Fix grammar in lossage message
[sbcl.git] / src / code / numbers.lisp
blob5466a49b7218db8ac949ef98dbdf0747edfaedc6
1 ;;;; This file contains the definitions of most number functions.
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!KERNEL")
14 ;;;; the NUMBER-DISPATCH macro
16 (eval-when (:compile-toplevel :load-toplevel :execute)
18 ;;; Grovel an individual case to NUMBER-DISPATCH, augmenting RESULT
19 ;;; with the type dispatches and bodies. Result is a tree built of
20 ;;; alists representing the dispatching off each arg (in order). The
21 ;;; leaf is the body to be executed in that case.
22 (defun parse-number-dispatch (vars result types var-types body)
23 (cond ((null vars)
24 (unless (null types) (error "More types than vars."))
25 (when (cdr result)
26 (error "Duplicate case: ~S." body))
27 (setf (cdr result)
28 (sublis var-types body :test #'equal)))
29 ((null types)
30 (error "More vars than types."))
32 (flet ((frob (var type)
33 (parse-number-dispatch
34 (rest vars)
35 (or (assoc type (cdr result) :test #'equal)
36 (car (setf (cdr result)
37 (acons type nil (cdr result)))))
38 (rest types)
39 (acons `(dispatch-type ,var) type var-types)
40 body)))
41 (let ((type (first types))
42 (var (first vars)))
43 (if (and (consp type) (eq (first type) 'foreach))
44 (dolist (type (rest type))
45 (frob var type))
46 (frob var type)))))))
48 ;;; our guess for the preferred order in which to do type tests
49 ;;; (cheaper and/or more probable first.)
50 (defparameter *type-test-ordering*
51 '(fixnum single-float double-float integer #!+long-float long-float
52 sb!vm:signed-word word bignum
53 complex ratio))
55 ;;; Should TYPE1 be tested before TYPE2?
56 (defun type-test-order (type1 type2)
57 (let ((o1 (position type1 *type-test-ordering*))
58 (o2 (position type2 *type-test-ordering*)))
59 (cond ((not o1) nil)
60 ((not o2) t)
62 (< o1 o2)))))
64 ;;; Return an ETYPECASE form that does the type dispatch, ordering the
65 ;;; cases for efficiency.
66 ;;; Check for some simple to detect problematic cases where the caller
67 ;;; used types that are not disjoint and where this may lead to
68 ;;; unexpected behaviour of the generated form, for example making
69 ;;; a clause unreachable, and throw an error if such a case is found.
70 ;;; An example:
71 ;;; (number-dispatch ((var1 integer) (var2 float))
72 ;;; ((fixnum single-float) a)
73 ;;; ((integer float) b))
74 ;;; Even though the types are not reordered here, the generated form,
75 ;;; basically
76 ;;; (etypecase var1
77 ;;; (fixnum (etypecase var2
78 ;;; (single-float a)))
79 ;;; (integer (etypecase var2
80 ;;; (float b))))
81 ;;; would fail at runtime if given var1 fixnum and var2 double-float,
82 ;;; even though the second clause matches this signature. To catch
83 ;;; this earlier than runtime we throw an error already here.
84 (defun generate-number-dispatch (vars error-tags cases)
85 (if vars
86 (let ((var (first vars))
87 (cases (sort cases #'type-test-order :key #'car)))
88 (flet ((error-if-sub-or-supertype (type1 type2)
89 (when (or (subtypep type1 type2)
90 (subtypep type2 type1))
91 (error "Types not disjoint: ~S ~S." type1 type2)))
92 (error-if-supertype (type1 type2)
93 (when (subtypep type2 type1)
94 (error "Type ~S ordered before subtype ~S."
95 type1 type2)))
96 (test-type-pairs (fun)
97 ;; Apply FUN to all (ordered) pairs of types from the
98 ;; cases.
99 (mapl (lambda (cases)
100 (when (cdr cases)
101 (let ((type1 (caar cases)))
102 (dolist (case (cdr cases))
103 (funcall fun type1 (car case))))))
104 cases)))
105 ;; For the last variable throw an error if a type is followed
106 ;; by a subtype, for all other variables additionally if a
107 ;; type is followed by a supertype.
108 (test-type-pairs (if (cdr vars)
109 #'error-if-sub-or-supertype
110 #'error-if-supertype)))
111 `((typecase ,var
112 ,@(mapcar (lambda (case)
113 `(,(first case)
114 ,@(generate-number-dispatch (rest vars)
115 (rest error-tags)
116 (cdr case))))
117 cases)
118 (t (go ,(first error-tags))))))
119 cases))
121 ) ; EVAL-WHEN
123 ;;; This is a vaguely case-like macro that does number cross-product
124 ;;; dispatches. The Vars are the variables we are dispatching off of.
125 ;;; The Type paired with each Var is used in the error message when no
126 ;;; case matches. Each case specifies a Type for each var, and is
127 ;;; executed when that signature holds. A type may be a list
128 ;;; (FOREACH Each-Type*), causing that case to be repeatedly
129 ;;; instantiated for every Each-Type. In the body of each case, any
130 ;;; list of the form (DISPATCH-TYPE Var-Name) is substituted with the
131 ;;; type of that var in that instance of the case.
133 ;;; As an alternate to a case spec, there may be a form whose CAR is a
134 ;;; symbol. In this case, we apply the CAR of the form to the CDR and
135 ;;; treat the result of the call as a list of cases. This process is
136 ;;; not applied recursively.
138 ;;; Be careful when using non-disjoint types in different cases for the
139 ;;; same variable. Some uses will behave as intended, others not, as the
140 ;;; variables are dispatched off sequentially and clauses are reordered
141 ;;; for efficiency. Some, but not all, problematic cases are detected
142 ;;; and lead to a compile time error; see GENERATE-NUMBER-DISPATCH above
143 ;;; for an example.
144 (defmacro number-dispatch (var-specs &body cases)
145 (let ((res (list nil))
146 (vars (mapcar #'car var-specs))
147 (block (gensym)))
148 (dolist (case cases)
149 (if (symbolp (first case))
150 (let ((cases (apply (symbol-function (first case)) (rest case))))
151 (dolist (case cases)
152 (parse-number-dispatch vars res (first case) nil (rest case))))
153 (parse-number-dispatch vars res (first case) nil (rest case))))
155 (collect ((errors)
156 (error-tags))
157 (dolist (spec var-specs)
158 (let ((var (first spec))
159 (type (second spec))
160 (tag (gensym)))
161 (error-tags tag)
162 (errors tag)
163 (errors
164 (let ((interr-symbol
165 (sb!c::%interr-symbol-for-type-spec type)))
166 (if interr-symbol
167 `(sb!c::%type-check-error/c ,var ',interr-symbol)
168 `(sb!c::%type-check-error ,var ',type))))))
170 `(block ,block
171 (tagbody
172 (return-from ,block
173 ,@(generate-number-dispatch vars (error-tags)
174 (cdr res)))
175 ,@(errors))))))
177 ;;;; binary operation dispatching utilities
179 (eval-when (:compile-toplevel :execute)
181 ;;; Return NUMBER-DISPATCH forms for rational X float.
182 (defun float-contagion (op x y &optional (rat-types '(fixnum bignum ratio)))
183 `(((single-float single-float) (,op ,x ,y))
184 (((foreach ,@rat-types)
185 (foreach single-float double-float #!+long-float long-float))
186 (,op (coerce ,x '(dispatch-type ,y)) ,y))
187 (((foreach single-float double-float #!+long-float long-float)
188 (foreach ,@rat-types))
189 (,op ,x (coerce ,y '(dispatch-type ,x))))
190 #!+long-float
191 (((foreach single-float double-float long-float) long-float)
192 (,op (coerce ,x 'long-float) ,y))
193 #!+long-float
194 ((long-float (foreach single-float double-float))
195 (,op ,x (coerce ,y 'long-float)))
196 (((foreach single-float double-float) double-float)
197 (,op (coerce ,x 'double-float) ,y))
198 ((double-float single-float)
199 (,op ,x (coerce ,y 'double-float)))))
201 ;;; Return NUMBER-DISPATCH forms for bignum X fixnum.
202 (defun bignum-cross-fixnum (fix-op big-op)
203 `(((fixnum fixnum) (,fix-op x y))
204 ((fixnum bignum)
205 (,big-op (make-small-bignum x) y))
206 ((bignum fixnum)
207 (,big-op x (make-small-bignum y)))
208 ((bignum bignum)
209 (,big-op x y))))
211 ) ; EVAL-WHEN
213 ;;;; canonicalization utilities
215 ;;; If IMAGPART is 0, return REALPART, otherwise make a complex. This is
216 ;;; used when we know that REALPART and IMAGPART are the same type, but
217 ;;; rational canonicalization might still need to be done.
218 #!-sb-fluid (declaim (inline canonical-complex))
219 (defun canonical-complex (realpart imagpart)
220 (if (eql imagpart 0)
221 realpart
222 (cond #!+long-float
223 ((and (typep realpart 'long-float)
224 (typep imagpart 'long-float))
225 (truly-the (complex long-float) (complex realpart imagpart)))
226 ((and (typep realpart 'double-float)
227 (typep imagpart 'double-float))
228 (truly-the (complex double-float) (complex realpart imagpart)))
229 ((and (typep realpart 'single-float)
230 (typep imagpart 'single-float))
231 (truly-the (complex single-float) (complex realpart imagpart)))
233 (%make-complex realpart imagpart)))))
235 ;;; Given a numerator and denominator with the GCD already divided
236 ;;; out, make a canonical rational. We make the denominator positive,
237 ;;; and check whether it is 1.
238 #!-sb-fluid (declaim (inline build-ratio))
239 (defun build-ratio (num den)
240 (multiple-value-bind (num den)
241 (if (minusp den)
242 (values (- num) (- den))
243 (values num den))
244 (cond
245 ((eql den 0)
246 (error 'division-by-zero
247 :operands (list num den)
248 :operation 'build-ratio))
249 ((eql den 1) num)
250 (t (%make-ratio num den)))))
252 ;;; Truncate X and Y, but bum the case where Y is 1.
253 #!-sb-fluid (declaim (inline maybe-truncate))
254 (defun maybe-truncate (x y)
255 (if (eql y 1)
257 (truncate x y)))
259 ;;;; COMPLEXes
261 (defun complex (realpart &optional (imagpart 0))
262 #!+sb-doc
263 "Return a complex number with the specified real and imaginary components."
264 (declare (explicit-check))
265 (flet ((%%make-complex (realpart imagpart)
266 (cond #!+long-float
267 ((and (typep realpart 'long-float)
268 (typep imagpart 'long-float))
269 (truly-the (complex long-float)
270 (complex realpart imagpart)))
271 ((and (typep realpart 'double-float)
272 (typep imagpart 'double-float))
273 (truly-the (complex double-float)
274 (complex realpart imagpart)))
275 ((and (typep realpart 'single-float)
276 (typep imagpart 'single-float))
277 (truly-the (complex single-float)
278 (complex realpart imagpart)))
280 (%make-complex realpart imagpart)))))
281 (number-dispatch ((realpart real) (imagpart real))
282 ((rational rational)
283 (canonical-complex realpart imagpart))
284 (float-contagion %%make-complex realpart imagpart (rational)))))
286 (defun realpart (number)
287 #!+sb-doc
288 "Extract the real part of a number."
289 (etypecase number
290 #!+long-float
291 ((complex long-float)
292 (truly-the long-float (realpart number)))
293 ((complex double-float)
294 (truly-the double-float (realpart number)))
295 ((complex single-float)
296 (truly-the single-float (realpart number)))
297 ((complex rational)
298 (%realpart number))
299 (number
300 number)))
302 (defun imagpart (number)
303 #!+sb-doc
304 "Extract the imaginary part of a number."
305 (etypecase number
306 #!+long-float
307 ((complex long-float)
308 (truly-the long-float (imagpart number)))
309 ((complex double-float)
310 (truly-the double-float (imagpart number)))
311 ((complex single-float)
312 (truly-the single-float (imagpart number)))
313 ((complex rational)
314 (%imagpart number))
315 (float
316 (* 0 number))
317 (number
318 0)))
320 (defun conjugate (number)
321 #!+sb-doc
322 "Return the complex conjugate of NUMBER. For non-complex numbers, this is
323 an identity."
324 (declare (type number number) (explicit-check))
325 (if (complexp number)
326 (complex (realpart number) (- (imagpart number)))
327 number))
329 (defun signum (number)
330 #!+sb-doc
331 "If NUMBER is zero, return NUMBER, else return (/ NUMBER (ABS NUMBER))."
332 (declare (explicit-check))
333 (if (zerop number)
334 number
335 (number-dispatch ((number number))
336 (((foreach fixnum rational single-float double-float))
337 (if (plusp number)
338 (coerce 1 '(dispatch-type number))
339 (coerce -1 '(dispatch-type number))))
340 ((complex)
341 (/ number (abs number))))))
343 ;;;; ratios
345 (defun numerator (number)
346 #!+sb-doc
347 "Return the numerator of NUMBER, which must be rational."
348 (numerator number))
350 (defun denominator (number)
351 #!+sb-doc
352 "Return the denominator of NUMBER, which must be rational."
353 (denominator number))
355 ;;;; arithmetic operations
356 ;;;;
357 ;;;; IMPORTANT NOTE: Accessing &REST arguments with NTH is actually extremely
358 ;;;; efficient in SBCL, as is taking their LENGTH -- so this code is very
359 ;;;; clever instead of being charmingly naive. Please check that "obvious"
360 ;;;; improvements don't actually ruin performance.
361 ;;;;
362 ;;;; (Granted that the difference between very clever and charmingly naivve
363 ;;;; can sometimes be sliced exceedingly thing...)
365 (macrolet ((define-arith (op init doc)
366 #!-sb-doc (declare (ignore doc))
367 `(defun ,op (&rest numbers)
368 (declare (explicit-check))
369 #!+sb-doc ,doc
370 (if numbers
371 (let ((result (the number (fast-&rest-nth 0 numbers))))
372 (do-rest-arg ((n) numbers 1 result)
373 (setq result (,op result n))))
374 ,init))))
375 (define-arith + 0
376 "Return the sum of its arguments. With no args, returns 0.")
377 (define-arith * 1
378 "Return the product of its arguments. With no args, returns 1."))
380 (defun - (number &rest more-numbers)
381 #!+sb-doc
382 "Subtract the second and all subsequent arguments from the first;
383 or with one argument, negate the first argument."
384 (declare (explicit-check))
385 (if more-numbers
386 (let ((result number))
387 (do-rest-arg ((n) more-numbers 0 result)
388 (setf result (- result n))))
389 (- number)))
391 (defun / (number &rest more-numbers)
392 #!+sb-doc
393 "Divide the first argument by each of the following arguments, in turn.
394 With one argument, return reciprocal."
395 (declare (explicit-check))
396 (if more-numbers
397 (let ((result number))
398 (do-rest-arg ((n) more-numbers 0 result)
399 (setf result (/ result n))))
400 (/ number)))
402 (defun 1+ (number)
403 #!+sb-doc
404 "Return NUMBER + 1."
405 (declare (explicit-check))
406 (1+ number))
408 (defun 1- (number)
409 #!+sb-doc
410 "Return NUMBER - 1."
411 (declare (explicit-check))
412 (1- number))
414 (eval-when (:compile-toplevel)
416 (sb!xc:defmacro two-arg-+/- (name op big-op)
417 `(defun ,name (x y)
418 (number-dispatch ((x number) (y number))
419 (bignum-cross-fixnum ,op ,big-op)
420 (float-contagion ,op x y)
422 ((complex complex)
423 (canonical-complex (,op (realpart x) (realpart y))
424 (,op (imagpart x) (imagpart y))))
425 (((foreach bignum fixnum ratio single-float double-float
426 #!+long-float long-float) complex)
427 (complex (,op x (realpart y)) (,op 0 (imagpart y))))
428 ((complex (or rational float))
429 (complex (,op (realpart x) y) (,op (imagpart x) 0)))
431 (((foreach fixnum bignum) ratio)
432 (let* ((dy (denominator y))
433 (n (,op (* x dy) (numerator y))))
434 (%make-ratio n dy)))
435 ((ratio integer)
436 (let* ((dx (denominator x))
437 (n (,op (numerator x) (* y dx))))
438 (%make-ratio n dx)))
439 ((ratio ratio)
440 (let* ((nx (numerator x))
441 (dx (denominator x))
442 (ny (numerator y))
443 (dy (denominator y))
444 (g1 (gcd dx dy)))
445 (if (eql g1 1)
446 (%make-ratio (,op (* nx dy) (* dx ny)) (* dx dy))
447 (let* ((t2 (truncate dx g1))
448 (t1 (,op (* nx (truncate dy g1)) (* t2 ny)))
449 (g2 (gcd t1 g1)))
450 (cond ((eql t1 0) 0)
451 ((eql g2 1)
452 (%make-ratio t1 (* t2 dy)))
453 (t (let* ((nn (truncate t1 g2))
454 (t3 (truncate dy g2))
455 (nd (if (eql t2 1) t3 (* t2 t3))))
456 (if (eql nd 1) nn (%make-ratio nn nd))))))))))))
458 ) ; EVAL-WHEN
460 (two-arg-+/- two-arg-+ + add-bignums)
461 (two-arg-+/- two-arg-- - subtract-bignum)
463 (defun two-arg-* (x y)
464 (flet ((integer*ratio (x y)
465 (if (eql x 0) 0
466 (let* ((ny (numerator y))
467 (dy (denominator y))
468 (gcd (gcd x dy)))
469 (if (eql gcd 1)
470 (%make-ratio (* x ny) dy)
471 (let ((nn (* (truncate x gcd) ny))
472 (nd (truncate dy gcd)))
473 (if (eql nd 1)
475 (%make-ratio nn nd)))))))
476 (complex*real (x y)
477 (canonical-complex (* (realpart x) y) (* (imagpart x) y))))
478 (number-dispatch ((x number) (y number))
479 (float-contagion * x y)
481 ((fixnum fixnum) (multiply-fixnums x y))
482 ((bignum fixnum) (multiply-bignum-and-fixnum x y))
483 ((fixnum bignum) (multiply-bignum-and-fixnum y x))
484 ((bignum bignum) (multiply-bignums x y))
486 ((complex complex)
487 (let* ((rx (realpart x))
488 (ix (imagpart x))
489 (ry (realpart y))
490 (iy (imagpart y)))
491 (canonical-complex (- (* rx ry) (* ix iy)) (+ (* rx iy) (* ix ry)))))
492 (((foreach bignum fixnum ratio single-float double-float
493 #!+long-float long-float)
494 complex)
495 (complex*real y x))
496 ((complex (or rational float))
497 (complex*real x y))
499 (((foreach bignum fixnum) ratio) (integer*ratio x y))
500 ((ratio integer) (integer*ratio y x))
501 ((ratio ratio)
502 (let* ((nx (numerator x))
503 (dx (denominator x))
504 (ny (numerator y))
505 (dy (denominator y))
506 (g1 (gcd nx dy))
507 (g2 (gcd dx ny)))
508 (build-ratio (* (maybe-truncate nx g1)
509 (maybe-truncate ny g2))
510 (* (maybe-truncate dx g2)
511 (maybe-truncate dy g1))))))))
513 ;;; Divide two integers, producing a canonical rational. If a fixnum,
514 ;;; we see whether they divide evenly before trying the GCD. In the
515 ;;; bignum case, we don't bother, since bignum division is expensive,
516 ;;; and the test is not very likely to succeed.
517 (defun integer-/-integer (x y)
518 (if (and (typep x 'fixnum) (typep y 'fixnum))
519 (multiple-value-bind (quo rem) (truncate x y)
520 (if (zerop rem)
522 (let ((gcd (gcd x y)))
523 (declare (fixnum gcd))
524 (if (eql gcd 1)
525 (build-ratio x y)
526 (build-ratio (truncate x gcd) (truncate y gcd))))))
527 (let ((gcd (gcd x y)))
528 (if (eql gcd 1)
529 (build-ratio x y)
530 (build-ratio (truncate x gcd) (truncate y gcd))))))
532 (defun two-arg-/ (x y)
533 (number-dispatch ((x number) (y number))
534 (float-contagion / x y (ratio integer))
536 ((complex complex)
537 (let* ((rx (realpart x))
538 (ix (imagpart x))
539 (ry (realpart y))
540 (iy (imagpart y)))
541 (if (> (abs ry) (abs iy))
542 (let* ((r (/ iy ry))
543 (dn (* ry (+ 1 (* r r)))))
544 (canonical-complex (/ (+ rx (* ix r)) dn)
545 (/ (- ix (* rx r)) dn)))
546 (let* ((r (/ ry iy))
547 (dn (* iy (+ 1 (* r r)))))
548 (canonical-complex (/ (+ (* rx r) ix) dn)
549 (/ (- (* ix r) rx) dn))))))
550 (((foreach integer ratio single-float double-float) complex)
551 (let* ((ry (realpart y))
552 (iy (imagpart y)))
553 (if (> (abs ry) (abs iy))
554 (let* ((r (/ iy ry))
555 (dn (* ry (+ 1 (* r r)))))
556 (canonical-complex (/ x dn)
557 (/ (- (* x r)) dn)))
558 (let* ((r (/ ry iy))
559 (dn (* iy (+ 1 (* r r)))))
560 (canonical-complex (/ (* x r) dn)
561 (/ (- x) dn))))))
562 ((complex (or rational float))
563 (canonical-complex (/ (realpart x) y)
564 (/ (imagpart x) y)))
566 ((ratio ratio)
567 (let* ((nx (numerator x))
568 (dx (denominator x))
569 (ny (numerator y))
570 (dy (denominator y))
571 (g1 (gcd nx ny))
572 (g2 (gcd dx dy)))
573 (build-ratio (* (maybe-truncate nx g1) (maybe-truncate dy g2))
574 (* (maybe-truncate dx g2) (maybe-truncate ny g1)))))
576 ((integer integer)
577 (integer-/-integer x y))
579 ((integer ratio)
580 (if (zerop x)
582 (let* ((ny (numerator y))
583 (dy (denominator y))
584 (gcd (gcd x ny)))
585 (build-ratio (* (maybe-truncate x gcd) dy)
586 (maybe-truncate ny gcd)))))
588 ((ratio integer)
589 (let* ((nx (numerator x))
590 (gcd (gcd nx y)))
591 (build-ratio (maybe-truncate nx gcd)
592 (* (maybe-truncate y gcd) (denominator x)))))))
594 (defun %negate (n)
595 (declare (explicit-check))
596 (number-dispatch ((n number))
597 (((foreach fixnum single-float double-float #!+long-float long-float))
598 (%negate n))
599 ((bignum)
600 (negate-bignum n))
601 ((ratio)
602 (%make-ratio (- (numerator n)) (denominator n)))
603 ((complex)
604 (complex (- (realpart n)) (- (imagpart n))))))
606 ;;;; TRUNCATE and friends
608 (defun truncate (number &optional (divisor 1))
609 #!+sb-doc
610 "Return number (or number/divisor) as an integer, rounded toward 0.
611 The second returned value is the remainder."
612 (declare (explicit-check))
613 (macrolet ((truncate-float (rtype)
614 `(let* ((float-div (coerce divisor ',rtype))
615 (res (%unary-truncate (/ number float-div))))
616 (values res
617 (- number
618 (* (coerce res ',rtype) float-div))))))
619 (number-dispatch ((number real) (divisor real))
620 ((fixnum fixnum) (truncate number divisor))
621 (((foreach fixnum bignum) ratio)
622 (if (= (numerator divisor) 1)
623 (values (* number (denominator divisor)) 0)
624 (multiple-value-bind (quot rem)
625 (truncate (* number (denominator divisor))
626 (numerator divisor))
627 (values quot (/ rem (denominator divisor))))))
628 ((fixnum bignum)
629 (bignum-truncate (make-small-bignum number) divisor))
630 ((ratio (or float rational))
631 (let ((q (truncate (numerator number)
632 (* (denominator number) divisor))))
633 (values q (- number (* q divisor)))))
634 ((bignum fixnum)
635 (bignum-truncate number (make-small-bignum divisor)))
636 ((bignum bignum)
637 (bignum-truncate number divisor))
639 (((foreach single-float double-float #!+long-float long-float)
640 (or rational single-float))
641 (if (eql divisor 1)
642 (let ((res (%unary-truncate number)))
643 (values res (- number (coerce res '(dispatch-type number)))))
644 (truncate-float (dispatch-type number))))
645 #!+long-float
646 ((long-float (or single-float double-float long-float))
647 (truncate-float long-float))
648 #!+long-float
649 (((foreach double-float single-float) long-float)
650 (truncate-float long-float))
651 ((double-float (or single-float double-float))
652 (truncate-float double-float))
653 ((single-float double-float)
654 (truncate-float double-float))
655 (((foreach fixnum bignum ratio)
656 (foreach single-float double-float #!+long-float long-float))
657 (truncate-float (dispatch-type divisor))))))
659 (defun %multiply-high (x y)
660 (declare (type word x y))
661 (%multiply-high x y))
663 (defun floor (number &optional (divisor 1))
664 #!+sb-doc
665 "Return the greatest integer not greater than number, or number/divisor.
666 The second returned value is (mod number divisor)."
667 (declare (explicit-check))
668 (floor number divisor))
670 (defun ceiling (number &optional (divisor 1))
671 #!+sb-doc
672 "Return the smallest integer not less than number, or number/divisor.
673 The second returned value is the remainder."
674 (declare (explicit-check))
675 (ceiling number divisor))
677 (defun rem (number divisor)
678 #!+sb-doc
679 "Return second result of TRUNCATE."
680 (declare (explicit-check))
681 (rem number divisor))
683 (defun mod (number divisor)
684 #!+sb-doc
685 "Return second result of FLOOR."
686 (declare (explicit-check))
687 (mod number divisor))
689 (defun round (number &optional (divisor 1))
690 #!+sb-doc
691 "Rounds number (or number/divisor) to nearest integer.
692 The second returned value is the remainder."
693 (declare (explicit-check))
694 (if (eql divisor 1)
695 (round number)
696 (multiple-value-bind (tru rem) (truncate number divisor)
697 (if (zerop rem)
698 (values tru rem)
699 (let ((thresh (/ (abs divisor) 2)))
700 (cond ((or (> rem thresh)
701 (and (= rem thresh) (oddp tru)))
702 (if (minusp divisor)
703 (values (- tru 1) (+ rem divisor))
704 (values (+ tru 1) (- rem divisor))))
705 ((let ((-thresh (- thresh)))
706 (or (< rem -thresh)
707 (and (= rem -thresh) (oddp tru))))
708 (if (minusp divisor)
709 (values (+ tru 1) (- rem divisor))
710 (values (- tru 1) (+ rem divisor))))
711 (t (values tru rem))))))))
713 (defmacro !define-float-rounding-function (name op doc)
714 `(defun ,name (number &optional (divisor 1))
715 ,doc
716 (multiple-value-bind (res rem) (,op number divisor)
717 (values (float res (if (floatp rem) rem 1.0)) rem))))
719 ;;; Declare these guys inline to let them get optimized a little.
720 ;;; ROUND and FROUND are not declared inline since they seem too
721 ;;; obscure and too big to inline-expand by default. Also, this gives
722 ;;; the compiler a chance to pick off the unary float case.
723 #!-sb-fluid (declaim (inline fceiling ffloor ftruncate))
724 (defun ftruncate (number &optional (divisor 1))
725 #!+sb-doc
726 "Same as TRUNCATE, but returns first value as a float."
727 (declare (explicit-check))
728 (macrolet ((ftruncate-float (rtype)
729 `(let* ((float-div (coerce divisor ',rtype))
730 (res (%unary-ftruncate (/ number float-div))))
731 (values res
732 (- number
733 (* (coerce res ',rtype) float-div))))))
734 (number-dispatch ((number real) (divisor real))
735 (((foreach fixnum bignum ratio) (or fixnum bignum ratio))
736 (multiple-value-bind (q r)
737 (truncate number divisor)
738 (values (float q) r)))
739 (((foreach single-float double-float #!+long-float long-float)
740 (or rational single-float))
741 (if (eql divisor 1)
742 (let ((res (%unary-ftruncate number)))
743 (values res (- number (coerce res '(dispatch-type number)))))
744 (ftruncate-float (dispatch-type number))))
745 #!+long-float
746 ((long-float (or single-float double-float long-float))
747 (ftruncate-float long-float))
748 #!+long-float
749 (((foreach double-float single-float) long-float)
750 (ftruncate-float long-float))
751 ((double-float (or single-float double-float))
752 (ftruncate-float double-float))
753 ((single-float double-float)
754 (ftruncate-float double-float))
755 (((foreach fixnum bignum ratio)
756 (foreach single-float double-float #!+long-float long-float))
757 (ftruncate-float (dispatch-type divisor))))))
759 (defun ffloor (number &optional (divisor 1))
760 #!+sb-doc
761 "Same as FLOOR, but returns first value as a float."
762 (declare (explicit-check))
763 (multiple-value-bind (tru rem) (ftruncate number divisor)
764 (if (and (not (zerop rem))
765 (if (minusp divisor)
766 (plusp number)
767 (minusp number)))
768 (values (1- tru) (+ rem divisor))
769 (values tru rem))))
771 (defun fceiling (number &optional (divisor 1))
772 #!+sb-doc
773 "Same as CEILING, but returns first value as a float."
774 (declare (explicit-check))
775 (multiple-value-bind (tru rem) (ftruncate number divisor)
776 (if (and (not (zerop rem))
777 (if (minusp divisor)
778 (minusp number)
779 (plusp number)))
780 (values (+ tru 1) (- rem divisor))
781 (values tru rem))))
783 ;;; FIXME: this probably needs treatment similar to the use of
784 ;;; %UNARY-FTRUNCATE for FTRUNCATE.
785 (defun fround (number &optional (divisor 1))
786 #!+sb-doc
787 "Same as ROUND, but returns first value as a float."
788 (declare (explicit-check))
789 (multiple-value-bind (res rem)
790 (round number divisor)
791 (values (float res (if (floatp rem) rem 1.0)) rem)))
793 ;;;; comparisons
795 (defun = (number &rest more-numbers)
796 #!+sb-doc
797 "Return T if all of its arguments are numerically equal, NIL otherwise."
798 (declare (number number) (explicit-check))
799 (do-rest-arg ((n i) more-numbers 0 t)
800 (unless (= number n)
801 (return (do-rest-arg ((n) more-numbers (1+ i))
802 (the number n)))))) ; for effect
804 (defun /= (number &rest more-numbers)
805 #!+sb-doc
806 "Return T if no two of its arguments are numerically equal, NIL otherwise."
807 (declare (number number) (explicit-check))
808 (if more-numbers
809 (do ((n number (nth i more-numbers))
810 (i 0 (1+ i)))
811 ((>= i (length more-numbers))
813 (do-rest-arg ((n2) more-numbers i)
814 (when (= n n2)
815 (return-from /= nil))))
818 (macrolet ((def (op doc)
819 (declare (ignorable doc))
820 `(defun ,op (number &rest more-numbers)
821 #!+sb-doc ,doc
822 (declare (explicit-check))
823 (let ((n1 number))
824 (declare (real n1))
825 (do-rest-arg ((n2 i) more-numbers 0 t)
826 (if (,op n1 n2)
827 (setf n1 n2)
828 (return (do-rest-arg ((n) more-numbers (1+ i))
829 (the real n))))))))) ; for effect
830 (def < "Return T if its arguments are in strictly increasing order, NIL otherwise.")
831 (def > "Return T if its arguments are in strictly decreasing order, NIL otherwise.")
832 (def <= "Return T if arguments are in strictly non-decreasing order, NIL otherwise.")
833 (def >= "Return T if arguments are in strictly non-increasing order, NIL otherwise."))
835 (defun max (number &rest more-numbers)
836 #!+sb-doc
837 "Return the greatest of its arguments; among EQUALP greatest, return
838 the first."
839 (declare (explicit-check))
840 (let ((n number))
841 (declare (real n))
842 (do-rest-arg ((arg) more-numbers 0 n)
843 (when (> arg n)
844 (setf n arg)))))
846 (defun min (number &rest more-numbers)
847 #!+sb-doc
848 "Return the least of its arguments; among EQUALP least, return
849 the first."
850 (declare (explicit-check))
851 (let ((n number))
852 (declare (real n))
853 (do-rest-arg ((arg) more-numbers 0 n)
854 (when (< arg n)
855 (setf n arg)))))
857 (defmacro make-fixnum-float-comparer (operation integer float float-type)
858 (multiple-value-bind (min max)
859 (ecase float-type
860 (single-float
861 (values most-negative-fixnum-single-float most-positive-fixnum-single-float))
862 (double-float
863 (values most-negative-fixnum-double-float most-positive-fixnum-double-float)))
864 ` (cond ((> ,float ,max)
865 ,(ecase operation
866 ((= >) nil)
867 (< t)))
868 ((< ,float ,min)
869 ,(ecase operation
870 ((= <) nil)
871 (> t)))
873 (let ((quot (%unary-truncate ,float)))
874 ,(ecase operation
876 `(and (= quot ,integer)
877 (= (float quot ,float) ,float)))
879 `(cond ((> ,integer quot))
880 ((< ,integer quot)
881 nil)
882 ((<= ,integer 0)
883 (> (float quot ,float) ,float))))
885 `(cond ((< ,integer quot))
886 ((> ,integer quot)
887 nil)
888 ((>= ,integer 0)
889 (< (float quot ,float) ,float))))))))))
891 (eval-when (:compile-toplevel :execute)
892 ;;; The INFINITE-X-FINITE-Y and INFINITE-Y-FINITE-X args tell us how
893 ;;; to handle the case when X or Y is a floating-point infinity and
894 ;;; the other arg is a rational. (Section 12.1.4.1 of the ANSI spec
895 ;;; says that comparisons are done by converting the float to a
896 ;;; rational when comparing with a rational, but infinities can't be
897 ;;; converted to a rational, so we show some initiative and do it this
898 ;;; way instead.)
899 (defun basic-compare (op &key infinite-x-finite-y infinite-y-finite-x)
900 `(((fixnum fixnum) (,op x y))
901 ((single-float single-float) (,op x y))
902 #!+long-float
903 (((foreach single-float double-float long-float) long-float)
904 (,op (coerce x 'long-float) y))
905 #!+long-float
906 ((long-float (foreach single-float double-float))
907 (,op x (coerce y 'long-float)))
908 ((fixnum (foreach single-float double-float))
909 (if (float-infinity-p y)
910 ,infinite-y-finite-x
911 (make-fixnum-float-comparer ,op x y (dispatch-type y))))
912 (((foreach single-float double-float) fixnum)
913 (if (eql y 0)
914 (,op x (coerce 0 '(dispatch-type x)))
915 (if (float-infinity-p x)
916 ,infinite-x-finite-y
917 ;; Likewise
918 (make-fixnum-float-comparer ,(case op
919 (> '<)
920 (< '>)
921 (= '=))
922 y x (dispatch-type x)))))
923 (((foreach single-float double-float) double-float)
924 (,op (coerce x 'double-float) y))
925 ((double-float single-float)
926 (,op x (coerce y 'double-float)))
927 (((foreach single-float double-float #!+long-float long-float) rational)
928 (if (eql y 0)
929 (,op x (coerce 0 '(dispatch-type x)))
930 (if (float-infinity-p x)
931 ,infinite-x-finite-y
932 (,op (rational x) y))))
933 (((foreach bignum fixnum ratio) float)
934 (if (float-infinity-p y)
935 ,infinite-y-finite-x
936 (,op x (rational y))))))
937 ) ; EVAL-WHEN
940 (macrolet ((def-two-arg-</> (name op ratio-arg1 ratio-arg2 &rest cases)
941 `(defun ,name (x y)
942 (number-dispatch ((x real) (y real))
943 (basic-compare
945 :infinite-x-finite-y
946 (,op x (coerce 0 '(dispatch-type x)))
947 :infinite-y-finite-x
948 (,op (coerce 0 '(dispatch-type y)) y))
949 (((foreach fixnum bignum) ratio)
950 (,op x (,ratio-arg2 (numerator y)
951 (denominator y))))
952 ((ratio integer)
953 (,op (,ratio-arg1 (numerator x)
954 (denominator x))
956 ((ratio ratio)
957 (,op (* (numerator (truly-the ratio x))
958 (denominator (truly-the ratio y)))
959 (* (numerator (truly-the ratio y))
960 (denominator (truly-the ratio x)))))
961 ,@cases))))
962 (def-two-arg-</> two-arg-< < floor ceiling
963 ((fixnum bignum)
964 (bignum-plus-p y))
965 ((bignum fixnum)
966 (not (bignum-plus-p x)))
967 ((bignum bignum)
968 (minusp (bignum-compare x y))))
969 (def-two-arg-</> two-arg-> > ceiling floor
970 ((fixnum bignum)
971 (not (bignum-plus-p y)))
972 ((bignum fixnum)
973 (bignum-plus-p x))
974 ((bignum bignum)
975 (plusp (bignum-compare x y)))))
977 (defun two-arg-= (x y)
978 (number-dispatch ((x number) (y number))
979 (basic-compare =
980 ;; An infinite value is never equal to a finite value.
981 :infinite-x-finite-y nil
982 :infinite-y-finite-x nil)
983 ((fixnum (or bignum ratio)) nil)
985 ((bignum (or fixnum ratio)) nil)
986 ((bignum bignum)
987 (zerop (bignum-compare x y)))
989 ((ratio integer) nil)
990 ((ratio ratio)
991 (and (eql (numerator x) (numerator y))
992 (eql (denominator x) (denominator y))))
994 ((complex complex)
995 (and (= (realpart x) (realpart y))
996 (= (imagpart x) (imagpart y))))
997 (((foreach fixnum bignum ratio single-float double-float
998 #!+long-float long-float) complex)
999 (and (= x (realpart y))
1000 (zerop (imagpart y))))
1001 ((complex (or float rational))
1002 (and (= (realpart x) y)
1003 (zerop (imagpart x))))))
1005 ;;;; logicals
1007 (macrolet ((def (op init doc)
1008 #!-sb-doc (declare (ignore doc))
1009 `(defun ,op (&rest integers)
1010 #!+sb-doc ,doc
1011 (declare (explicit-check))
1012 (if integers
1013 (do ((result (fast-&rest-nth 0 integers)
1014 (,op result (fast-&rest-nth i integers)))
1015 (i 1 (1+ i)))
1016 ((>= i (length integers))
1017 result)
1018 (declare (integer result)))
1019 ,init))))
1020 (def logior 0 "Return the bit-wise or of its arguments. Args must be integers.")
1021 (def logxor 0 "Return the bit-wise exclusive or of its arguments. Args must be integers.")
1022 (def logand -1 "Return the bit-wise and of its arguments. Args must be integers.")
1023 (def logeqv -1 "Return the bit-wise equivalence of its arguments. Args must be integers."))
1025 (defun lognot (number)
1026 #!+sb-doc
1027 "Return the bit-wise logical not of integer."
1028 (declare (explicit-check))
1029 (etypecase number
1030 (fixnum (lognot (truly-the fixnum number)))
1031 (bignum (bignum-logical-not number))))
1033 (macrolet ((def (name explicit-check op big-op &optional doc)
1034 `(defun ,name (integer1 integer2)
1035 ,@(when doc (list doc))
1036 ,@(when explicit-check `((declare (explicit-check))))
1037 (let ((x integer1)
1038 (y integer2))
1039 (number-dispatch ((x integer) (y integer))
1040 (bignum-cross-fixnum ,op ,big-op))))))
1041 (def two-arg-and nil logand bignum-logical-and)
1042 (def two-arg-ior nil logior bignum-logical-ior)
1043 (def two-arg-xor nil logxor bignum-logical-xor)
1044 ;; BIGNUM-LOGICAL-{AND,IOR,XOR} need not return a bignum, so must
1045 ;; call the generic LOGNOT...
1046 (def two-arg-eqv nil logeqv (lambda (x y) (lognot (bignum-logical-xor x y))))
1047 (def lognand t lognand
1048 (lambda (x y) (lognot (bignum-logical-and x y)))
1049 #!+sb-doc "Complement the logical AND of INTEGER1 and INTEGER2.")
1050 (def lognor t lognor
1051 (lambda (x y) (lognot (bignum-logical-ior x y)))
1052 #!+sb-doc "Complement the logical OR of INTEGER1 and INTEGER2.")
1053 ;; ... but BIGNUM-LOGICAL-NOT on a bignum will always return a bignum
1054 (def logandc1 t logandc1
1055 (lambda (x y) (bignum-logical-and (bignum-logical-not x) y))
1056 #!+sb-doc "Bitwise AND (LOGNOT INTEGER1) with INTEGER2.")
1057 (def logandc2 t logandc2
1058 (lambda (x y) (bignum-logical-and x (bignum-logical-not y)))
1059 #!+sb-doc "Bitwise AND INTEGER1 with (LOGNOT INTEGER2).")
1060 (def logorc1 t logorc1
1061 (lambda (x y) (bignum-logical-ior (bignum-logical-not x) y))
1062 #!+sb-doc "Bitwise OR (LOGNOT INTEGER1) with INTEGER2.")
1063 (def logorc2 t logorc2
1064 (lambda (x y) (bignum-logical-ior x (bignum-logical-not y)))
1065 #!+sb-doc "Bitwise OR INTEGER1 with (LOGNOT INTEGER2)."))
1067 (defun logcount (integer)
1068 #!+sb-doc
1069 "Count the number of 1 bits if INTEGER is non-negative,
1070 and the number of 0 bits if INTEGER is negative."
1071 (declare (explicit-check))
1072 (etypecase integer
1073 (fixnum
1074 (logcount (truly-the (integer 0
1075 #.(max sb!xc:most-positive-fixnum
1076 (lognot sb!xc:most-negative-fixnum)))
1077 (if (minusp (truly-the fixnum integer))
1078 (lognot (truly-the fixnum integer))
1079 integer))))
1080 (bignum
1081 (bignum-logcount integer))))
1083 (defun logtest (integer1 integer2)
1084 #!+sb-doc
1085 "Predicate which returns T if logand of integer1 and integer2 is not zero."
1086 (logtest integer1 integer2))
1088 (defun logbitp (index integer)
1089 #!+sb-doc
1090 "Predicate returns T if bit index of integer is a 1."
1091 (number-dispatch ((index integer) (integer integer))
1092 ((fixnum fixnum) (if (< index sb!vm:n-positive-fixnum-bits)
1093 (not (zerop (logand integer (ash 1 index))))
1094 (minusp integer)))
1095 ((fixnum bignum) (bignum-logbitp index integer))
1096 ((bignum (foreach fixnum bignum)) (minusp integer))))
1098 (defun ash (integer count)
1099 #!+sb-doc
1100 "Shifts integer left by count places preserving sign. - count shifts right."
1101 (declare (integer integer count) (explicit-check))
1102 (etypecase integer
1103 (fixnum
1104 (cond ((zerop integer)
1106 ((fixnump count)
1107 (let ((length (integer-length (truly-the fixnum integer)))
1108 (count (truly-the fixnum count)))
1109 (declare (fixnum length count))
1110 (cond ((and (plusp count)
1111 (>= (+ length count)
1112 sb!vm:n-word-bits))
1113 (bignum-ashift-left-fixnum integer count))
1115 (truly-the (signed-byte #.sb!vm:n-word-bits)
1116 (ash (truly-the fixnum integer) count))))))
1117 ((minusp count)
1118 (if (minusp integer) -1 0))
1120 (bignum-ashift-left (make-small-bignum integer) count))))
1121 (bignum
1122 (if (plusp count)
1123 (bignum-ashift-left integer count)
1124 (bignum-ashift-right integer (- count))))))
1126 (defun integer-length (integer)
1127 #!+sb-doc
1128 "Return the number of non-sign bits in the twos-complement representation
1129 of INTEGER."
1130 (declare (explicit-check))
1131 (etypecase integer
1132 (fixnum
1133 (integer-length (truly-the fixnum integer)))
1134 (bignum
1135 (bignum-integer-length integer))))
1137 ;;;; BYTE, bytespecs, and related operations
1139 (defun byte (size position)
1140 #!+sb-doc
1141 "Return a byte specifier which may be used by other byte functions
1142 (e.g. LDB)."
1143 (byte size position))
1145 (defun byte-size (bytespec)
1146 #!+sb-doc
1147 "Return the size part of the byte specifier bytespec."
1148 (byte-size bytespec))
1150 (defun byte-position (bytespec)
1151 #!+sb-doc
1152 "Return the position part of the byte specifier bytespec."
1153 (byte-position bytespec))
1155 (defun ldb (bytespec integer)
1156 #!+sb-doc
1157 "Extract the specified byte from integer, and right justify result."
1158 (ldb bytespec integer))
1160 (defun ldb-test (bytespec integer)
1161 #!+sb-doc
1162 "Return T if any of the specified bits in integer are 1's."
1163 (ldb-test bytespec integer))
1165 (defun mask-field (bytespec integer)
1166 #!+sb-doc
1167 "Extract the specified byte from integer, but do not right justify result."
1168 (mask-field bytespec integer))
1170 (defun dpb (newbyte bytespec integer)
1171 #!+sb-doc
1172 "Return new integer with newbyte in specified position, newbyte is right justified."
1173 (dpb newbyte bytespec integer))
1175 (defun deposit-field (newbyte bytespec integer)
1176 #!+sb-doc
1177 "Return new integer with newbyte in specified position, newbyte is not right justified."
1178 (deposit-field newbyte bytespec integer))
1180 (defun %ldb (size posn integer)
1181 (declare (type bit-index size posn) (explicit-check))
1182 ;; The naive algorithm is horrible in the general case.
1183 ;; Consider (LDB (BYTE 1 2) (SOME-GIANT-BIGNUM)) which has to shift the
1184 ;; input rightward 2 bits, consing a new bignum just to read 1 bit.
1185 (if (and (<= 0 size sb!vm:n-positive-fixnum-bits)
1186 (typep integer 'bignum))
1187 (sb!bignum::ldb-bignum=>fixnum size posn integer)
1188 (logand (ash integer (- posn))
1189 (1- (ash 1 size)))))
1191 (defun %mask-field (size posn integer)
1192 (declare (type bit-index size posn) (explicit-check))
1193 (logand integer (ash (1- (ash 1 size)) posn)))
1195 (defun %dpb (newbyte size posn integer)
1196 (declare (type bit-index size posn) (explicit-check))
1197 (let ((mask (1- (ash 1 size))))
1198 (logior (logand integer (lognot (ash mask posn)))
1199 (ash (logand newbyte mask) posn))))
1201 (defun %deposit-field (newbyte size posn integer)
1202 (declare (type bit-index size posn) (explicit-check))
1203 (let ((mask (ash (ldb (byte size 0) -1) posn)))
1204 (logior (logand newbyte mask)
1205 (logand integer (lognot mask)))))
1207 (defun sb!c::mask-signed-field (size integer)
1208 #!+sb-doc
1209 "Extract SIZE lower bits from INTEGER, considering them as a
1210 2-complement SIZE-bits representation of a signed integer."
1211 (macrolet ((msf (size integer)
1212 `(if (logbitp (1- ,size) ,integer)
1213 (dpb ,integer (byte (1- ,size) 0) -1)
1214 (ldb (byte (1- ,size) 0) ,integer))))
1215 (typecase size
1216 ((eql 0) 0)
1217 ((integer 1 #.sb!vm:n-fixnum-bits)
1218 (number-dispatch ((integer integer))
1219 ((fixnum) (msf size integer))
1220 ((bignum) (let ((fix (sb!c::mask-signed-field #.sb!vm:n-fixnum-bits (%bignum-ref integer 0))))
1221 (if (= size #.sb!vm:n-fixnum-bits)
1223 (msf size fix))))))
1224 ((integer (#.sb!vm:n-fixnum-bits) #.sb!vm:n-word-bits)
1225 (number-dispatch ((integer integer))
1226 ((fixnum) integer)
1227 ((bignum) (let ((word (sb!c::mask-signed-field #.sb!vm:n-word-bits (%bignum-ref integer 0))))
1228 (if (= size #.sb!vm:n-word-bits)
1229 word
1230 (msf size word))))))
1231 ((unsigned-byte) (msf size integer)))))
1233 ;;;; BOOLE
1235 (defun boole (op integer1 integer2)
1236 #!+sb-doc
1237 "Bit-wise boolean function on two integers. Function chosen by OP:
1238 0 BOOLE-CLR
1239 1 BOOLE-SET
1240 2 BOOLE-1
1241 3 BOOLE-2
1242 4 BOOLE-C1
1243 5 BOOLE-C2
1244 6 BOOLE-AND
1245 7 BOOLE-IOR
1246 8 BOOLE-XOR
1247 9 BOOLE-EQV
1248 10 BOOLE-NAND
1249 11 BOOLE-NOR
1250 12 BOOLE-ANDC1
1251 13 BOOLE-ANDC2
1252 14 BOOLE-ORC1
1253 15 BOOLE-ORC2"
1254 (case op
1255 (0 (boole 0 integer1 integer2))
1256 (1 (boole 1 integer1 integer2))
1257 (2 (boole 2 integer1 integer2))
1258 (3 (boole 3 integer1 integer2))
1259 (4 (boole 4 integer1 integer2))
1260 (5 (boole 5 integer1 integer2))
1261 (6 (boole 6 integer1 integer2))
1262 (7 (boole 7 integer1 integer2))
1263 (8 (boole 8 integer1 integer2))
1264 (9 (boole 9 integer1 integer2))
1265 (10 (boole 10 integer1 integer2))
1266 (11 (boole 11 integer1 integer2))
1267 (12 (boole 12 integer1 integer2))
1268 (13 (boole 13 integer1 integer2))
1269 (14 (boole 14 integer1 integer2))
1270 (15 (boole 15 integer1 integer2))
1271 (t (error 'type-error :datum op :expected-type '(mod 16)))))
1273 ;;;; GCD and LCM
1275 (defun gcd (&rest integers)
1276 #!+sb-doc
1277 "Return the greatest common divisor of the arguments, which must be
1278 integers. GCD with no arguments is defined to be 0."
1279 (declare (explicit-check))
1280 (case (length integers)
1281 (0 0)
1282 (1 (abs (the integer (fast-&rest-nth 0 integers))))
1283 (otherwise
1284 (do ((result (fast-&rest-nth 0 integers)
1285 (gcd result (the integer (fast-&rest-nth i integers))))
1286 (i 1 (1+ i)))
1287 ((>= i (length integers))
1288 result)
1289 (declare (integer result))))))
1291 (defun lcm (&rest integers)
1292 #!+sb-doc
1293 "Return the least common multiple of one or more integers. LCM of no
1294 arguments is defined to be 1."
1295 (declare (explicit-check))
1296 (case (length integers)
1297 (0 1)
1298 (1 (abs (the integer (fast-&rest-nth 0 integers))))
1299 (otherwise
1300 (do ((result (fast-&rest-nth 0 integers)
1301 (lcm result (the integer (fast-&rest-nth i integers))))
1302 (i 1 (1+ i)))
1303 ((>= i (length integers))
1304 result)
1305 (declare (integer result))))))
1307 (defun two-arg-lcm (n m)
1308 (declare (integer n m))
1309 (if (or (zerop n) (zerop m))
1311 ;; KLUDGE: I'm going to assume that it was written this way
1312 ;; originally for a reason. However, this is a somewhat
1313 ;; complicated way of writing the algorithm in the CLHS page for
1314 ;; LCM, and I don't know why. To be investigated. -- CSR,
1315 ;; 2003-09-11
1317 ;; It seems to me that this is written this way to avoid
1318 ;; unnecessary bignumification of intermediate results.
1319 ;; -- TCR, 2008-03-05
1320 (let ((m (abs m))
1321 (n (abs n)))
1322 (multiple-value-bind (max min)
1323 (if (> m n)
1324 (values m n)
1325 (values n m))
1326 (* (truncate max (gcd n m)) min)))))
1328 ;;; Do the GCD of two integer arguments. With fixnum arguments, we use the
1329 ;;; binary GCD algorithm from Knuth's seminumerical algorithms (slightly
1330 ;;; structurified), otherwise we call BIGNUM-GCD. We pick off the special case
1331 ;;; of 0 before the dispatch so that the bignum code doesn't have to worry
1332 ;;; about "small bignum" zeros.
1333 (defun two-arg-gcd (u v)
1334 (cond ((eql u 0) (abs v))
1335 ((eql v 0) (abs u))
1337 (number-dispatch ((u integer) (v integer))
1338 ((fixnum fixnum)
1339 (locally
1340 (declare (optimize (speed 3) (safety 0)))
1341 (do ((k 0 (1+ k))
1342 (u (abs u) (ash u -1))
1343 (v (abs v) (ash v -1)))
1344 ((oddp (logior u v))
1345 (do ((temp (if (oddp u) (- v) (ash u -1))
1346 (ash temp -1)))
1347 (nil)
1348 (declare (fixnum temp))
1349 (when (oddp temp)
1350 (if (plusp temp)
1351 (setq u temp)
1352 (setq v (- temp)))
1353 (setq temp (- u v))
1354 (when (zerop temp)
1355 (let ((res (ash u k)))
1356 (declare (type sb!vm:signed-word res)
1357 (optimize (inhibit-warnings 3)))
1358 (return res))))))
1359 (declare (type (mod #.sb!vm:n-word-bits) k)
1360 (type sb!vm:signed-word u v)))))
1361 ((bignum bignum)
1362 (bignum-gcd u v))
1363 ((bignum fixnum)
1364 (bignum-gcd u (make-small-bignum v)))
1365 ((fixnum bignum)
1366 (bignum-gcd (make-small-bignum u) v))))))
1368 ;;; from Robert Smith; changed not to cons unnecessarily, and tuned for
1369 ;;; faster operation on fixnum inputs by compiling the central recursive
1370 ;;; algorithm twice, once using generic and once fixnum arithmetic, and
1371 ;;; dispatching on function entry into the applicable part. For maximum
1372 ;;; speed, the fixnum part recurs into itself, thereby avoiding further
1373 ;;; type dispatching. This pattern is not supported by NUMBER-DISPATCH
1374 ;;; thus some special-purpose macrology is needed.
1375 (defun isqrt (n)
1376 #!+sb-doc
1377 "Return the greatest integer less than or equal to the square root of N."
1378 (declare (type unsigned-byte n) (explicit-check))
1379 (macrolet
1380 ((isqrt-recursion (arg recurse fixnum-p)
1381 ;; Expands into code for the recursive step of the ISQRT
1382 ;; calculation. ARG is the input variable and RECURSE the name
1383 ;; of the function to recur into. If FIXNUM-P is true, some
1384 ;; type declarations are added that, together with ARG being
1385 ;; declared as a fixnum outside of here, make the resulting code
1386 ;; compile into fixnum-specialized code without any calls to
1387 ;; generic arithmetic. Else, the code works for bignums, too.
1388 ;; The input must be at least 16 to ensure that RECURSE is called
1389 ;; with a strictly smaller number and that the result is correct
1390 ;; (provided that RECURSE correctly implements ISQRT, itself).
1391 `(macrolet ((if-fixnum-p-truly-the (type expr)
1392 ,@(if fixnum-p
1393 '(`(truly-the ,type ,expr))
1394 '((declare (ignore type))
1395 expr))))
1396 (let* ((fourth-size (ash (1- (integer-length ,arg)) -2))
1397 (significant-half (ash ,arg (- (ash fourth-size 1))))
1398 (significant-half-isqrt
1399 (if-fixnum-p-truly-the
1400 (integer 1 #.(isqrt sb!xc:most-positive-fixnum))
1401 (,recurse significant-half)))
1402 (zeroth-iteration (ash significant-half-isqrt
1403 fourth-size)))
1404 (multiple-value-bind (quot rem)
1405 (floor ,arg zeroth-iteration)
1406 (let ((first-iteration (ash (+ zeroth-iteration quot) -1)))
1407 (cond ((oddp quot)
1408 first-iteration)
1409 ((> (if-fixnum-p-truly-the
1410 fixnum
1411 (expt (- first-iteration zeroth-iteration) 2))
1412 rem)
1413 (1- first-iteration))
1415 first-iteration))))))))
1416 (typecase n
1417 (fixnum (labels ((fixnum-isqrt (n)
1418 (declare (type fixnum n))
1419 (cond ((> n 24)
1420 (isqrt-recursion n fixnum-isqrt t))
1421 ((> n 15) 4)
1422 ((> n 8) 3)
1423 ((> n 3) 2)
1424 ((> n 0) 1)
1425 ((= n 0) 0))))
1426 (fixnum-isqrt n)))
1427 (bignum (isqrt-recursion n isqrt nil)))))
1429 ;;;; miscellaneous number predicates
1431 (macrolet ((def (name doc)
1432 (declare (ignorable doc))
1433 `(defun ,name (number) #!+sb-doc ,doc
1434 (declare (explicit-check))
1435 (,name number))))
1436 (def zerop "Is this number zero?")
1437 (def plusp "Is this real number strictly positive?")
1438 (def minusp "Is this real number strictly negative?")
1439 (def oddp "Is this integer odd?")
1440 (def evenp "Is this integer even?"))
1442 ;;;; modular functions
1444 (collect ((forms))
1445 (flet ((unsigned-definition (name lambda-list width)
1446 (let ((pattern (1- (ash 1 width))))
1447 `(defun ,name ,(copy-list lambda-list)
1448 (flet ((prepare-argument (x)
1449 (declare (integer x))
1450 (etypecase x
1451 ((unsigned-byte ,width) x)
1452 (fixnum (logand x ,pattern))
1453 (bignum (logand x ,pattern)))))
1454 (,name ,@(loop for arg in lambda-list
1455 collect `(prepare-argument ,arg)))))))
1456 (signed-definition (name lambda-list width)
1457 `(defun ,name ,(copy-list lambda-list)
1458 (flet ((prepare-argument (x)
1459 (declare (integer x))
1460 (etypecase x
1461 ((signed-byte ,width) x)
1462 (fixnum (sb!c::mask-signed-field ,width x))
1463 (bignum (sb!c::mask-signed-field ,width x)))))
1464 (,name ,@(loop for arg in lambda-list
1465 collect `(prepare-argument ,arg)))))))
1466 (flet ((do-mfuns (class)
1467 (loop for infos being each hash-value of (sb!c::modular-class-funs class)
1468 ;; FIXME: We need to process only "toplevel" functions
1469 when (listp infos)
1470 do (loop for info in infos
1471 for name = (sb!c::modular-fun-info-name info)
1472 and width = (sb!c::modular-fun-info-width info)
1473 and signedp = (sb!c::modular-fun-info-signedp info)
1474 and lambda-list = (sb!c::modular-fun-info-lambda-list info)
1475 if signedp
1476 do (forms (signed-definition name lambda-list width))
1477 else
1478 do (forms (unsigned-definition name lambda-list width))))))
1479 (do-mfuns sb!c::*untagged-unsigned-modular-class*)
1480 (do-mfuns sb!c::*untagged-signed-modular-class*)
1481 (do-mfuns sb!c::*tagged-modular-class*)))
1482 `(progn ,@(sort (forms) #'string< :key #'cadr)))
1484 ;;; KLUDGE: these out-of-line definitions can't use the modular
1485 ;;; arithmetic, as that is only (currently) defined for constant
1486 ;;; shifts. See also the comment in (LOGAND OPTIMIZER) for more
1487 ;;; discussion of this hack. -- CSR, 2003-10-09
1488 #!-64-bit-registers
1489 (defun sb!vm::ash-left-mod32 (integer amount)
1490 (etypecase integer
1491 ((unsigned-byte 32) (ldb (byte 32 0) (ash integer amount)))
1492 (fixnum (ldb (byte 32 0) (ash (logand integer #xffffffff) amount)))
1493 (bignum (ldb (byte 32 0) (ash (logand integer #xffffffff) amount)))))
1494 #!+64-bit-registers
1495 (defun sb!vm::ash-left-mod64 (integer amount)
1496 (etypecase integer
1497 ((unsigned-byte 64) (ldb (byte 64 0) (ash integer amount)))
1498 (fixnum (ldb (byte 64 0) (ash (logand integer #xffffffffffffffff) amount)))
1499 (bignum (ldb (byte 64 0)
1500 (ash (logand integer #xffffffffffffffff) amount)))))
1502 #!+(or x86 x86-64 arm arm64)
1503 (defun sb!vm::ash-left-modfx (integer amount)
1504 (let ((fixnum-width (- sb!vm:n-word-bits sb!vm:n-fixnum-tag-bits)))
1505 (etypecase integer
1506 (fixnum (sb!c::mask-signed-field fixnum-width (ash integer amount)))
1507 (integer (sb!c::mask-signed-field fixnum-width (ash (sb!c::mask-signed-field fixnum-width integer) amount))))))