr,constants_end_addr));
1871 FSHOW((stderr,
1872 "/code start = %x; end = %x\n",
1873 code_start_addr,code_end_addr));
1876 /* The first constant should be a pointer to the fixups for this
1877 code objects. Check. */
1878 fixups = new_code->constants[0];
1880 /* It will be 0 or the unbound-marker if there are no fixups (as
1881 * will be the case if the code object has been purified, for
1882 * example) and will be an other pointer if it is valid. */
1883 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1884 !is_lisp_pointer(fixups)) {
1885 /* Check for possible errors. */
1886 if (check_code_fixups)
1887 sniff_code_object(new_code, displacement);
1889 return;
1892 fixups_vector = (struct vector *)native_pointer(fixups);
1894 /* Could be pointing to a forwarding pointer. */
1895 /* FIXME is this always in from_space? if so, could replace this code with
1896 * forwarding_pointer_p/forwarding_pointer_value */
1897 if (is_lisp_pointer(fixups) &&
1898 (find_page_index((void*)fixups_vector) != -1) &&
1899 (fixups_vector->header == 0x01)) {
1900 /* If so, then follow it. */
1901 /*SHOW("following pointer to a forwarding pointer");*/
1902 fixups_vector =
1903 (struct vector *)native_pointer((lispobj)fixups_vector->length);
1906 /*SHOW("got fixups");*/
1908 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1909 /* Got the fixups for the code block. Now work through the vector,
1910 and apply a fixup at each address. */
1911 sword_t length = fixnum_value(fixups_vector->length);
1912 sword_t i;
1913 for (i = 0; i < length; i++) {
1914 long offset = fixups_vector->data[i];
1915 /* Now check the current value of offset. */
1916 os_vm_address_t old_value = *(os_vm_address_t *)(code_start_addr + offset);
1918 /* If it's within the old_code object then it must be an
1919 * absolute fixup (relative ones are not saved) */
1920 if ((old_value >= old_addr)
1921 && (old_value < (old_addr + nwords*N_WORD_BYTES)))
1922 /* So add the dispacement. */
1923 *(os_vm_address_t *)(code_start_addr + offset) =
1924 old_value + displacement;
1925 else
1926 /* It is outside the old code object so it must be a
1927 * relative fixup (absolute fixups are not saved). So
1928 * subtract the displacement. */
1929 *(os_vm_address_t *)(code_start_addr + offset) =
1930 old_value - displacement;
1932 } else {
1933 /* This used to just print a note to stderr, but a bogus fixup seems to
1934 * indicate real heap corruption, so a hard hailure is in order. */
1935 lose("fixup vector %p has a bad widetag: %d\n",
1936 fixups_vector, widetag_of(fixups_vector->header));
1939 /* Check for possible errors. */
1940 if (check_code_fixups) {
1941 sniff_code_object(new_code,displacement);
1944 #endif
1946 static lispobj
1947 trans_boxed_large(lispobj object)
1949 lispobj header;
1950 uword_t length;
1952 gc_assert(is_lisp_pointer(object));
1954 header = *((lispobj *) native_pointer(object));
1955 length = HeaderValue(header) + 1;
1956 length = CEILING(length, 2);
1958 return copy_large_object(object, length);
1961 /* Doesn't seem to be used, delete it after the grace period. */
1962 #if 0
1963 static lispobj
1964 trans_unboxed_large(lispobj object)
1966 lispobj header;
1967 uword_t length;
1969 gc_assert(is_lisp_pointer(object));
1971 header = *((lispobj *) native_pointer(object));
1972 length = HeaderValue(header) + 1;
1973 length = CEILING(length, 2);
1975 return copy_large_unboxed_object(object, length);
1977 #endif
1980 * weak pointers
1983 /* XX This is a hack adapted from cgc.c. These don't work too
1984 * efficiently with the gencgc as a list of the weak pointers is
1985 * maintained within the objects which causes writes to the pages. A
1986 * limited attempt is made to avoid unnecessary writes, but this needs
1987 * a re-think. */
1988 #define WEAK_POINTER_NWORDS \
1989 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
1991 static sword_t
1992 scav_weak_pointer(lispobj *where, lispobj object)
1994 /* Since we overwrite the 'next' field, we have to make
1995 * sure not to do so for pointers already in the list.
1996 * Instead of searching the list of weak_pointers each
1997 * time, we ensure that next is always NULL when the weak
1998 * pointer isn't in the list, and not NULL otherwise.
1999 * Since we can't use NULL to denote end of list, we
2000 * use a pointer back to the same weak_pointer.
2002 struct weak_pointer * wp = (struct weak_pointer*)where;
2004 if (NULL == wp->next) {
2005 wp->next = weak_pointers;
2006 weak_pointers = wp;
2007 if (NULL == wp->next)
2008 wp->next = wp;
2011 /* Do not let GC scavenge the value slot of the weak pointer.
2012 * (That is why it is a weak pointer.) */
2014 return WEAK_POINTER_NWORDS;
2018 lispobj *
2019 search_read_only_space(void *pointer)
2021 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2022 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2023 if ((pointer < (void *)start) || (pointer >= (void *)end))
2024 return NULL;
2025 return (gc_search_space(start,
2026 (((lispobj *)pointer)+2)-start,
2027 (lispobj *) pointer));
2030 lispobj *
2031 search_static_space(void *pointer)
2033 lispobj *start = (lispobj *)STATIC_SPACE_START;
2034 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2035 if ((pointer < (void *)start) || (pointer >= (void *)end))
2036 return NULL;
2037 return (gc_search_space(start,
2038 (((lispobj *)pointer)+2)-start,
2039 (lispobj *) pointer));
2042 /* a faster version for searching the dynamic space. This will work even
2043 * if the object is in a current allocation region. */
2044 lispobj *
2045 search_dynamic_space(void *pointer)
2047 page_index_t page_index = find_page_index(pointer);
2048 lispobj *start;
2050 /* The address may be invalid, so do some checks. */
2051 if ((page_index == -1) || page_free_p(page_index))
2052 return NULL;
2053 start = (lispobj *)page_scan_start(page_index);
2054 return (gc_search_space(start,
2055 (((lispobj *)pointer)+2)-start,
2056 (lispobj *)pointer));
2059 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2061 /* Is there any possibility that pointer is a valid Lisp object
2062 * reference, and/or something else (e.g. subroutine call return
2063 * address) which should prevent us from moving the referred-to thing?
2064 * This is called from preserve_pointers() */
2065 static int
2066 possibly_valid_dynamic_space_pointer_s(lispobj *pointer,
2067 page_index_t addr_page_index,
2068 lispobj **store_here)
2070 lispobj *start_addr;
2072 /* Find the object start address. */
2073 start_addr = search_dynamic_space(pointer);
2075 if (start_addr == NULL) {
2076 return 0;
2078 if (store_here) {
2079 *store_here = start_addr;
2082 /* If the containing object is a code object, presume that the
2083 * pointer is valid, simply because it could be an unboxed return
2084 * address. */
2085 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG)
2086 return 1;
2088 /* Large object pages only contain ONE object, and it will never
2089 * be a CONS. However, arrays and bignums can be allocated larger
2090 * than necessary and then shrunk to fit, leaving what look like
2091 * (0 . 0) CONSes at the end. These appear valid to
2092 * looks_like_valid_lisp_pointer_p(), so pick them off here. */
2093 if (page_table[addr_page_index].large_object &&
2094 (lowtag_of((lispobj)pointer) == LIST_POINTER_LOWTAG))
2095 return 0;
2097 return looks_like_valid_lisp_pointer_p((lispobj)pointer, start_addr);
2100 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2102 static int
2103 valid_conservative_root_p(void *addr, page_index_t addr_page_index,
2104 lispobj **begin_ptr)
2106 #ifdef GENCGC_IS_PRECISE
2107 /* If we're in precise gencgc (non-x86oid as of this writing) then
2108 * we are only called on valid object pointers in the first place,
2109 * so we just have to do a bounds-check against the heap, a
2110 * generation check, and the already-pinned check. */
2111 if ((addr_page_index == -1)
2112 || (page_table[addr_page_index].gen != from_space)
2113 || (page_table[addr_page_index].dont_move != 0))
2114 return 0;
2115 #else
2116 /* quick check 1: Address is quite likely to have been invalid. */
2117 if ((addr_page_index == -1)
2118 || page_free_p(addr_page_index)
2119 || (page_table[addr_page_index].bytes_used == 0)
2120 || (page_table[addr_page_index].gen != from_space))
2121 return 0;
2122 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2124 /* quick check 2: Check the offset within the page.
2127 if (((uword_t)addr & (GENCGC_CARD_BYTES - 1)) >
2128 page_table[addr_page_index].bytes_used)
2129 return 0;
2131 /* Filter out anything which can't be a pointer to a Lisp object
2132 * (or, as a special case which also requires dont_move, a return
2133 * address referring to something in a CodeObject). This is
2134 * expensive but important, since it vastly reduces the
2135 * probability that random garbage will be bogusly interpreted as
2136 * a pointer which prevents a page from moving. */
2137 if (!possibly_valid_dynamic_space_pointer_s(addr, addr_page_index,
2138 begin_ptr))
2139 return 0;
2140 #endif
2142 return 1;
2145 boolean
2146 in_dontmove_dwordindex_p(page_index_t page_index, int dword_in_page)
2148 if (page_table[page_index].dontmove_dwords) {
2149 return page_table[page_index].dontmove_dwords[dword_in_page];
2150 } else {
2151 return 0;
2154 boolean
2155 in_dontmove_nativeptr_p(page_index_t page_index, lispobj *native_ptr)
2157 if (page_table[page_index].dontmove_dwords) {
2158 lispobj *begin = page_address(page_index);
2159 int dword_in_page = (native_ptr - begin) / 2;
2160 return in_dontmove_dwordindex_p(page_index, dword_in_page);
2161 } else {
2162 return 0;
2166 /* Adjust large bignum and vector objects. This will adjust the
2167 * allocated region if the size has shrunk, and move unboxed objects
2168 * into unboxed pages. The pages are not promoted here, and the
2169 * promoted region is not added to the new_regions; this is really
2170 * only designed to be called from preserve_pointer(). Shouldn't fail
2171 * if this is missed, just may delay the moving of objects to unboxed
2172 * pages, and the freeing of pages. */
2173 static void
2174 maybe_adjust_large_object(lispobj *where)
2176 page_index_t first_page;
2177 page_index_t next_page;
2178 sword_t nwords;
2180 uword_t remaining_bytes;
2181 uword_t bytes_freed;
2182 uword_t old_bytes_used;
2184 int boxed;
2186 /* Check whether it's a vector or bignum object. */
2187 switch (widetag_of(where[0])) {
2188 case SIMPLE_VECTOR_WIDETAG:
2189 boxed = BOXED_PAGE_FLAG;
2190 break;
2191 case BIGNUM_WIDETAG:
2192 case SIMPLE_BASE_STRING_WIDETAG:
2193 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2194 case SIMPLE_CHARACTER_STRING_WIDETAG:
2195 #endif
2196 case SIMPLE_BIT_VECTOR_WIDETAG:
2197 case SIMPLE_ARRAY_NIL_WIDETAG:
2198 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2199 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2200 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2201 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2202 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2203 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2205 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
2207 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2208 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2209 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2210 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2211 #endif
2212 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2213 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2214 #endif
2215 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2216 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2217 #endif
2218 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2219 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2220 #endif
2222 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
2224 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2225 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2226 #endif
2227 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2228 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2229 #endif
2230 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2231 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2232 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2233 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2234 #endif
2235 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2236 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2237 #endif
2238 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2239 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2240 #endif
2241 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2242 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2243 #endif
2244 boxed = UNBOXED_PAGE_FLAG;
2245 break;
2246 default:
2247 return;
2250 /* Find its current size. */
2251 nwords = (sizetab[widetag_of(where[0])])(where);
2253 first_page = find_page_index((void *)where);
2254 gc_assert(first_page >= 0);
2256 /* Note: Any page write-protection must be removed, else a later
2257 * scavenge_newspace may incorrectly not scavenge these pages.
2258 * This would not be necessary if they are added to the new areas,
2259 * but lets do it for them all (they'll probably be written
2260 * anyway?). */
2262 gc_assert(page_starts_contiguous_block_p(first_page));
2264 next_page = first_page;
2265 remaining_bytes = nwords*N_WORD_BYTES;
2266 while (remaining_bytes > GENCGC_CARD_BYTES) {
2267 gc_assert(page_table[next_page].gen == from_space);
2268 gc_assert(page_allocated_no_region_p(next_page));
2269 gc_assert(page_table[next_page].large_object);
2270 gc_assert(page_table[next_page].scan_start_offset ==
2271 npage_bytes(next_page-first_page));
2272 gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
2274 page_table[next_page].allocated = boxed;
2276 /* Shouldn't be write-protected at this stage. Essential that the
2277 * pages aren't. */
2278 gc_assert(!page_table[next_page].write_protected);
2279 remaining_bytes -= GENCGC_CARD_BYTES;
2280 next_page++;
2283 /* Now only one page remains, but the object may have shrunk so
2284 * there may be more unused pages which will be freed. */
2286 /* Object may have shrunk but shouldn't have grown - check. */
2287 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2289 page_table[next_page].allocated = boxed;
2290 gc_assert(page_table[next_page].allocated ==
2291 page_table[first_page].allocated);
2293 /* Adjust the bytes_used. */
2294 old_bytes_used = page_table[next_page].bytes_used;
2295 page_table[next_page].bytes_used = remaining_bytes;
2297 bytes_freed = old_bytes_used - remaining_bytes;
2299 /* Free any remaining pages; needs care. */
2300 next_page++;
2301 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
2302 (page_table[next_page].gen == from_space) &&
2303 page_allocated_no_region_p(next_page) &&
2304 page_table[next_page].large_object &&
2305 (page_table[next_page].scan_start_offset ==
2306 npage_bytes(next_page - first_page))) {
2307 /* It checks out OK, free the page. We don't need to both zeroing
2308 * pages as this should have been done before shrinking the
2309 * object. These pages shouldn't be write protected as they
2310 * should be zero filled. */
2311 gc_assert(page_table[next_page].write_protected == 0);
2313 old_bytes_used = page_table[next_page].bytes_used;
2314 page_table[next_page].allocated = FREE_PAGE_FLAG;
2315 page_table[next_page].bytes_used = 0;
2316 bytes_freed += old_bytes_used;
2317 next_page++;
2320 if ((bytes_freed > 0) && gencgc_verbose) {
2321 FSHOW((stderr,
2322 "/maybe_adjust_large_object() freed %d\n",
2323 bytes_freed));
2326 generations[from_space].bytes_allocated -= bytes_freed;
2327 bytes_allocated -= bytes_freed;
2329 return;
2333 * Why is this restricted to protected objects only?
2334 * Because the rest of the page has been scavenged already,
2335 * and since that leaves forwarding pointers in the unprotected
2336 * areas you cannot scavenge it again until those are gone.
2338 void
2339 scavenge_pages_with_conservative_pointers_to_them_protected_objects_only()
2341 page_index_t i;
2342 for (i = 0; i < last_free_page; i++) {
2343 if (!page_table[i].dontmove_dwords) {
2344 continue;
2346 lispobj *begin = page_address(i);
2347 unsigned int dword;
2349 lispobj *scavme_begin = NULL;
2350 for (dword = 0; dword < GENCGC_CARD_BYTES / N_WORD_BYTES / 2; dword++) {
2351 if (in_dontmove_dwordindex_p(i, dword)) {
2352 if (!scavme_begin) {
2353 scavme_begin = begin + dword * 2;
2355 } else {
2356 // contiguous area stopped
2357 if (scavme_begin) {
2358 scavenge(scavme_begin, (begin + dword * 2) - scavme_begin);
2360 scavme_begin = NULL;
2363 if (scavme_begin) {
2364 scavenge(scavme_begin, (begin + dword * 2) - scavme_begin);
2369 int verbosefixes = 0;
2370 void
2371 do_the_wipe()
2373 page_index_t i;
2374 lispobj *begin;
2375 int words_wiped = 0;
2376 int lisp_pointers_wiped = 0;
2377 int pages_considered = 0;
2378 int n_pages_cannot_wipe = 0;
2380 for (i = 0; i < last_free_page; i++) {
2381 if (!page_table[i].dont_move) {
2382 continue;
2384 pages_considered++;
2385 if (!page_table[i].dontmove_dwords) {
2386 n_pages_cannot_wipe++;
2387 continue;
2389 begin = page_address(i);
2390 unsigned int dword;
2391 for (dword = 0; dword < GENCGC_CARD_BYTES / N_WORD_BYTES / 2; dword++) {
2392 if (!in_dontmove_dwordindex_p(i, dword)) {
2393 if (is_lisp_pointer(*(begin + dword * 2))) {
2394 lisp_pointers_wiped++;
2396 if (is_lisp_pointer(*(begin + dword * 2 + 1))) {
2397 lisp_pointers_wiped++;
2399 *(begin + dword * 2) = wipe_with;
2400 *(begin + dword * 2 + 1) = wipe_with;
2401 words_wiped += 2;
2404 free(page_table[i].dontmove_dwords);
2405 page_table[i].dontmove_dwords = NULL;
2407 // move the page to newspace
2408 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2409 generations[page_table[i].gen].bytes_allocated -= page_table[i].bytes_used;
2410 page_table[i].gen = new_space;
2412 if ((verbosefixes >= 1 && lisp_pointers_wiped > 0) || verbosefixes >= 2) {
2413 fprintf(stderr, "Cra25a: wiped %d words (%d lisp_pointers) in %d pages, cannot wipe %d pages \n"
2414 , words_wiped, lisp_pointers_wiped, pages_considered, n_pages_cannot_wipe);
2418 void
2419 set_page_consi_bit(page_index_t pageindex, lispobj *mark_which_pointer)
2421 struct page *page = &page_table[pageindex];
2423 if (!do_wipe_p)
2424 return;
2426 gc_assert(mark_which_pointer);
2427 if (page->dontmove_dwords == NULL) {
2428 const int n_dwords_in_card = GENCGC_CARD_BYTES / N_WORD_BYTES / 2;
2429 const int malloc_size = sizeof(in_use_marker_t) * n_dwords_in_card;
2430 page->dontmove_dwords = malloc(malloc_size);
2431 gc_assert(page->dontmove_dwords);
2432 bzero(page->dontmove_dwords, malloc_size);
2435 int size = (sizetab[widetag_of(mark_which_pointer[0])])(mark_which_pointer);
2436 if (size == 1 &&
2437 (fixnump(*mark_which_pointer) ||
2438 is_lisp_pointer(*mark_which_pointer) ||
2439 lowtag_of(*mark_which_pointer) == 9 ||
2440 lowtag_of(*mark_which_pointer) == 2)) {
2441 size = 2;
2443 // print additional debug info for now.
2444 if (size % 2 != 0) {
2445 fprintf(stderr, "WIPE ERROR !dword, size %d, lowtag %d, world 0x%lld\n",
2446 size,
2447 lowtag_of(*mark_which_pointer),
2448 (long long)*mark_which_pointer);
2450 gc_assert(size % 2 == 0);
2451 lispobj *begin = page_address(pageindex);
2452 int begin_dword = (mark_which_pointer - begin) / 2;
2453 int dword;
2454 for (dword = begin_dword; dword < begin_dword + size / 2; dword++) {
2455 page->dontmove_dwords[dword] = 1;
2459 /* Take a possible pointer to a Lisp object and mark its page in the
2460 * page_table so that it will not be relocated during a GC.
2462 * This involves locating the page it points to, then backing up to
2463 * the start of its region, then marking all pages dont_move from there
2464 * up to the first page that's not full or has a different generation
2466 * It is assumed that all the page static flags have been cleared at
2467 * the start of a GC.
2469 * It is also assumed that the current gc_alloc() region has been
2470 * flushed and the tables updated. */
2472 static void
2473 preserve_pointer(void *addr)
2475 page_index_t addr_page_index = find_page_index(addr);
2476 page_index_t first_page;
2477 page_index_t i;
2478 unsigned int region_allocation;
2479 lispobj *begin_ptr = NULL;
2481 if (!valid_conservative_root_p(addr, addr_page_index, &begin_ptr))
2482 return;
2484 /* (Now that we know that addr_page_index is in range, it's
2485 * safe to index into page_table[] with it.) */
2486 region_allocation = page_table[addr_page_index].allocated;
2488 /* Find the beginning of the region. Note that there may be
2489 * objects in the region preceding the one that we were passed a
2490 * pointer to: if this is the case, we will write-protect all the
2491 * previous objects' pages too. */
2493 #if 0
2494 /* I think this'd work just as well, but without the assertions.
2495 * -dan 2004.01.01 */
2496 first_page = find_page_index(page_scan_start(addr_page_index))
2497 #else
2498 first_page = addr_page_index;
2499 while (!page_starts_contiguous_block_p(first_page)) {
2500 --first_page;
2501 /* Do some checks. */
2502 gc_assert(page_table[first_page].bytes_used == GENCGC_CARD_BYTES);
2503 gc_assert(page_table[first_page].gen == from_space);
2504 gc_assert(page_table[first_page].allocated == region_allocation);
2506 #endif
2508 /* Adjust any large objects before promotion as they won't be
2509 * copied after promotion. */
2510 if (page_table[first_page].large_object) {
2511 maybe_adjust_large_object(page_address(first_page));
2512 /* It may have moved to unboxed pages. */
2513 region_allocation = page_table[first_page].allocated;
2516 /* Now work forward until the end of this contiguous area is found,
2517 * marking all pages as dont_move. */
2518 for (i = first_page; ;i++) {
2519 gc_assert(page_table[i].allocated == region_allocation);
2521 /* Mark the page static. */
2522 page_table[i].dont_move = 1;
2524 /* It is essential that the pages are not write protected as
2525 * they may have pointers into the old-space which need
2526 * scavenging. They shouldn't be write protected at this
2527 * stage. */
2528 gc_assert(!page_table[i].write_protected);
2530 /* Check whether this is the last page in this contiguous block.. */
2531 if (page_ends_contiguous_block_p(i, from_space))
2532 break;
2535 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2536 /* Do not do this for multi-page objects. Those pages do not need
2537 * object wipeout anyway.
2539 if (i == first_page) {
2540 /* We need the pointer to the beginning of the object
2541 * We might have gotten it above but maybe not, so make sure
2543 if (begin_ptr == NULL) {
2544 possibly_valid_dynamic_space_pointer_s(addr, first_page,
2545 &begin_ptr);
2547 set_page_consi_bit(first_page, begin_ptr);
2549 #endif
2551 /* Check that the page is now static. */
2552 gc_assert(page_table[addr_page_index].dont_move != 0);
2555 /* If the given page is not write-protected, then scan it for pointers
2556 * to younger generations or the top temp. generation, if no
2557 * suspicious pointers are found then the page is write-protected.
2559 * Care is taken to check for pointers to the current gc_alloc()
2560 * region if it is a younger generation or the temp. generation. This
2561 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2562 * the gc_alloc_generation does not need to be checked as this is only
2563 * called from scavenge_generation() when the gc_alloc generation is
2564 * younger, so it just checks if there is a pointer to the current
2565 * region.
2567 * We return 1 if the page was write-protected, else 0. */
2568 static int
2569 update_page_write_prot(page_index_t page)
2571 generation_index_t gen = page_table[page].gen;
2572 sword_t j;
2573 int wp_it = 1;
2574 void **page_addr = (void **)page_address(page);
2575 sword_t num_words = page_table[page].bytes_used / N_WORD_BYTES;
2577 /* Shouldn't be a free page. */
2578 gc_assert(page_allocated_p(page));
2579 gc_assert(page_table[page].bytes_used != 0);
2581 /* Skip if it's already write-protected, pinned, or unboxed */
2582 if (page_table[page].write_protected
2583 /* FIXME: What's the reason for not write-protecting pinned pages? */
2584 || page_table[page].dont_move
2585 || page_unboxed_p(page))
2586 return (0);
2588 /* Scan the page for pointers to younger generations or the
2589 * top temp. generation. */
2591 for (j = 0; j < num_words; j++) {
2592 void *ptr = *(page_addr+j);
2593 page_index_t index = find_page_index(ptr);
2595 /* Check that it's in the dynamic space */
2596 if (index != -1)
2597 if (/* Does it point to a younger or the temp. generation? */
2598 (page_allocated_p(index)
2599 && (page_table[index].bytes_used != 0)
2600 && ((page_table[index].gen < gen)
2601 || (page_table[index].gen == SCRATCH_GENERATION)))
2603 /* Or does it point within a current gc_alloc() region? */
2604 || ((boxed_region.start_addr <= ptr)
2605 && (ptr <= boxed_region.free_pointer))
2606 || ((unboxed_region.start_addr <= ptr)
2607 && (ptr <= unboxed_region.free_pointer))) {
2608 wp_it = 0;
2609 break;
2613 if (wp_it == 1) {
2614 /* Write-protect the page. */
2615 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2617 os_protect((void *)page_addr,
2618 GENCGC_CARD_BYTES,
2619 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2621 /* Note the page as protected in the page tables. */
2622 page_table[page].write_protected = 1;
2625 return (wp_it);
2628 /* Scavenge all generations from FROM to TO, inclusive, except for
2629 * new_space which needs special handling, as new objects may be
2630 * added which are not checked here - use scavenge_newspace generation.
2632 * Write-protected pages should not have any pointers to the
2633 * from_space so do need scavenging; thus write-protected pages are
2634 * not always scavenged. There is some code to check that these pages
2635 * are not written; but to check fully the write-protected pages need
2636 * to be scavenged by disabling the code to skip them.
2638 * Under the current scheme when a generation is GCed the younger
2639 * generations will be empty. So, when a generation is being GCed it
2640 * is only necessary to scavenge the older generations for pointers
2641 * not the younger. So a page that does not have pointers to younger
2642 * generations does not need to be scavenged.
2644 * The write-protection can be used to note pages that don't have
2645 * pointers to younger pages. But pages can be written without having
2646 * pointers to younger generations. After the pages are scavenged here
2647 * they can be scanned for pointers to younger generations and if
2648 * there are none the page can be write-protected.
2650 * One complication is when the newspace is the top temp. generation.
2652 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2653 * that none were written, which they shouldn't be as they should have
2654 * no pointers to younger generations. This breaks down for weak
2655 * pointers as the objects contain a link to the next and are written
2656 * if a weak pointer is scavenged. Still it's a useful check. */
2657 static void
2658 scavenge_generations(generation_index_t from, generation_index_t to)
2660 page_index_t i;
2661 page_index_t num_wp = 0;
2663 #define SC_GEN_CK 0
2664 #if SC_GEN_CK
2665 /* Clear the write_protected_cleared flags on all pages. */
2666 for (i = 0; i < page_table_pages; i++)
2667 page_table[i].write_protected_cleared = 0;
2668 #endif
2670 for (i = 0; i < last_free_page; i++) {
2671 generation_index_t generation = page_table[i].gen;
2672 if (page_boxed_p(i)
2673 && (page_table[i].bytes_used != 0)
2674 && (generation != new_space)
2675 && (generation >= from)
2676 && (generation <= to)) {
2677 page_index_t last_page,j;
2678 int write_protected=1;
2680 /* This should be the start of a region */
2681 gc_assert(page_starts_contiguous_block_p(i));
2683 /* Now work forward until the end of the region */
2684 for (last_page = i; ; last_page++) {
2685 write_protected =
2686 write_protected && page_table[last_page].write_protected;
2687 if (page_ends_contiguous_block_p(last_page, generation))
2688 break;
2690 if (!write_protected) {
2691 scavenge(page_address(i),
2692 ((uword_t)(page_table[last_page].bytes_used
2693 + npage_bytes(last_page-i)))
2694 /N_WORD_BYTES);
2696 /* Now scan the pages and write protect those that
2697 * don't have pointers to younger generations. */
2698 if (enable_page_protection) {
2699 for (j = i; j <= last_page; j++) {
2700 num_wp += update_page_write_prot(j);
2703 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2704 FSHOW((stderr,
2705 "/write protected %d pages within generation %d\n",
2706 num_wp, generation));
2709 i = last_page;
2713 #if SC_GEN_CK
2714 /* Check that none of the write_protected pages in this generation
2715 * have been written to. */
2716 for (i = 0; i < page_table_pages; i++) {
2717 if (page_allocated_p(i)
2718 && (page_table[i].bytes_used != 0)
2719 && (page_table[i].gen == generation)
2720 && (page_table[i].write_protected_cleared != 0)) {
2721 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2722 FSHOW((stderr,
2723 "/page bytes_used=%d scan_start_offset=%lu dont_move=%d\n",
2724 page_table[i].bytes_used,
2725 page_table[i].scan_start_offset,
2726 page_table[i].dont_move));
2727 lose("write to protected page %d in scavenge_generation()\n", i);
2730 #endif
2734 /* Scavenge a newspace generation. As it is scavenged new objects may
2735 * be allocated to it; these will also need to be scavenged. This
2736 * repeats until there are no more objects unscavenged in the
2737 * newspace generation.
2739 * To help improve the efficiency, areas written are recorded by
2740 * gc_alloc() and only these scavenged. Sometimes a little more will be
2741 * scavenged, but this causes no harm. An easy check is done that the
2742 * scavenged bytes equals the number allocated in the previous
2743 * scavenge.
2745 * Write-protected pages are not scanned except if they are marked
2746 * dont_move in which case they may have been promoted and still have
2747 * pointers to the from space.
2749 * Write-protected pages could potentially be written by alloc however
2750 * to avoid having to handle re-scavenging of write-protected pages
2751 * gc_alloc() does not write to write-protected pages.
2753 * New areas of objects allocated are recorded alternatively in the two
2754 * new_areas arrays below. */
2755 static struct new_area new_areas_1[NUM_NEW_AREAS];
2756 static struct new_area new_areas_2[NUM_NEW_AREAS];
2758 /* Do one full scan of the new space generation. This is not enough to
2759 * complete the job as new objects may be added to the generation in
2760 * the process which are not scavenged. */
2761 static void
2762 scavenge_newspace_generation_one_scan(generation_index_t generation)
2764 page_index_t i;
2766 FSHOW((stderr,
2767 "/starting one full scan of newspace generation %d\n",
2768 generation));
2769 for (i = 0; i < last_free_page; i++) {
2770 /* Note that this skips over open regions when it encounters them. */
2771 if (page_boxed_p(i)
2772 && (page_table[i].bytes_used != 0)
2773 && (page_table[i].gen == generation)
2774 && ((page_table[i].write_protected == 0)
2775 /* (This may be redundant as write_protected is now
2776 * cleared before promotion.) */
2777 || (page_table[i].dont_move == 1))) {
2778 page_index_t last_page;
2779 int all_wp=1;
2781 /* The scavenge will start at the scan_start_offset of
2782 * page i.
2784 * We need to find the full extent of this contiguous
2785 * block in case objects span pages.
2787 * Now work forward until the end of this contiguous area
2788 * is found. A small area is preferred as there is a
2789 * better chance of its pages being write-protected. */
2790 for (last_page = i; ;last_page++) {
2791 /* If all pages are write-protected and movable,
2792 * then no need to scavenge */
2793 all_wp=all_wp && page_table[last_page].write_protected &&
2794 !page_table[last_page].dont_move;
2796 /* Check whether this is the last page in this
2797 * contiguous block */
2798 if (page_ends_contiguous_block_p(last_page, generation))
2799 break;
2802 /* Do a limited check for write-protected pages. */
2803 if (!all_wp) {
2804 sword_t nwords = (((uword_t)
2805 (page_table[last_page].bytes_used
2806 + npage_bytes(last_page-i)
2807 + page_table[i].scan_start_offset))
2808 / N_WORD_BYTES);
2809 new_areas_ignore_page = last_page;
2811 scavenge(page_scan_start(i), nwords);
2814 i = last_page;
2817 FSHOW((stderr,
2818 "/done with one full scan of newspace generation %d\n",
2819 generation));
2822 /* Do a complete scavenge of the newspace generation. */
2823 static void
2824 scavenge_newspace_generation(generation_index_t generation)
2826 size_t i;
2828 /* the new_areas array currently being written to by gc_alloc() */
2829 struct new_area (*current_new_areas)[] = &new_areas_1;
2830 size_t current_new_areas_index;
2832 /* the new_areas created by the previous scavenge cycle */
2833 struct new_area (*previous_new_areas)[] = NULL;
2834 size_t previous_new_areas_index;
2836 /* Flush the current regions updating the tables. */
2837 gc_alloc_update_all_page_tables();
2839 /* Turn on the recording of new areas by gc_alloc(). */
2840 new_areas = current_new_areas;
2841 new_areas_index = 0;
2843 /* Don't need to record new areas that get scavenged anyway during
2844 * scavenge_newspace_generation_one_scan. */
2845 record_new_objects = 1;
2847 /* Start with a full scavenge. */
2848 scavenge_newspace_generation_one_scan(generation);
2850 /* Record all new areas now. */
2851 record_new_objects = 2;
2853 /* Give a chance to weak hash tables to make other objects live.
2854 * FIXME: The algorithm implemented here for weak hash table gcing
2855 * is O(W^2+N) as Bruno Haible warns in
2856 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
2857 * see "Implementation 2". */
2858 scav_weak_hash_tables();
2860 /* Flush the current regions updating the tables. */
2861 gc_alloc_update_all_page_tables();
2863 /* Grab new_areas_index. */
2864 current_new_areas_index = new_areas_index;
2866 /*FSHOW((stderr,
2867 "The first scan is finished; current_new_areas_index=%d.\n",
2868 current_new_areas_index));*/
2870 while (current_new_areas_index > 0) {
2871 /* Move the current to the previous new areas */
2872 previous_new_areas = current_new_areas;
2873 previous_new_areas_index = current_new_areas_index;
2875 /* Scavenge all the areas in previous new areas. Any new areas
2876 * allocated are saved in current_new_areas. */
2878 /* Allocate an array for current_new_areas; alternating between
2879 * new_areas_1 and 2 */
2880 if (previous_new_areas == &new_areas_1)
2881 current_new_areas = &new_areas_2;
2882 else
2883 current_new_areas = &new_areas_1;
2885 /* Set up for gc_alloc(). */
2886 new_areas = current_new_areas;
2887 new_areas_index = 0;
2889 /* Check whether previous_new_areas had overflowed. */
2890 if (previous_new_areas_index >= NUM_NEW_AREAS) {
2892 /* New areas of objects allocated have been lost so need to do a
2893 * full scan to be sure! If this becomes a problem try
2894 * increasing NUM_NEW_AREAS. */
2895 if (gencgc_verbose) {
2896 SHOW("new_areas overflow, doing full scavenge");
2899 /* Don't need to record new areas that get scavenged
2900 * anyway during scavenge_newspace_generation_one_scan. */
2901 record_new_objects = 1;
2903 scavenge_newspace_generation_one_scan(generation);
2905 /* Record all new areas now. */
2906 record_new_objects = 2;
2908 scav_weak_hash_tables();
2910 /* Flush the current regions updating the tables. */
2911 gc_alloc_update_all_page_tables();
2913 } else {
2915 /* Work through previous_new_areas. */
2916 for (i = 0; i < previous_new_areas_index; i++) {
2917 page_index_t page = (*previous_new_areas)[i].page;
2918 size_t offset = (*previous_new_areas)[i].offset;
2919 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
2920 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
2921 scavenge(page_address(page)+offset, size);
2924 scav_weak_hash_tables();
2926 /* Flush the current regions updating the tables. */
2927 gc_alloc_update_all_page_tables();
2930 current_new_areas_index = new_areas_index;
2932 /*FSHOW((stderr,
2933 "The re-scan has finished; current_new_areas_index=%d.\n",
2934 current_new_areas_index));*/
2937 /* Turn off recording of areas allocated by gc_alloc(). */
2938 record_new_objects = 0;
2940 #if SC_NS_GEN_CK
2942 page_index_t i;
2943 /* Check that none of the write_protected pages in this generation
2944 * have been written to. */
2945 for (i = 0; i < page_table_pages; i++) {
2946 if (page_allocated_p(i)
2947 && (page_table[i].bytes_used != 0)
2948 && (page_table[i].gen == generation)
2949 && (page_table[i].write_protected_cleared != 0)
2950 && (page_table[i].dont_move == 0)) {
2951 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
2952 i, generation, page_table[i].dont_move);
2956 #endif
2959 /* Un-write-protect all the pages in from_space. This is done at the
2960 * start of a GC else there may be many page faults while scavenging
2961 * the newspace (I've seen drive the system time to 99%). These pages
2962 * would need to be unprotected anyway before unmapping in
2963 * free_oldspace; not sure what effect this has on paging.. */
2964 static void
2965 unprotect_oldspace(void)
2967 page_index_t i;
2968 void *region_addr = 0;
2969 void *page_addr = 0;
2970 uword_t region_bytes = 0;
2972 for (i = 0; i < last_free_page; i++) {
2973 if (page_allocated_p(i)
2974 && (page_table[i].bytes_used != 0)
2975 && (page_table[i].gen == from_space)) {
2977 /* Remove any write-protection. We should be able to rely
2978 * on the write-protect flag to avoid redundant calls. */
2979 if (page_table[i].write_protected) {
2980 page_table[i].write_protected = 0;
2981 page_addr = page_address(i);
2982 if (!region_addr) {
2983 /* First region. */
2984 region_addr = page_addr;
2985 region_bytes = GENCGC_CARD_BYTES;
2986 } else if (region_addr + region_bytes == page_addr) {
2987 /* Region continue. */
2988 region_bytes += GENCGC_CARD_BYTES;
2989 } else {
2990 /* Unprotect previous region. */
2991 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2992 /* First page in new region. */
2993 region_addr = page_addr;
2994 region_bytes = GENCGC_CARD_BYTES;
2999 if (region_addr) {
3000 /* Unprotect last region. */
3001 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
3005 /* Work through all the pages and free any in from_space. This
3006 * assumes that all objects have been copied or promoted to an older
3007 * generation. Bytes_allocated and the generation bytes_allocated
3008 * counter are updated. The number of bytes freed is returned. */
3009 static uword_t
3010 free_oldspace(void)
3012 uword_t bytes_freed = 0;
3013 page_index_t first_page, last_page;
3015 first_page = 0;
3017 do {
3018 /* Find a first page for the next region of pages. */
3019 while ((first_page < last_free_page)
3020 && (page_free_p(first_page)
3021 || (page_table[first_page].bytes_used == 0)
3022 || (page_table[first_page].gen != from_space)))
3023 first_page++;
3025 if (first_page >= last_free_page)
3026 break;
3028 /* Find the last page of this region. */
3029 last_page = first_page;
3031 do {
3032 /* Free the page. */
3033 bytes_freed += page_table[last_page].bytes_used;
3034 generations[page_table[last_page].gen].bytes_allocated -=
3035 page_table[last_page].bytes_used;
3036 page_table[last_page].allocated = FREE_PAGE_FLAG;
3037 page_table[last_page].bytes_used = 0;
3038 /* Should already be unprotected by unprotect_oldspace(). */
3039 gc_assert(!page_table[last_page].write_protected);
3040 last_page++;
3042 while ((last_page < last_free_page)
3043 && page_allocated_p(last_page)
3044 && (page_table[last_page].bytes_used != 0)
3045 && (page_table[last_page].gen == from_space));
3047 #ifdef READ_PROTECT_FREE_PAGES
3048 os_protect(page_address(first_page),
3049 npage_bytes(last_page-first_page),
3050 OS_VM_PROT_NONE);
3051 #endif
3052 first_page = last_page;
3053 } while (first_page < last_free_page);
3055 bytes_allocated -= bytes_freed;
3056 return bytes_freed;
3059 #if 0
3060 /* Print some information about a pointer at the given address. */
3061 static void
3062 print_ptr(lispobj *addr)
3064 /* If addr is in the dynamic space then out the page information. */
3065 page_index_t pi1 = find_page_index((void*)addr);
3067 if (pi1 != -1)
3068 fprintf(stderr," %p: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
3069 addr,
3070 pi1,
3071 page_table[pi1].allocated,
3072 page_table[pi1].gen,
3073 page_table[pi1].bytes_used,
3074 page_table[pi1].scan_start_offset,
3075 page_table[pi1].dont_move);
3076 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3077 *(addr-4),
3078 *(addr-3),
3079 *(addr-2),
3080 *(addr-1),
3081 *(addr-0),
3082 *(addr+1),
3083 *(addr+2),
3084 *(addr+3),
3085 *(addr+4));
3087 #endif
3089 static int
3090 is_in_stack_space(lispobj ptr)
3092 /* For space verification: Pointers can be valid if they point
3093 * to a thread stack space. This would be faster if the thread
3094 * structures had page-table entries as if they were part of
3095 * the heap space. */
3096 struct thread *th;
3097 for_each_thread(th) {
3098 if ((th->control_stack_start <= (lispobj *)ptr) &&
3099 (th->control_stack_end >= (lispobj *)ptr)) {
3100 return 1;
3103 return 0;
3106 static void
3107 verify_space(lispobj *start, size_t words)
3109 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3110 int is_in_readonly_space =
3111 (READ_ONLY_SPACE_START <= (uword_t)start &&
3112 (uword_t)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3114 while (words > 0) {
3115 size_t count = 1;
3116 lispobj thing = *(lispobj*)start;
3118 if (is_lisp_pointer(thing)) {
3119 page_index_t page_index = find_page_index((void*)thing);
3120 sword_t to_readonly_space =
3121 (READ_ONLY_SPACE_START <= thing &&
3122 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3123 sword_t to_static_space =
3124 (STATIC_SPACE_START <= thing &&
3125 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3127 /* Does it point to the dynamic space? */
3128 if (page_index != -1) {
3129 /* If it's within the dynamic space it should point to a used
3130 * page. XX Could check the offset too. */
3131 if (page_allocated_p(page_index)
3132 && (page_table[page_index].bytes_used == 0))
3133 lose ("Ptr %p @ %p sees free page.\n", thing, start);
3134 /* Check that it doesn't point to a forwarding pointer! */
3135 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3136 lose("Ptr %p @ %p sees forwarding ptr.\n", thing, start);
3138 /* Check that its not in the RO space as it would then be a
3139 * pointer from the RO to the dynamic space. */
3140 if (is_in_readonly_space) {
3141 lose("ptr to dynamic space %p from RO space %x\n",
3142 thing, start);
3144 /* Does it point to a plausible object? This check slows
3145 * it down a lot (so it's commented out).
3147 * "a lot" is serious: it ate 50 minutes cpu time on
3148 * my duron 950 before I came back from lunch and
3149 * killed it.
3151 * FIXME: Add a variable to enable this
3152 * dynamically. */
3154 if (!possibly_valid_dynamic_space_pointer_s((lispobj *)thing, page_index, NULL)) {
3155 lose("ptr %p to invalid object %p\n", thing, start);
3158 } else {
3159 extern void funcallable_instance_tramp;
3160 /* Verify that it points to another valid space. */
3161 if (!to_readonly_space && !to_static_space
3162 && (thing != (lispobj)&funcallable_instance_tramp)
3163 && !is_in_stack_space(thing)) {
3164 lose("Ptr %p @ %p sees junk.\n", thing, start);
3167 } else {
3168 if (!(fixnump(thing))) {
3169 /* skip fixnums */
3170 switch(widetag_of(*start)) {
3172 /* boxed objects */
3173 case SIMPLE_VECTOR_WIDETAG:
3174 case RATIO_WIDETAG:
3175 case COMPLEX_WIDETAG:
3176 case SIMPLE_ARRAY_WIDETAG:
3177 case COMPLEX_BASE_STRING_WIDETAG:
3178 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3179 case COMPLEX_CHARACTER_STRING_WIDETAG:
3180 #endif
3181 case COMPLEX_VECTOR_NIL_WIDETAG:
3182 case COMPLEX_BIT_VECTOR_WIDETAG:
3183 case COMPLEX_VECTOR_WIDETAG:
3184 case COMPLEX_ARRAY_WIDETAG:
3185 case CLOSURE_HEADER_WIDETAG:
3186 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3187 case VALUE_CELL_HEADER_WIDETAG:
3188 case SYMBOL_HEADER_WIDETAG:
3189 case CHARACTER_WIDETAG:
3190 #if N_WORD_BITS == 64
3191 case SINGLE_FLOAT_WIDETAG:
3192 #endif
3193 case UNBOUND_MARKER_WIDETAG:
3194 case FDEFN_WIDETAG:
3195 count = 1;
3196 break;
3198 case INSTANCE_HEADER_WIDETAG:
3200 lispobj nuntagged;
3201 sword_t ntotal = HeaderValue(thing);
3202 lispobj layout = ((struct instance *)start)->slots[0];
3203 if (!layout) {
3204 count = 1;
3205 break;
3207 nuntagged = ((struct layout *)
3208 native_pointer(layout))->n_untagged_slots;
3209 verify_space(start + 1,
3210 ntotal - fixnum_value(nuntagged));
3211 count = ntotal + 1;
3212 break;
3214 case CODE_HEADER_WIDETAG:
3216 lispobj object = *start;
3217 struct code *code;
3218 sword_t nheader_words, ncode_words, nwords;
3219 lispobj fheaderl;
3220 struct simple_fun *fheaderp;
3222 code = (struct code *) start;
3224 /* Check that it's not in the dynamic space.
3225 * FIXME: Isn't is supposed to be OK for code
3226 * objects to be in the dynamic space these days? */
3227 /* It is for byte compiled code, but there's
3228 * no byte compilation in SBCL anymore. */
3229 if (is_in_dynamic_space
3230 /* Only when enabled */
3231 && verify_dynamic_code_check) {
3232 FSHOW((stderr,
3233 "/code object at %p in the dynamic space\n",
3234 start));
3237 ncode_words = fixnum_word_value(code->code_size);
3238 nheader_words = HeaderValue(object);
3239 nwords = ncode_words + nheader_words;
3240 nwords = CEILING(nwords, 2);
3241 /* Scavenge the boxed section of the code data block */
3242 verify_space(start + 1, nheader_words - 1);
3244 /* Scavenge the boxed section of each function
3245 * object in the code data block. */
3246 fheaderl = code->entry_points;
3247 while (fheaderl != NIL) {
3248 fheaderp =
3249 (struct simple_fun *) native_pointer(fheaderl);
3250 gc_assert(widetag_of(fheaderp->header) ==
3251 SIMPLE_FUN_HEADER_WIDETAG);
3252 verify_space(&fheaderp->name, 1);
3253 verify_space(&fheaderp->arglist, 1);
3254 verify_space(&fheaderp->type, 1);
3255 fheaderl = fheaderp->next;
3257 count = nwords;
3258 break;
3261 /* unboxed objects */
3262 case BIGNUM_WIDETAG:
3263 #if N_WORD_BITS != 64
3264 case SINGLE_FLOAT_WIDETAG:
3265 #endif
3266 case DOUBLE_FLOAT_WIDETAG:
3267 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3268 case LONG_FLOAT_WIDETAG:
3269 #endif
3270 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3271 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3272 #endif
3273 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3274 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3275 #endif
3276 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3277 case COMPLEX_LONG_FLOAT_WIDETAG:
3278 #endif
3279 #ifdef SIMD_PACK_WIDETAG
3280 case SIMD_PACK_WIDETAG:
3281 #endif
3282 case SIMPLE_BASE_STRING_WIDETAG:
3283 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3284 case SIMPLE_CHARACTER_STRING_WIDETAG:
3285 #endif
3286 case SIMPLE_BIT_VECTOR_WIDETAG:
3287 case SIMPLE_ARRAY_NIL_WIDETAG:
3288 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3289 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3290 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3291 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3292 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3293 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3295 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
3297 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3298 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3299 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3300 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3301 #endif
3302 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3303 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3304 #endif
3305 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3306 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3307 #endif
3308 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3309 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3310 #endif
3312 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
3314 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3315 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3316 #endif
3317 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3318 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3319 #endif
3320 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3321 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3322 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3323 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3324 #endif
3325 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3326 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3327 #endif
3328 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3329 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3330 #endif
3331 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3332 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3333 #endif
3334 case SAP_WIDETAG:
3335 case WEAK_POINTER_WIDETAG:
3336 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3337 case NO_TLS_VALUE_MARKER_WIDETAG:
3338 #endif
3339 count = (sizetab[widetag_of(*start)])(start);
3340 break;
3342 default:
3343 lose("Unhandled widetag %p at %p\n",
3344 widetag_of(*start), start);
3348 start += count;
3349 words -= count;
3353 static void
3354 verify_gc(void)
3356 /* FIXME: It would be nice to make names consistent so that
3357 * foo_size meant size *in* *bytes* instead of size in some
3358 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3359 * Some counts of lispobjs are called foo_count; it might be good
3360 * to grep for all foo_size and rename the appropriate ones to
3361 * foo_count. */
3362 sword_t read_only_space_size =
3363 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3364 - (lispobj*)READ_ONLY_SPACE_START;
3365 sword_t static_space_size =
3366 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3367 - (lispobj*)STATIC_SPACE_START;
3368 struct thread *th;
3369 for_each_thread(th) {
3370 sword_t binding_stack_size =
3371 (lispobj*)get_binding_stack_pointer(th)
3372 - (lispobj*)th->binding_stack_start;
3373 verify_space(th->binding_stack_start, binding_stack_size);
3375 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3376 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3379 static void
3380 verify_generation(generation_index_t generation)
3382 page_index_t i;
3384 for (i = 0; i < last_free_page; i++) {
3385 if (page_allocated_p(i)
3386 && (page_table[i].bytes_used != 0)
3387 && (page_table[i].gen == generation)) {
3388 page_index_t last_page;
3390 /* This should be the start of a contiguous block */
3391 gc_assert(page_starts_contiguous_block_p(i));
3393 /* Need to find the full extent of this contiguous block in case
3394 objects span pages. */
3396 /* Now work forward until the end of this contiguous area is
3397 found. */
3398 for (last_page = i; ;last_page++)
3399 /* Check whether this is the last page in this contiguous
3400 * block. */
3401 if (page_ends_contiguous_block_p(last_page, generation))
3402 break;
3404 verify_space(page_address(i),
3405 ((uword_t)
3406 (page_table[last_page].bytes_used
3407 + npage_bytes(last_page-i)))
3408 / N_WORD_BYTES);
3409 i = last_page;
3414 /* Check that all the free space is zero filled. */
3415 static void
3416 verify_zero_fill(void)
3418 page_index_t page;
3420 for (page = 0; page < last_free_page; page++) {
3421 if (page_free_p(page)) {
3422 /* The whole page should be zero filled. */
3423 sword_t *start_addr = (sword_t *)page_address(page);
3424 sword_t size = 1024;
3425 sword_t i;
3426 for (i = 0; i < size; i++) {
3427 if (start_addr[i] != 0) {
3428 lose("free page not zero at %x\n", start_addr + i);
3431 } else {
3432 sword_t free_bytes = GENCGC_CARD_BYTES - page_table[page].bytes_used;
3433 if (free_bytes > 0) {
3434 sword_t *start_addr = (sword_t *)((uword_t)page_address(page)
3435 + page_table[page].bytes_used);
3436 sword_t size = free_bytes / N_WORD_BYTES;
3437 sword_t i;
3438 for (i = 0; i < size; i++) {
3439 if (start_addr[i] != 0) {
3440 lose("free region not zero at %x\n", start_addr + i);
3448 /* External entry point for verify_zero_fill */
3449 void
3450 gencgc_verify_zero_fill(void)
3452 /* Flush the alloc regions updating the tables. */
3453 gc_alloc_update_all_page_tables();
3454 SHOW("verifying zero fill");
3455 verify_zero_fill();
3458 static void
3459 verify_dynamic_space(void)
3461 generation_index_t i;
3463 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3464 verify_generation(i);
3466 if (gencgc_enable_verify_zero_fill)
3467 verify_zero_fill();
3470 /* Write-protect all the dynamic boxed pages in the given generation. */
3471 static void
3472 write_protect_generation_pages(generation_index_t generation)
3474 page_index_t start;
3476 gc_assert(generation < SCRATCH_GENERATION);
3478 for (start = 0; start < last_free_page; start++) {
3479 if (protect_page_p(start, generation)) {
3480 void *page_start;
3481 page_index_t last;
3483 /* Note the page as protected in the page tables. */
3484 page_table[start].write_protected = 1;
3486 for (last = start + 1; last < last_free_page; last++) {
3487 if (!protect_page_p(last, generation))
3488 break;
3489 page_table[last].write_protected = 1;
3492 page_start = (void *)page_address(start);
3494 os_protect(page_start,
3495 npage_bytes(last - start),
3496 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3498 start = last;
3502 if (gencgc_verbose > 1) {
3503 FSHOW((stderr,
3504 "/write protected %d of %d pages in generation %d\n",
3505 count_write_protect_generation_pages(generation),
3506 count_generation_pages(generation),
3507 generation));
3511 #if defined(LISP_FEATURE_SB_THREAD) && (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
3512 static void
3513 preserve_context_registers (os_context_t *c)
3515 void **ptr;
3516 /* On Darwin the signal context isn't a contiguous block of memory,
3517 * so just preserve_pointering its contents won't be sufficient.
3519 #if defined(LISP_FEATURE_DARWIN)||defined(LISP_FEATURE_WIN32)
3520 #if defined LISP_FEATURE_X86
3521 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3522 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3523 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3524 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3525 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3526 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3527 preserve_pointer((void*)*os_context_pc_addr(c));
3528 #elif defined LISP_FEATURE_X86_64
3529 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3530 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3531 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3532 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3533 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3534 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3535 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3536 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3537 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3538 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3539 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3540 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3541 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3542 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3543 preserve_pointer((void*)*os_context_pc_addr(c));
3544 #else
3545 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3546 #endif
3547 #endif
3548 #if !defined(LISP_FEATURE_WIN32)
3549 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3550 preserve_pointer(*ptr);
3552 #endif
3554 #endif
3556 static void
3557 move_pinned_pages_to_newspace()
3559 page_index_t i;
3561 /* scavenge() will evacuate all oldspace pages, but no newspace
3562 * pages. Pinned pages are precisely those pages which must not
3563 * be evacuated, so move them to newspace directly. */
3565 for (i = 0; i < last_free_page; i++) {
3566 if (page_table[i].dont_move &&
3567 /* dont_move is cleared lazily, so validate the space as well. */
3568 page_table[i].gen == from_space) {
3569 if (page_table[i].dontmove_dwords && do_wipe_p) {
3570 // do not move to newspace after all, this will be word-wiped
3571 continue;
3573 page_table[i].gen = new_space;
3574 /* And since we're moving the pages wholesale, also adjust
3575 * the generation allocation counters. */
3576 generations[new_space].bytes_allocated += page_table[i].bytes_used;
3577 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
3582 /* Garbage collect a generation. If raise is 0 then the remains of the
3583 * generation are not raised to the next generation. */
3584 static void
3585 garbage_collect_generation(generation_index_t generation, int raise)
3587 uword_t bytes_freed;
3588 page_index_t i;
3589 uword_t static_space_size;
3590 struct thread *th;
3592 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3594 /* The oldest generation can't be raised. */
3595 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3597 /* Check if weak hash tables were processed in the previous GC. */
3598 gc_assert(weak_hash_tables == NULL);
3600 /* Initialize the weak pointer list. */
3601 weak_pointers = NULL;
3603 /* When a generation is not being raised it is transported to a
3604 * temporary generation (NUM_GENERATIONS), and lowered when
3605 * done. Set up this new generation. There should be no pages
3606 * allocated to it yet. */
3607 if (!raise) {
3608 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3611 /* Set the global src and dest. generations */
3612 from_space = generation;
3613 if (raise)
3614 new_space = generation+1;
3615 else
3616 new_space = SCRATCH_GENERATION;
3618 /* Change to a new space for allocation, resetting the alloc_start_page */
3619 gc_alloc_generation = new_space;
3620 generations[new_space].alloc_start_page = 0;
3621 generations[new_space].alloc_unboxed_start_page = 0;
3622 generations[new_space].alloc_large_start_page = 0;
3623 generations[new_space].alloc_large_unboxed_start_page = 0;
3625 /* Before any pointers are preserved, the dont_move flags on the
3626 * pages need to be cleared. */
3627 for (i = 0; i < last_free_page; i++)
3628 if(page_table[i].gen==from_space) {
3629 page_table[i].dont_move = 0;
3630 gc_assert(page_table[i].dontmove_dwords == NULL);
3633 /* Un-write-protect the old-space pages. This is essential for the
3634 * promoted pages as they may contain pointers into the old-space
3635 * which need to be scavenged. It also helps avoid unnecessary page
3636 * faults as forwarding pointers are written into them. They need to
3637 * be un-protected anyway before unmapping later. */
3638 unprotect_oldspace();
3640 /* Scavenge the stacks' conservative roots. */
3642 /* there are potentially two stacks for each thread: the main
3643 * stack, which may contain Lisp pointers, and the alternate stack.
3644 * We don't ever run Lisp code on the altstack, but it may
3645 * host a sigcontext with lisp objects in it */
3647 /* what we need to do: (1) find the stack pointer for the main
3648 * stack; scavenge it (2) find the interrupt context on the
3649 * alternate stack that might contain lisp values, and scavenge
3650 * that */
3652 /* we assume that none of the preceding applies to the thread that
3653 * initiates GC. If you ever call GC from inside an altstack
3654 * handler, you will lose. */
3656 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3657 /* And if we're saving a core, there's no point in being conservative. */
3658 if (conservative_stack) {
3659 for_each_thread(th) {
3660 void **ptr;
3661 void **esp=(void **)-1;
3662 if (th->state == STATE_DEAD)
3663 continue;
3664 # if defined(LISP_FEATURE_SB_SAFEPOINT)
3665 /* Conservative collect_garbage is always invoked with a
3666 * foreign C call or an interrupt handler on top of every
3667 * existing thread, so the stored SP in each thread
3668 * structure is valid, no matter which thread we are looking
3669 * at. For threads that were running Lisp code, the pitstop
3670 * and edge functions maintain this value within the
3671 * interrupt or exception handler. */
3672 esp = os_get_csp(th);
3673 assert_on_stack(th, esp);
3675 /* In addition to pointers on the stack, also preserve the
3676 * return PC, the only value from the context that we need
3677 * in addition to the SP. The return PC gets saved by the
3678 * foreign call wrapper, and removed from the control stack
3679 * into a register. */
3680 preserve_pointer(th->pc_around_foreign_call);
3682 /* And on platforms with interrupts: scavenge ctx registers. */
3684 /* Disabled on Windows, because it does not have an explicit
3685 * stack of `interrupt_contexts'. The reported CSP has been
3686 * chosen so that the current context on the stack is
3687 * covered by the stack scan. See also set_csp_from_context(). */
3688 # ifndef LISP_FEATURE_WIN32
3689 if (th != arch_os_get_current_thread()) {
3690 long k = fixnum_value(
3691 SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3692 while (k > 0)
3693 preserve_context_registers(th->interrupt_contexts[--k]);
3695 # endif
3696 # elif defined(LISP_FEATURE_SB_THREAD)
3697 sword_t i,free;
3698 if(th==arch_os_get_current_thread()) {
3699 /* Somebody is going to burn in hell for this, but casting
3700 * it in two steps shuts gcc up about strict aliasing. */
3701 esp = (void **)((void *)&raise);
3702 } else {
3703 void **esp1;
3704 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3705 for(i=free-1;i>=0;i--) {
3706 os_context_t *c=th->interrupt_contexts[i];
3707 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3708 if (esp1>=(void **)th->control_stack_start &&
3709 esp1<(void **)th->control_stack_end) {
3710 if(esp1<esp) esp=esp1;
3711 preserve_context_registers(c);
3715 # else
3716 esp = (void **)((void *)&raise);
3717 # endif
3718 if (!esp || esp == (void*) -1)
3719 lose("garbage_collect: no SP known for thread %x (OS %x)",
3720 th, th->os_thread);
3721 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
3722 preserve_pointer(*ptr);
3726 #else
3727 /* Non-x86oid systems don't have "conservative roots" as such, but
3728 * the same mechanism is used for objects pinned for use by alien
3729 * code. */
3730 for_each_thread(th) {
3731 lispobj pin_list = SymbolTlValue(PINNED_OBJECTS,th);
3732 while (pin_list != NIL) {
3733 struct cons *list_entry =
3734 (struct cons *)native_pointer(pin_list);
3735 preserve_pointer(list_entry->car);
3736 pin_list = list_entry->cdr;
3739 #endif
3741 #if QSHOW
3742 if (gencgc_verbose > 1) {
3743 sword_t num_dont_move_pages = count_dont_move_pages();
3744 fprintf(stderr,
3745 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3746 num_dont_move_pages,
3747 npage_bytes(num_dont_move_pages));
3749 #endif
3751 /* Now that all of the pinned (dont_move) pages are known, and
3752 * before we start to scavenge (and thus relocate) objects,
3753 * relocate the pinned pages to newspace, so that the scavenger
3754 * will not attempt to relocate their contents. */
3755 move_pinned_pages_to_newspace();
3757 /* Scavenge all the rest of the roots. */
3759 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3761 * If not x86, we need to scavenge the interrupt context(s) and the
3762 * control stack.
3765 struct thread *th;
3766 for_each_thread(th) {
3767 scavenge_interrupt_contexts(th);
3768 scavenge_control_stack(th);
3771 # ifdef LISP_FEATURE_SB_SAFEPOINT
3772 /* In this case, scrub all stacks right here from the GCing thread
3773 * instead of doing what the comment below says. Suboptimal, but
3774 * easier. */
3775 for_each_thread(th)
3776 scrub_thread_control_stack(th);
3777 # else
3778 /* Scrub the unscavenged control stack space, so that we can't run
3779 * into any stale pointers in a later GC (this is done by the
3780 * stop-for-gc handler in the other threads). */
3781 scrub_control_stack();
3782 # endif
3784 #endif
3786 /* Scavenge the Lisp functions of the interrupt handlers, taking
3787 * care to avoid SIG_DFL and SIG_IGN. */
3788 for (i = 0; i < NSIG; i++) {
3789 union interrupt_handler handler = interrupt_handlers[i];
3790 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3791 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3792 scavenge((lispobj *)(interrupt_handlers + i), 1);
3795 /* Scavenge the binding stacks. */
3797 struct thread *th;
3798 for_each_thread(th) {
3799 sword_t len= (lispobj *)get_binding_stack_pointer(th) -
3800 th->binding_stack_start;
3801 scavenge((lispobj *) th->binding_stack_start,len);
3802 #ifdef LISP_FEATURE_SB_THREAD
3803 /* do the tls as well */
3804 len=(SymbolValue(FREE_TLS_INDEX,0) >> WORD_SHIFT) -
3805 (sizeof (struct thread))/(sizeof (lispobj));
3806 scavenge((lispobj *) (th+1),len);
3807 #endif
3811 /* The original CMU CL code had scavenge-read-only-space code
3812 * controlled by the Lisp-level variable
3813 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3814 * wasn't documented under what circumstances it was useful or
3815 * safe to turn it on, so it's been turned off in SBCL. If you
3816 * want/need this functionality, and can test and document it,
3817 * please submit a patch. */
3818 #if 0
3819 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3820 uword_t read_only_space_size =
3821 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3822 (lispobj*)READ_ONLY_SPACE_START;
3823 FSHOW((stderr,
3824 "/scavenge read only space: %d bytes\n",
3825 read_only_space_size * sizeof(lispobj)));
3826 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3828 #endif
3830 /* Scavenge static space. */
3831 static_space_size =
3832 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
3833 (lispobj *)STATIC_SPACE_START;
3834 if (gencgc_verbose > 1) {
3835 FSHOW((stderr,
3836 "/scavenge static space: %d bytes\n",
3837 static_space_size * sizeof(lispobj)));
3839 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3841 /* All generations but the generation being GCed need to be
3842 * scavenged. The new_space generation needs special handling as
3843 * objects may be moved in - it is handled separately below. */
3844 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
3846 scavenge_pages_with_conservative_pointers_to_them_protected_objects_only();
3848 /* Finally scavenge the new_space generation. Keep going until no
3849 * more objects are moved into the new generation */
3850 scavenge_newspace_generation(new_space);
3852 /* FIXME: I tried reenabling this check when debugging unrelated
3853 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3854 * Since the current GC code seems to work well, I'm guessing that
3855 * this debugging code is just stale, but I haven't tried to
3856 * figure it out. It should be figured out and then either made to
3857 * work or just deleted. */
3859 #define RESCAN_CHECK 0
3860 #if RESCAN_CHECK
3861 /* As a check re-scavenge the newspace once; no new objects should
3862 * be found. */
3864 os_vm_size_t old_bytes_allocated = bytes_allocated;
3865 os_vm_size_t bytes_allocated;
3867 /* Start with a full scavenge. */
3868 scavenge_newspace_generation_one_scan(new_space);
3870 /* Flush the current regions, updating the tables. */
3871 gc_alloc_update_all_page_tables();
3873 bytes_allocated = bytes_allocated - old_bytes_allocated;
3875 if (bytes_allocated != 0) {
3876 lose("Rescan of new_space allocated %d more bytes.\n",
3877 bytes_allocated);
3880 #endif
3882 scan_weak_hash_tables();
3883 scan_weak_pointers();
3884 do_the_wipe();
3886 /* Flush the current regions, updating the tables. */
3887 gc_alloc_update_all_page_tables();
3889 /* Free the pages in oldspace, but not those marked dont_move. */
3890 bytes_freed = free_oldspace();
3892 /* If the GC is not raising the age then lower the generation back
3893 * to its normal generation number */
3894 if (!raise) {
3895 for (i = 0; i < last_free_page; i++)
3896 if ((page_table[i].bytes_used != 0)
3897 && (page_table[i].gen == SCRATCH_GENERATION))
3898 page_table[i].gen = generation;
3899 gc_assert(generations[generation].bytes_allocated == 0);
3900 generations[generation].bytes_allocated =
3901 generations[SCRATCH_GENERATION].bytes_allocated;
3902 generations[SCRATCH_GENERATION].bytes_allocated = 0;
3905 /* Reset the alloc_start_page for generation. */
3906 generations[generation].alloc_start_page = 0;
3907 generations[generation].alloc_unboxed_start_page = 0;
3908 generations[generation].alloc_large_start_page = 0;
3909 generations[generation].alloc_large_unboxed_start_page = 0;
3911 if (generation >= verify_gens) {
3912 if (gencgc_verbose) {
3913 SHOW("verifying");
3915 verify_gc();
3916 verify_dynamic_space();
3919 /* Set the new gc trigger for the GCed generation. */
3920 generations[generation].gc_trigger =
3921 generations[generation].bytes_allocated
3922 + generations[generation].bytes_consed_between_gc;
3924 if (raise)
3925 generations[generation].num_gc = 0;
3926 else
3927 ++generations[generation].num_gc;
3931 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3932 sword_t
3933 update_dynamic_space_free_pointer(void)
3935 page_index_t last_page = -1, i;
3937 for (i = 0; i < last_free_page; i++)
3938 if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
3939 last_page = i;
3941 last_free_page = last_page+1;
3943 set_alloc_pointer((lispobj)(page_address(last_free_page)));
3944 return 0; /* dummy value: return something ... */
3947 static void
3948 remap_page_range (page_index_t from, page_index_t to)
3950 /* There's a mysterious Solaris/x86 problem with using mmap
3951 * tricks for memory zeroing. See sbcl-devel thread
3952 * "Re: patch: standalone executable redux".
3954 #if defined(LISP_FEATURE_SUNOS)
3955 zero_and_mark_pages(from, to);
3956 #else
3957 const page_index_t
3958 release_granularity = gencgc_release_granularity/GENCGC_CARD_BYTES,
3959 release_mask = release_granularity-1,
3960 end = to+1,
3961 aligned_from = (from+release_mask)&~release_mask,
3962 aligned_end = (end&~release_mask);
3964 if (aligned_from < aligned_end) {
3965 zero_pages_with_mmap(aligned_from, aligned_end-1);
3966 if (aligned_from != from)
3967 zero_and_mark_pages(from, aligned_from-1);
3968 if (aligned_end != end)
3969 zero_and_mark_pages(aligned_end, end-1);
3970 } else {
3971 zero_and_mark_pages(from, to);
3973 #endif
3976 static void
3977 remap_free_pages (page_index_t from, page_index_t to, int forcibly)
3979 page_index_t first_page, last_page;
3981 if (forcibly)
3982 return remap_page_range(from, to);
3984 for (first_page = from; first_page <= to; first_page++) {
3985 if (page_allocated_p(first_page) ||
3986 (page_table[first_page].need_to_zero == 0))
3987 continue;
3989 last_page = first_page + 1;
3990 while (page_free_p(last_page) &&
3991 (last_page <= to) &&
3992 (page_table[last_page].need_to_zero == 1))
3993 last_page++;
3995 remap_page_range(first_page, last_page-1);
3997 first_page = last_page;
4001 generation_index_t small_generation_limit = 1;
4003 /* GC all generations newer than last_gen, raising the objects in each
4004 * to the next older generation - we finish when all generations below
4005 * last_gen are empty. Then if last_gen is due for a GC, or if
4006 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4007 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4009 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4010 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4011 void
4012 collect_garbage(generation_index_t last_gen)
4014 generation_index_t gen = 0, i;
4015 int raise, more = 0;
4016 int gen_to_wp;
4017 /* The largest value of last_free_page seen since the time
4018 * remap_free_pages was called. */
4019 static page_index_t high_water_mark = 0;
4021 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4022 log_generation_stats(gc_logfile, "=== GC Start ===");
4024 gc_active_p = 1;
4026 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4027 FSHOW((stderr,
4028 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4029 last_gen));
4030 last_gen = 0;
4033 /* Flush the alloc regions updating the tables. */
4034 gc_alloc_update_all_page_tables();
4036 /* Verify the new objects created by Lisp code. */
4037 if (pre_verify_gen_0) {
4038 FSHOW((stderr, "pre-checking generation 0\n"));
4039 verify_generation(0);
4042 if (gencgc_verbose > 1)
4043 print_generation_stats();
4045 do {
4046 /* Collect the generation. */
4048 if (more || (gen >= gencgc_oldest_gen_to_gc)) {
4049 /* Never raise the oldest generation. Never raise the extra generation
4050 * collected due to more-flag. */
4051 raise = 0;
4052 more = 0;
4053 } else {
4054 raise =
4055 (gen < last_gen)
4056 || (generations[gen].num_gc >= generations[gen].number_of_gcs_before_promotion);
4057 /* If we would not normally raise this one, but we're
4058 * running low on space in comparison to the object-sizes
4059 * we've been seeing, raise it and collect the next one
4060 * too. */
4061 if (!raise && gen == last_gen) {
4062 more = (2*large_allocation) >= (dynamic_space_size - bytes_allocated);
4063 raise = more;
4067 if (gencgc_verbose > 1) {
4068 FSHOW((stderr,
4069 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4070 gen,
4071 raise,
4072 generations[gen].bytes_allocated,
4073 generations[gen].gc_trigger,
4074 generations[gen].num_gc));
4077 /* If an older generation is being filled, then update its
4078 * memory age. */
4079 if (raise == 1) {
4080 generations[gen+1].cum_sum_bytes_allocated +=
4081 generations[gen+1].bytes_allocated;
4084 garbage_collect_generation(gen, raise);
4086 /* Reset the memory age cum_sum. */
4087 generations[gen].cum_sum_bytes_allocated = 0;
4089 if (gencgc_verbose > 1) {
4090 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4091 print_generation_stats();
4094 gen++;
4095 } while ((gen <= gencgc_oldest_gen_to_gc)
4096 && ((gen < last_gen)
4097 || more
4098 || (raise
4099 && (generations[gen].bytes_allocated
4100 > generations[gen].gc_trigger)
4101 && (generation_average_age(gen)
4102 > generations[gen].minimum_age_before_gc))));
4104 /* Now if gen-1 was raised all generations before gen are empty.
4105 * If it wasn't raised then all generations before gen-1 are empty.
4107 * Now objects within this gen's pages cannot point to younger
4108 * generations unless they are written to. This can be exploited
4109 * by write-protecting the pages of gen; then when younger
4110 * generations are GCed only the pages which have been written
4111 * need scanning. */
4112 if (raise)
4113 gen_to_wp = gen;
4114 else
4115 gen_to_wp = gen - 1;
4117 /* There's not much point in WPing pages in generation 0 as it is
4118 * never scavenged (except promoted pages). */
4119 if ((gen_to_wp > 0) && enable_page_protection) {
4120 /* Check that they are all empty. */
4121 for (i = 0; i < gen_to_wp; i++) {
4122 if (generations[i].bytes_allocated)
4123 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4124 gen_to_wp, i);
4126 write_protect_generation_pages(gen_to_wp);
4129 /* Set gc_alloc() back to generation 0. The current regions should
4130 * be flushed after the above GCs. */
4131 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4132 gc_alloc_generation = 0;
4134 /* Save the high-water mark before updating last_free_page */
4135 if (last_free_page > high_water_mark)
4136 high_water_mark = last_free_page;
4138 update_dynamic_space_free_pointer();
4140 /* Update auto_gc_trigger. Make sure we trigger the next GC before
4141 * running out of heap! */
4142 if (bytes_consed_between_gcs <= (dynamic_space_size - bytes_allocated))
4143 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4144 else
4145 auto_gc_trigger = bytes_allocated + (dynamic_space_size - bytes_allocated)/2;
4147 if(gencgc_verbose)
4148 fprintf(stderr,"Next gc when %"OS_VM_SIZE_FMT" bytes have been consed\n",
4149 auto_gc_trigger);
4151 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4152 * back to the OS.
4154 if (gen > small_generation_limit) {
4155 if (last_free_page > high_water_mark)
4156 high_water_mark = last_free_page;
4157 remap_free_pages(0, high_water_mark, 0);
4158 high_water_mark = 0;
4161 gc_active_p = 0;
4162 large_allocation = 0;
4164 log_generation_stats(gc_logfile, "=== GC End ===");
4165 SHOW("returning from collect_garbage");
4168 /* This is called by Lisp PURIFY when it is finished. All live objects
4169 * will have been moved to the RO and Static heaps. The dynamic space
4170 * will need a full re-initialization. We don't bother having Lisp
4171 * PURIFY flush the current gc_alloc() region, as the page_tables are
4172 * re-initialized, and every page is zeroed to be sure. */
4173 void
4174 gc_free_heap(void)
4176 page_index_t page, last_page;
4178 if (gencgc_verbose > 1) {
4179 SHOW("entering gc_free_heap");
4182 for (page = 0; page < page_table_pages; page++) {
4183 /* Skip free pages which should already be zero filled. */
4184 if (page_allocated_p(page)) {
4185 void *page_start;
4186 for (last_page = page;
4187 (last_page < page_table_pages) && page_allocated_p(last_page);
4188 last_page++) {
4189 /* Mark the page free. The other slots are assumed invalid
4190 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4191 * should not be write-protected -- except that the
4192 * generation is used for the current region but it sets
4193 * that up. */
4194 page_table[page].allocated = FREE_PAGE_FLAG;
4195 page_table[page].bytes_used = 0;
4196 page_table[page].write_protected = 0;
4199 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
4200 * about this change. */
4201 page_start = (void *)page_address(page);
4202 os_protect(page_start, npage_bytes(last_page-page), OS_VM_PROT_ALL);
4203 remap_free_pages(page, last_page-1, 1);
4204 page = last_page-1;
4205 #endif
4206 } else if (gencgc_zero_check_during_free_heap) {
4207 /* Double-check that the page is zero filled. */
4208 sword_t *page_start;
4209 page_index_t i;
4210 gc_assert(page_free_p(page));
4211 gc_assert(page_table[page].bytes_used == 0);
4212 page_start = (sword_t *)page_address(page);
4213 for (i=0; i<GENCGC_CARD_BYTES/sizeof(sword_t); i++) {
4214 if (page_start[i] != 0) {
4215 lose("free region not zero at %x\n", page_start + i);
4221 bytes_allocated = 0;
4223 /* Initialize the generations. */
4224 for (page = 0; page < NUM_GENERATIONS; page++) {
4225 generations[page].alloc_start_page = 0;
4226 generations[page].alloc_unboxed_start_page = 0;
4227 generations[page].alloc_large_start_page = 0;
4228 generations[page].alloc_large_unboxed_start_page = 0;
4229 generations[page].bytes_allocated = 0;
4230 generations[page].gc_trigger = 2000000;
4231 generations[page].num_gc = 0;
4232 generations[page].cum_sum_bytes_allocated = 0;
4235 if (gencgc_verbose > 1)
4236 print_generation_stats();
4238 /* Initialize gc_alloc(). */
4239 gc_alloc_generation = 0;
4241 gc_set_region_empty(&boxed_region);
4242 gc_set_region_empty(&unboxed_region);
4244 last_free_page = 0;
4245 set_alloc_pointer((lispobj)((char *)heap_base));
4247 if (verify_after_free_heap) {
4248 /* Check whether purify has left any bad pointers. */
4249 FSHOW((stderr, "checking after free_heap\n"));
4250 verify_gc();
4254 void
4255 gc_init(void)
4257 page_index_t i;
4259 #if defined(LISP_FEATURE_SB_SAFEPOINT)
4260 alloc_gc_page();
4261 #endif
4263 /* Compute the number of pages needed for the dynamic space.
4264 * Dynamic space size should be aligned on page size. */
4265 page_table_pages = dynamic_space_size/GENCGC_CARD_BYTES;
4266 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4268 /* Default nursery size to 5% of the total dynamic space size,
4269 * min 1Mb. */
4270 bytes_consed_between_gcs = dynamic_space_size/(os_vm_size_t)20;
4271 if (bytes_consed_between_gcs < (1024*1024))
4272 bytes_consed_between_gcs = 1024*1024;
4274 /* The page_table must be allocated using "calloc" to initialize
4275 * the page structures correctly. There used to be a separate
4276 * initialization loop (now commented out; see below) but that was
4277 * unnecessary and did hurt startup time. */
4278 page_table = calloc(page_table_pages, sizeof(struct page));
4279 gc_assert(page_table);
4281 gc_init_tables();
4282 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4283 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4285 heap_base = (void*)DYNAMIC_SPACE_START;
4287 /* The page structures are initialized implicitly when page_table
4288 * is allocated with "calloc" above. Formerly we had the following
4289 * explicit initialization here (comments converted to C99 style
4290 * for readability as C's block comments don't nest):
4292 * // Initialize each page structure.
4293 * for (i = 0; i < page_table_pages; i++) {
4294 * // Initialize all pages as free.
4295 * page_table[i].allocated = FREE_PAGE_FLAG;
4296 * page_table[i].bytes_used = 0;
4298 * // Pages are not write-protected at startup.
4299 * page_table[i].write_protected = 0;
4302 * Without this loop the image starts up much faster when dynamic
4303 * space is large -- which it is on 64-bit platforms already by
4304 * default -- and when "calloc" for large arrays is implemented
4305 * using copy-on-write of a page of zeroes -- which it is at least
4306 * on Linux. In this case the pages that page_table_pages is stored
4307 * in are mapped and cleared not before the corresponding part of
4308 * dynamic space is used. For example, this saves clearing 16 MB of
4309 * memory at startup if the page size is 4 KB and the size of
4310 * dynamic space is 4 GB.
4311 * FREE_PAGE_FLAG must be 0 for this to work correctly which is
4312 * asserted below: */
4314 /* Compile time assertion: If triggered, declares an array
4315 * of dimension -1 forcing a syntax error. The intent of the
4316 * assignment is to avoid an "unused variable" warning. */
4317 char assert_free_page_flag_0[(FREE_PAGE_FLAG) ? -1 : 1];
4318 assert_free_page_flag_0[0] = assert_free_page_flag_0[0];
4321 bytes_allocated = 0;
4323 /* Initialize the generations.
4325 * FIXME: very similar to code in gc_free_heap(), should be shared */
4326 for (i = 0; i < NUM_GENERATIONS; i++) {
4327 generations[i].alloc_start_page = 0;
4328 generations[i].alloc_unboxed_start_page = 0;
4329 generations[i].alloc_large_start_page = 0;
4330 generations[i].alloc_large_unboxed_start_page = 0;
4331 generations[i].bytes_allocated = 0;
4332 generations[i].gc_trigger = 2000000;
4333 generations[i].num_gc = 0;
4334 generations[i].cum_sum_bytes_allocated = 0;
4335 /* the tune-able parameters */
4336 generations[i].bytes_consed_between_gc
4337 = bytes_consed_between_gcs/(os_vm_size_t)HIGHEST_NORMAL_GENERATION;
4338 generations[i].number_of_gcs_before_promotion = 1;
4339 generations[i].minimum_age_before_gc = 0.75;
4342 /* Initialize gc_alloc. */
4343 gc_alloc_generation = 0;
4344 gc_set_region_empty(&boxed_region);
4345 gc_set_region_empty(&unboxed_region);
4347 last_free_page = 0;
4350 /* Pick up the dynamic space from after a core load.
4352 * The ALLOCATION_POINTER points to the end of the dynamic space.
4355 static void
4356 gencgc_pickup_dynamic(void)
4358 page_index_t page = 0;
4359 void *alloc_ptr = (void *)get_alloc_pointer();
4360 lispobj *prev=(lispobj *)page_address(page);
4361 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4363 bytes_allocated = 0;
4365 do {
4366 lispobj *first,*ptr= (lispobj *)page_address(page);
4368 if (!gencgc_partial_pickup || page_allocated_p(page)) {
4369 /* It is possible, though rare, for the saved page table
4370 * to contain free pages below alloc_ptr. */
4371 page_table[page].gen = gen;
4372 page_table[page].bytes_used = GENCGC_CARD_BYTES;
4373 page_table[page].large_object = 0;
4374 page_table[page].write_protected = 0;
4375 page_table[page].write_protected_cleared = 0;
4376 page_table[page].dont_move = 0;
4377 page_table[page].need_to_zero = 1;
4379 bytes_allocated += GENCGC_CARD_BYTES;
4382 if (!gencgc_partial_pickup) {
4383 page_table[page].allocated = BOXED_PAGE_FLAG;
4384 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4385 if(ptr == first)
4386 prev=ptr;
4387 page_table[page].scan_start_offset =
4388 page_address(page) - (void *)prev;
4390 page++;
4391 } while (page_address(page) < alloc_ptr);
4393 last_free_page = page;
4395 generations[gen].bytes_allocated = bytes_allocated;
4397 gc_alloc_update_all_page_tables();
4398 write_protect_generation_pages(gen);
4401 void
4402 gc_initialize_pointers(void)
4404 gencgc_pickup_dynamic();
4408 /* alloc(..) is the external interface for memory allocation. It
4409 * allocates to generation 0. It is not called from within the garbage
4410 * collector as it is only external uses that need the check for heap
4411 * size (GC trigger) and to disable the interrupts (interrupts are
4412 * always disabled during a GC).
4414 * The vops that call alloc(..) assume that the returned space is zero-filled.
4415 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4417 * The check for a GC trigger is only performed when the current
4418 * region is full, so in most cases it's not needed. */
4420 static inline lispobj *
4421 general_alloc_internal(sword_t nbytes, int page_type_flag, struct alloc_region *region,
4422 struct thread *thread)
4424 #ifndef LISP_FEATURE_WIN32
4425 lispobj alloc_signal;
4426 #endif
4427 void *new_obj;
4428 void *new_free_pointer;
4429 os_vm_size_t trigger_bytes = 0;
4431 gc_assert(nbytes>0);
4433 /* Check for alignment allocation problems. */
4434 gc_assert((((uword_t)region->free_pointer & LOWTAG_MASK) == 0)
4435 && ((nbytes & LOWTAG_MASK) == 0));
4437 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
4438 /* Must be inside a PA section. */
4439 gc_assert(get_pseudo_atomic_atomic(thread));
4440 #endif
4442 if (nbytes > large_allocation)
4443 large_allocation = nbytes;
4445 /* maybe we can do this quickly ... */
4446 new_free_pointer = region->free_pointer + nbytes;
4447 if (new_free_pointer <= region->end_addr) {
4448 new_obj = (void*)(region->free_pointer);
4449 region->free_pointer = new_free_pointer;
4450 return(new_obj); /* yup */
4453 /* We don't want to count nbytes against auto_gc_trigger unless we
4454 * have to: it speeds up the tenuring of objects and slows down
4455 * allocation. However, unless we do so when allocating _very_
4456 * large objects we are in danger of exhausting the heap without
4457 * running sufficient GCs.
4459 if (nbytes >= bytes_consed_between_gcs)
4460 trigger_bytes = nbytes;
4462 /* we have to go the long way around, it seems. Check whether we
4463 * should GC in the near future
4465 if (auto_gc_trigger && (bytes_allocated+trigger_bytes > auto_gc_trigger)) {
4466 /* Don't flood the system with interrupts if the need to gc is
4467 * already noted. This can happen for example when SUB-GC
4468 * allocates or after a gc triggered in a WITHOUT-GCING. */
4469 if (SymbolValue(GC_PENDING,thread) == NIL) {
4470 /* set things up so that GC happens when we finish the PA
4471 * section */
4472 SetSymbolValue(GC_PENDING,T,thread);
4473 if (SymbolValue(GC_INHIBIT,thread) == NIL) {
4474 #ifdef LISP_FEATURE_SB_SAFEPOINT
4475 thread_register_gc_trigger();
4476 #else
4477 set_pseudo_atomic_interrupted(thread);
4478 #ifdef GENCGC_IS_PRECISE
4479 /* PPC calls alloc() from a trap or from pa_alloc(),
4480 * look up the most context if it's from a trap. */
4482 os_context_t *context =
4483 thread->interrupt_data->allocation_trap_context;
4484 maybe_save_gc_mask_and_block_deferrables
4485 (context ? os_context_sigmask_addr(context) : NULL);
4487 #else
4488 maybe_save_gc_mask_and_block_deferrables(NULL);
4489 #endif
4490 #endif
4494 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4496 #ifndef LISP_FEATURE_WIN32
4497 /* for sb-prof, and not supported on Windows yet */
4498 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4499 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4500 if ((sword_t) alloc_signal <= 0) {
4501 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4502 raise(SIGPROF);
4503 } else {
4504 SetSymbolValue(ALLOC_SIGNAL,
4505 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4506 thread);
4509 #endif
4511 return (new_obj);
4514 lispobj *
4515 general_alloc(sword_t nbytes, int page_type_flag)
4517 struct thread *thread = arch_os_get_current_thread();
4518 /* Select correct region, and call general_alloc_internal with it.
4519 * For other then boxed allocation we must lock first, since the
4520 * region is shared. */
4521 if (BOXED_PAGE_FLAG & page_type_flag) {
4522 #ifdef LISP_FEATURE_SB_THREAD
4523 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4524 #else
4525 struct alloc_region *region = &boxed_region;
4526 #endif
4527 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4528 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4529 lispobj * obj;
4530 gc_assert(0 == thread_mutex_lock(&allocation_lock));
4531 obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4532 gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4533 return obj;
4534 } else {
4535 lose("bad page type flag: %d", page_type_flag);
4539 lispobj AMD64_SYSV_ABI *
4540 alloc(long nbytes)
4542 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4543 struct thread *self = arch_os_get_current_thread();
4544 int was_pseudo_atomic = get_pseudo_atomic_atomic(self);
4545 if (!was_pseudo_atomic)
4546 set_pseudo_atomic_atomic(self);
4547 #else
4548 gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4549 #endif
4551 lispobj *result = general_alloc(nbytes, BOXED_PAGE_FLAG);
4553 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4554 if (!was_pseudo_atomic)
4555 clear_pseudo_atomic_atomic(self);
4556 #endif
4558 return result;
4562 * shared support for the OS-dependent signal handlers which
4563 * catch GENCGC-related write-protect violations
4565 void unhandled_sigmemoryfault(void* addr);
4567 /* Depending on which OS we're running under, different signals might
4568 * be raised for a violation of write protection in the heap. This
4569 * function factors out the common generational GC magic which needs
4570 * to invoked in this case, and should be called from whatever signal
4571 * handler is appropriate for the OS we're running under.
4573 * Return true if this signal is a normal generational GC thing that
4574 * we were able to handle, or false if it was abnormal and control
4575 * should fall through to the general SIGSEGV/SIGBUS/whatever logic.
4577 * We have two control flags for this: one causes us to ignore faults
4578 * on unprotected pages completely, and the second complains to stderr
4579 * but allows us to continue without losing.
4581 extern boolean ignore_memoryfaults_on_unprotected_pages;
4582 boolean ignore_memoryfaults_on_unprotected_pages = 0;
4584 extern boolean continue_after_memoryfault_on_unprotected_pages;
4585 boolean continue_after_memoryfault_on_unprotected_pages = 0;
4588 gencgc_handle_wp_violation(void* fault_addr)
4590 page_index_t page_index = find_page_index(fault_addr);
4592 #if QSHOW_SIGNALS
4593 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4594 fault_addr, page_index));
4595 #endif
4597 /* Check whether the fault is within the dynamic space. */
4598 if (page_index == (-1)) {
4600 /* It can be helpful to be able to put a breakpoint on this
4601 * case to help diagnose low-level problems. */
4602 unhandled_sigmemoryfault(fault_addr);
4604 /* not within the dynamic space -- not our responsibility */
4605 return 0;
4607 } else {
4608 int ret;
4609 ret = thread_mutex_lock(&free_pages_lock);
4610 gc_assert(ret == 0);
4611 if (page_table[page_index].write_protected) {
4612 /* Unprotect the page. */
4613 os_protect(page_address(page_index), GENCGC_CARD_BYTES, OS_VM_PROT_ALL);
4614 page_table[page_index].write_protected_cleared = 1;
4615 page_table[page_index].write_protected = 0;
4616 } else if (!ignore_memoryfaults_on_unprotected_pages) {
4617 /* The only acceptable reason for this signal on a heap
4618 * access is that GENCGC write-protected the page.
4619 * However, if two CPUs hit a wp page near-simultaneously,
4620 * we had better not have the second one lose here if it
4621 * does this test after the first one has already set wp=0
4623 if(page_table[page_index].write_protected_cleared != 1) {
4624 void lisp_backtrace(int frames);
4625 lisp_backtrace(10);
4626 fprintf(stderr,
4627 "Fault @ %p, page %"PAGE_INDEX_FMT" not marked as write-protected:\n"
4628 " boxed_region.first_page: %"PAGE_INDEX_FMT","
4629 " boxed_region.last_page %"PAGE_INDEX_FMT"\n"
4630 " page.scan_start_offset: %"OS_VM_SIZE_FMT"\n"
4631 " page.bytes_used: %"PAGE_BYTES_FMT"\n"
4632 " page.allocated: %d\n"
4633 " page.write_protected: %d\n"
4634 " page.write_protected_cleared: %d\n"
4635 " page.generation: %d\n",
4636 fault_addr,
4637 page_index,
4638 boxed_region.first_page,
4639 boxed_region.last_page,
4640 page_table[page_index].scan_start_offset,
4641 page_table[page_index].bytes_used,
4642 page_table[page_index].allocated,
4643 page_table[page_index].write_protected,
4644 page_table[page_index].write_protected_cleared,
4645 page_table[page_index].gen);
4646 if (!continue_after_memoryfault_on_unprotected_pages)
4647 lose("Feh.\n");
4650 ret = thread_mutex_unlock(&free_pages_lock);
4651 gc_assert(ret == 0);
4652 /* Don't worry, we can handle it. */
4653 return 1;
4656 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4657 * it's not just a case of the program hitting the write barrier, and
4658 * are about to let Lisp deal with it. It's basically just a
4659 * convenient place to set a gdb breakpoint. */
4660 void
4661 unhandled_sigmemoryfault(void *addr)
4664 void gc_alloc_update_all_page_tables(void)
4666 /* Flush the alloc regions updating the tables. */
4667 struct thread *th;
4668 for_each_thread(th) {
4669 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4670 #if defined(LISP_FEATURE_SB_SAFEPOINT_STRICTLY) && !defined(LISP_FEATURE_WIN32)
4671 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->sprof_alloc_region);
4672 #endif
4674 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4675 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4678 void
4679 gc_set_region_empty(struct alloc_region *region)
4681 region->first_page = 0;
4682 region->last_page = -1;
4683 region->start_addr = page_address(0);
4684 region->free_pointer = page_address(0);
4685 region->end_addr = page_address(0);
4688 static void
4689 zero_all_free_pages()
4691 page_index_t i;
4693 for (i = 0; i < last_free_page; i++) {
4694 if (page_free_p(i)) {
4695 #ifdef READ_PROTECT_FREE_PAGES
4696 os_protect(page_address(i),
4697 GENCGC_CARD_BYTES,
4698 OS_VM_PROT_ALL);
4699 #endif
4700 zero_pages(i, i);
4705 /* Things to do before doing a final GC before saving a core (without
4706 * purify).
4708 * + Pages in large_object pages aren't moved by the GC, so we need to
4709 * unset that flag from all pages.
4710 * + The pseudo-static generation isn't normally collected, but it seems
4711 * reasonable to collect it at least when saving a core. So move the
4712 * pages to a normal generation.
4714 static void
4715 prepare_for_final_gc ()
4717 page_index_t i;
4719 do_wipe_p = 0;
4720 for (i = 0; i < last_free_page; i++) {
4721 page_table[i].large_object = 0;
4722 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4723 int used = page_table[i].bytes_used;
4724 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4725 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4726 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4732 /* Do a non-conservative GC, and then save a core with the initial
4733 * function being set to the value of the static symbol
4734 * SB!VM:RESTART-LISP-FUNCTION */
4735 void
4736 gc_and_save(char *filename, boolean prepend_runtime,
4737 boolean save_runtime_options, boolean compressed,
4738 int compression_level, int application_type)
4740 FILE *file;
4741 void *runtime_bytes = NULL;
4742 size_t runtime_size;
4744 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4745 &runtime_size);
4746 if (file == NULL)
4747 return;
4749 conservative_stack = 0;
4751 /* The filename might come from Lisp, and be moved by the now
4752 * non-conservative GC. */
4753 filename = strdup(filename);
4755 /* Collect twice: once into relatively high memory, and then back
4756 * into low memory. This compacts the retained data into the lower
4757 * pages, minimizing the size of the core file.
4759 prepare_for_final_gc();
4760 gencgc_alloc_start_page = last_free_page;
4761 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4763 prepare_for_final_gc();
4764 gencgc_alloc_start_page = -1;
4765 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4767 if (prepend_runtime)
4768 save_runtime_to_filehandle(file, runtime_bytes, runtime_size,
4769 application_type);
4771 /* The dumper doesn't know that pages need to be zeroed before use. */
4772 zero_all_free_pages();
4773 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4774 prepend_runtime, save_runtime_options,
4775 compressed ? compression_level : COMPRESSION_LEVEL_NONE);
4776 /* Oops. Save still managed to fail. Since we've mangled the stack
4777 * beyond hope, there's not much we can do.
4778 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4779 * going to be rather unsatisfactory too... */
4780 lose("Attempt to save core after non-conservative GC failed.\n");