cross-host-friendly version of uninterned symbol dumping
[sbcl.git] / src / compiler / float-tran.lisp
blob610d0eaa88f1a6586db38aecab84dca59ba79e44
1 ;;;; This file contains floating-point-specific transforms, and may be
2 ;;;; somewhat implementation-dependent in its assumptions of what the
3 ;;;; formats are.
5 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; more information.
7 ;;;;
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
14 (in-package "SB!C")
16 ;;;; coercions
18 (defknown %single-float (real) single-float
19 (movable foldable))
20 (defknown %double-float (real) double-float
21 (movable foldable))
23 (deftransform float ((n f) (* single-float) *)
24 '(%single-float n))
26 (deftransform float ((n f) (* double-float) *)
27 '(%double-float n))
29 (deftransform float ((n) *)
30 '(if (floatp n)
32 (%single-float n)))
34 (deftransform %single-float ((n) (single-float) *)
35 'n)
37 (deftransform %double-float ((n) (double-float) *)
38 'n)
40 ;;; RANDOM
41 (macrolet ((frob (fun type)
42 `(deftransform random ((num &optional state)
43 (,type &optional *) *)
44 "Use inline float operations."
45 '(,fun num (or state *random-state*)))))
46 (frob %random-single-float single-float)
47 (frob %random-double-float double-float))
49 ;;; Return an expression to generate an integer of N-BITS many random
50 ;;; bits, using the minimal number of random chunks possible.
51 (defun generate-random-expr-for-power-of-2 (n-bits state)
52 (declare (type (integer 1 #.sb!vm:n-word-bits) n-bits))
53 (multiple-value-bind (n-chunk-bits chunk-expr)
54 (cond ((<= n-bits n-random-chunk-bits)
55 (values n-random-chunk-bits `(random-chunk ,state)))
56 ((<= n-bits (* 2 n-random-chunk-bits))
57 (values (* 2 n-random-chunk-bits) `(big-random-chunk ,state)))
59 (error "Unexpectedly small N-RANDOM-CHUNK-BITS")))
60 (if (< n-bits n-chunk-bits)
61 `(logand ,(1- (ash 1 n-bits)) ,chunk-expr)
62 chunk-expr)))
64 ;;; This transform for compile-time constant word-sized integers
65 ;;; generates an accept-reject loop to achieve equidistribution of the
66 ;;; returned values. Several optimizations are done: If NUM is a power
67 ;;; of two no loop is needed. If the random chunk size is half the word
68 ;;; size only one chunk is used where sufficient. For values of NUM
69 ;;; where it is possible and results in faster code, the rejection
70 ;;; probability is reduced by accepting all values below the largest
71 ;;; multiple of the limit that fits into one or two chunks and and doing
72 ;;; a division to get the random value into the desired range.
73 (deftransform random ((num &optional state)
74 ((constant-arg (integer 1 #.(expt 2 sb!vm:n-word-bits)))
75 &optional *)
77 :policy (and (> speed compilation-speed)
78 (> speed space)))
79 "optimize to inlined RANDOM-CHUNK operations"
80 (let ((num (lvar-value num)))
81 (if (= num 1)
83 (flet ((chunk-n-bits-and-expr (n-bits)
84 (cond ((<= n-bits n-random-chunk-bits)
85 (values n-random-chunk-bits
86 '(random-chunk (or state *random-state*))))
87 ((<= n-bits (* 2 n-random-chunk-bits))
88 (values (* 2 n-random-chunk-bits)
89 '(big-random-chunk (or state *random-state*))))
91 (error "Unexpectedly small N-RANDOM-CHUNK-BITS")))))
92 (if (zerop (logand num (1- num)))
93 ;; NUM is a power of 2.
94 (let ((n-bits (integer-length (1- num))))
95 (multiple-value-bind (n-chunk-bits chunk-expr)
96 (chunk-n-bits-and-expr n-bits)
97 (if (< n-bits n-chunk-bits)
98 `(logand ,(1- (ash 1 n-bits)) ,chunk-expr)
99 chunk-expr)))
100 ;; Generate an accept-reject loop.
101 (let ((n-bits (integer-length num)))
102 (multiple-value-bind (n-chunk-bits chunk-expr)
103 (chunk-n-bits-and-expr n-bits)
104 (if (or (> (* num 3) (expt 2 n-chunk-bits))
105 (logbitp (- n-bits 2) num))
106 ;; Division can't help as the quotient is below 3,
107 ;; or is too costly as the rejection probability
108 ;; without it is already small (namely at most 1/4
109 ;; with the given test, which is experimentally a
110 ;; reasonable threshold and cheap to test for).
111 `(loop
112 (let ((bits ,(generate-random-expr-for-power-of-2
113 n-bits '(or state *random-state*))))
114 (when (< bits num)
115 (return bits))))
116 (let ((d (truncate (expt 2 n-chunk-bits) num)))
117 `(loop
118 (let ((bits ,chunk-expr))
119 (when (< bits ,(* num d))
120 (return (values (truncate bits ,d)))))))))))))))
123 ;;;; float accessors
125 (defknown make-single-float ((signed-byte 32)) single-float
126 (movable flushable))
128 (defknown make-double-float ((signed-byte 32) (unsigned-byte 32)) double-float
129 (movable flushable))
131 #-sb-xc-host
132 (deftransform make-single-float ((bits)
133 ((signed-byte 32)))
134 "Conditional constant folding"
135 (unless (constant-lvar-p bits)
136 (give-up-ir1-transform))
137 (let* ((bits (lvar-value bits))
138 (float (make-single-float bits)))
139 (when (float-nan-p float)
140 (give-up-ir1-transform))
141 float))
143 #-sb-xc-host
144 (deftransform make-double-float ((hi lo)
145 ((signed-byte 32) (unsigned-byte 32)))
146 "Conditional constant folding"
147 (unless (and (constant-lvar-p hi)
148 (constant-lvar-p lo))
149 (give-up-ir1-transform))
150 (let* ((hi (lvar-value hi))
151 (lo (lvar-value lo))
152 (float (make-double-float hi lo)))
153 (when (float-nan-p float)
154 (give-up-ir1-transform))
155 float))
157 (defknown single-float-bits (single-float) (signed-byte 32)
158 (movable foldable flushable))
160 (defknown double-float-high-bits (double-float) (signed-byte 32)
161 (movable foldable flushable))
163 (defknown double-float-low-bits (double-float) (unsigned-byte 32)
164 (movable foldable flushable))
166 (deftransform float-sign ((float &optional float2)
167 (single-float &optional single-float) *)
168 (if float2
169 (let ((temp (gensym)))
170 `(let ((,temp (abs float2)))
171 (if (minusp (single-float-bits float)) (- ,temp) ,temp)))
172 '(if (minusp (single-float-bits float)) -1f0 1f0)))
174 (deftransform float-sign ((float &optional float2)
175 (double-float &optional double-float) *)
176 (if float2
177 (let ((temp (gensym)))
178 `(let ((,temp (abs float2)))
179 (if (minusp (double-float-high-bits float)) (- ,temp) ,temp)))
180 '(if (minusp (double-float-high-bits float)) -1d0 1d0)))
182 ;;;; DECODE-FLOAT, INTEGER-DECODE-FLOAT, and SCALE-FLOAT
184 (defknown decode-single-float (single-float)
185 (values single-float single-float-exponent (single-float -1f0 1f0))
186 (movable foldable flushable))
188 (defknown decode-double-float (double-float)
189 (values double-float double-float-exponent (double-float -1d0 1d0))
190 (movable foldable flushable))
192 (defknown integer-decode-single-float (single-float)
193 (values single-float-significand single-float-int-exponent (integer -1 1))
194 (movable foldable flushable))
196 (defknown integer-decode-double-float (double-float)
197 (values double-float-significand double-float-int-exponent (integer -1 1))
198 (movable foldable flushable))
200 (defknown scale-single-float (single-float integer) single-float
201 (movable foldable flushable))
203 (defknown scale-double-float (double-float integer) double-float
204 (movable foldable flushable))
206 (deftransform decode-float ((x) (single-float) *)
207 '(decode-single-float x))
209 (deftransform decode-float ((x) (double-float) *)
210 '(decode-double-float x))
212 (deftransform integer-decode-float ((x) (single-float) *)
213 '(integer-decode-single-float x))
215 (deftransform integer-decode-float ((x) (double-float) *)
216 '(integer-decode-double-float x))
218 (deftransform scale-float ((f ex) (single-float *) *)
219 (if (and #!+x86 t #!-x86 nil
220 (csubtypep (lvar-type ex)
221 (specifier-type '(signed-byte 32))))
222 '(coerce (%scalbn (coerce f 'double-float) ex) 'single-float)
223 '(scale-single-float f ex)))
225 (deftransform scale-float ((f ex) (double-float *) *)
226 (if (and #!+x86 t #!-x86 nil
227 (csubtypep (lvar-type ex)
228 (specifier-type '(signed-byte 32))))
229 '(%scalbn f ex)
230 '(scale-double-float f ex)))
232 ;;; What is the CROSS-FLOAT-INFINITY-KLUDGE?
234 ;;; SBCL's own implementation of floating point supports floating
235 ;;; point infinities. Some of the old CMU CL :PROPAGATE-FLOAT-TYPE and
236 ;;; :PROPAGATE-FUN-TYPE code, like the DEFOPTIMIZERs below, uses this
237 ;;; floating point support. Thus, we have to avoid running it on the
238 ;;; cross-compilation host, since we're not guaranteed that the
239 ;;; cross-compilation host will support floating point infinities.
241 ;;; If we wanted to live dangerously, we could conditionalize the code
242 ;;; with #+(OR SBCL SB-XC) instead. That way, if the cross-compilation
243 ;;; host happened to be SBCL, we'd be able to run the infinity-using
244 ;;; code. Pro:
245 ;;; * SBCL itself gets built with more complete optimization.
246 ;;; Con:
247 ;;; * You get a different SBCL depending on what your cross-compilation
248 ;;; host is.
249 ;;; So far the pros and cons seem seem to be mostly academic, since
250 ;;; AFAIK (WHN 2001-08-28) the propagate-foo-type optimizations aren't
251 ;;; actually important in compiling SBCL itself. If this changes, then
252 ;;; we have to decide:
253 ;;; * Go for simplicity, leaving things as they are.
254 ;;; * Go for performance at the expense of conceptual clarity,
255 ;;; using #+(OR SBCL SB-XC) and otherwise leaving the build
256 ;;; process as is.
257 ;;; * Go for performance at the expense of build time, using
258 ;;; #+(OR SBCL SB-XC) and also making SBCL do not just
259 ;;; make-host-1.sh and make-host-2.sh, but a third step
260 ;;; make-host-3.sh where it builds itself under itself. (Such a
261 ;;; 3-step build process could also help with other things, e.g.
262 ;;; using specialized arrays to represent debug information.)
263 ;;; * Rewrite the code so that it doesn't depend on unportable
264 ;;; floating point infinities.
266 ;;; optimizers for SCALE-FLOAT. If the float has bounds, new bounds
267 ;;; are computed for the result, if possible.
268 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
269 (progn
271 (defun scale-float-derive-type-aux (f ex same-arg)
272 (declare (ignore same-arg))
273 (flet ((scale-bound (x n)
274 ;; We need to be a bit careful here and catch any overflows
275 ;; that might occur. We can ignore underflows which become
276 ;; zeros.
277 (set-bound
278 (handler-case
279 (scale-float (type-bound-number x) n)
280 (floating-point-overflow ()
281 nil))
282 (consp x))))
283 (when (and (numeric-type-p f) (numeric-type-p ex))
284 (let ((f-lo (numeric-type-low f))
285 (f-hi (numeric-type-high f))
286 (ex-lo (numeric-type-low ex))
287 (ex-hi (numeric-type-high ex))
288 (new-lo nil)
289 (new-hi nil))
290 (when f-hi
291 (if (< (float-sign (type-bound-number f-hi)) 0.0)
292 (when ex-lo
293 (setf new-hi (scale-bound f-hi ex-lo)))
294 (when ex-hi
295 (setf new-hi (scale-bound f-hi ex-hi)))))
296 (when f-lo
297 (if (< (float-sign (type-bound-number f-lo)) 0.0)
298 (when ex-hi
299 (setf new-lo (scale-bound f-lo ex-hi)))
300 (when ex-lo
301 (setf new-lo (scale-bound f-lo ex-lo)))))
302 (make-numeric-type :class (numeric-type-class f)
303 :format (numeric-type-format f)
304 :complexp :real
305 :low new-lo
306 :high new-hi)))))
307 (defoptimizer (scale-single-float derive-type) ((f ex))
308 (two-arg-derive-type f ex #'scale-float-derive-type-aux
309 #'scale-single-float t))
310 (defoptimizer (scale-double-float derive-type) ((f ex))
311 (two-arg-derive-type f ex #'scale-float-derive-type-aux
312 #'scale-double-float t))
314 ;;; DEFOPTIMIZERs for %SINGLE-FLOAT and %DOUBLE-FLOAT. This makes the
315 ;;; FLOAT function return the correct ranges if the input has some
316 ;;; defined range. Quite useful if we want to convert some type of
317 ;;; bounded integer into a float.
318 (macrolet
319 ((frob (fun type most-negative most-positive)
320 (let ((aux-name (symbolicate fun "-DERIVE-TYPE-AUX")))
321 `(progn
322 (defun ,aux-name (num)
323 ;; When converting a number to a float, the limits are
324 ;; the same.
325 (let* ((lo (bound-func (lambda (x)
326 (if (< x ,most-negative)
327 ,most-negative
328 (coerce x ',type)))
329 (numeric-type-low num)
330 nil))
331 (hi (bound-func (lambda (x)
332 (if (< ,most-positive x )
333 ,most-positive
334 (coerce x ',type)))
335 (numeric-type-high num)
336 nil)))
337 (specifier-type `(,',type ,(or lo '*) ,(or hi '*)))))
339 (defoptimizer (,fun derive-type) ((num))
340 (handler-case
341 (one-arg-derive-type num #',aux-name #',fun)
342 (type-error ()
343 nil)))))))
344 (frob %single-float single-float
345 most-negative-single-float most-positive-single-float)
346 (frob %double-float double-float
347 most-negative-double-float most-positive-double-float))
348 ) ; PROGN
350 ;;;; float contagion
352 (defun safe-ctype-for-single-coercion-p (x)
353 ;; See comment in SAFE-SINGLE-COERCION-P -- this deals with the same
354 ;; problem, but in the context of evaluated and compiled (+ <int> <single>)
355 ;; giving different result if we fail to check for this.
356 (or (not (csubtypep x (specifier-type 'integer)))
357 #!+x86
358 (csubtypep x (specifier-type `(integer ,most-negative-exactly-single-float-fixnum
359 ,most-positive-exactly-single-float-fixnum)))
360 #!-x86
361 (csubtypep x (specifier-type 'fixnum))))
363 ;;; Do some stuff to recognize when the loser is doing mixed float and
364 ;;; rational arithmetic, or different float types, and fix it up. If
365 ;;; we don't, he won't even get so much as an efficiency note.
366 (deftransform float-contagion-arg1 ((x y) * * :defun-only t :node node)
367 (if (or (not (types-equal-or-intersect (lvar-type y) (specifier-type 'single-float)))
368 (safe-ctype-for-single-coercion-p (lvar-type x)))
369 `(,(lvar-fun-name (basic-combination-fun node))
370 (float x y) y)
371 (give-up-ir1-transform)))
372 (deftransform float-contagion-arg2 ((x y) * * :defun-only t :node node)
373 (if (or (not (types-equal-or-intersect (lvar-type x) (specifier-type 'single-float)))
374 (safe-ctype-for-single-coercion-p (lvar-type y)))
375 `(,(lvar-fun-name (basic-combination-fun node))
376 x (float y x))
377 (give-up-ir1-transform)))
379 (dolist (x '(+ * / -))
380 (%deftransform x '(function (rational float) *) #'float-contagion-arg1)
381 (%deftransform x '(function (float rational) *) #'float-contagion-arg2))
383 (dolist (x '(= < > + * / -))
384 (%deftransform x '(function (single-float double-float) *)
385 #'float-contagion-arg1)
386 (%deftransform x '(function (double-float single-float) *)
387 #'float-contagion-arg2))
389 (macrolet ((def (type &rest args)
390 `(deftransform * ((x y) (,type (constant-arg (member ,@args))) *
391 ;; Beware the SNaN!
392 :policy (zerop float-accuracy))
393 "optimize multiplication by one"
394 (let ((y (lvar-value y)))
395 (if (minusp y)
396 '(%negate x)
397 'x)))))
398 (def single-float 1.0 -1.0)
399 (def double-float 1.0d0 -1.0d0))
401 ;;; Return the reciprocal of X if it can be represented exactly, NIL otherwise.
402 (defun maybe-exact-reciprocal (x)
403 (unless (zerop x)
404 (handler-case
405 (multiple-value-bind (significand exponent sign)
406 (integer-decode-float x)
407 ;; only powers of 2 can be inverted exactly
408 (unless (zerop (logand significand (1- significand)))
409 (return-from maybe-exact-reciprocal nil))
410 (let ((expected (/ sign significand (expt 2 exponent)))
411 (reciprocal (/ x)))
412 (multiple-value-bind (significand exponent sign)
413 (integer-decode-float reciprocal)
414 ;; Denorms can't be inverted safely.
415 (and (eql expected (* sign significand (expt 2 exponent)))
416 reciprocal))))
417 (error () (return-from maybe-exact-reciprocal nil)))))
419 ;;; Replace constant division by multiplication with exact reciprocal,
420 ;;; if one exists.
421 (macrolet ((def (type)
422 `(deftransform / ((x y) (,type (constant-arg ,type)) *
423 :node node)
424 "convert to multiplication by reciprocal"
425 (let ((n (lvar-value y)))
426 (if (policy node (zerop float-accuracy))
427 `(* x ,(/ n))
428 (let ((r (maybe-exact-reciprocal n)))
429 (if r
430 `(* x ,r)
431 (give-up-ir1-transform
432 "~S does not have an exact reciprocal"
433 n))))))))
434 (def single-float)
435 (def double-float))
437 ;;; Optimize addition and subtraction of zero
438 (macrolet ((def (op type &rest args)
439 `(deftransform ,op ((x y) (,type (constant-arg (member ,@args))) *
440 ;; Beware the SNaN!
441 :policy (zerop float-accuracy))
442 'x)))
443 ;; No signed zeros, thanks.
444 (def + single-float 0 0.0)
445 (def - single-float 0 0.0)
446 (def + double-float 0 0.0 0.0d0)
447 (def - double-float 0 0.0 0.0d0))
449 ;;; On most platforms (+ x x) is faster than (* x 2)
450 (macrolet ((def (type &rest args)
451 `(deftransform * ((x y) (,type (constant-arg (member ,@args))))
452 '(+ x x))))
453 (def single-float 2 2.0)
454 (def double-float 2 2.0 2.0d0))
456 ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in
457 ;;; general float rational args to comparison, since Common Lisp
458 ;;; semantics says we are supposed to compare as rationals, but we can
459 ;;; do it for any rational that has a precise representation as a
460 ;;; float (such as 0).
461 (macrolet ((frob (op)
462 `(deftransform ,op ((x y) (float rational) *)
463 "open-code FLOAT to RATIONAL comparison"
464 (unless (constant-lvar-p y)
465 (give-up-ir1-transform
466 "The RATIONAL value isn't known at compile time."))
467 (let ((val (lvar-value y)))
468 (unless (eql (rational (float val)) val)
469 (give-up-ir1-transform
470 "~S doesn't have a precise float representation."
471 val)))
472 `(,',op x (float y x)))))
473 (frob <)
474 (frob >)
475 (frob =))
477 ;;;; irrational derive-type methods
479 ;;; Derive the result to be float for argument types in the
480 ;;; appropriate domain.
481 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
482 (dolist (stuff '((asin (real -1.0 1.0))
483 (acos (real -1.0 1.0))
484 (acosh (real 1.0))
485 (atanh (real -1.0 1.0))
486 (sqrt (real 0.0))))
487 (destructuring-bind (name type) stuff
488 (let ((type (specifier-type type)))
489 (setf (fun-info-derive-type (fun-info-or-lose name))
490 (lambda (call)
491 (declare (type combination call))
492 (when (csubtypep (lvar-type
493 (first (combination-args call)))
494 type)
495 (specifier-type 'float)))))))
497 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
498 (defoptimizer (log derive-type) ((x &optional y))
499 (when (and (csubtypep (lvar-type x)
500 (specifier-type '(real 0.0)))
501 (or (null y)
502 (csubtypep (lvar-type y)
503 (specifier-type '(real 0.0)))))
504 (specifier-type 'float)))
506 ;;;; irrational transforms
508 (defknown (%tan %sinh %asinh %atanh %log %logb %log10 %tan-quick)
509 (double-float) double-float
510 (movable foldable flushable))
512 (defknown (%sin %cos %tanh %sin-quick %cos-quick)
513 (double-float) (double-float -1.0d0 1.0d0)
514 (movable foldable flushable))
516 (defknown (%asin %atan)
517 (double-float)
518 (double-float #.(coerce (- (/ pi 2)) 'double-float)
519 #.(coerce (/ pi 2) 'double-float))
520 (movable foldable flushable))
522 (defknown (%acos)
523 (double-float) (double-float 0.0d0 #.(coerce pi 'double-float))
524 (movable foldable flushable))
526 (defknown (%cosh)
527 (double-float) (double-float 1.0d0)
528 (movable foldable flushable))
530 (defknown (%acosh %exp %sqrt)
531 (double-float) (double-float 0.0d0)
532 (movable foldable flushable))
534 (defknown %expm1
535 (double-float) (double-float -1d0)
536 (movable foldable flushable))
538 (defknown (%hypot)
539 (double-float double-float) (double-float 0d0)
540 (movable foldable flushable))
542 (defknown (%pow)
543 (double-float double-float) double-float
544 (movable foldable flushable))
546 (defknown (%atan2)
547 (double-float double-float)
548 (double-float #.(coerce (- pi) 'double-float)
549 #.(coerce pi 'double-float))
550 (movable foldable flushable))
552 (defknown (%scalb)
553 (double-float double-float) double-float
554 (movable foldable flushable))
556 (defknown (%scalbn)
557 (double-float (signed-byte 32)) double-float
558 (movable foldable flushable))
560 (defknown (%log1p)
561 (double-float) double-float
562 (movable foldable flushable))
564 (macrolet ((def (name prim rtype)
565 `(progn
566 (deftransform ,name ((x) (single-float) ,rtype)
567 `(coerce (,',prim (coerce x 'double-float)) 'single-float))
568 (deftransform ,name ((x) (double-float) ,rtype)
569 `(,',prim x)))))
570 (def exp %exp *)
571 (def log %log float)
572 (def sqrt %sqrt float)
573 (def asin %asin float)
574 (def acos %acos float)
575 (def atan %atan *)
576 (def sinh %sinh *)
577 (def cosh %cosh *)
578 (def tanh %tanh *)
579 (def asinh %asinh *)
580 (def acosh %acosh float)
581 (def atanh %atanh float))
583 ;;; The argument range is limited on the x86 FP trig. functions. A
584 ;;; post-test can detect a failure (and load a suitable result), but
585 ;;; this test is avoided if possible.
586 (macrolet ((def (name prim prim-quick)
587 (declare (ignorable prim-quick))
588 `(progn
589 (deftransform ,name ((x) (single-float) *)
590 #!+x86 (cond ((csubtypep (lvar-type x)
591 (specifier-type '(single-float
592 (#.(- (expt 2f0 63)))
593 (#.(expt 2f0 63)))))
594 `(coerce (,',prim-quick (coerce x 'double-float))
595 'single-float))
597 (compiler-notify
598 "unable to avoid inline argument range check~@
599 because the argument range (~S) was not within 2^63"
600 (type-specifier (lvar-type x)))
601 `(coerce (,',prim (coerce x 'double-float)) 'single-float)))
602 #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float))
603 (deftransform ,name ((x) (double-float) *)
604 #!+x86 (cond ((csubtypep (lvar-type x)
605 (specifier-type '(double-float
606 (#.(- (expt 2d0 63)))
607 (#.(expt 2d0 63)))))
608 `(,',prim-quick x))
610 (compiler-notify
611 "unable to avoid inline argument range check~@
612 because the argument range (~S) was not within 2^63"
613 (type-specifier (lvar-type x)))
614 `(,',prim x)))
615 #!-x86 `(,',prim x)))))
616 (def sin %sin %sin-quick)
617 (def cos %cos %cos-quick)
618 (def tan %tan %tan-quick))
620 (deftransform atan ((x y) (single-float single-float) *)
621 `(coerce (%atan2 (coerce x 'double-float) (coerce y 'double-float))
622 'single-float))
623 (deftransform atan ((x y) (double-float double-float) *)
624 `(%atan2 x y))
626 (deftransform expt ((x y) ((single-float 0f0) single-float) *)
627 `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float))
628 'single-float))
629 (deftransform expt ((x y) ((double-float 0d0) double-float) *)
630 `(%pow x y))
631 (deftransform expt ((x y) ((single-float 0f0) (signed-byte 32)) *)
632 `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float))
633 'single-float))
634 (deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *)
635 `(%pow x (coerce y 'double-float)))
637 ;;; ANSI says log with base zero returns zero.
638 (deftransform log ((x y) (float float) float)
639 '(if (zerop y) y (/ (log x) (log y))))
641 ;;; Handle some simple transformations.
643 (deftransform abs ((x) ((complex double-float)) double-float)
644 '(%hypot (realpart x) (imagpart x)))
646 (deftransform abs ((x) ((complex single-float)) single-float)
647 '(coerce (%hypot (coerce (realpart x) 'double-float)
648 (coerce (imagpart x) 'double-float))
649 'single-float))
651 (deftransform phase ((x) ((complex double-float)) double-float)
652 '(%atan2 (imagpart x) (realpart x)))
654 (deftransform phase ((x) ((complex single-float)) single-float)
655 '(coerce (%atan2 (coerce (imagpart x) 'double-float)
656 (coerce (realpart x) 'double-float))
657 'single-float))
659 (deftransform phase ((x) ((float)) float)
660 '(if (minusp (float-sign x))
661 (float pi x)
662 (float 0 x)))
664 ;;; The number is of type REAL.
665 (defun numeric-type-real-p (type)
666 (and (numeric-type-p type)
667 (eq (numeric-type-complexp type) :real)))
669 ;;; Coerce a numeric type bound to the given type while handling
670 ;;; exclusive bounds.
671 (defun coerce-numeric-bound (bound type)
672 (when bound
673 (if (consp bound)
674 (list (coerce (car bound) type))
675 (coerce bound type))))
677 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
678 (progn
680 ;;;; optimizers for elementary functions
681 ;;;;
682 ;;;; These optimizers compute the output range of the elementary
683 ;;;; function, based on the domain of the input.
685 ;;; Generate a specifier for a complex type specialized to the same
686 ;;; type as the argument.
687 (defun complex-float-type (arg)
688 (declare (type numeric-type arg))
689 (let* ((format (case (numeric-type-class arg)
690 ((integer rational) 'single-float)
691 (t (numeric-type-format arg))))
692 (float-type (or format 'float)))
693 (specifier-type `(complex ,float-type))))
695 ;;; Compute a specifier like '(OR FLOAT (COMPLEX FLOAT)), except float
696 ;;; should be the right kind of float. Allow bounds for the float
697 ;;; part too.
698 (defun float-or-complex-float-type (arg &optional lo hi)
699 (declare (type numeric-type arg))
700 (let* ((format (case (numeric-type-class arg)
701 ((integer rational) 'single-float)
702 (t (numeric-type-format arg))))
703 (float-type (or format 'float))
704 (lo (coerce-numeric-bound lo float-type))
705 (hi (coerce-numeric-bound hi float-type)))
706 (specifier-type `(or (,float-type ,(or lo '*) ,(or hi '*))
707 (complex ,float-type)))))
709 ) ; PROGN
711 (eval-when (:compile-toplevel :execute)
712 ;; So the problem with this hack is that it's actually broken. If
713 ;; the host does not have long floats, then setting *R-D-F-F* to
714 ;; LONG-FLOAT doesn't actually buy us anything. FIXME.
715 (setf *read-default-float-format*
716 #!+long-float 'long-float #!-long-float 'double-float))
717 ;;; Test whether the numeric-type ARG is within the domain specified by
718 ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to
719 ;;; be distinct.
720 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
721 (defun domain-subtypep (arg domain-low domain-high)
722 (declare (type numeric-type arg)
723 (type (or real null) domain-low domain-high))
724 (let* ((arg-lo (numeric-type-low arg))
725 (arg-lo-val (type-bound-number arg-lo))
726 (arg-hi (numeric-type-high arg))
727 (arg-hi-val (type-bound-number arg-hi)))
728 ;; Check that the ARG bounds are correctly canonicalized.
729 (when (and arg-lo (floatp arg-lo-val) (zerop arg-lo-val) (consp arg-lo)
730 (minusp (float-sign arg-lo-val)))
731 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-lo)
732 (setq arg-lo 0e0 arg-lo-val arg-lo))
733 (when (and arg-hi (zerop arg-hi-val) (floatp arg-hi-val) (consp arg-hi)
734 (plusp (float-sign arg-hi-val)))
735 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-hi)
736 (setq arg-hi (ecase *read-default-float-format*
737 (double-float (load-time-value (make-unportable-float :double-float-negative-zero)))
738 #!+long-float
739 (long-float (load-time-value (make-unportable-float :long-float-negative-zero))))
740 arg-hi-val arg-hi))
741 (flet ((fp-neg-zero-p (f) ; Is F -0.0?
742 (and (floatp f) (zerop f) (minusp (float-sign f))))
743 (fp-pos-zero-p (f) ; Is F +0.0?
744 (and (floatp f) (zerop f) (plusp (float-sign f)))))
745 (and (or (null domain-low)
746 (and arg-lo (>= arg-lo-val domain-low)
747 (not (and (fp-pos-zero-p domain-low)
748 (fp-neg-zero-p arg-lo)))))
749 (or (null domain-high)
750 (and arg-hi (<= arg-hi-val domain-high)
751 (not (and (fp-neg-zero-p domain-high)
752 (fp-pos-zero-p arg-hi)))))))))
753 (eval-when (:compile-toplevel :execute)
754 (setf *read-default-float-format* 'single-float))
756 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
757 (progn
759 ;;; Handle monotonic functions of a single variable whose domain is
760 ;;; possibly part of the real line. ARG is the variable, FUN is the
761 ;;; function, and DOMAIN is a specifier that gives the (real) domain
762 ;;; of the function. If ARG is a subset of the DOMAIN, we compute the
763 ;;; bounds directly. Otherwise, we compute the bounds for the
764 ;;; intersection between ARG and DOMAIN, and then append a complex
765 ;;; result, which occurs for the parts of ARG not in the DOMAIN.
767 ;;; Negative and positive zero are considered distinct within
768 ;;; DOMAIN-LOW and DOMAIN-HIGH.
770 ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we
771 ;;; can't compute the bounds using FUN.
772 (defun elfun-derive-type-simple (arg fun domain-low domain-high
773 default-low default-high
774 &optional (increasingp t))
775 (declare (type (or null real) domain-low domain-high))
776 (etypecase arg
777 (numeric-type
778 (cond ((eq (numeric-type-complexp arg) :complex)
779 (complex-float-type arg))
780 ((numeric-type-real-p arg)
781 ;; The argument is real, so let's find the intersection
782 ;; between the argument and the domain of the function.
783 ;; We compute the bounds on the intersection, and for
784 ;; everything else, we return a complex number of the
785 ;; appropriate type.
786 (multiple-value-bind (intersection difference)
787 (interval-intersection/difference (numeric-type->interval arg)
788 (make-interval
789 :low domain-low
790 :high domain-high))
791 (cond
792 (intersection
793 ;; Process the intersection.
794 (let* ((low (interval-low intersection))
795 (high (interval-high intersection))
796 (res-lo (or (bound-func fun (if increasingp low high) nil)
797 default-low))
798 (res-hi (or (bound-func fun (if increasingp high low) nil)
799 default-high))
800 (format (case (numeric-type-class arg)
801 ((integer rational) 'single-float)
802 (t (numeric-type-format arg))))
803 (bound-type (or format 'float))
804 (result-type
805 (make-numeric-type
806 :class 'float
807 :format format
808 :low (coerce-numeric-bound res-lo bound-type)
809 :high (coerce-numeric-bound res-hi bound-type))))
810 ;; If the ARG is a subset of the domain, we don't
811 ;; have to worry about the difference, because that
812 ;; can't occur.
813 (if (or (null difference)
814 ;; Check whether the arg is within the domain.
815 (domain-subtypep arg domain-low domain-high))
816 result-type
817 (list result-type
818 (specifier-type `(complex ,bound-type))))))
820 ;; No intersection so the result must be purely complex.
821 (complex-float-type arg)))))
823 (float-or-complex-float-type arg default-low default-high))))))
825 (macrolet
826 ((frob (name domain-low domain-high def-low-bnd def-high-bnd
827 &key (increasingp t))
828 (let ((num (gensym)))
829 `(defoptimizer (,name derive-type) ((,num))
830 (one-arg-derive-type
831 ,num
832 (lambda (arg)
833 (elfun-derive-type-simple arg #',name
834 ,domain-low ,domain-high
835 ,def-low-bnd ,def-high-bnd
836 ,increasingp))
837 #',name)))))
838 ;; These functions are easy because they are defined for the whole
839 ;; real line.
840 (frob exp nil nil 0 nil)
841 (frob sinh nil nil nil nil)
842 (frob tanh nil nil -1 1)
843 (frob asinh nil nil nil nil)
845 ;; These functions are only defined for part of the real line. The
846 ;; condition selects the desired part of the line.
847 (frob asin -1d0 1d0 (- (/ pi 2)) (/ pi 2))
848 ;; Acos is monotonic decreasing, so we need to swap the function
849 ;; values at the lower and upper bounds of the input domain.
850 (frob acos -1d0 1d0 0 pi :increasingp nil)
851 (frob acosh 1d0 nil nil nil)
852 (frob atanh -1d0 1d0 -1 1)
853 ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that
854 ;; includes -0.0.
855 (frob sqrt (load-time-value (make-unportable-float :double-float-negative-zero)) nil 0 nil))
857 ;;; Compute bounds for (expt x y). This should be easy since (expt x
858 ;;; y) = (exp (* y (log x))). However, computations done this way
859 ;;; have too much roundoff. Thus we have to do it the hard way.
860 (defun safe-expt (x y)
861 (handler-case
862 (when (< (abs y) 10000)
863 (expt x y))
864 (error ()
865 nil)))
867 ;;; Handle the case when x >= 1.
868 (defun interval-expt-> (x y)
869 (case (interval-range-info y 0d0)
871 ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is
872 ;; obviously non-negative. We just have to be careful for
873 ;; infinite bounds (given by nil).
874 (let ((lo (safe-expt (type-bound-number (interval-low x))
875 (type-bound-number (interval-low y))))
876 (hi (safe-expt (type-bound-number (interval-high x))
877 (type-bound-number (interval-high y)))))
878 (list (make-interval :low (or lo 1) :high hi))))
880 ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is
881 ;; obviously [0, 1]. However, underflow (nil) means 0 is the
882 ;; result.
883 (let ((lo (safe-expt (type-bound-number (interval-high x))
884 (type-bound-number (interval-low y))))
885 (hi (safe-expt (type-bound-number (interval-low x))
886 (type-bound-number (interval-high y)))))
887 (list (make-interval :low (or lo 0) :high (or hi 1)))))
889 ;; Split the interval in half.
890 (destructuring-bind (y- y+)
891 (interval-split 0 y t)
892 (list (interval-expt-> x y-)
893 (interval-expt-> x y+))))))
895 ;;; Handle the case when x <= 1
896 (defun interval-expt-< (x y)
897 (case (interval-range-info x 0d0)
899 ;; The case of 0 <= x <= 1 is easy
900 (case (interval-range-info y)
902 ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is
903 ;; obviously [0, 1]. We just have to be careful for infinite bounds
904 ;; (given by nil).
905 (let ((lo (safe-expt (type-bound-number (interval-low x))
906 (type-bound-number (interval-high y))))
907 (hi (safe-expt (type-bound-number (interval-high x))
908 (type-bound-number (interval-low y)))))
909 (list (make-interval :low (or lo 0) :high (or hi 1)))))
911 ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is
912 ;; obviously [1, inf].
913 (let ((hi (safe-expt (type-bound-number (interval-low x))
914 (type-bound-number (interval-low y))))
915 (lo (safe-expt (type-bound-number (interval-high x))
916 (type-bound-number (interval-high y)))))
917 (list (make-interval :low (or lo 1) :high hi))))
919 ;; Split the interval in half
920 (destructuring-bind (y- y+)
921 (interval-split 0 y t)
922 (list (interval-expt-< x y-)
923 (interval-expt-< x y+))))))
925 ;; The case where x <= 0. Y MUST be an INTEGER for this to work!
926 ;; The calling function must insure this! For now we'll just
927 ;; return the appropriate unbounded float type.
928 (list (make-interval :low nil :high nil)))
930 (destructuring-bind (neg pos)
931 (interval-split 0 x t t)
932 (list (interval-expt-< neg y)
933 (interval-expt-< pos y))))))
935 ;;; Compute bounds for (expt x y).
936 (defun interval-expt (x y)
937 (case (interval-range-info x 1)
939 ;; X >= 1
940 (interval-expt-> x y))
942 ;; X <= 1
943 (interval-expt-< x y))
945 (destructuring-bind (left right)
946 (interval-split 1 x t t)
947 (list (interval-expt left y)
948 (interval-expt right y))))))
950 (defun fixup-interval-expt (bnd x-int y-int x-type y-type)
951 (declare (ignore x-int))
952 ;; Figure out what the return type should be, given the argument
953 ;; types and bounds and the result type and bounds.
954 (cond ((csubtypep x-type (specifier-type 'integer))
955 ;; an integer to some power
956 (case (numeric-type-class y-type)
957 (integer
958 ;; Positive integer to an integer power is either an
959 ;; integer or a rational.
960 (let ((lo (or (interval-low bnd) '*))
961 (hi (or (interval-high bnd) '*)))
962 (if (and (interval-low y-int)
963 (>= (type-bound-number (interval-low y-int)) 0))
964 (specifier-type `(integer ,lo ,hi))
965 (specifier-type `(rational ,lo ,hi)))))
966 (rational
967 ;; Positive integer to rational power is either a rational
968 ;; or a single-float.
969 (let* ((lo (interval-low bnd))
970 (hi (interval-high bnd))
971 (int-lo (if lo
972 (floor (type-bound-number lo))
973 '*))
974 (int-hi (if hi
975 (ceiling (type-bound-number hi))
976 '*))
977 (f-lo (or (bound-func #'float lo nil)
978 '*))
979 (f-hi (or (bound-func #'float hi nil)
980 '*)))
981 (specifier-type `(or (rational ,int-lo ,int-hi)
982 (single-float ,f-lo, f-hi)))))
983 (float
984 ;; A positive integer to a float power is a float.
985 (let ((format (numeric-type-format y-type)))
986 (aver format)
987 (modified-numeric-type
988 y-type
989 :low (coerce-numeric-bound (interval-low bnd) format)
990 :high (coerce-numeric-bound (interval-high bnd) format))))
992 ;; A positive integer to a number is a number (for now).
993 (specifier-type 'number))))
994 ((csubtypep x-type (specifier-type 'rational))
995 ;; a rational to some power
996 (case (numeric-type-class y-type)
997 (integer
998 ;; A positive rational to an integer power is always a rational.
999 (specifier-type `(rational ,(or (interval-low bnd) '*)
1000 ,(or (interval-high bnd) '*))))
1001 (rational
1002 ;; A positive rational to rational power is either a rational
1003 ;; or a single-float.
1004 (let* ((lo (interval-low bnd))
1005 (hi (interval-high bnd))
1006 (int-lo (if lo
1007 (floor (type-bound-number lo))
1008 '*))
1009 (int-hi (if hi
1010 (ceiling (type-bound-number hi))
1011 '*))
1012 (f-lo (or (bound-func #'float lo nil)
1013 '*))
1014 (f-hi (or (bound-func #'float hi nil)
1015 '*)))
1016 (specifier-type `(or (rational ,int-lo ,int-hi)
1017 (single-float ,f-lo, f-hi)))))
1018 (float
1019 ;; A positive rational to a float power is a float.
1020 (let ((format (numeric-type-format y-type)))
1021 (aver format)
1022 (modified-numeric-type
1023 y-type
1024 :low (coerce-numeric-bound (interval-low bnd) format)
1025 :high (coerce-numeric-bound (interval-high bnd) format))))
1027 ;; A positive rational to a number is a number (for now).
1028 (specifier-type 'number))))
1029 ((csubtypep x-type (specifier-type 'float))
1030 ;; a float to some power
1031 (case (numeric-type-class y-type)
1032 ((or integer rational)
1033 ;; A positive float to an integer or rational power is
1034 ;; always a float.
1035 (let ((format (numeric-type-format x-type)))
1036 (aver format)
1037 (make-numeric-type
1038 :class 'float
1039 :format format
1040 :low (coerce-numeric-bound (interval-low bnd) format)
1041 :high (coerce-numeric-bound (interval-high bnd) format))))
1042 (float
1043 ;; A positive float to a float power is a float of the
1044 ;; higher type.
1045 (let ((format (float-format-max (numeric-type-format x-type)
1046 (numeric-type-format y-type))))
1047 (aver format)
1048 (make-numeric-type
1049 :class 'float
1050 :format format
1051 :low (coerce-numeric-bound (interval-low bnd) format)
1052 :high (coerce-numeric-bound (interval-high bnd) format))))
1054 ;; A positive float to a number is a number (for now)
1055 (specifier-type 'number))))
1057 ;; A number to some power is a number.
1058 (specifier-type 'number))))
1060 (defun merged-interval-expt (x y)
1061 (let* ((x-int (numeric-type->interval x))
1062 (y-int (numeric-type->interval y)))
1063 (mapcar (lambda (type)
1064 (fixup-interval-expt type x-int y-int x y))
1065 (flatten-list (interval-expt x-int y-int)))))
1067 (defun expt-derive-type-aux (x y same-arg)
1068 (declare (ignore same-arg))
1069 (cond ((or (not (numeric-type-real-p x))
1070 (not (numeric-type-real-p y)))
1071 ;; Use numeric contagion if either is not real.
1072 (numeric-contagion x y))
1073 ((csubtypep y (specifier-type 'integer))
1074 ;; A real raised to an integer power is well-defined.
1075 (merged-interval-expt x y))
1076 ;; A real raised to a non-integral power can be a float or a
1077 ;; complex number.
1078 ((or (csubtypep x (specifier-type '(rational 0)))
1079 (csubtypep x (specifier-type '(float (0d0)))))
1080 ;; But a positive real to any power is well-defined.
1081 (merged-interval-expt x y))
1082 ((and (csubtypep x (specifier-type 'rational))
1083 (csubtypep y (specifier-type 'rational)))
1084 ;; A rational to the power of a rational could be a rational
1085 ;; or a possibly-complex single float
1086 (specifier-type '(or rational single-float (complex single-float))))
1088 ;; a real to some power. The result could be a real or a
1089 ;; complex.
1090 (float-or-complex-float-type (numeric-contagion x y)))))
1092 (defoptimizer (expt derive-type) ((x y))
1093 (two-arg-derive-type x y #'expt-derive-type-aux #'expt))
1095 ;;; Note we must assume that a type including 0.0 may also include
1096 ;;; -0.0 and thus the result may be complex -infinity + i*pi.
1097 (defun log-derive-type-aux-1 (x)
1098 (elfun-derive-type-simple x #'log 0d0 nil nil nil))
1100 (defun log-derive-type-aux-2 (x y same-arg)
1101 (let ((log-x (log-derive-type-aux-1 x))
1102 (log-y (log-derive-type-aux-1 y))
1103 (accumulated-list nil))
1104 ;; LOG-X or LOG-Y might be union types. We need to run through
1105 ;; the union types ourselves because /-DERIVE-TYPE-AUX doesn't.
1106 (dolist (x-type (prepare-arg-for-derive-type log-x))
1107 (dolist (y-type (prepare-arg-for-derive-type log-y))
1108 (push (/-derive-type-aux x-type y-type same-arg) accumulated-list)))
1109 (apply #'type-union (flatten-list accumulated-list))))
1111 (defoptimizer (log derive-type) ((x &optional y))
1112 (if y
1113 (two-arg-derive-type x y #'log-derive-type-aux-2 #'log)
1114 (one-arg-derive-type x #'log-derive-type-aux-1 #'log)))
1116 (defun atan-derive-type-aux-1 (y)
1117 (elfun-derive-type-simple y #'atan nil nil (- (/ pi 2)) (/ pi 2)))
1119 (defun atan-derive-type-aux-2 (y x same-arg)
1120 (declare (ignore same-arg))
1121 ;; The hard case with two args. We just return the max bounds.
1122 (let ((result-type (numeric-contagion y x)))
1123 (cond ((and (numeric-type-real-p x)
1124 (numeric-type-real-p y))
1125 (let* (;; FIXME: This expression for FORMAT seems to
1126 ;; appear multiple times, and should be factored out.
1127 (format (case (numeric-type-class result-type)
1128 ((integer rational) 'single-float)
1129 (t (numeric-type-format result-type))))
1130 (bound-format (or format 'float)))
1131 (make-numeric-type :class 'float
1132 :format format
1133 :complexp :real
1134 :low (coerce (- pi) bound-format)
1135 :high (coerce pi bound-format))))
1137 ;; The result is a float or a complex number
1138 (float-or-complex-float-type result-type)))))
1140 (defoptimizer (atan derive-type) ((y &optional x))
1141 (if x
1142 (two-arg-derive-type y x #'atan-derive-type-aux-2 #'atan)
1143 (one-arg-derive-type y #'atan-derive-type-aux-1 #'atan)))
1145 (defun cosh-derive-type-aux (x)
1146 ;; We note that cosh x = cosh |x| for all real x.
1147 (elfun-derive-type-simple
1148 (if (numeric-type-real-p x)
1149 (abs-derive-type-aux x)
1151 #'cosh nil nil 0 nil))
1153 (defoptimizer (cosh derive-type) ((num))
1154 (one-arg-derive-type num #'cosh-derive-type-aux #'cosh))
1156 (defun phase-derive-type-aux (arg)
1157 (let* ((format (case (numeric-type-class arg)
1158 ((integer rational) 'single-float)
1159 (t (numeric-type-format arg))))
1160 (bound-type (or format 'float)))
1161 (cond ((numeric-type-real-p arg)
1162 (case (interval-range-info (numeric-type->interval arg) 0.0)
1164 ;; The number is positive, so the phase is 0.
1165 (make-numeric-type :class 'float
1166 :format format
1167 :complexp :real
1168 :low (coerce 0 bound-type)
1169 :high (coerce 0 bound-type)))
1171 ;; The number is always negative, so the phase is pi.
1172 (make-numeric-type :class 'float
1173 :format format
1174 :complexp :real
1175 :low (coerce pi bound-type)
1176 :high (coerce pi bound-type)))
1178 ;; We can't tell. The result is 0 or pi. Use a union
1179 ;; type for this.
1180 (list
1181 (make-numeric-type :class 'float
1182 :format format
1183 :complexp :real
1184 :low (coerce 0 bound-type)
1185 :high (coerce 0 bound-type))
1186 (make-numeric-type :class 'float
1187 :format format
1188 :complexp :real
1189 :low (coerce pi bound-type)
1190 :high (coerce pi bound-type))))))
1192 ;; We have a complex number. The answer is the range -pi
1193 ;; to pi. (-pi is included because we have -0.)
1194 (make-numeric-type :class 'float
1195 :format format
1196 :complexp :real
1197 :low (coerce (- pi) bound-type)
1198 :high (coerce pi bound-type))))))
1200 (defoptimizer (phase derive-type) ((num))
1201 (one-arg-derive-type num #'phase-derive-type-aux #'phase))
1203 ) ; PROGN
1205 (deftransform realpart ((x) ((complex rational)) *)
1206 '(%realpart x))
1207 (deftransform imagpart ((x) ((complex rational)) *)
1208 '(%imagpart x))
1210 ;;; Make REALPART and IMAGPART return the appropriate types. This
1211 ;;; should help a lot in optimized code.
1212 (defun realpart-derive-type-aux (type)
1213 (let ((class (numeric-type-class type))
1214 (format (numeric-type-format type)))
1215 (cond ((numeric-type-real-p type)
1216 ;; The realpart of a real has the same type and range as
1217 ;; the input.
1218 (make-numeric-type :class class
1219 :format format
1220 :complexp :real
1221 :low (numeric-type-low type)
1222 :high (numeric-type-high type)))
1224 ;; We have a complex number. The result has the same type
1225 ;; as the real part, except that it's real, not complex,
1226 ;; obviously.
1227 (make-numeric-type :class class
1228 :format format
1229 :complexp :real
1230 :low (numeric-type-low type)
1231 :high (numeric-type-high type))))))
1233 (defoptimizer (realpart derive-type) ((num))
1234 (one-arg-derive-type num #'realpart-derive-type-aux #'realpart))
1236 (defun imagpart-derive-type-aux (type)
1237 (let ((class (numeric-type-class type))
1238 (format (numeric-type-format type)))
1239 (cond ((numeric-type-real-p type)
1240 ;; The imagpart of a real has the same type as the input,
1241 ;; except that it's zero.
1242 (let ((bound-format (or format class 'real)))
1243 (make-numeric-type :class class
1244 :format format
1245 :complexp :real
1246 :low (coerce 0 bound-format)
1247 :high (coerce 0 bound-format))))
1249 ;; We have a complex number. The result has the same type as
1250 ;; the imaginary part, except that it's real, not complex,
1251 ;; obviously.
1252 (make-numeric-type :class class
1253 :format format
1254 :complexp :real
1255 :low (numeric-type-low type)
1256 :high (numeric-type-high type))))))
1258 (defoptimizer (imagpart derive-type) ((num))
1259 (one-arg-derive-type num #'imagpart-derive-type-aux #'imagpart))
1261 (defun complex-derive-type-aux-1 (re-type)
1262 (if (numeric-type-p re-type)
1263 (make-numeric-type :class (numeric-type-class re-type)
1264 :format (numeric-type-format re-type)
1265 :complexp (if (csubtypep re-type
1266 (specifier-type 'rational))
1267 :real
1268 :complex)
1269 :low (numeric-type-low re-type)
1270 :high (numeric-type-high re-type))
1271 (specifier-type 'complex)))
1273 (defun complex-derive-type-aux-2 (re-type im-type same-arg)
1274 (declare (ignore same-arg))
1275 (if (and (numeric-type-p re-type)
1276 (numeric-type-p im-type))
1277 ;; Need to check to make sure numeric-contagion returns the
1278 ;; right type for what we want here.
1280 ;; Also, what about rational canonicalization, like (complex 5 0)
1281 ;; is 5? So, if the result must be complex, we make it so.
1282 ;; If the result might be complex, which happens only if the
1283 ;; arguments are rational, we make it a union type of (or
1284 ;; rational (complex rational)).
1285 (let* ((element-type (numeric-contagion re-type im-type))
1286 (rat-result-p (csubtypep element-type
1287 (specifier-type 'rational))))
1288 (if rat-result-p
1289 (type-union element-type
1290 (specifier-type
1291 `(complex ,(numeric-type-class element-type))))
1292 (make-numeric-type :class (numeric-type-class element-type)
1293 :format (numeric-type-format element-type)
1294 :complexp (if rat-result-p
1295 :real
1296 :complex))))
1297 (specifier-type 'complex)))
1299 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1300 (defoptimizer (complex derive-type) ((re &optional im))
1301 (if im
1302 (two-arg-derive-type re im #'complex-derive-type-aux-2 #'complex)
1303 (one-arg-derive-type re #'complex-derive-type-aux-1 #'complex)))
1305 ;;; Define some transforms for complex operations. We do this in lieu
1306 ;;; of complex operation VOPs.
1307 (macrolet ((frob (type)
1308 `(progn
1309 (deftransform complex ((r) (,type))
1310 '(complex r ,(coerce 0 type)))
1311 (deftransform complex ((r i) (,type (and real (not ,type))))
1312 '(complex r (truly-the ,type (coerce i ',type))))
1313 (deftransform complex ((r i) ((and real (not ,type)) ,type))
1314 '(complex (truly-the ,type (coerce r ',type)) i))
1315 ;; negation
1316 #!-complex-float-vops
1317 (deftransform %negate ((z) ((complex ,type)) *)
1318 '(complex (%negate (realpart z)) (%negate (imagpart z))))
1319 ;; complex addition and subtraction
1320 #!-complex-float-vops
1321 (deftransform + ((w z) ((complex ,type) (complex ,type)) *)
1322 '(complex (+ (realpart w) (realpart z))
1323 (+ (imagpart w) (imagpart z))))
1324 #!-complex-float-vops
1325 (deftransform - ((w z) ((complex ,type) (complex ,type)) *)
1326 '(complex (- (realpart w) (realpart z))
1327 (- (imagpart w) (imagpart z))))
1328 ;; Add and subtract a complex and a real.
1329 #!-complex-float-vops
1330 (deftransform + ((w z) ((complex ,type) real) *)
1331 `(complex (+ (realpart w) z)
1332 (+ (imagpart w) ,(coerce 0 ',type))))
1333 #!-complex-float-vops
1334 (deftransform + ((z w) (real (complex ,type)) *)
1335 `(complex (+ (realpart w) z)
1336 (+ (imagpart w) ,(coerce 0 ',type))))
1337 ;; Add and subtract a real and a complex number.
1338 #!-complex-float-vops
1339 (deftransform - ((w z) ((complex ,type) real) *)
1340 `(complex (- (realpart w) z)
1341 (- (imagpart w) ,(coerce 0 ',type))))
1342 #!-complex-float-vops
1343 (deftransform - ((z w) (real (complex ,type)) *)
1344 `(complex (- z (realpart w))
1345 (- ,(coerce 0 ',type) (imagpart w))))
1346 ;; Multiply and divide two complex numbers.
1347 #!-complex-float-vops
1348 (deftransform * ((x y) ((complex ,type) (complex ,type)) *)
1349 '(let* ((rx (realpart x))
1350 (ix (imagpart x))
1351 (ry (realpart y))
1352 (iy (imagpart y)))
1353 (complex (- (* rx ry) (* ix iy))
1354 (+ (* rx iy) (* ix ry)))))
1355 (deftransform / ((x y) ((complex ,type) (complex ,type)) *)
1356 #!-complex-float-vops
1357 '(let* ((rx (realpart x))
1358 (ix (imagpart x))
1359 (ry (realpart y))
1360 (iy (imagpart y)))
1361 (if (> (abs ry) (abs iy))
1362 (let* ((r (/ iy ry))
1363 (dn (+ ry (* r iy))))
1364 (complex (/ (+ rx (* ix r)) dn)
1365 (/ (- ix (* rx r)) dn)))
1366 (let* ((r (/ ry iy))
1367 (dn (+ iy (* r ry))))
1368 (complex (/ (+ (* rx r) ix) dn)
1369 (/ (- (* ix r) rx) dn)))))
1370 #!+complex-float-vops
1371 `(let* ((cs (conjugate (sb!vm::swap-complex x)))
1372 (ry (realpart y))
1373 (iy (imagpart y)))
1374 (if (> (abs ry) (abs iy))
1375 (let* ((r (/ iy ry))
1376 (dn (+ ry (* r iy))))
1377 (/ (+ x (* cs r)) dn))
1378 (let* ((r (/ ry iy))
1379 (dn (+ iy (* r ry))))
1380 (/ (+ (* x r) cs) dn)))))
1381 ;; Multiply a complex by a real or vice versa.
1382 #!-complex-float-vops
1383 (deftransform * ((w z) ((complex ,type) real) *)
1384 '(complex (* (realpart w) z) (* (imagpart w) z)))
1385 #!-complex-float-vops
1386 (deftransform * ((z w) (real (complex ,type)) *)
1387 '(complex (* (realpart w) z) (* (imagpart w) z)))
1388 ;; Divide a complex by a real or vice versa.
1389 #!-complex-float-vops
1390 (deftransform / ((w z) ((complex ,type) real) *)
1391 '(complex (/ (realpart w) z) (/ (imagpart w) z)))
1392 (deftransform / ((x y) (,type (complex ,type)) *)
1393 #!-complex-float-vops
1394 '(let* ((ry (realpart y))
1395 (iy (imagpart y)))
1396 (if (> (abs ry) (abs iy))
1397 (let* ((r (/ iy ry))
1398 (dn (+ ry (* r iy))))
1399 (complex (/ x dn)
1400 (/ (- (* x r)) dn)))
1401 (let* ((r (/ ry iy))
1402 (dn (+ iy (* r ry))))
1403 (complex (/ (* x r) dn)
1404 (/ (- x) dn)))))
1405 #!+complex-float-vops
1406 '(let* ((ry (realpart y))
1407 (iy (imagpart y)))
1408 (if (> (abs ry) (abs iy))
1409 (let* ((r (/ iy ry))
1410 (dn (+ ry (* r iy))))
1411 (/ (complex x (- (* x r))) dn))
1412 (let* ((r (/ ry iy))
1413 (dn (+ iy (* r ry))))
1414 (/ (complex (* x r) (- x)) dn)))))
1415 ;; conjugate of complex number
1416 #!-complex-float-vops
1417 (deftransform conjugate ((z) ((complex ,type)) *)
1418 '(complex (realpart z) (- (imagpart z))))
1419 ;; CIS
1420 (deftransform cis ((z) ((,type)) *)
1421 '(complex (cos z) (sin z)))
1422 ;; comparison
1423 #!-complex-float-vops
1424 (deftransform = ((w z) ((complex ,type) (complex ,type)) *)
1425 '(and (= (realpart w) (realpart z))
1426 (= (imagpart w) (imagpart z))))
1427 #!-complex-float-vops
1428 (deftransform = ((w z) ((complex ,type) real) *)
1429 '(and (= (realpart w) z) (zerop (imagpart w))))
1430 #!-complex-float-vops
1431 (deftransform = ((w z) (real (complex ,type)) *)
1432 '(and (= (realpart z) w) (zerop (imagpart z)))))))
1434 (frob single-float)
1435 (frob double-float))
1437 ;;; Here are simple optimizers for SIN, COS, and TAN. They do not
1438 ;;; produce a minimal range for the result; the result is the widest
1439 ;;; possible answer. This gets around the problem of doing range
1440 ;;; reduction correctly but still provides useful results when the
1441 ;;; inputs are union types.
1442 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1443 (progn
1444 (defun trig-derive-type-aux (arg domain fun
1445 &optional def-lo def-hi (increasingp t))
1446 (etypecase arg
1447 (numeric-type
1448 (cond ((eq (numeric-type-complexp arg) :complex)
1449 (make-numeric-type :class (numeric-type-class arg)
1450 :format (numeric-type-format arg)
1451 :complexp :complex))
1452 ((numeric-type-real-p arg)
1453 (let* ((format (case (numeric-type-class arg)
1454 ((integer rational) 'single-float)
1455 (t (numeric-type-format arg))))
1456 (bound-type (or format 'float)))
1457 ;; If the argument is a subset of the "principal" domain
1458 ;; of the function, we can compute the bounds because
1459 ;; the function is monotonic. We can't do this in
1460 ;; general for these periodic functions because we can't
1461 ;; (and don't want to) do the argument reduction in
1462 ;; exactly the same way as the functions themselves do
1463 ;; it.
1464 (if (csubtypep arg domain)
1465 (let ((res-lo (bound-func fun (numeric-type-low arg) nil))
1466 (res-hi (bound-func fun (numeric-type-high arg) nil)))
1467 (unless increasingp
1468 (rotatef res-lo res-hi))
1469 (make-numeric-type
1470 :class 'float
1471 :format format
1472 :low (coerce-numeric-bound res-lo bound-type)
1473 :high (coerce-numeric-bound res-hi bound-type)))
1474 (make-numeric-type
1475 :class 'float
1476 :format format
1477 :low (and def-lo (coerce def-lo bound-type))
1478 :high (and def-hi (coerce def-hi bound-type))))))
1480 (float-or-complex-float-type arg def-lo def-hi))))))
1482 (defoptimizer (sin derive-type) ((num))
1483 (one-arg-derive-type
1485 (lambda (arg)
1486 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1487 (trig-derive-type-aux
1489 (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2)))
1490 #'sin
1491 -1 1))
1492 #'sin))
1494 (defoptimizer (cos derive-type) ((num))
1495 (one-arg-derive-type
1497 (lambda (arg)
1498 ;; Derive the bounds if the arg is in [0, pi].
1499 (trig-derive-type-aux arg
1500 (specifier-type `(float 0d0 ,pi))
1501 #'cos
1502 -1 1
1503 nil))
1504 #'cos))
1506 (defoptimizer (tan derive-type) ((num))
1507 (one-arg-derive-type
1509 (lambda (arg)
1510 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1511 (trig-derive-type-aux arg
1512 (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2)))
1513 #'tan
1514 nil nil))
1515 #'tan))
1517 (defoptimizer (conjugate derive-type) ((num))
1518 (one-arg-derive-type num
1519 (lambda (arg)
1520 (flet ((most-negative-bound (l h)
1521 (and l h
1522 (if (< (type-bound-number l) (- (type-bound-number h)))
1524 (set-bound (- (type-bound-number h)) (consp h)))))
1525 (most-positive-bound (l h)
1526 (and l h
1527 (if (> (type-bound-number h) (- (type-bound-number l)))
1529 (set-bound (- (type-bound-number l)) (consp l))))))
1530 (if (numeric-type-real-p arg)
1531 (lvar-type num)
1532 (let ((low (numeric-type-low arg))
1533 (high (numeric-type-high arg)))
1534 (let ((new-low (most-negative-bound low high))
1535 (new-high (most-positive-bound low high)))
1536 (modified-numeric-type arg :low new-low :high new-high))))))
1537 #'conjugate))
1539 (defoptimizer (cis derive-type) ((num))
1540 (one-arg-derive-type num
1541 (lambda (arg)
1542 (specifier-type
1543 `(complex ,(or (numeric-type-format arg) 'float))))
1544 #'cis))
1546 ) ; PROGN
1548 ;;;; TRUNCATE, FLOOR, CEILING, and ROUND
1550 (macrolet ((define-frobs (fun ufun)
1551 `(progn
1552 (defknown ,ufun (real) integer (movable foldable flushable))
1553 (deftransform ,fun ((x &optional by)
1554 (* &optional
1555 (constant-arg (member 1))))
1556 '(let ((res (,ufun x)))
1557 (values res (- x res)))))))
1558 (define-frobs truncate %unary-truncate)
1559 (define-frobs round %unary-round))
1561 (deftransform %unary-truncate ((x) (single-float))
1562 `(%unary-truncate/single-float x))
1563 (deftransform %unary-truncate ((x) (double-float))
1564 `(%unary-truncate/double-float x))
1566 ;;; Convert (TRUNCATE x y) to the obvious implementation.
1568 ;;; ...plus hair: Insert explicit coercions to appropriate float types: Python
1569 ;;; is reluctant it generate explicit integer->float coercions due to
1570 ;;; precision issues (see SAFE-SINGLE-COERCION-P &co), but this is not an
1571 ;;; issue here as there is no DERIVE-TYPE optimizer on specialized versions of
1572 ;;; %UNARY-TRUNCATE, so the derived type of TRUNCATE remains the best we can
1573 ;;; do here -- which is fine. Also take care not to add unnecassary division
1574 ;;; or multiplication by 1, since we are not able to always eliminate them,
1575 ;;; depending on FLOAT-ACCURACY. Finally, leave out the secondary value when
1576 ;;; we know it is unused: COERCE is not flushable.
1577 (macrolet ((def (type other-float-arg-types)
1578 (let ((unary (symbolicate "%UNARY-TRUNCATE/" type))
1579 (coerce (symbolicate "%" type)))
1580 `(deftransform truncate ((x &optional y)
1581 (,type
1582 &optional (or ,type ,@other-float-arg-types integer))
1583 * :result result)
1584 (let* ((result-type (and result
1585 (lvar-derived-type result)))
1586 (compute-all (and (values-type-p result-type)
1587 (not (type-single-value-p result-type)))))
1588 (if (or (not y)
1589 (and (constant-lvar-p y) (= 1 (lvar-value y))))
1590 (if compute-all
1591 `(let ((res (,',unary x)))
1592 (values res (- x (,',coerce res))))
1593 `(let ((res (,',unary x)))
1594 ;; Dummy secondary value!
1595 (values res x)))
1596 (if compute-all
1597 `(let* ((f (,',coerce y))
1598 (res (,',unary (/ x f))))
1599 (values res (- x (* f (,',coerce res)))))
1600 `(let* ((f (,',coerce y))
1601 (res (,',unary (/ x f))))
1602 ;; Dummy secondary value!
1603 (values res x)))))))))
1604 (def single-float ())
1605 (def double-float (single-float)))
1607 (defknown %unary-ftruncate (real) float (movable foldable flushable))
1608 (defknown %unary-ftruncate/single (single-float) single-float
1609 (movable foldable flushable))
1610 (defknown %unary-ftruncate/double (double-float) double-float
1611 (movable foldable flushable))
1613 (defun %unary-ftruncate/single (x)
1614 (declare (type single-float x))
1615 (declare (optimize speed (safety 0)))
1616 (let* ((bits (single-float-bits x))
1617 (exp (ldb sb!vm:single-float-exponent-byte bits))
1618 (biased (the single-float-exponent
1619 (- exp sb!vm:single-float-bias))))
1620 (declare (type (signed-byte 32) bits))
1621 (cond
1622 ((= exp sb!vm:single-float-normal-exponent-max) x)
1623 ((<= biased 0) (* x 0f0))
1624 ((>= biased (float-digits x)) x)
1626 (let ((frac-bits (- (float-digits x) biased)))
1627 (setf bits (logandc2 bits (- (ash 1 frac-bits) 1)))
1628 (make-single-float bits))))))
1630 (defun %unary-ftruncate/double (x)
1631 (declare (type double-float x))
1632 (declare (optimize speed (safety 0)))
1633 (let* ((high (double-float-high-bits x))
1634 (low (double-float-low-bits x))
1635 (exp (ldb sb!vm:double-float-exponent-byte high))
1636 (biased (the double-float-exponent
1637 (- exp sb!vm:double-float-bias))))
1638 (declare (type (signed-byte 32) high)
1639 (type (unsigned-byte 32) low))
1640 (cond
1641 ((= exp sb!vm:double-float-normal-exponent-max) x)
1642 ((<= biased 0) (* x 0d0))
1643 ((>= biased (float-digits x)) x)
1645 (let ((frac-bits (- (float-digits x) biased)))
1646 (cond ((< frac-bits 32)
1647 (setf low (logandc2 low (- (ash 1 frac-bits) 1))))
1649 (setf low 0)
1650 (setf high (logandc2 high (- (ash 1 (- frac-bits 32)) 1)))))
1651 (make-double-float high low))))))
1653 (macrolet
1654 ((def (float-type fun)
1655 `(deftransform %unary-ftruncate ((x) (,float-type))
1656 '(,fun x))))
1657 (def single-float %unary-ftruncate/single)
1658 (def double-float %unary-ftruncate/double))