1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;;; FIXME: where is that file?
19 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
20 ;;;; function representation" before you seriously mess with this
23 ;;; Verify that the NAME is a legal name for a variable and return a
24 ;;; VAR structure for it, filling in info if it is globally special.
25 ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
26 ;;; list of names which have previously been bound. If the NAME is in
27 ;;; this list, then we error out.
28 (declaim (ftype (sfunction (t list
&optional t
) lambda-var
) varify-lambda-arg
))
29 (defun varify-lambda-arg (name names-so-far
&optional
(context "lambda list"))
30 (declare (inline member
))
31 (unless (symbolp name
)
32 (compiler-error "~S is not a symbol, and cannot be used as a variable." name
))
33 (when (member name names-so-far
:test
#'eq
)
34 (compiler-error "The variable ~S occurs more than once in the ~A."
37 (let ((kind (info :variable
:kind name
)))
38 (cond ((keywordp name
)
39 (compiler-error "~S is a keyword, and cannot be used as a local variable."
42 (compiler-error "~@<~S names a defined constant, and cannot be used as a ~
46 (compiler-error "~@<~S names a global lexical variable, and cannot be used ~
47 as a local variable.~:@>"
50 (let ((specvar (find-free-var name
)))
51 (make-lambda-var :%source-name name
52 :type
(leaf-type specvar
)
53 :where-from
(leaf-where-from specvar
)
56 (make-lambda-var :%source-name name
)))))
58 ;;; Make the default keyword for a &KEY arg, checking that the keyword
59 ;;; isn't already used by one of the VARS.
60 (declaim (ftype (sfunction (symbol list t
) symbol
) make-keyword-for-arg
))
61 (defun make-keyword-for-arg (symbol vars keywordify
)
62 (let ((key (if (and keywordify
(not (keywordp symbol
)))
66 (let ((info (lambda-var-arg-info var
)))
68 (eq (arg-info-kind info
) :keyword
)
69 (eq (arg-info-key info
) key
))
71 "The keyword ~S appears more than once in the lambda list."
75 ;;; Parse a lambda list into a list of VAR structures, stripping off
76 ;;; any &AUX bindings. Each arg name is checked for legality, and
77 ;;; duplicate names are checked for. If an arg is globally special,
78 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
79 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
80 ;;; which contains the extra information. If we hit something losing,
81 ;;; we bug out with COMPILER-ERROR. These values are returned:
82 ;;; 1. a list of the var structures for each top level argument;
83 ;;; 2. a flag indicating whether &KEY was specified;
84 ;;; 3. a flag indicating whether other &KEY args are allowed;
85 ;;; 4. a list of the &AUX variables; and
86 ;;; 5. a list of the &AUX values.
87 (declaim (ftype (sfunction (list) (values list boolean boolean list list
))
89 (defun make-lambda-vars (list)
90 (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
91 morep more-context more-count
)
92 (parse-lambda-list list
)
93 (declare (ignore auxp
)) ; since we just iterate over AUX regardless
98 (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
99 ;; for optionals and keywords args.
100 (parse-default (spec info
)
101 (when (consp (cdr spec
))
102 (setf (arg-info-default info
) (second spec
))
103 (when (consp (cddr spec
))
104 (let* ((supplied-p (third spec
))
105 (supplied-var (varify-lambda-arg supplied-p
107 (setf (arg-info-supplied-p info
) supplied-var
)
108 (names-so-far supplied-p
)
109 (when (> (length (the list spec
)) 3)
111 "The list ~S is too long to be an arg specifier."
114 (dolist (name required
)
115 (let ((var (varify-lambda-arg name
(names-so-far))))
117 (names-so-far name
)))
119 (dolist (spec optional
)
121 (let ((var (varify-lambda-arg spec
(names-so-far))))
122 (setf (lambda-var-arg-info var
)
123 (make-arg-info :kind
:optional
))
126 (let* ((name (first spec
))
127 (var (varify-lambda-arg name
(names-so-far)))
128 (info (make-arg-info :kind
:optional
)))
129 (setf (lambda-var-arg-info var
) info
)
132 (parse-default spec info
))))
135 (let ((var (varify-lambda-arg rest
(names-so-far))))
136 (setf (lambda-var-arg-info var
) (make-arg-info :kind
:rest
))
138 (names-so-far rest
)))
141 (let ((var (varify-lambda-arg more-context
(names-so-far))))
142 (setf (lambda-var-arg-info var
)
143 (make-arg-info :kind
:more-context
))
145 (names-so-far more-context
))
146 (let ((var (varify-lambda-arg more-count
(names-so-far))))
147 (setf (lambda-var-arg-info var
)
148 (make-arg-info :kind
:more-count
))
150 (names-so-far more-count
)))
155 (let ((var (varify-lambda-arg spec
(names-so-far))))
156 (setf (lambda-var-arg-info var
)
157 (make-arg-info :kind
:keyword
158 :key
(make-keyword-for-arg spec
162 (names-so-far spec
)))
164 (let* ((name (first spec
))
165 (var (varify-lambda-arg name
(names-so-far)))
168 :key
(make-keyword-for-arg name
(vars) t
))))
169 (setf (lambda-var-arg-info var
) info
)
172 (parse-default spec info
)))
174 (let ((head (first spec
)))
175 (unless (proper-list-of-length-p head
2)
176 (error "malformed &KEY argument specifier: ~S" spec
))
177 (let* ((name (second head
))
178 (var (varify-lambda-arg name
(names-so-far)))
181 :key
(make-keyword-for-arg (first head
)
184 (setf (lambda-var-arg-info var
) info
)
187 (parse-default spec info
))))))
191 (let ((var (varify-lambda-arg spec nil
)))
194 (names-so-far spec
)))
196 (unless (proper-list-of-length-p spec
1 2)
197 (compiler-error "malformed &AUX binding specifier: ~S"
199 (let* ((name (first spec
))
200 (var (varify-lambda-arg name nil
)))
202 (aux-vals (second spec
))
203 (names-so-far name
)))))
205 (values (vars) keyp allowp
(aux-vars) (aux-vals))))))
207 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
208 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
209 ;;; converting the body. If there are no bindings, just convert the
210 ;;; body, otherwise do one binding and recurse on the rest.
212 ;;; FIXME: This could and probably should be converted to use
213 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
214 ;;; so I'm not motivated. Patches will be accepted...
215 (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals
217 (declare (type ctran start next
) (type (or lvar null
) result
)
218 (list body aux-vars aux-vals
))
220 (let ((*lexenv
* (make-lexenv :vars
(copy-list post-binding-lexenv
))))
221 (ir1-convert-progn-body start next result body
))
222 (let ((ctran (make-ctran))
223 (fun-lvar (make-lvar))
224 (fun (ir1-convert-lambda-body body
225 (list (first aux-vars
))
226 :aux-vars
(rest aux-vars
)
227 :aux-vals
(rest aux-vals
)
228 :post-binding-lexenv post-binding-lexenv
229 :debug-name
(debug-name
232 (reference-leaf start ctran fun-lvar fun
)
233 (ir1-convert-combination-args fun-lvar ctran next result
234 (list (first aux-vals
)))))
237 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
238 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
239 ;;; around the body. If there are no special bindings, we just convert
240 ;;; the body, otherwise we do one special binding and recurse on the
243 ;;; We make a cleanup and introduce it into the lexical
244 ;;; environment. If there are multiple special bindings, the cleanup
245 ;;; for the blocks will end up being the innermost one. We force NEXT
246 ;;; to start a block outside of this cleanup, causing cleanup code to
247 ;;; be emitted when the scope is exited.
248 (defun ir1-convert-special-bindings
249 (start next result body aux-vars aux-vals svars post-binding-lexenv
)
250 (declare (type ctran start next
) (type (or lvar null
) result
)
251 (list body aux-vars aux-vals svars
))
254 (ir1-convert-aux-bindings start next result body aux-vars aux-vals
255 post-binding-lexenv
))
257 (ctran-starts-block next
)
258 (let ((cleanup (make-cleanup :kind
:special-bind
))
260 (bind-ctran (make-ctran))
261 (cleanup-ctran (make-ctran)))
262 (ir1-convert start bind-ctran nil
263 `(%special-bind
',(lambda-var-specvar var
) ,var
))
264 (setf (cleanup-mess-up cleanup
) (ctran-use bind-ctran
))
265 (let ((*lexenv
* (make-lexenv :cleanup cleanup
)))
266 (ir1-convert bind-ctran cleanup-ctran nil
'(%cleanup-point
))
267 (ir1-convert-special-bindings cleanup-ctran next result
268 body aux-vars aux-vals
270 post-binding-lexenv
)))))
273 ;;; Create a lambda node out of some code, returning the result. The
274 ;;; bindings are specified by the list of VAR structures VARS. We deal
275 ;;; with adding the names to the LEXENV-VARS for the conversion. The
276 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
277 ;;; and linked to the component head and tail.
279 ;;; We detect special bindings here, replacing the original VAR in the
280 ;;; lambda list with a temporary variable. We then pass a list of the
281 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
282 ;;; the special binding code.
284 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
285 ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT.
287 ;;; AUX-VARS is a list of VAR structures for variables that are to be
288 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
289 ;;; to get the initial value for the corresponding AUX-VAR.
290 (defun ir1-convert-lambda-body (body
295 (source-name '.anonymous.
)
297 (note-lexical-bindings t
)
300 (declare (list body vars aux-vars aux-vals
))
302 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
303 (aver-live-component *current-component
*)
305 (let* ((bind (make-bind))
306 (lambda (make-lambda :vars vars
308 :%source-name source-name
309 :%debug-name debug-name
310 :system-lambda-p system-lambda
))
311 (result-ctran (make-ctran))
312 (result-lvar (make-lvar)))
314 (awhen (lexenv-lambda *lexenv
*)
315 (push lambda
(lambda-children it
))
316 (setf (lambda-parent lambda
) it
))
318 ;; just to check: This function should fail internal assertions if
319 ;; we didn't set up a valid debug name above.
321 ;; (In SBCL we try to make everything have a debug name, since we
322 ;; lack the omniscient perspective the original implementors used
323 ;; to decide which things didn't need one.)
324 (functional-debug-name lambda
)
326 (setf (lambda-home lambda
) lambda
)
331 ;; As far as I can see, LAMBDA-VAR-HOME should never have
332 ;; been set before. Let's make sure. -- WHN 2001-09-29
333 (aver (not (lambda-var-home var
)))
334 (setf (lambda-var-home var
) lambda
)
335 (let ((specvar (lambda-var-specvar var
)))
338 (new-venv (cons (leaf-source-name specvar
) specvar
)))
340 (when note-lexical-bindings
341 (note-lexical-binding (leaf-source-name var
)))
342 (new-venv (cons (leaf-source-name var
) var
))))))
344 (let ((*lexenv
* (make-lexenv :vars
(new-venv)
347 (setf (bind-lambda bind
) lambda
)
348 (setf (node-lexenv bind
) *lexenv
*)
350 (let ((block (ctran-starts-block result-ctran
)))
351 (let ((return (make-return :result result-lvar
:lambda lambda
))
352 (tail-set (make-tail-set :funs
(list lambda
))))
353 (setf (lambda-tail-set lambda
) tail-set
)
354 (setf (lambda-return lambda
) return
)
355 (setf (lvar-dest result-lvar
) return
)
356 (link-node-to-previous-ctran return result-ctran
)
357 (setf (block-last block
) return
))
358 (link-blocks block
(component-tail *current-component
*)))
360 (with-component-last-block (*current-component
*
361 (ctran-block result-ctran
))
362 (let ((prebind-ctran (make-ctran))
363 (postbind-ctran (make-ctran)))
364 (ctran-starts-block prebind-ctran
)
365 (link-node-to-previous-ctran bind prebind-ctran
)
366 (use-ctran bind postbind-ctran
)
367 (ir1-convert-special-bindings postbind-ctran result-ctran
369 aux-vars aux-vals
(svars)
370 post-binding-lexenv
)))))
372 (link-blocks (component-head *current-component
*) (node-block bind
))
373 (push lambda
(component-new-functionals *current-component
*))
377 ;;; Entry point CLAMBDAs have a special kind
378 (defun register-entry-point (entry dispatcher
)
379 (declare (type clambda entry
)
380 (type optional-dispatch dispatcher
))
381 (setf (functional-kind entry
) :optional
)
382 (setf (leaf-ever-used entry
) t
)
383 (setf (lambda-optional-dispatch entry
) dispatcher
)
386 ;;; Create the actual entry-point function for an optional entry
387 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
388 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
389 ;;; to the VARS by name. The VALS are passed in the reverse order.
391 ;;; If any of the copies of the vars are referenced more than once,
392 ;;; then we mark the corresponding var as EVER-USED to inhibit
393 ;;; "defined but not read" warnings for arguments that are only used
394 ;;; by default forms.
395 (defun convert-optional-entry (fun vars vals defaults name
)
396 (declare (type clambda fun
) (list vars vals defaults
))
397 (let* ((fvars (reverse vars
))
398 (arg-vars (mapcar (lambda (var)
400 :%source-name
(leaf-source-name var
)
401 :type
(leaf-type var
)
402 :where-from
(leaf-where-from var
)
403 :specvar
(lambda-var-specvar var
)))
405 (fun (collect ((default-bindings)
407 (dolist (default defaults
)
408 (if (sb!xc
:constantp default
)
409 (default-vals default
)
410 (let ((var (sb!xc
:gensym
)))
411 (default-bindings `(,var
,default
))
412 (default-vals var
))))
413 (let ((bindings (default-bindings))
416 ;; See lengthy comment at top of 'seqtran'
417 ;; as to why muffling is not done during xc.
419 (declare (muffle-conditions code-deletion-note
))
420 (%funcall
,fun
,@(reverse vals
) ,@(default-vals)))))
421 (ir1-convert-lambda-body (if bindings
422 `((let (,@bindings
) ,call
))
425 ;; FIXME: Would be nice to
426 ;; share these names instead
427 ;; of consing up several
428 ;; identical ones. Oh well.
429 :debug-name
(debug-name
432 :note-lexical-bindings nil
433 :system-lambda t
)))))
434 (mapc (lambda (var arg-var
)
435 (when (cdr (leaf-refs arg-var
))
436 (setf (leaf-ever-used var
) t
)))
440 ;;; This function deals with supplied-p vars in optional arguments. If
441 ;;; there is no supplied-p arg, then we just call
442 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
443 ;;; optional entry that calls the result. If there is a supplied-p
444 ;;; var, then we add it into the default vars and throw a T into the
445 ;;; entry values. The resulting entry point function is returned.
446 (defun generate-optional-default-entry (res default-vars default-vals
447 entry-vars entry-vals
448 vars supplied-p-p body
450 source-name debug-name
451 force post-binding-lexenv
453 (declare (type optional-dispatch res
)
454 (list default-vars default-vals entry-vars entry-vals vars body
456 (let* ((arg (first vars
))
457 (arg-name (leaf-source-name arg
))
458 (info (lambda-var-arg-info arg
))
459 (default (arg-info-default info
))
460 (supplied-p (arg-info-supplied-p info
))
462 (not (sb!xc
:constantp
(arg-info-default info
)))))
464 (ir1-convert-hairy-args
466 (list* supplied-p arg default-vars
)
467 (list* (leaf-source-name supplied-p
) arg-name default-vals
)
468 (cons arg entry-vars
)
469 (list* t arg-name entry-vals
)
470 (rest vars
) t body aux-vars aux-vals
471 source-name debug-name
472 force post-binding-lexenv system-lambda
)
473 (ir1-convert-hairy-args
475 (cons arg default-vars
)
476 (cons arg-name default-vals
)
477 (cons arg entry-vars
)
478 (cons arg-name entry-vals
)
479 (rest vars
) supplied-p-p body aux-vars aux-vals
480 source-name debug-name
481 force post-binding-lexenv system-lambda
))))
483 ;; We want to delay converting the entry, but there exist
484 ;; problems: hidden references should not be established to
485 ;; lambdas of kind NIL should not have (otherwise the compiler
486 ;; might let-convert or delete them) and to variables.
487 (let ((name (or debug-name source-name
)))
489 supplied-p-p
; this entry will be of kind NIL
490 (and (lambda-p ep
) (eq (lambda-kind ep
) nil
)))
491 (convert-optional-entry ep
492 default-vars default-vals
493 (if supplied-p
(list default nil
) (list default
))
495 (let* ((default `',(constant-form-value default
))
496 (defaults (if supplied-p
(list default nil
) (list default
))))
497 ;; DEFAULT can contain a reference to a
498 ;; to-be-optimized-away function/block/tag, so better to
499 ;; reduce code now (but we possibly lose syntax checking
500 ;; in an unreachable code).
502 (register-entry-point
503 (convert-optional-entry (force ep
)
504 default-vars default-vals
509 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
510 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
511 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
513 ;;; The most interesting thing that we do is parse keywords. We create
514 ;;; a bunch of temporary variables to hold the result of the parse,
515 ;;; and then loop over the supplied arguments, setting the appropriate
516 ;;; temps for the supplied keyword. Note that it is significant that
517 ;;; we iterate over the keywords in reverse order --- this implements
518 ;;; the CL requirement that (when a keyword appears more than once)
519 ;;; the first value is used.
521 ;;; If there is no supplied-p var, then we initialize the temp to the
522 ;;; default and just pass the temp into the main entry. Since
523 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
524 ;;; know that the default is constant, and thus safe to evaluate out
527 ;;; If there is a supplied-p var, then we create temps for both the
528 ;;; value and the supplied-p, and pass them into the main entry,
529 ;;; letting it worry about defaulting.
531 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
532 ;;; until we have scanned all the keywords.
533 (defun convert-more-entry (res entry-vars entry-vals rest morep keys name
)
534 (declare (type optional-dispatch res
) (list entry-vars entry-vals keys
))
536 (arg-vals (reverse entry-vals
))
540 (dolist (var (reverse entry-vars
))
541 (arg-vars (make-lambda-var :%source-name
(leaf-source-name var
)
542 :type
(leaf-type var
)
543 :where-from
(leaf-where-from var
))))
545 (let* ((n-context (sb!xc
:gensym
"N-CONTEXT-"))
546 (context-temp (make-lambda-var :%source-name n-context
))
547 (n-count (sb!xc
:gensym
"N-COUNT-"))
548 (count-temp (make-lambda-var :%source-name n-count
549 :type
(specifier-type 'index
))))
551 (arg-vars context-temp count-temp
)
554 (arg-vals `(%listify-rest-args
,n-context
,n-count
)))
559 ;; The reason for all the noise with
560 ;; STACK-GROWS-DOWNWARD-NOT-UPWARD is to enable generation of
561 ;; slightly more efficient code on x86oid processors. (We can
562 ;; hoist the negation of the index outside the main parsing loop
563 ;; and take advantage of the base+index+displacement addressing
565 (when (optional-dispatch-keyp res
)
566 (let ((n-index (sb!xc
:gensym
"N-INDEX-"))
567 (n-key (sb!xc
:gensym
"N-KEY-"))
568 (n-value-temp (sb!xc
:gensym
"N-VALUE-TEMP-"))
569 (n-allowp (sb!xc
:gensym
"N-ALLOWP-"))
570 (n-lose (sb!xc
:gensym
"N-LOSE-"))
571 (n-losep (sb!xc
:gensym
"N-LOSEP-"))
572 (allowp (or (optional-dispatch-allowp res
)
573 (policy *lexenv
* (zerop safety
))))
576 (temps #!-stack-grows-downward-not-upward
577 `(,n-index
(1- ,n-count
))
578 #!+stack-grows-downward-not-upward
579 `(,n-index
(- (1- ,n-count
)))
580 #!-stack-grows-downward-not-upward n-value-temp
581 #!-stack-grows-downward-not-upward n-key
)
582 (body `(declare (fixnum ,n-index
)
583 #!-stack-grows-downward-not-upward
584 (ignorable ,n-value-temp
,n-key
)))
588 (let* ((info (lambda-var-arg-info key
))
589 (default (arg-info-default info
))
590 (keyword (arg-info-key info
))
591 (supplied-p (arg-info-supplied-p info
))
592 (supplied-used-p (arg-info-supplied-used-p info
))
593 (n-value (sb!xc
:gensym
"N-VALUE-"))
594 (clause (cond (supplied-p
595 (let ((n-supplied (sb!xc
:gensym
"N-SUPPLIED-")))
596 (temps (list n-supplied
600 (arg-vals n-value n-supplied
)
601 `((eq ,n-key
',keyword
)
602 (setq ,n-supplied
,(if supplied-used-p
605 (setq ,n-value
,n-value-temp
))))
608 `((eq ,n-key
',keyword
)
609 (setq ,n-value
,n-value-temp
))))))
610 (when (and (not allowp
) (eq keyword
:allow-other-keys
))
611 (setq found-allow-p t
)
613 (append clause
`((setq ,n-allowp
,n-value-temp
)))))
615 (temps `(,n-value
,default
))
622 (unless found-allow-p
623 (tests `((eq ,n-key
:allow-other-keys
)
624 (setq ,n-allowp
,n-value-temp
))))
630 `(when (oddp ,n-count
)
631 (%odd-key-args-error
)))
634 #!-stack-grows-downward-not-upward
636 (declare (optimize (safety 0)))
638 (when (minusp ,n-index
) (return))
639 (setf ,n-value-temp
(%more-arg
,n-context
,n-index
))
641 (setq ,n-key
(%more-arg
,n-context
,n-index
))
644 #!+stack-grows-downward-not-upward
645 `(locally (declare (optimize (safety 0)))
647 (when (plusp ,n-index
) (return))
648 (multiple-value-bind (,n-value-temp
,n-key
)
649 (%more-kw-arg
,n-context
,n-index
)
650 (declare (ignorable ,n-value-temp
,n-key
))
655 (body `(when (and (/= ,n-losep
0) (not ,n-allowp
))
656 (%unknown-key-arg-error
,n-lose
)))))))
658 (let ((ep (ir1-convert-lambda-body
661 (%funcall
,(optional-dispatch-main-entry res
)
664 :debug-name
(debug-name '&more-processor name
)
665 :note-lexical-bindings nil
667 (setf (optional-dispatch-more-entry res
)
668 (register-entry-point ep res
)))))
672 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
673 ;;; or &KEY arg. The arguments are similar to that function, but we
674 ;;; split off any &REST arg and pass it in separately. REST is the
675 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
676 ;;; the &KEY argument vars.
678 ;;; When there are &KEY arguments, we introduce temporary gensym
679 ;;; variables to hold the values while keyword defaulting is in
680 ;;; progress to get the required sequential binding semantics.
682 ;;; This gets interesting mainly when there are &KEY arguments with
683 ;;; supplied-p vars or non-constant defaults. In either case, pass in
684 ;;; a supplied-p var. If the default is non-constant, we introduce an
685 ;;; IF in the main entry that tests the supplied-p var and decides
686 ;;; whether to evaluate the default or not. In this case, the real
687 ;;; incoming value is NIL, so we must union NULL with the declared
688 ;;; type when computing the type for the main entry's argument.
689 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
690 rest more-context more-count keys supplied-p-p
691 body aux-vars aux-vals source-name debug-name
692 post-binding-lexenv system-lambda
)
693 (declare (type optional-dispatch res
)
694 (list default-vars default-vals entry-vars entry-vals keys body
696 (collect ((main-vars (reverse default-vars
))
697 (main-vals default-vals cons
)
703 (unless (lambda-var-ignorep rest
)
704 ;; Make up two extra variables, and squirrel them away in
705 ;; ARG-INFO-DEFAULT for transforming (VALUES-LIST REST) into
706 ;; (%MORE-ARG-VALUES CONTEXT 0 COUNT) when possible.
707 (let* ((context-name (sb!xc
:gensym
"REST-CONTEXT-"))
708 (context (make-lambda-var :%source-name context-name
709 :arg-info
(make-arg-info :kind
:more-context
)))
710 (count-name (sb!xc
:gensym
"REST-COUNT-"))
711 (count (make-lambda-var :%source-name count-name
712 :arg-info
(make-arg-info :kind
:more-count
)
713 :type
(specifier-type 'index
))))
714 (setf (arg-info-default (lambda-var-arg-info rest
)) (list context count
)
715 (lambda-var-ever-used context
) t
716 (lambda-var-ever-used count
) t
)
717 (setf more-context context
720 (main-vars more-context
)
722 (main-vars more-count
)
726 (let* ((info (lambda-var-arg-info key
))
727 (default (arg-info-default info
))
728 (hairy-default (not (sb!xc
:constantp default
)))
729 (supplied-p (arg-info-supplied-p info
))
730 ;; was: (format nil "~A-DEFAULTING-TEMP" (leaf-source-name key))
731 (n-val (make-symbol ".DEFAULTING-TEMP."))
732 (val-temp (make-lambda-var :%source-name n-val
)))
735 (cond ((or hairy-default supplied-p
)
736 (let* ((n-supplied (sb!xc
:gensym
"N-SUPPLIED-"))
737 (supplied-temp (make-lambda-var
738 :%source-name n-supplied
)))
740 (setf (arg-info-supplied-p info
) supplied-temp
))
742 (setf (arg-info-default info
) nil
)
744 (setf (arg-info-supplied-used-p info
) nil
)))
745 (main-vars supplied-temp
)
753 `(if ,n-supplied
,n-val
,default
)
754 `(if (eq ,n-supplied
0) ,default
,n-val
))))
756 (main-vals default nil
)
759 (bind-vars supplied-p
)
760 (bind-vals n-supplied
))))
762 (main-vals (arg-info-default info
))
763 (bind-vals n-val
)))))
765 (let* ((main-entry (ir1-convert-lambda-body
767 :aux-vars
(append (bind-vars) aux-vars
)
768 :aux-vals
(append (bind-vals) aux-vals
)
769 :post-binding-lexenv post-binding-lexenv
770 :source-name source-name
771 :debug-name debug-name
772 :system-lambda system-lambda
))
773 (name (or debug-name source-name
))
774 (last-entry (convert-optional-entry main-entry default-vars
775 (main-vals) () name
)))
776 (setf (optional-dispatch-main-entry res
)
777 (register-entry-point main-entry res
))
778 (convert-more-entry res entry-vars entry-vals rest more-context keys
781 (push (register-entry-point
783 (convert-optional-entry last-entry entry-vars entry-vals
787 (optional-dispatch-entry-points res
))
790 ;;; This function generates the entry point functions for the
791 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
792 ;;; of arguments, analyzing the arglist on the way down and generating
793 ;;; entry points on the way up.
795 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
796 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
797 ;;; names of the DEFAULT-VARS.
799 ;;; ENTRY-VARS is a reversed list of processed argument vars,
800 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
801 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
802 ;;; It has the var name for each required or optional arg, and has T
803 ;;; for each supplied-p arg.
805 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
806 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
807 ;;; argument has already been processed; only in this case are the
808 ;;; DEFAULT-XXX and ENTRY-XXX different.
810 ;;; The result at each point is a lambda which should be called by the
811 ;;; above level to default the remaining arguments and evaluate the
812 ;;; body. We cause the body to be evaluated by converting it and
813 ;;; returning it as the result when the recursion bottoms out.
815 ;;; Each level in the recursion also adds its entry point function to
816 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
817 ;;; function and the entry point function will be the same, but when
818 ;;; SUPPLIED-P args are present they may be different.
820 ;;; When we run into a &REST or &KEY arg, we punt out to
821 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
822 (defun ir1-convert-hairy-args (res default-vars default-vals
823 entry-vars entry-vals
824 vars supplied-p-p body aux-vars
826 source-name debug-name
827 force post-binding-lexenv
829 (declare (type optional-dispatch res
)
830 (list default-vars default-vals entry-vars entry-vals vars body
832 (aver (or debug-name
(neq '.anonymous. source-name
)))
834 (if (optional-dispatch-keyp res
)
835 ;; Handle &KEY with no keys...
836 (ir1-convert-more res default-vars default-vals
837 entry-vars entry-vals
838 nil nil nil vars supplied-p-p body aux-vars
839 aux-vals source-name debug-name
840 post-binding-lexenv system-lambda
)
841 (let* ((name (or debug-name source-name
))
842 (fun (ir1-convert-lambda-body
843 body
(reverse default-vars
)
846 :post-binding-lexenv post-binding-lexenv
847 :source-name source-name
848 :debug-name debug-name
849 :system-lambda system-lambda
)))
851 (setf (optional-dispatch-main-entry res
) fun
)
852 (register-entry-point fun res
)
853 (push (if supplied-p-p
854 (register-entry-point
855 (convert-optional-entry fun entry-vars entry-vals
()
859 (optional-dispatch-entry-points res
))
861 ((not (lambda-var-arg-info (first vars
)))
862 (let* ((arg (first vars
))
863 (nvars (cons arg default-vars
))
864 (nvals (cons (leaf-source-name arg
) default-vals
)))
865 (ir1-convert-hairy-args res nvars nvals nvars nvals
866 (rest vars
) nil body aux-vars aux-vals
867 source-name debug-name
868 nil post-binding-lexenv system-lambda
)))
870 (let* ((arg (first vars
))
871 (info (lambda-var-arg-info arg
))
872 (kind (arg-info-kind info
)))
875 (let ((ep (generate-optional-default-entry
876 res default-vars default-vals
877 entry-vars entry-vals vars supplied-p-p body
879 source-name debug-name
880 force post-binding-lexenv
882 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
883 (push (if (lambda-p ep
)
884 (register-entry-point
886 (convert-optional-entry
887 ep entry-vars entry-vals nil
888 (or debug-name source-name
))
891 (progn (aver (not supplied-p-p
))
893 (optional-dispatch-entry-points res
))
896 (ir1-convert-more res default-vars default-vals
897 entry-vars entry-vals
898 arg nil nil
(rest vars
) supplied-p-p body
900 source-name debug-name
901 post-binding-lexenv system-lambda
))
903 (ir1-convert-more res default-vars default-vals
904 entry-vars entry-vals
905 nil arg
(second vars
) (cddr vars
) supplied-p-p
906 body aux-vars aux-vals
907 source-name debug-name
908 post-binding-lexenv system-lambda
))
910 (ir1-convert-more res default-vars default-vals
911 entry-vars entry-vals
912 nil nil nil vars supplied-p-p body aux-vars
913 aux-vals source-name debug-name
914 post-binding-lexenv system-lambda
)))))))
916 ;;; This function deals with the case where we have to make an
917 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
918 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
919 ;;; figure out the MIN-ARGS and MAX-ARGS.
920 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
921 &key post-binding-lexenv
922 (source-name '.anonymous.
)
923 debug-name system-lambda
)
924 (declare (list body vars aux-vars aux-vals
))
925 (aver (or debug-name
(neq '.anonymous. source-name
)))
926 (let ((res (make-optional-dispatch :arglist vars
929 :%source-name source-name
930 :%debug-name debug-name
931 :plist
`(:ir1-environment
934 (min (or (position-if #'lambda-var-arg-info vars
) (length vars
))))
935 (aver-live-component *current-component
*)
936 (ir1-convert-hairy-args res
() () () () vars nil body aux-vars aux-vals
937 source-name debug-name nil post-binding-lexenv
939 ;; ir1-convert-hairy-args can throw 'locall-already-let-converted
940 ;; push optional-dispatch into the current component only after it
942 (push res
(component-new-functionals *current-component
*))
943 (setf (optional-dispatch-min-args res
) min
)
944 (setf (optional-dispatch-max-args res
)
945 (+ (1- (length (optional-dispatch-entry-points res
))) min
))
949 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
950 (defun ir1-convert-lambda (form &key
(source-name '.anonymous.
)
951 debug-name maybe-add-debug-catch
954 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
957 (unless (eq (car form
) 'lambda
)
958 (compiler-error "~S was expected but ~S was found:~% ~S"
962 (unless (and (consp (cdr form
)) (listp (cadr form
)))
964 "The lambda expression has a missing or non-list lambda list:~% ~S"
966 (when (and system-lambda maybe-add-debug-catch
)
967 (bug "Both SYSTEM-LAMBDA and MAYBE-ADD-DEBUG-CATCH specified"))
968 (unless (or debug-name
(neq '.anonymous. source-name
))
969 (setf debug-name
(name-lambdalike form
)))
970 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals
)
971 (make-lambda-vars (cadr form
))
972 (multiple-value-bind (forms decls doc
) (parse-body (cddr form
))
973 (binding* (((*lexenv
* result-type post-binding-lexenv
)
974 (process-decls decls
(append aux-vars vars
) nil
976 (debug-catch-p (and maybe-add-debug-catch
977 *allow-instrumenting
*
979 (>= insert-debug-catch
2))))
980 (forms (if debug-catch-p
981 (wrap-forms-in-debug-catch forms
)
983 (forms (if (eq result-type
*wild-type
*)
985 `((the ,(type-specifier result-type
) (progn ,@forms
)))))
986 (*allow-instrumenting
* (and (not system-lambda
) *allow-instrumenting
*))
987 (res (cond ((or (find-if #'lambda-var-arg-info vars
) keyp
)
988 (ir1-convert-hairy-lambda forms vars keyp
991 :post-binding-lexenv post-binding-lexenv
992 :source-name source-name
993 :debug-name debug-name
994 :system-lambda system-lambda
))
996 (ir1-convert-lambda-body forms vars
999 :post-binding-lexenv post-binding-lexenv
1000 :source-name source-name
1001 :debug-name debug-name
1002 :system-lambda system-lambda
)))))
1003 (setf (functional-inline-expansion res
) form
)
1004 (setf (functional-arg-documentation res
) (cadr form
))
1005 (setf (functional-documentation res
) doc
)
1006 (when (boundp '*lambda-conversions
*)
1007 ;; KLUDGE: Not counting TL-XEPs is a lie, of course, but
1008 ;; keeps things less confusing to users of TIME, where this
1010 (unless (and (consp debug-name
) (eq 'tl-xep
(car debug-name
)))
1011 (incf *lambda-conversions
*)))
1014 (defun wrap-forms-in-debug-catch (forms)
1015 #!+unwind-to-frame-and-call-vop
1016 `((multiple-value-prog1
1019 ;; Just ensure that there won't be any tail-calls, IR2 magic will
1022 #!-unwind-to-frame-and-call-vop
1023 `( ;; Normally, we'll return from this block with the below RETURN-FROM.
1026 ;; If DEBUG-CATCH-TAG is thrown (with a thunk as the value) the
1027 ;; RETURN-FROM is elided and we funcall the thunk instead. That
1028 ;; thunk might either return a value (for a RETURN-FROM-FRAME)
1029 ;; or call this same function again (for a RESTART-FRAME).
1030 ;; -- JES, 2007-01-09
1033 ;; Use a constant catch tag instead of consing a new one for every
1034 ;; entry to this block. The uniquencess of the catch tags is
1035 ;; ensured when the tag is throw by the debugger. It'll allocate a
1036 ;; new tag, and modify the reference this tag in the proper
1037 ;; catch-block structure to refer to that new tag. This
1038 ;; significantly decreases the runtime cost of high debug levels.
1039 ;; -- JES, 2007-01-09
1040 (catch 'debug-catch-tag
1041 (return-from return-value-tag
1045 ;;; helper for LAMBDA-like things, to massage them into a form
1046 ;;; suitable for IR1-CONVERT-LAMBDA.
1047 (defun ir1-convert-lambdalike (thing
1049 (source-name '.anonymous.
)
1051 (when (and (not debug-name
) (eq '.anonymous. source-name
))
1052 (setf debug-name
(name-lambdalike thing
)))
1055 (ir1-convert-lambda thing
1056 :maybe-add-debug-catch t
1057 :source-name source-name
1058 :debug-name debug-name
))
1060 (let ((name (cadr thing
))
1061 (lambda-expression `(lambda ,@(cddr thing
))))
1062 (if (and name
(legal-fun-name-p name
))
1063 (let ((defined-fun-res (get-defined-fun name
(second lambda-expression
)))
1064 (res (ir1-convert-lambda lambda-expression
1065 :maybe-add-debug-catch t
1067 (info (info :function
:info name
)))
1068 (assert-global-function-definition-type name res
)
1069 (push res
(defined-fun-functionals defined-fun-res
))
1071 (eq (defined-fun-inlinep defined-fun-res
) :notinline
)
1072 ;; Don't treat recursive stubs like CAR as self-calls
1073 ;; Maybe just use the fact that it is a known function?
1074 ;; Though a known function may be used
1075 ;; because of some other attributues but
1076 ;; still wants to get optimized self calls
1078 (or (fun-info-templates info
)
1079 (fun-info-transforms info
)
1080 (fun-info-ltn-annotate info
)
1081 (fun-info-ir2-convert info
)
1082 (fun-info-optimizer info
))))
1085 (policy ref
(> recognize-self-calls
0)))
1086 res defined-fun-res
))
1088 (ir1-convert-lambda lambda-expression
1089 :maybe-add-debug-catch t
1091 (or name
(name-lambdalike thing
))))))
1092 ((lambda-with-lexenv)
1093 (ir1-convert-inline-lambda thing
1094 :source-name source-name
1095 :debug-name debug-name
))))
1097 ;;;; defining global functions
1099 ;;; Convert FUN as a lambda in the null environment, but use the
1100 ;;; current compilation policy. Note that FUN may be a
1101 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
1102 ;;; reflect the state at the definition site.
1103 (defun ir1-convert-inline-lambda (fun
1105 (source-name '.anonymous.
)
1108 (when (and (not debug-name
) (eq '.anonymous. source-name
))
1109 (setf debug-name
(name-lambdalike fun
)))
1110 (destructuring-bind (decls macros symbol-macros
&rest body
)
1111 (if (eq (car fun
) 'lambda-with-lexenv
)
1113 `(() () () .
,(cdr fun
)))
1114 (let* ((*lexenv
* (make-lexenv
1115 :default
(process-decls decls nil nil
1116 :lexenv
(make-null-lexenv))
1117 :vars
(copy-list symbol-macros
)
1118 :funs
(mapcar (lambda (x)
1120 (macro .
,(coerce (cdr x
) 'function
))))
1122 ;; Inherit MUFFLE-CONDITIONS from the call-site lexenv
1123 ;; rather than the definition-site lexenv, since it seems
1124 ;; like a much more common case.
1125 :handled-conditions
(lexenv-handled-conditions *lexenv
*)
1126 :policy
(lexenv-policy *lexenv
*)))
1127 (clambda (ir1-convert-lambda `(lambda ,@body
)
1128 :source-name source-name
1129 :debug-name debug-name
1130 :system-lambda system-lambda
)))
1131 (setf (functional-inline-expanded clambda
) t
)
1134 ;;; Given a lambda-list, return a FUN-TYPE object representing the signature:
1135 ;;; return type is *, and each individual arguments type is T -- but we get
1136 ;;; the argument counts and keywords.
1137 (defun ftype-from-lambda-list (lambda-list)
1138 (multiple-value-bind (req opt restp rest-name keyp key-list allowp morep
)
1139 (parse-lambda-list lambda-list
)
1140 (declare (ignore rest-name
))
1142 (mapcar (constantly t
) list
)))
1143 (let ((reqs (t req
))
1144 (opts (when opt
(cons '&optional
(t opt
))))
1145 ;; When it comes to building a type, &REST means pretty much the
1146 ;; same thing as &MORE.
1147 (rest (when (or morep restp
) (list '&rest t
)))
1149 (cons '&key
(mapcar (lambda (spec)
1150 (let ((key/var
(if (consp spec
)
1153 (list (if (consp key
/var
)
1155 (keywordicate key
/var
))
1158 (allow (when allowp
(list '&allow-other-keys
))))
1159 (specifier-type `(function (,@reqs
,@opts
,@rest
,@keys
,@allow
) *))))))
1161 ;;; Get a DEFINED-FUN object for a function we are about to define. If
1162 ;;; the function has been forward referenced, then substitute for the
1163 ;;; previous references.
1164 (defun get-defined-fun (name &optional
(lambda-list nil lp
))
1165 (proclaim-as-fun-name name
)
1166 (when (boundp '*free-funs
*)
1167 (let ((found (find-free-fun name
"shouldn't happen! (defined-fun)")))
1168 (note-name-defined name
:function
)
1169 (cond ((not (defined-fun-p found
))
1170 (aver (not (info :function
:inlinep name
)))
1171 (let* ((where-from (leaf-where-from found
))
1172 (res (make-defined-fun
1174 :where-from
(if (eq where-from
:declared
)
1177 :type
(if (eq :declared where-from
)
1180 (ftype-from-lambda-list lambda-list
)
1181 (specifier-type 'function
))))))
1182 (substitute-leaf res found
)
1183 (setf (gethash name
*free-funs
*) res
)))
1184 ;; If *FREE-FUNS* has a previously converted definition
1185 ;; for this name, then blow it away and try again.
1186 ((defined-fun-functionals found
)
1187 (remhash name
*free-funs
*)
1188 (get-defined-fun name lambda-list
))
1191 ;;; Check a new global function definition for consistency with
1192 ;;; previous declaration or definition, and assert argument/result
1193 ;;; types if appropriate. This assertion is suppressed by the
1194 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
1195 ;;; check their argument types as a consequence of type dispatching.
1196 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
1197 (defun assert-new-definition (var fun
)
1198 (let ((type (leaf-type var
))
1199 (for-real (eq (leaf-where-from var
) :declared
))
1200 (info (info :function
:info
(leaf-source-name var
))))
1201 (assert-definition-type
1203 ;; KLUDGE: Common Lisp is such a dynamic language that in general
1204 ;; all we can do here is issue a STYLE-WARNING. It would be nice
1205 ;; to issue a full WARNING in the special case of type mismatches
1206 ;; within a compilation unit (as in section 3.2.2.3 of the spec)
1207 ;; but at least as of sbcl-0.6.11, we don't keep track of whether
1208 ;; the mismatched data came from the same compilation unit, so we
1209 ;; can't do that. -- WHN 2001-02-11
1210 :lossage-fun
#'compiler-style-warn
1211 :unwinnage-fun
(cond (info #'compiler-style-warn
)
1212 (for-real #'compiler-notify
)
1217 (ir1-attributep (fun-info-attributes info
)
1220 "previous declaration"
1221 "previous definition"))))
1223 ;;; Used for global inline expansion. Earlier something like this was
1224 ;;; used by %DEFUN too. FIXME: And now it's probably worth rethinking
1225 ;;; whether this function is a good idea at all.
1226 (defun ir1-convert-inline-expansion (name expansion var inlinep info
)
1227 ;; Unless a :INLINE function, we temporarily clobber the inline
1228 ;; expansion. This prevents recursive inline expansion of
1229 ;; opportunistic pseudo-inlines.
1230 (unless (eq inlinep
:inline
)
1231 (setf (defined-fun-inline-expansion var
) nil
))
1232 (let ((fun (ir1-convert-inline-lambda expansion
1234 ;; prevent instrumentation of
1235 ;; known function expansions
1236 :system-lambda
(and info t
))))
1237 (setf (functional-inlinep fun
) inlinep
)
1238 (assert-new-definition var fun
)
1239 (setf (defined-fun-inline-expansion var
) expansion
)
1240 ;; Associate VAR with the FUN -- and in case of an optional dispatch
1241 ;; with the various entry-points. This allows XREF to know where the
1242 ;; inline CLAMBDA comes from.
1243 (flet ((note-inlining (f)
1246 (setf (functional-inline-expanded f
) var
))
1248 ;; Delayed entry-point.
1250 (setf (functional-inline-expanded (cdr f
)) var
)
1251 (let ((old-thunk (cdr f
)))
1252 (setf (cdr f
) (lambda ()
1253 (let ((g (funcall old-thunk
)))
1254 (setf (functional-inline-expanded g
) var
)
1257 (when (optional-dispatch-p fun
)
1258 (note-inlining (optional-dispatch-main-entry fun
))
1259 (note-inlining (optional-dispatch-more-entry fun
))
1260 (mapc #'note-inlining
(optional-dispatch-entry-points fun
))))
1261 ;; substitute for any old references
1262 (unless (or (not *block-compile
*)
1264 (or (fun-info-transforms info
)
1265 (fun-info-templates info
)
1266 (fun-info-ir2-convert info
))))
1267 (substitute-leaf fun var
))
1270 (defun %set-inline-expansion
(name defined-fun inline-lambda
)
1271 (cond (inline-lambda
1272 (setf (info :function
:inline-expansion-designator name
)
1275 (setf (defined-fun-inline-expansion defined-fun
)
1278 (clear-info :function
:inline-expansion-designator name
))))
1280 ;;; the even-at-compile-time part of DEFUN
1282 ;;; The INLINE-LAMBDA is a LAMBDA-WITH-LEXENV, or NIL if there is no
1283 ;;; inline expansion.
1284 (defun %compiler-defun
(name inline-lambda compile-toplevel
)
1285 (let ((defined-fun nil
)) ; will be set below if we're in the compiler
1286 (when compile-toplevel
1287 (with-single-package-locked-error
1288 (:symbol name
"defining ~S as a function")
1291 (get-defined-fun name
(fifth inline-lambda
))
1292 (get-defined-fun name
))))
1293 (when (boundp '*lexenv
*)
1294 (aver (fasl-output-p *compile-object
*))
1295 (if (member name
*fun-names-in-this-file
* :test
#'equal
)
1296 (warn 'duplicate-definition
:name name
)
1297 (push name
*fun-names-in-this-file
*)))
1298 (%set-inline-expansion name defined-fun inline-lambda
))
1300 (become-defined-fun-name name
)
1302 ;; old CMU CL comment:
1303 ;; If there is a type from a previous definition, blast it,
1304 ;; since it is obsolete.
1305 (when (and defined-fun
(neq :declared
(leaf-where-from defined-fun
)))
1306 (setf (leaf-type defined-fun
)
1307 ;; FIXME: If this is a block compilation thing, shouldn't
1308 ;; we be setting the type to the full derived type for the
1309 ;; definition, instead of this most general function type?
1310 (specifier-type 'function
))))
1314 ;; Similar to above, detect duplicate definitions within a file,
1315 ;; but the package lock check is unnecessary - it's handled elsewhere.
1317 ;; Additionally, this is a STYLE-WARNING, not a WARNING, because there is
1318 ;; meaningful behavior that can be ascribed to some redefinitions, e.g.
1319 ;; (defmacro foo () first-definition)
1320 ;; (defun f () (use-it (foo )))
1321 ;; (defmacro foo () other-definition)
1322 ;; will use the first definition when compiling F, but make the second available
1323 ;; in the loaded fasl. In this usage it would have made sense to wrap the
1324 ;; respective definitions with EVAL-WHEN for different situations,
1325 ;; but as long as the compile-time behavior is deterministic, it's just bad style
1326 ;; and not flat-out wrong, though there is indeed some waste in the fasl.
1328 ;; KIND is the globaldb KIND of this NAME
1329 (defun %compiler-defmacro
(kind name compile-toplevel
)
1330 (when compile-toplevel
1331 (let ((name-key `(,kind
,name
)))
1332 (when (boundp '*lexenv
*)
1333 (aver (fasl-output-p *compile-object
*))
1334 (if (member name-key
*fun-names-in-this-file
* :test
#'equal
)
1335 (compiler-style-warn 'same-file-redefinition-warning
:name name
)
1336 (push name-key
*fun-names-in-this-file
*))))))
1339 ;;; Entry point utilities
1341 ;;; Return a function for the Nth entry point.
1342 (defun optional-dispatch-entry-point-fun (dispatcher n
)
1343 (declare (type optional-dispatch dispatcher
)
1344 (type unsigned-byte n
))
1345 (let* ((env (getf (optional-dispatch-plist dispatcher
) :ir1-environment
))
1346 (*lexenv
* (first env
))
1347 (*current-path
* (second env
)))
1348 (force (nth n
(optional-dispatch-entry-points dispatcher
)))))