De-flake 'traceroot' test
[sbcl.git] / src / runtime / x86-64-arch.c
blob24e7dc0102d9ec909cb2d0f937265530e649bb2b
1 /*
2 * This software is part of the SBCL system. See the README file for
3 * more information.
5 * This software is derived from the CMU CL system, which was
6 * written at Carnegie Mellon University and released into the
7 * public domain. The software is in the public domain and is
8 * provided with absolutely no warranty. See the COPYING and CREDITS
9 * files for more information.
12 #include <stdio.h>
14 #include "sbcl.h"
15 #include "runtime.h"
16 #include "globals.h"
17 #include "validate.h"
18 #include "os.h"
19 #include "sbcl.h"
20 #include "arch.h"
21 #include "lispregs.h"
22 #include "signal.h"
23 #include "alloc.h"
24 #include "interrupt.h"
25 #include "interr.h"
26 #include "breakpoint.h"
27 #include "thread.h"
28 #include "pseudo-atomic.h"
30 #include "genesis/static-symbols.h"
31 #include "genesis/symbol.h"
33 #define BREAKPOINT_INST 0xcc /* INT3 */
34 #define UD2_INST 0x0b0f /* UD2 */
36 #ifndef LISP_FEATURE_UD2_BREAKPOINTS
37 #define BREAKPOINT_WIDTH 1
38 #else
39 #define BREAKPOINT_WIDTH 2
40 #endif
42 unsigned int cpuid_fn1_ecx;
43 unsigned int avx_supported = 0;
45 static void cpuid(unsigned info, unsigned subinfo,
46 unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx)
48 #ifdef _MSC_VER
49 int regs[4];
50 __cpuid(regs, info);
51 *eax = regs[0];
52 *ebx = regs[1];
53 *ecx = regs[2];
54 *edx = regs[3];
55 #else
56 __asm__("cpuid;" /* assembly code */
57 :"=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) /* outputs */
58 :"a" (info), "c" (subinfo) /* input: info into eax,
59 subinfo to ecx */
60 /* clobbers: none */
62 #endif
65 static void xgetbv(unsigned *eax, unsigned *edx)
67 __asm__("xgetbv;"
68 :"=a" (*eax), "=d" (*edx)
69 : "c" (0));
72 void arch_init(void)
74 unsigned int eax, ebx, ecx, edx;
76 cpuid(0, 0, &eax, &ebx, &ecx, &edx);
77 if (eax >= 1) { // see if we can execute basic id function 1
78 unsigned avx_mask = 0x18000000; // OXSAVE and AVX
79 cpuid(1, 0, &eax, &ebx, &ecx, &edx);
80 cpuid_fn1_ecx = ecx;
81 if ((ecx & avx_mask) == avx_mask) {
82 xgetbv(&eax, &edx);
83 if ((eax & 0x06) == 0x06) // YMM and XMM
84 avx_supported = 1;
89 #define FILL_VECTOR_T "FILL-VECTOR/T"
91 // Poke in a byte that changes an opcode to enable faster vector fill.
92 // Using fixed offsets and bytes is no worse than what we do elsewhere.
93 void tune_asm_routines_for_microarch(void)
95 // I don't know if this works on Windows
96 #ifndef _MSC_VER
97 unsigned int eax, ebx, ecx, edx;
98 cpuid(0, 0, &eax, &ebx, &ecx, &edx);
99 if (eax >= 7) {
100 cpuid(7, 0, &eax, &ebx, &ecx, &edx);
101 if (ebx & (1<<9)) // Enhanced Repeat Movs/Stos
102 asm_routine_poke(FILL_VECTOR_T, 0x12, 0x7C); // Change JMP to JL
104 #endif
107 /* Undo code patches so that the core file applies to the most generic
108 microarchitecture on startup. As it happens, FILL-VECTOR/T is fine
109 either way, but in general this might not be true for code using
110 instructions that don't exist on some cpu family members */
111 void untune_asm_routines_for_microarch(void)
113 asm_routine_poke(FILL_VECTOR_T, 0x12, 0xEB); // Change JL to JMP
116 #ifndef _WIN64
117 os_vm_address_t
118 arch_get_bad_addr(int sig, siginfo_t *code, os_context_t *context)
120 return (os_vm_address_t)code->si_addr;
122 #endif
126 * hacking signal contexts
128 * (This depends both on architecture, which determines what we might
129 * want to get to, and on OS, which determines how we get to it.)
132 os_context_register_t *
133 context_eflags_addr(os_context_t *context)
135 #if defined __linux__ || defined __sun
136 /* KLUDGE: As of kernel 2.2.14 on Red Hat 6.2, there's code in the
137 * <sys/ucontext.h> file to define symbolic names for offsets into
138 * gregs[], but it's conditional on __USE_GNU and not defined, so
139 * we need to do this nasty absolute index magic number thing
140 * instead. */
141 return (os_context_register_t*)&context->uc_mcontext.gregs[17];
142 #elif defined LISP_FEATURE_FREEBSD || defined(__DragonFly__)
143 return &context->uc_mcontext.mc_rflags;
144 #elif defined LISP_FEATURE_DARWIN
145 return CONTEXT_ADDR_FROM_STEM(rflags);
146 #elif defined __OpenBSD__
147 return &context->sc_rflags;
148 #elif defined __NetBSD__
149 return CONTEXT_ADDR_FROM_STEM(RFLAGS);
150 #elif defined _WIN64
151 return (os_context_register_t*)&context->win32_context->EFlags;
152 #else
153 #error unsupported OS
154 #endif
157 void arch_skip_instruction(os_context_t *context)
159 /* Assuming we get here via an INT3 xxx instruction, the PC now
160 * points to the interrupt code (a Lisp value) so we just move
161 * past it. Skip the code; after that, if the code is an
162 * error-trap or cerror-trap then skip the data bytes that follow. */
164 int vlen;
165 long code;
168 /* Get and skip the Lisp interrupt code. */
169 code = *(char*)(*os_context_pc_addr(context))++;
170 switch (code)
172 case trap_Error:
173 case trap_Cerror:
174 /* Lisp error arg vector length */
175 vlen = *(char*)(*os_context_pc_addr(context))++;
176 /* Skip Lisp error arg data bytes. */
177 while (vlen-- > 0) {
178 ++*os_context_pc_addr(context);
180 break;
182 case trap_Breakpoint: /* not tested */
183 case trap_FunEndBreakpoint: /* not tested */
184 break;
186 #ifdef LISP_FEATURE_SB_SAFEPOINT
187 case trap_GlobalSafepoint:
188 case trap_CspSafepoint:
189 #endif
190 case trap_PendingInterrupt:
191 case trap_Halt:
192 case trap_SingleStepAround:
193 case trap_SingleStepBefore:
194 case trap_InvalidArgCount:
195 /* only needed to skip the Code */
196 break;
198 default:
199 fprintf(stderr,"[arch_skip_inst invalid code %ld\n]\n",code);
200 break;
203 FSHOW((stderr,
204 "/[arch_skip_inst resuming at %x]\n",
205 *os_context_pc_addr(context)));
208 unsigned char *
209 arch_internal_error_arguments(os_context_t *context)
211 return 1 + (unsigned char *)(*os_context_pc_addr(context));
214 boolean
215 arch_pseudo_atomic_atomic(os_context_t *context)
217 return get_pseudo_atomic_atomic(arch_os_get_current_thread());
220 void
221 arch_set_pseudo_atomic_interrupted(os_context_t *context)
223 struct thread *thread = arch_os_get_current_thread();
224 set_pseudo_atomic_interrupted(thread);
227 void
228 arch_clear_pseudo_atomic_interrupted(os_context_t *context)
230 struct thread *thread = arch_os_get_current_thread();
231 clear_pseudo_atomic_interrupted(thread);
235 * This stuff seems to get called for TRACE and debug activity.
238 unsigned int
239 arch_install_breakpoint(void *pc)
241 unsigned int result = *(unsigned int*)pc;
243 #ifndef LISP_FEATURE_UD2_BREAKPOINTS
244 *(char*)pc = BREAKPOINT_INST; /* x86 INT3 */
245 *((char*)pc+1) = trap_Breakpoint; /* Lisp trap code */
246 #else
247 *(char*)pc = UD2_INST & 0xff;
248 *((char*)pc+1) = UD2_INST >> 8;
249 *((char*)pc+2) = trap_Breakpoint;
250 #endif
252 return result;
255 void
256 arch_remove_breakpoint(void *pc, unsigned int orig_inst)
258 *((char *)pc) = orig_inst & 0xff;
259 *((char *)pc + 1) = (orig_inst & 0xff00) >> 8;
260 #if BREAKPOINT_WIDTH > 1
261 *((char *)pc + 2) = (orig_inst & 0xff0000) >> 16;
262 #endif
265 /* When single stepping, single_stepping holds the original instruction
266 * PC location. */
267 unsigned int *single_stepping = NULL;
268 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
269 unsigned int single_step_save1;
270 unsigned int single_step_save2;
271 unsigned int single_step_save3;
272 #endif
274 void
275 arch_do_displaced_inst(os_context_t *context, unsigned int orig_inst)
277 unsigned int *pc = (unsigned int*)(*os_context_pc_addr(context));
279 /* Put the original instruction back. */
280 arch_remove_breakpoint(pc, orig_inst);
282 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
283 /* Install helper instructions for the single step:
284 * pushf; or [esp],0x100; popf. */
285 single_step_save1 = *(pc-3);
286 single_step_save2 = *(pc-2);
287 single_step_save3 = *(pc-1);
288 *(pc-3) = 0x9c909090;
289 *(pc-2) = 0x00240c81;
290 *(pc-1) = 0x9d000001;
291 #else
292 *context_eflags_addr(context) |= 0x100;
293 #endif
295 single_stepping = pc;
297 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
298 *os_context_pc_addr(context) = (os_context_register_t)((char *)pc - 9);
299 #endif
302 void
303 arch_handle_breakpoint(os_context_t *context)
305 *os_context_pc_addr(context) -= BREAKPOINT_WIDTH;
306 handle_breakpoint(context);
309 void
310 arch_handle_fun_end_breakpoint(os_context_t *context)
312 *os_context_pc_addr(context) -= BREAKPOINT_WIDTH;
313 *os_context_pc_addr(context) =
314 (uword_t)handle_fun_end_breakpoint(context);
317 void
318 arch_handle_single_step_trap(os_context_t *context, int trap)
320 arch_skip_instruction(context);
321 /* On x86-64 the fdefn / function is always in RAX, so we pass
322 * 0 as the register_offset. */
323 handle_single_step_trap(context, trap, 0);
327 void
328 restore_breakpoint_from_single_step(os_context_t * context)
330 #ifdef CANNOT_GET_TO_SINGLE_STEP_FLAG
331 /* Un-install single step helper instructions. */
332 *(single_stepping-3) = single_step_save1;
333 *(single_stepping-2) = single_step_save2;
334 *(single_stepping-1) = single_step_save3;
335 #else
336 *context_eflags_addr(context) &= ~0x100;
337 #endif
338 /* Re-install the breakpoint if possible. */
339 if (((char *)*os_context_pc_addr(context) >
340 (char *)single_stepping) &&
341 ((char *)*os_context_pc_addr(context) <=
342 (char *)single_stepping + BREAKPOINT_WIDTH)) {
343 fprintf(stderr, "warning: couldn't reinstall breakpoint\n");
344 } else {
345 arch_install_breakpoint(single_stepping);
348 single_stepping = NULL;
349 return;
352 void
353 sigtrap_handler(int signal, siginfo_t *info, os_context_t *context)
355 unsigned int trap;
357 if (single_stepping) {
358 restore_breakpoint_from_single_step(context);
359 return;
362 /* This is just for info in case the monitor wants to print an
363 * approximation. */
364 access_control_stack_pointer(arch_os_get_current_thread()) =
365 (lispobj *)*os_context_sp_addr(context);
367 /* On entry %eip points just after the INT3 byte and aims at the
368 * 'kind' value (eg trap_Cerror). For error-trap and Cerror-trap a
369 * number of bytes will follow, the first is the length of the byte
370 * arguments to follow. */
371 trap = *(unsigned char *)(*os_context_pc_addr(context));
373 handle_trap(context, trap);
376 void
377 sigill_handler(int signal, siginfo_t *siginfo, os_context_t *context) {
378 /* Triggering SIGTRAP using int3 is unreliable on OS X/x86, so
379 * we need to use illegal instructions for traps.
381 #if defined(LISP_FEATURE_UD2_BREAKPOINTS) && !defined(LISP_FEATURE_MACH_EXCEPTION_HANDLER)
382 if (*((unsigned short *)*os_context_pc_addr(context)) == UD2_INST) {
383 *os_context_pc_addr(context) += 2;
384 return sigtrap_handler(signal, siginfo, context);
386 #endif
388 fake_foreign_function_call(context);
389 lose("Unhandled SIGILL at %p.", *os_context_pc_addr(context));
392 #ifdef X86_64_SIGFPE_FIXUP
393 #define MXCSR_IE (0x01) /* Invalid Operation */
394 #define MXCSR_DE (0x02) /* Denormal */
395 #define MXCSR_ZE (0x04) /* Devide-by-Zero */
396 #define MXCSR_OE (0x08) /* Overflow */
397 #define MXCSR_UE (0x10) /* Underflow */
398 #define MXCSR_PE (0x20) /* Precision */
400 static inline int
401 mxcsr_to_code(unsigned int mxcsr)
403 /* Extract unmasked exception bits. */
404 mxcsr &= ~(mxcsr >> 7) & 0x3F;
406 /* This order is defined at "Intel 64 and IA-32 Architectures
407 * Software Developerfs Manual" Volume 1: "Basic Architecture",
408 * 4.9.2 "Floating-Point Exception Priority". */
409 if (mxcsr & MXCSR_IE)
410 return FPE_FLTINV;
411 else if (mxcsr & MXCSR_ZE)
412 return FPE_FLTDIV;
413 else if (mxcsr & MXCSR_DE)
414 return FPE_FLTUND;
415 else if (mxcsr & MXCSR_OE)
416 return FPE_FLTOVF;
417 else if (mxcsr & MXCSR_UE)
418 return FPE_FLTUND;
419 else if (mxcsr & MXCSR_PE)
420 return FPE_FLTRES;
422 return 0;
425 static void
426 sigfpe_handler(int signal, siginfo_t *siginfo, os_context_t *context)
428 unsigned int *mxcsr = arch_os_context_mxcsr_addr(context);
430 #ifndef LISP_FEATURE_DARWIN
431 /* Darwin doesn't handle accrued bits right. */
432 if (siginfo->si_code == 0)
433 #endif
434 { /* XMM exception */
435 siginfo->si_code = mxcsr_to_code(*mxcsr);
437 /* Clear sticky exception flag. */
438 *mxcsr &= ~0x3F;
441 interrupt_handle_now(signal, siginfo, context);
443 #endif
445 void
446 arch_install_interrupt_handlers()
448 SHOW("entering arch_install_interrupt_handlers()");
450 /* Note: The old CMU CL code here used sigtrap_handler() to handle
451 * SIGILL as well as SIGTRAP. I couldn't see any reason to do
452 * things that way. So, I changed to separate handlers when
453 * debugging a problem on OpenBSD, where SBCL wasn't catching
454 * SIGILL properly, but was instead letting the process be
455 * terminated with an "Illegal instruction" output. If this change
456 * turns out to break something (maybe breakpoint handling on some
457 * OS I haven't tested on?) and we have to go back to the old CMU
458 * CL way, I hope there will at least be a comment to explain
459 * why.. -- WHN 2001-06-07 */
460 #if !defined(LISP_FEATURE_MACH_EXCEPTION_HANDLER) && !defined(LISP_FEATURE_WIN32)
461 undoably_install_low_level_interrupt_handler(SIGILL , sigill_handler);
462 undoably_install_low_level_interrupt_handler(SIGTRAP, sigtrap_handler);
463 #endif
465 #if defined(X86_64_SIGFPE_FIXUP) && !defined(LISP_FEATURE_WIN32)
466 undoably_install_low_level_interrupt_handler(SIGFPE, sigfpe_handler);
467 #endif
469 SHOW("returning from arch_install_interrupt_handlers()");
472 #ifdef LISP_FEATURE_LINKAGE_TABLE
473 /* FIXME: It might be cleaner to generate these from the lisp side of
474 * things.
477 void
478 arch_write_linkage_table_jmp(char *reloc_addr, void *target_addr)
480 uword_t addr = (uword_t)target_addr;
481 int i;
483 *reloc_addr++ = 0xFF; /* Opcode for near jump to absolute reg/mem64. */
484 *reloc_addr++ = 0x25; /* ModRM #b00 100 101, i.e. RIP-relative. */
485 *reloc_addr++ = 0x00; /* 32-bit displacement field = 0 */
486 *reloc_addr++ = 0x00; /* ... */
487 *reloc_addr++ = 0x00; /* ... */
488 *reloc_addr++ = 0x00; /* ... */
490 for (i = 0; i < 8; i++) {
491 *reloc_addr++ = addr & 0xff;
492 addr >>= 8;
495 /* write a nop for good measure. */
496 *reloc_addr = 0x90;
499 void
500 arch_write_linkage_table_ref(void *reloc_addr, void *target_addr)
502 *(uword_t *)reloc_addr = (uword_t)target_addr;
505 #endif
507 /* These setup and check *both* the sse2 and x87 FPUs. While lisp code
508 only uses the sse2 FPU, other code (such as libc) may use the x87 FPU.
511 unsigned int
512 arch_get_fp_modes()
514 unsigned int temp;
515 unsigned int result;
516 /* return the x87 exception flags ored in with the sse2
517 * control+status flags */
518 asm ("fnstsw %0" : "=m" (temp));
519 result = temp;
520 result &= 0x3F;
521 asm ("stmxcsr %0" : "=m" (temp));
522 result |= temp;
523 /* flip exception mask bits */
524 return result ^ (0x3F << 7);
527 struct fpenv
529 unsigned short cw;
530 unsigned short unused1;
531 unsigned short sw;
532 unsigned short unused2;
533 unsigned int other_regs[5];
536 void
537 arch_set_fp_modes(unsigned int mxcsr)
539 struct fpenv f_env;
540 unsigned int temp;
542 /* turn trap enable bits into exception mask */
543 mxcsr ^= 0x3F << 7;
545 /* set x87 modes */
546 asm ("fnstenv %0" : "=m" (f_env));
547 /* set control word: always long double precision
548 * get traps and rounding from mxcsr word */
549 f_env.cw = 0x300 | ((mxcsr >> 7) & 0x3F) | (((mxcsr >> 13) & 0x3) << 10);
550 /* set status word: only override exception flags, from mxcsr */
551 f_env.sw &= ~0x3F;
552 f_env.sw |= (mxcsr & 0x3F);
554 asm ("fldenv %0" : : "m" (f_env));
556 /* now, simply, load up the mxcsr register */
557 temp = mxcsr;
558 asm ("ldmxcsr %0" : : "m" (temp));
561 #ifdef LISP_FEATURE_IMMOBILE_CODE
562 /// Return the Lisp object that fdefn's raw_addr slot jumps to.
563 /// This will either be:
564 /// (1) a simple-fun,
565 /// (2) a funcallable-instance with an embedded trampoline that makes
566 /// it resemble a simple-fun in terms of call convention, or
567 /// (3) a code-component with no simple-fun within it, that makes
568 /// closures and other funcallable-instances look like simple-funs.
569 lispobj fdefn_raw_referent(struct fdefn* fdefn) {
570 if (((lispobj)fdefn->raw_addr & 0xFE) == 0xE8) { // looks good
571 unsigned int raw_fun = (int)(long)&fdefn->raw_addr + 5 // length of "JMP rel32"
572 + *(int*)((char*)&fdefn->raw_addr + 1);
573 switch (((unsigned char*)&fdefn->raw_addr)[5]) {
574 case 0x00: // no closure/fin trampoline
575 // If the target address is in read-only space, then it's a jump or call
576 // to an asm routine, and there is no corresponding simple-fun.
577 // While we could locate and return the code-object, it's difficult to,
578 // and there's no reason to - scavenging it is unnecessary.
579 return raw_fun >= IMMOBILE_SPACE_START ? raw_fun - FUN_RAW_ADDR_OFFSET : 0;
580 case 0x48: // embedded funcallable instance trampoline
581 return (raw_fun - (4<<WORD_SHIFT)) | FUN_POINTER_LOWTAG;
582 case 0x90: // general closure/fin trampoline
583 return (raw_fun - offsetof(struct code, constants)) | OTHER_POINTER_LOWTAG;
585 } else if (fdefn->raw_addr == 0)
586 return 0;
587 lose("Can't decode fdefn raw addr @ %p: %p\n", fdefn, fdefn->raw_addr);
589 #endif