Make type caches perform better.
[sbcl.git] / src / code / late-type.lisp
blobbeb6834ad813ef409f8a0c218398f435e263535e
1 ;;;; This file contains the definition of non-CLASS types (e.g.
2 ;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
3 ;;;; the type system. Common Lisp type specifiers are parsed into a
4 ;;;; somewhat canonical internal type representation that supports
5 ;;;; type union, intersection, etc. (Except that ALIEN types have
6 ;;;; moved out..)
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!KERNEL")
19 (/show0 "late-type.lisp 19")
21 (!begin-collecting-cold-init-forms)
23 ;;; ### Remaining incorrectnesses:
24 ;;;
25 ;;; There are all sorts of nasty problems with open bounds on FLOAT
26 ;;; types (and probably FLOAT types in general.)
28 ;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
29 ;;; compiler warnings can be emitted as appropriate.
30 (define-condition parse-unknown-type (condition)
31 ((specifier :reader parse-unknown-type-specifier :initarg :specifier)))
33 ;;; These functions are used as method for types which need a complex
34 ;;; subtypep method to handle some superclasses, but cover a subtree
35 ;;; of the type graph (i.e. there is no simple way for any other type
36 ;;; class to be a subtype.) There are always still complex ways,
37 ;;; namely UNION and MEMBER types, so we must give TYPE1's method a
38 ;;; chance to run, instead of immediately returning NIL, T.
39 (defun delegate-complex-subtypep-arg2 (type1 type2)
40 (let ((subtypep-arg1
41 (type-class-complex-subtypep-arg1 (type-class-info type1))))
42 (if subtypep-arg1
43 (funcall subtypep-arg1 type1 type2)
44 (values nil t))))
45 (defun delegate-complex-intersection2 (type1 type2)
46 (let ((method (type-class-complex-intersection2 (type-class-info type1))))
47 (if (and method (not (eq method #'delegate-complex-intersection2)))
48 (funcall method type2 type1)
49 (hierarchical-intersection2 type1 type2))))
51 (defun contains-unknown-type-p (ctype)
52 (cond ((unknown-type-p ctype) t)
53 ((compound-type-p ctype)
54 (some #'contains-unknown-type-p (compound-type-types ctype)))
55 ((negation-type-p ctype)
56 (contains-unknown-type-p (negation-type-type ctype)))))
58 ;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
59 ;;; method. INFO is a list of conses
60 ;;; (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
61 (defun has-superclasses-complex-subtypep-arg1 (type1 type2 info)
62 ;; If TYPE2 might be concealing something related to our class
63 ;; hierarchy
64 (if (type-might-contain-other-types-p type2)
65 ;; too confusing, gotta punt
66 (values nil nil)
67 ;; ordinary case expected by old CMU CL code, where the taxonomy
68 ;; of TYPE2's representation accurately reflects the taxonomy of
69 ;; the underlying set
70 (values
71 ;; FIXME: This old CMU CL code probably deserves a comment
72 ;; explaining to us mere mortals how it works...
73 (and (sb!xc:typep type2 'classoid)
74 (dolist (x info nil)
75 (when (or (not (cdr x))
76 (csubtypep type1 (specifier-type (cdr x))))
77 (return
78 (or (eq type2 (car x))
79 (let ((inherits (layout-inherits
80 (classoid-layout (car x)))))
81 (dotimes (i (length inherits) nil)
82 (when (eq type2 (layout-classoid (svref inherits i)))
83 (return t)))))))))
84 t)))
86 ;;; This function takes a list of specs, each of the form
87 ;;; (SUPERCLASS-NAME &OPTIONAL GUARD).
88 ;;; Consider one spec (with no guard): any instance of the named
89 ;;; TYPE-CLASS is also a subtype of the named superclass and of any of
90 ;;; its superclasses. If there are multiple specs, then some will have
91 ;;; guards. We choose the first spec whose guard is a supertype of
92 ;;; TYPE1 and use its superclass. In effect, a sequence of guards
93 ;;; G0, G1, G2
94 ;;; is actually
95 ;;; G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
96 ;;;
97 ;;; WHEN controls when the forms are executed.
98 (defmacro !define-superclasses (type-class-name specs when)
99 (with-unique-names (type-class info)
100 `(,when
101 (let ((,type-class (type-class-or-lose ',type-class-name))
102 (,info (mapcar (lambda (spec)
103 (destructuring-bind
104 (super &optional guard)
105 spec
106 (cons (find-classoid super) guard)))
107 ',specs)))
108 (setf (type-class-complex-subtypep-arg1 ,type-class)
109 (lambda (type1 type2)
110 (has-superclasses-complex-subtypep-arg1 type1 type2 ,info)))
111 (setf (type-class-complex-subtypep-arg2 ,type-class)
112 #'delegate-complex-subtypep-arg2)
113 (setf (type-class-complex-intersection2 ,type-class)
114 #'delegate-complex-intersection2)))))
116 ;;;; FUNCTION and VALUES types
117 ;;;;
118 ;;;; Pretty much all of the general type operations are illegal on
119 ;;;; VALUES types, since we can't discriminate using them, do
120 ;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
121 ;;;; operations, but are generally considered to be equivalent to
122 ;;;; FUNCTION. These really aren't true types in any type theoretic
123 ;;;; sense, but we still parse them into CTYPE structures for two
124 ;;;; reasons:
126 ;;;; -- Parsing and unparsing work the same way, and indeed we can't
127 ;;;; tell whether a type is a function or values type without
128 ;;;; parsing it.
129 ;;;; -- Many of the places that can be annotated with real types can
130 ;;;; also be annotated with function or values types.
132 ;;; the description of a &KEY argument
133 (defstruct (key-info #-sb-xc-host (:pure t)
134 (:copier nil))
135 ;; the key (not necessarily a keyword in ANSI Common Lisp)
136 (name (missing-arg) :type symbol :read-only t)
137 ;; the type of the argument value
138 (type (missing-arg) :type ctype :read-only t))
140 (!define-type-method (values :simple-subtypep :complex-subtypep-arg1)
141 (type1 type2)
142 (declare (ignore type2))
143 ;; FIXME: should be TYPE-ERROR, here and in next method
144 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1)))
146 (!define-type-method (values :complex-subtypep-arg2)
147 (type1 type2)
148 (declare (ignore type1))
149 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2)))
151 (!define-type-method (values :negate) (type)
152 (error "NOT VALUES too confusing on ~S" (type-specifier type)))
154 (!define-type-method (values :unparse) (type)
155 (cons 'values
156 (let ((unparsed (unparse-args-types type)))
157 (if (or (values-type-optional type)
158 (values-type-rest type)
159 (values-type-allowp type))
160 unparsed
161 (nconc unparsed '(&optional))))))
163 ;;; Return true if LIST1 and LIST2 have the same elements in the same
164 ;;; positions according to TYPE=. We return NIL, NIL if there is an
165 ;;; uncertain comparison.
166 (defun type=-list (list1 list2)
167 (declare (list list1 list2))
168 (do ((types1 list1 (cdr types1))
169 (types2 list2 (cdr types2)))
170 ((or (null types1) (null types2))
171 (if (or types1 types2)
172 (values nil t)
173 (values t t)))
174 (multiple-value-bind (val win)
175 (type= (first types1) (first types2))
176 (unless win
177 (return (values nil nil)))
178 (unless val
179 (return (values nil t))))))
181 (!define-type-method (values :simple-=) (type1 type2)
182 (type=-args type1 type2))
184 (!define-type-class function :enumerable nil
185 :might-contain-other-types nil)
187 ;;; a flag that we can bind to cause complex function types to be
188 ;;; unparsed as FUNCTION. This is useful when we want a type that we
189 ;;; can pass to TYPEP.
190 (!defvar *unparse-fun-type-simplify* nil)
191 ;;; A flag to prevent TYPE-OF calls by user applications from returning
192 ;;; (NOT x). TYPE-SPECIFIER usually allows it to preserve information.
193 (!defvar *unparse-allow-negation* t)
195 (!define-type-method (function :negate) (type)
196 (make-negation-type :type type))
198 (!define-type-method (function :unparse) (type)
199 (if *unparse-fun-type-simplify*
200 'function
201 (list 'function
202 (if (fun-type-wild-args type)
204 (unparse-args-types type))
205 (type-specifier
206 (fun-type-returns type)))))
208 ;;; The meaning of this is a little confused. On the one hand, all
209 ;;; function objects are represented the same way regardless of the
210 ;;; arglists and return values, and apps don't get to ask things like
211 ;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
212 ;;; other hand, Python wants to reason about function types. So...
213 (!define-type-method (function :simple-subtypep) (type1 type2)
214 (flet ((fun-type-simple-p (type)
215 (not (or (fun-type-rest type)
216 (fun-type-keyp type))))
217 (every-csubtypep (types1 types2)
218 (loop
219 for a1 in types1
220 for a2 in types2
221 do (multiple-value-bind (res sure-p)
222 (csubtypep a1 a2)
223 (unless res (return (values res sure-p))))
224 finally (return (values t t)))))
225 (and/type (values-subtypep (fun-type-returns type1)
226 (fun-type-returns type2))
227 (cond ((fun-type-wild-args type2) (values t t))
228 ((fun-type-wild-args type1)
229 (cond ((fun-type-keyp type2) (values nil nil))
230 ((not (fun-type-rest type2)) (values nil t))
231 ((not (null (fun-type-required type2)))
232 (values nil t))
233 (t (and/type (type= *universal-type*
234 (fun-type-rest type2))
235 (every/type #'type=
236 *universal-type*
237 (fun-type-optional
238 type2))))))
239 ((not (and (fun-type-simple-p type1)
240 (fun-type-simple-p type2)))
241 (values nil nil))
242 (t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
243 (multiple-value-bind (min2 max2) (fun-type-nargs type2)
244 (cond ((or (> max1 max2) (< min1 min2))
245 (values nil t))
246 ((and (= min1 min2) (= max1 max2))
247 (and/type (every-csubtypep
248 (fun-type-required type1)
249 (fun-type-required type2))
250 (every-csubtypep
251 (fun-type-optional type1)
252 (fun-type-optional type2))))
253 (t (every-csubtypep
254 (concatenate 'list
255 (fun-type-required type1)
256 (fun-type-optional type1))
257 (concatenate 'list
258 (fun-type-required type2)
259 (fun-type-optional type2))))))))))))
261 (!define-superclasses function ((function)) !cold-init-forms)
263 ;;; The union or intersection of two FUNCTION types is FUNCTION.
264 (!define-type-method (function :simple-union2) (type1 type2)
265 (declare (ignore type1 type2))
266 (specifier-type 'function))
267 (!define-type-method (function :simple-intersection2) (type1 type2)
268 (let ((ftype (specifier-type 'function)))
269 (cond ((eq type1 ftype) type2)
270 ((eq type2 ftype) type1)
271 (t (let ((rtype (values-type-intersection (fun-type-returns type1)
272 (fun-type-returns type2))))
273 (flet ((change-returns (ftype rtype)
274 (declare (type fun-type ftype) (type ctype rtype))
275 (make-fun-type :required (fun-type-required ftype)
276 :optional (fun-type-optional ftype)
277 :keyp (fun-type-keyp ftype)
278 :keywords (fun-type-keywords ftype)
279 :allowp (fun-type-allowp ftype)
280 :returns rtype)))
281 (cond
282 ((fun-type-wild-args type1)
283 (if (fun-type-wild-args type2)
284 (make-fun-type :wild-args t
285 :returns rtype)
286 (change-returns type2 rtype)))
287 ((fun-type-wild-args type2)
288 (change-returns type1 rtype))
289 (t (multiple-value-bind (req opt rest)
290 (args-type-op type1 type2 #'type-intersection #'max)
291 (make-fun-type :required req
292 :optional opt
293 :rest rest
294 ;; FIXME: :keys
295 :allowp (and (fun-type-allowp type1)
296 (fun-type-allowp type2))
297 :returns rtype))))))))))
299 ;;; The union or intersection of a subclass of FUNCTION with a
300 ;;; FUNCTION type is somewhat complicated.
301 (!define-type-method (function :complex-intersection2) (type1 type2)
302 (cond
303 ((type= type1 (specifier-type 'function)) type2)
304 ((csubtypep type1 (specifier-type 'function)) nil)
305 (t :call-other-method)))
306 (!define-type-method (function :complex-union2) (type1 type2)
307 (declare (ignore type2))
308 ;; TYPE2 is a FUNCTION type. If TYPE1 is a classoid type naming
309 ;; FUNCTION, then it is the union of the two; otherwise, there is no
310 ;; special union.
311 (cond
312 ((type= type1 (specifier-type 'function)) type1)
313 (t nil)))
315 (!define-type-method (function :simple-=) (type1 type2)
316 (macrolet ((compare (comparator field)
317 (let ((reader (symbolicate '#:fun-type- field)))
318 `(,comparator (,reader type1) (,reader type2)))))
319 (and/type (compare type= returns)
320 (cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
321 (values nil t))
322 ((eq (fun-type-wild-args type1) t)
323 (values t t))
324 (t (type=-args type1 type2))))))
326 (!define-type-class constant :inherits values)
328 (!define-type-method (constant :negate) (type)
329 (error "NOT CONSTANT too confusing on ~S" (type-specifier type)))
331 (!define-type-method (constant :unparse) (type)
332 `(constant-arg ,(type-specifier (constant-type-type type))))
334 (!define-type-method (constant :simple-=) (type1 type2)
335 (type= (constant-type-type type1) (constant-type-type type2)))
337 (!def-type-translator constant-arg (type)
338 (make-constant-type :type (single-value-specifier-type type)))
340 ;;; Return the lambda-list-like type specification corresponding
341 ;;; to an ARGS-TYPE.
342 (declaim (ftype (function (args-type) list) unparse-args-types))
343 (defun unparse-args-types (type)
344 (collect ((result))
346 (dolist (arg (args-type-required type))
347 (result (type-specifier arg)))
349 (when (args-type-optional type)
350 (result '&optional)
351 (dolist (arg (args-type-optional type))
352 (result (type-specifier arg))))
354 (when (args-type-rest type)
355 (result '&rest)
356 (result (type-specifier (args-type-rest type))))
358 (when (args-type-keyp type)
359 (result '&key)
360 (dolist (key (args-type-keywords type))
361 (result (list (key-info-name key)
362 (type-specifier (key-info-type key))))))
364 (when (args-type-allowp type)
365 (result '&allow-other-keys))
367 (result)))
369 (!def-type-translator function (&optional (args '*) (result '*))
370 (let ((result (coerce-to-values (values-specifier-type result))))
371 (if (eq args '*)
372 (if (eq result *wild-type*)
373 (specifier-type 'function)
374 (make-fun-type :wild-args t :returns result))
375 (multiple-value-bind (required optional rest keyp keywords allowp)
376 (parse-args-types args)
377 (if (and (null required)
378 (null optional)
379 (eq rest *universal-type*)
380 (not keyp))
381 (if (eq result *wild-type*)
382 (specifier-type 'function)
383 (make-fun-type :wild-args t :returns result))
384 (make-fun-type :required required
385 :optional optional
386 :rest rest
387 :keyp keyp
388 :keywords keywords
389 :allowp allowp
390 :returns result))))))
392 (!def-type-translator values (&rest values)
393 (if (eq values '*)
394 *wild-type*
395 (multiple-value-bind (required optional rest keyp keywords allowp llk-p)
396 (parse-args-types values)
397 (declare (ignore keywords))
398 (cond (keyp
399 (error "&KEY appeared in a VALUES type specifier ~S."
400 `(values ,@values)))
401 (llk-p
402 (make-values-type :required required
403 :optional optional
404 :rest rest
405 :allowp allowp))
407 (make-short-values-type required))))))
409 ;;;; VALUES types interfaces
410 ;;;;
411 ;;;; We provide a few special operations that can be meaningfully used
412 ;;;; on VALUES types (as well as on any other type).
414 ;;; Return the minimum number of values possibly matching VALUES type
415 ;;; TYPE.
416 (defun values-type-min-value-count (type)
417 (etypecase type
418 (named-type
419 (ecase (named-type-name type)
420 ((t *) 0)
421 ((nil) 0)))
422 (values-type
423 (length (values-type-required type)))))
425 ;;; Return the maximum number of values possibly matching VALUES type
426 ;;; TYPE.
427 (defun values-type-max-value-count (type)
428 (etypecase type
429 (named-type
430 (ecase (named-type-name type)
431 ((t *) call-arguments-limit)
432 ((nil) 0)))
433 (values-type
434 (if (values-type-rest type)
435 call-arguments-limit
436 (+ (length (values-type-optional type))
437 (length (values-type-required type)))))))
439 (defun values-type-may-be-single-value-p (type)
440 (<= (values-type-min-value-count type)
442 (values-type-max-value-count type)))
444 ;;; VALUES type with a single value.
445 (defun type-single-value-p (type)
446 (and (%values-type-p type)
447 (not (values-type-rest type))
448 (null (values-type-optional type))
449 (singleton-p (values-type-required type))))
451 ;;; Return the type of the first value indicated by TYPE. This is used
452 ;;; by people who don't want to have to deal with VALUES types.
453 #!-sb-fluid (declaim (freeze-type values-type))
454 ; (inline single-value-type))
455 (defun single-value-type (type)
456 (declare (type ctype type))
457 (cond ((eq type *wild-type*)
458 *universal-type*)
459 ((eq type *empty-type*)
460 *empty-type*)
461 ((not (values-type-p type))
462 type)
463 ((car (args-type-required type)))
464 (t (type-union (specifier-type 'null)
465 (or (car (args-type-optional type))
466 (args-type-rest type)
467 (specifier-type 'null))))))
469 ;;; Return the minimum number of arguments that a function can be
470 ;;; called with, and the maximum number or NIL. If not a function
471 ;;; type, return NIL, NIL.
472 (defun fun-type-nargs (type)
473 (declare (type ctype type))
474 (if (and (fun-type-p type) (not (fun-type-wild-args type)))
475 (let ((fixed (length (args-type-required type))))
476 (if (or (args-type-rest type)
477 (args-type-keyp type)
478 (args-type-allowp type))
479 (values fixed nil)
480 (values fixed (+ fixed (length (args-type-optional type))))))
481 (values nil nil)))
483 ;;; Determine whether TYPE corresponds to a definite number of values.
484 ;;; The first value is a list of the types for each value, and the
485 ;;; second value is the number of values. If the number of values is
486 ;;; not fixed, then return NIL and :UNKNOWN.
487 (defun values-types (type)
488 (declare (type ctype type))
489 (cond ((or (eq type *wild-type*) (eq type *empty-type*))
490 (values nil :unknown))
491 ((or (args-type-optional type)
492 (args-type-rest type))
493 (values nil :unknown))
495 (let ((req (args-type-required type)))
496 (values req (length req))))))
498 ;;; Return two values:
499 ;;; 1. A list of all the positional (fixed and optional) types.
500 ;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
501 (defun values-type-types (type &optional (default-type *empty-type*))
502 (declare (type ctype type))
503 (if (eq type *wild-type*)
504 (values nil *universal-type*)
505 (values (append (args-type-required type)
506 (args-type-optional type))
507 (cond ((args-type-rest type))
508 (t default-type)))))
510 ;;; types of values in (the <type> (values o_1 ... o_n))
511 (defun values-type-out (type count)
512 (declare (type ctype type) (type unsigned-byte count))
513 (if (eq type *wild-type*)
514 (make-list count :initial-element *universal-type*)
515 (collect ((res))
516 (flet ((process-types (types)
517 (loop for type in types
518 while (plusp count)
519 do (decf count)
520 do (res type))))
521 (process-types (values-type-required type))
522 (process-types (values-type-optional type))
523 (when (plusp count)
524 (loop with rest = (the ctype (values-type-rest type))
525 repeat count
526 do (res rest))))
527 (res))))
529 ;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
530 (defun values-type-in (type count)
531 (declare (type ctype type) (type unsigned-byte count))
532 (if (eq type *wild-type*)
533 (make-list count :initial-element *universal-type*)
534 (collect ((res))
535 (let ((null-type (specifier-type 'null)))
536 (loop for type in (values-type-required type)
537 while (plusp count)
538 do (decf count)
539 do (res type))
540 (loop for type in (values-type-optional type)
541 while (plusp count)
542 do (decf count)
543 do (res (type-union type null-type)))
544 (when (plusp count)
545 (loop with rest = (acond ((values-type-rest type)
546 (type-union it null-type))
547 (t null-type))
548 repeat count
549 do (res rest))))
550 (res))))
552 ;;; Return a list of OPERATION applied to the types in TYPES1 and
553 ;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
554 ;;; than TYPES2. The second value is T if OPERATION always returned a
555 ;;; true second value.
556 (defun fixed-values-op (types1 types2 rest2 operation)
557 (declare (list types1 types2) (type ctype rest2) (type function operation))
558 (let ((exact t))
559 (values (mapcar (lambda (t1 t2)
560 (multiple-value-bind (res win)
561 (funcall operation t1 t2)
562 (unless win
563 (setq exact nil))
564 res))
565 types1
566 (append types2
567 (make-list (- (length types1) (length types2))
568 :initial-element rest2)))
569 exact)))
571 ;;; If TYPE isn't a values type, then make it into one.
572 (defun-cached (%coerce-to-values :hash-bits 8 :hash-function #'type-hash-value)
573 ((type eq))
574 (cond ((multiple-value-bind (res sure)
575 (csubtypep (specifier-type 'null) type)
576 (and (not res) sure))
577 ;; FIXME: What should we do with (NOT SURE)?
578 (make-values-type :required (list type) :rest *universal-type*))
580 (make-values-type :optional (list type) :rest *universal-type*))))
582 (defun coerce-to-values (type)
583 (declare (type ctype type))
584 (cond ((or (eq type *universal-type*)
585 (eq type *wild-type*))
586 *wild-type*)
587 ((values-type-p type)
588 type)
589 (t (%coerce-to-values type))))
591 ;;; Return type, corresponding to ANSI short form of VALUES type
592 ;;; specifier.
593 (defun make-short-values-type (types)
594 (declare (list types))
595 (let ((last-required (position-if
596 (lambda (type)
597 (not/type (csubtypep (specifier-type 'null) type)))
598 types
599 :from-end t)))
600 (if last-required
601 (make-values-type :required (subseq types 0 (1+ last-required))
602 :optional (subseq types (1+ last-required))
603 :rest *universal-type*)
604 (make-values-type :optional types :rest *universal-type*))))
606 (defun make-single-value-type (type)
607 (make-values-type :required (list type)))
609 ;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
610 ;;; type, including VALUES types. With VALUES types such as:
611 ;;; (VALUES a0 a1)
612 ;;; (VALUES b0 b1)
613 ;;; we compute the more useful result
614 ;;; (VALUES (<operation> a0 b0) (<operation> a1 b1))
615 ;;; rather than the precise result
616 ;;; (<operation> (values a0 a1) (values b0 b1))
617 ;;; This has the virtue of always keeping the VALUES type specifier
618 ;;; outermost, and retains all of the information that is really
619 ;;; useful for static type analysis. We want to know what is always
620 ;;; true of each value independently. It is worthless to know that if
621 ;;; the first value is B0 then the second will be B1.
623 ;;; If the VALUES count signatures differ, then we produce a result with
624 ;;; the required VALUE count chosen by NREQ when applied to the number
625 ;;; of required values in TYPE1 and TYPE2. Any &KEY values become
626 ;;; &REST T (anyone who uses keyword values deserves to lose.)
628 ;;; The second value is true if the result is definitely empty or if
629 ;;; OPERATION returned true as its second value each time we called
630 ;;; it. Since we approximate the intersection of VALUES types, the
631 ;;; second value being true doesn't mean the result is exact.
632 (defun args-type-op (type1 type2 operation nreq)
633 (declare (type ctype type1 type2)
634 (type function operation nreq))
635 (when (eq type1 type2)
636 (values type1 t))
637 (multiple-value-bind (types1 rest1)
638 (values-type-types type1)
639 (multiple-value-bind (types2 rest2)
640 (values-type-types type2)
641 (multiple-value-bind (rest rest-exact)
642 (funcall operation rest1 rest2)
643 (multiple-value-bind (res res-exact)
644 (if (< (length types1) (length types2))
645 (fixed-values-op types2 types1 rest1 operation)
646 (fixed-values-op types1 types2 rest2 operation))
647 (let* ((req (funcall nreq
648 (length (args-type-required type1))
649 (length (args-type-required type2))))
650 (required (subseq res 0 req))
651 (opt (subseq res req)))
652 (values required opt rest
653 (and rest-exact res-exact))))))))
655 (defun values-type-op (type1 type2 operation nreq)
656 (multiple-value-bind (required optional rest exactp)
657 (args-type-op type1 type2 operation nreq)
658 (values (make-values-type :required required
659 :optional optional
660 :rest rest)
661 exactp)))
663 (defun compare-key-args (type1 type2)
664 (let ((keys1 (args-type-keywords type1))
665 (keys2 (args-type-keywords type2)))
666 (and (= (length keys1) (length keys2))
667 (eq (args-type-allowp type1)
668 (args-type-allowp type2))
669 (loop for key1 in keys1
670 for match = (find (key-info-name key1)
671 keys2 :key #'key-info-name)
672 always (and match
673 (type= (key-info-type key1)
674 (key-info-type match)))))))
676 (defun type=-args (type1 type2)
677 (macrolet ((compare (comparator field)
678 (let ((reader (symbolicate '#:args-type- field)))
679 `(,comparator (,reader type1) (,reader type2)))))
680 (and/type
681 (cond ((null (args-type-rest type1))
682 (values (null (args-type-rest type2)) t))
683 ((null (args-type-rest type2))
684 (values nil t))
686 (compare type= rest)))
687 (and/type (and/type (compare type=-list required)
688 (compare type=-list optional))
689 (if (or (args-type-keyp type1) (args-type-keyp type2))
690 (values (compare-key-args type1 type2) t)
691 (values t t))))))
693 ;;; Do a union or intersection operation on types that might be values
694 ;;; types. The result is optimized for utility rather than exactness,
695 ;;; but it is guaranteed that it will be no smaller (more restrictive)
696 ;;; than the precise result.
698 ;;; The return convention seems to be analogous to
699 ;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
700 (defun-cached (values-type-union :hash-function #'type-cache-hash
701 :hash-bits 8)
702 ((type1 eq) (type2 eq))
703 (declare (type ctype type1 type2))
704 (cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
705 ((eq type1 *empty-type*) type2)
706 ((eq type2 *empty-type*) type1)
708 (values (values-type-op type1 type2 #'type-union #'min)))))
710 (defun-cached (values-type-intersection :hash-function #'type-cache-hash
711 :hash-bits 8)
712 ((type1 eq) (type2 eq))
713 (declare (type ctype type1 type2))
714 (cond ((eq type1 *wild-type*)
715 (coerce-to-values type2))
716 ((or (eq type2 *wild-type*) (eq type2 *universal-type*))
717 type1)
718 ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
719 *empty-type*)
720 ((and (not (values-type-p type2))
721 (values-type-required type1))
722 (let ((req1 (values-type-required type1)))
723 (make-values-type :required (cons (type-intersection (first req1) type2)
724 (rest req1))
725 :optional (values-type-optional type1)
726 :rest (values-type-rest type1)
727 :allowp (values-type-allowp type1))))
729 (values (values-type-op type1 (coerce-to-values type2)
730 #'type-intersection
731 #'max)))))
733 ;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
734 ;;; works on VALUES types. Note that due to the semantics of
735 ;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
736 ;;; there isn't really any intersection.
737 (defun values-types-equal-or-intersect (type1 type2)
738 (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
739 (values t t))
740 ((or (eq type1 *wild-type*) (eq type2 *wild-type*))
741 (values t t))
743 (let ((res (values-type-intersection type1 type2)))
744 (values (not (eq res *empty-type*))
745 t)))))
747 ;;; a SUBTYPEP-like operation that can be used on any types, including
748 ;;; VALUES types
749 (defun-cached (values-subtypep :hash-function #'type-cache-hash
750 :hash-bits 8
751 :values 2)
752 ((type1 eq) (type2 eq))
753 (declare (type ctype type1 type2))
754 (cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
755 (eq type1 *empty-type*))
756 (values t t))
757 ((eq type1 *wild-type*)
758 (values (eq type2 *wild-type*) t))
759 ((or (eq type2 *empty-type*)
760 (not (values-types-equal-or-intersect type1 type2)))
761 (values nil t))
762 ((and (not (values-type-p type2))
763 (values-type-required type1))
764 (csubtypep (first (values-type-required type1))
765 type2))
766 (t (setq type2 (coerce-to-values type2))
767 (multiple-value-bind (types1 rest1) (values-type-types type1)
768 (multiple-value-bind (types2 rest2) (values-type-types type2)
769 (cond ((< (length (values-type-required type1))
770 (length (values-type-required type2)))
771 (values nil t))
772 ((< (length types1) (length types2))
773 (values nil nil))
775 (do ((t1 types1 (rest t1))
776 (t2 types2 (rest t2)))
777 ((null t2)
778 (csubtypep rest1 rest2))
779 (multiple-value-bind (res win-p)
780 (csubtypep (first t1) (first t2))
781 (unless win-p
782 (return (values nil nil)))
783 (unless res
784 (return (values nil t))))))))))))
786 ;;;; type method interfaces
788 ;;; like SUBTYPEP, only works on CTYPE structures
789 (defun-cached (csubtypep :hash-function #'type-cache-hash
790 :hash-bits 10
791 :memoizer memoize
792 :values 2)
793 ((type1 eq) (type2 eq))
794 (declare (type ctype type1 type2))
795 (cond ((or (eq type1 type2)
796 (eq type1 *empty-type*)
797 (eq type2 *universal-type*))
798 (values t t))
799 #+nil
800 ((eq type1 *universal-type*)
801 (values nil t))
803 (memoize
804 (!invoke-type-method :simple-subtypep :complex-subtypep-arg2
805 type1 type2
806 :complex-arg1 :complex-subtypep-arg1)))))
808 ;;; Just parse the type specifiers and call CSUBTYPE.
809 (defun sb!xc:subtypep (type1 type2 &optional environment)
810 #!+sb-doc
811 "Return two values indicating the relationship between type1 and type2.
812 If values are T and T, type1 definitely is a subtype of type2.
813 If values are NIL and T, type1 definitely is not a subtype of type2.
814 If values are NIL and NIL, it couldn't be determined."
815 (declare (ignore environment))
816 (csubtypep (specifier-type type1) (specifier-type type2)))
818 ;;; If two types are definitely equivalent, return true. The second
819 ;;; value indicates whether the first value is definitely correct.
820 ;;; This should only fail in the presence of HAIRY types.
821 (defun-cached (type= :hash-function #'type-cache-hash
822 :hash-bits 11
823 :memoizer memoize
824 :values 2)
825 ((type1 eq) (type2 eq))
826 (declare (type ctype type1 type2))
827 (if (eq type1 type2)
828 (values t t)
829 (memoize (!invoke-type-method :simple-= :complex-= type1 type2))))
831 ;;; Not exactly the negation of TYPE=, since when the relationship is
832 ;;; uncertain, we still return NIL, NIL. This is useful in cases where
833 ;;; the conservative assumption is =.
834 (defun type/= (type1 type2)
835 (declare (type ctype type1 type2))
836 (multiple-value-bind (res win) (type= type1 type2)
837 (if win
838 (values (not res) t)
839 (values nil nil))))
841 ;;; the type method dispatch case of TYPE-UNION2
842 (defun %type-union2 (type1 type2)
843 ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
844 ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
845 ;; %TYPE-INTERSECTION2, though, I don't have a specific case which
846 ;; demonstrates this is actually necessary. Also unlike
847 ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
848 ;; between not finding a method and having a method return NIL.
849 (flet ((1way (x y)
850 (!invoke-type-method :simple-union2 :complex-union2
852 :default nil)))
853 (declare (inline 1way))
854 (or (1way type1 type2)
855 (1way type2 type1))))
857 ;;; Find a type which includes both types. Any inexactness is
858 ;;; represented by the fuzzy element types; we return a single value
859 ;;; that is precise to the best of our knowledge. This result is
860 ;;; simplified into the canonical form, thus is not a UNION-TYPE
861 ;;; unless we find no other way to represent the result.
862 (defun-cached (type-union2 :hash-function #'type-cache-hash
863 :hash-bits 11
864 :memoizer memoize)
865 ((type1 eq) (type2 eq))
866 ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
867 ;; Paste technique of programming. If it stays around (as opposed to
868 ;; e.g. fading away in favor of some CLOS solution) the shared logic
869 ;; should probably become shared code. -- WHN 2001-03-16
870 (declare (type ctype type1 type2))
871 (let ((t2 nil))
872 (if (eq type1 type2)
873 type1
874 (memoize
875 (cond
876 ;; CSUBTYPEP for array-types answers questions about the
877 ;; specialized type, yet for union we want to take the
878 ;; expressed type in account too.
879 ((and (not (and (array-type-p type1) (array-type-p type2)))
880 (or (setf t2 (csubtypep type1 type2))
881 (csubtypep type2 type1)))
882 (if t2 type2 type1))
883 ((or (union-type-p type1)
884 (union-type-p type2))
885 ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
886 ;; values broken out and united separately. The full TYPE-UNION
887 ;; function knows how to do this, so let it handle it.
888 (type-union type1 type2))
890 ;; the ordinary case: we dispatch to type methods
891 (%type-union2 type1 type2)))))))
893 ;;; the type method dispatch case of TYPE-INTERSECTION2
894 (defun %type-intersection2 (type1 type2)
895 ;; We want to give both argument orders a chance at
896 ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
897 ;; methods could give noncommutative results, e.g.
898 ;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
899 ;; => NIL, NIL
900 ;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
901 ;; => #<NAMED-TYPE NIL>, T
902 ;; We also need to distinguish between the case where we found a
903 ;; type method, and it returned NIL, and the case where we fell
904 ;; through without finding any type method. An example of the first
905 ;; case is the intersection of a HAIRY-TYPE with some ordinary type.
906 ;; An example of the second case is the intersection of two
907 ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
908 ;; ARRAY.
910 ;; (Why yes, CLOS probably *would* be nicer..)
911 (flet ((1way (x y)
912 (!invoke-type-method :simple-intersection2 :complex-intersection2
914 :default :call-other-method)))
915 (declare (inline 1way))
916 (let ((xy (1way type1 type2)))
917 (or (and (not (eql xy :call-other-method)) xy)
918 (let ((yx (1way type2 type1)))
919 (or (and (not (eql yx :call-other-method)) yx)
920 (cond ((and (eql xy :call-other-method)
921 (eql yx :call-other-method))
922 *empty-type*)
924 nil))))))))
926 (defun-cached (type-intersection2 :hash-function #'type-cache-hash
927 :hash-bits 11
928 :memoizer memoize
929 :values 1)
930 ((type1 eq) (type2 eq))
931 (declare (type ctype type1 type2))
932 (if (eq type1 type2)
933 ;; FIXME: For some reason, this doesn't catch e.g. type1 =
934 ;; type2 = (SPECIFIER-TYPE
935 ;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
936 type1
937 (memoize
938 (cond
939 ((or (intersection-type-p type1)
940 (intersection-type-p type2))
941 ;; Intersections of INTERSECTION-TYPE should have the
942 ;; INTERSECTION-TYPE-TYPES values broken out and intersected
943 ;; separately. The full TYPE-INTERSECTION function knows how
944 ;; to do that, so let it handle it.
945 (type-intersection type1 type2))
947 ;; the ordinary case: we dispatch to type methods
948 (%type-intersection2 type1 type2))))))
950 ;;; Return as restrictive and simple a type as we can discover that is
951 ;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
952 ;;; worst, we arbitrarily return one of the arguments as the first
953 ;;; value (trying not to return a hairy type).
954 (defun type-approx-intersection2 (type1 type2)
955 (cond ((type-intersection2 type1 type2))
956 ((hairy-type-p type1) type2)
957 (t type1)))
959 ;;; a test useful for checking whether a derived type matches a
960 ;;; declared type
962 ;;; The first value is true unless the types don't intersect and
963 ;;; aren't equal. The second value is true if the first value is
964 ;;; definitely correct. NIL is considered to intersect with any type.
965 ;;; If T is a subtype of either type, then we also return T, T. This
966 ;;; way we recognize that hairy types might intersect with T.
968 ;;; Well now given the statement above that this is "useful for ..."
969 ;;; a particular thing, I see how treating *empty-type* magically could
970 ;;; be useful, however given all the _other_ calls to this function within
971 ;;; this file, it seems suboptimal, because logically it is wrong.
972 (defun types-equal-or-intersect (type1 type2)
973 (declare (type ctype type1 type2))
974 (if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
975 (values t t)
976 (let ((intersection2 (type-intersection2 type1 type2)))
977 (cond ((not intersection2)
978 (if (or (csubtypep *universal-type* type1)
979 (csubtypep *universal-type* type2))
980 (values t t)
981 (values t nil)))
982 ((eq intersection2 *empty-type*) (values nil t))
983 (t (values t t))))))
985 ;;; Return a Common Lisp type specifier corresponding to the TYPE
986 ;;; object.
987 (defun type-specifier (type)
988 (declare (type ctype type))
989 (funcall (type-class-unparse (type-class-info type)) type))
991 (defun-cached (type-negation :hash-function #'type-hash-value
992 :hash-bits 8
993 :values 1)
994 ((type eq))
995 (declare (type ctype type))
996 (funcall (type-class-negate (type-class-info type)) type))
998 (defun-cached (type-singleton-p :hash-function #'type-hash-value
999 :hash-bits 8
1000 :values 2)
1001 ((type eq))
1002 (declare (type ctype type))
1003 (let ((function (type-class-singleton-p (type-class-info type))))
1004 (if function
1005 (funcall function type)
1006 (values nil nil))))
1008 ;;; (VALUES-SPECIFIER-TYPE and SPECIFIER-TYPE moved from here to
1009 ;;; early-type.lisp by WHN ca. 19990201.)
1011 ;;; Take a list of type specifiers, computing the translation of each
1012 ;;; specifier and defining it as a builtin type.
1013 (declaim (ftype (function (list) (values)) precompute-types))
1014 (defun precompute-types (specs)
1015 (dolist (spec specs)
1016 (let ((res (specifier-type spec)))
1017 (unless (unknown-type-p res)
1018 (setf (info :type :builtin spec) res)
1019 ;; KLUDGE: the three copies of this idiom in this file (and
1020 ;; the one in class.lisp as at sbcl-0.7.4.1x) should be
1021 ;; coalesced, or perhaps the error-detecting code that
1022 ;; disallows redefinition of :PRIMITIVE types should be
1023 ;; rewritten to use *TYPE-SYSTEM-FINALIZED* (rather than
1024 ;; *TYPE-SYSTEM-INITIALIZED*). The effect of this is not to
1025 ;; cause redefinition errors when precompute-types is called
1026 ;; for a second time while building the target compiler using
1027 ;; the cross-compiler. -- CSR, trying to explain why this
1028 ;; isn't completely wrong, 2002-06-07
1029 (setf (info :type :kind spec) #+sb-xc-host :defined #-sb-xc-host :primitive))))
1030 (values))
1032 ;;;; general TYPE-UNION and TYPE-INTERSECTION operations
1033 ;;;;
1034 ;;;; These are fully general operations on CTYPEs: they'll always
1035 ;;;; return a CTYPE representing the result.
1037 ;;; shared logic for unions and intersections: Return a list of
1038 ;;; types representing the same types as INPUT-TYPES, but with
1039 ;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
1040 ;;; component types, and with any SIMPLY2 simplifications applied.
1041 (macrolet
1042 ((def (name compound-type-p simplify2)
1043 `(defun ,name (types)
1044 (when types
1045 (multiple-value-bind (first rest)
1046 (if (,compound-type-p (car types))
1047 (values (car (compound-type-types (car types)))
1048 (append (cdr (compound-type-types (car types)))
1049 (cdr types)))
1050 (values (car types) (cdr types)))
1051 (let ((rest (,name rest)) u)
1052 (dolist (r rest (cons first rest))
1053 (when (setq u (,simplify2 first r))
1054 (return (,name (nsubstitute u r rest)))))))))))
1055 (def simplify-intersections intersection-type-p type-intersection2)
1056 (def simplify-unions union-type-p type-union2))
1058 (defun maybe-distribute-one-union (union-type types)
1059 (let* ((intersection (apply #'type-intersection types))
1060 (union (mapcar (lambda (x) (type-intersection x intersection))
1061 (union-type-types union-type))))
1062 (if (notany (lambda (x) (or (hairy-type-p x)
1063 (intersection-type-p x)))
1064 union)
1065 union
1066 nil)))
1068 (defun type-intersection (&rest input-types)
1069 (%type-intersection input-types))
1070 (defun-cached (%type-intersection :hash-bits 10 :hash-function #'type-list-cache-hash)
1071 ((input-types equal))
1072 (let ((simplified-types (simplify-intersections input-types)))
1073 (declare (type list simplified-types))
1074 ;; We want to have a canonical representation of types (or failing
1075 ;; that, punt to HAIRY-TYPE). Canonical representation would have
1076 ;; intersections inside unions but not vice versa, since you can
1077 ;; always achieve that by the distributive rule. But we don't want
1078 ;; to just apply the distributive rule, since it would be too easy
1079 ;; to end up with unreasonably huge type expressions. So instead
1080 ;; we try to generate a simple type by distributing the union; if
1081 ;; the type can't be made simple, we punt to HAIRY-TYPE.
1082 (if (and (cdr simplified-types) (some #'union-type-p simplified-types))
1083 (let* ((first-union (find-if #'union-type-p simplified-types))
1084 (other-types (coerce (remove first-union simplified-types)
1085 'list))
1086 (distributed (maybe-distribute-one-union first-union
1087 other-types)))
1088 (if distributed
1089 (apply #'type-union distributed)
1090 (%make-hairy-type `(and ,@(map 'list #'type-specifier
1091 simplified-types)))))
1092 (cond
1093 ((null simplified-types) *universal-type*)
1094 ((null (cdr simplified-types)) (car simplified-types))
1095 (t (%make-intersection-type
1096 (some #'type-enumerable simplified-types)
1097 simplified-types))))))
1099 (defun type-union (&rest input-types)
1100 (%type-union input-types))
1101 (defun-cached (%type-union :hash-bits 8 :hash-function #'type-list-cache-hash)
1102 ((input-types equal))
1103 (let ((simplified-types (simplify-unions input-types)))
1104 (cond
1105 ((null simplified-types) *empty-type*)
1106 ((null (cdr simplified-types)) (car simplified-types))
1107 (t (make-union-type
1108 (every #'type-enumerable simplified-types)
1109 simplified-types)))))
1111 ;;;; built-in types
1113 (!define-type-class named :enumerable nil :might-contain-other-types nil)
1115 (!cold-init-forms
1116 (macrolet ((frob (name var)
1117 `(progn
1118 (setq ,var (make-named-type :name ',name))
1119 (setf (info :type :kind ',name)
1120 #+sb-xc-host :defined #-sb-xc-host :primitive)
1121 (setf (info :type :builtin ',name) ,var))))
1122 ;; KLUDGE: In ANSI, * isn't really the name of a type, it's just a
1123 ;; special symbol which can be stuck in some places where an
1124 ;; ordinary type can go, e.g. (ARRAY * 1) instead of (ARRAY T 1).
1125 ;; In SBCL it also used to denote universal VALUES type.
1126 (frob * *wild-type*)
1127 (frob nil *empty-type*)
1128 (frob t *universal-type*)
1129 (setf (sb!c::type-info-default (sb!c::type-info-or-lose :variable :type))
1130 *universal-type*)
1131 ;; new in sbcl-0.9.5: these used to be CLASSOID types, but that
1132 ;; view of them was incompatible with requirements on the MOP
1133 ;; metaobject class hierarchy: the INSTANCE and
1134 ;; FUNCALLABLE-INSTANCE types are disjoint (instances have
1135 ;; instance-pointer-lowtag; funcallable-instances have
1136 ;; fun-pointer-lowtag), while FUNCALLABLE-STANDARD-OBJECT is
1137 ;; required to be a subclass of STANDARD-OBJECT. -- CSR,
1138 ;; 2005-09-09
1139 (frob instance *instance-type*)
1140 (frob funcallable-instance *funcallable-instance-type*)
1141 ;; new in sbcl-1.0.3.3: necessary to act as a join point for the
1142 ;; extended sequence hierarchy. (Might be removed later if we use
1143 ;; a dedicated FUNDAMENTAL-SEQUENCE class for this.)
1144 (frob extended-sequence *extended-sequence-type*))
1145 (setf *satisfies-keywordp-type* (%make-hairy-type '(satisfies keywordp)))
1146 (setf *fun-name-type* (%make-hairy-type '(satisfies legal-fun-name-p)))
1147 (setf *universal-fun-type*
1148 (make-fun-type :wild-args t
1149 :returns *wild-type*)))
1151 (!define-type-method (named :simple-=) (type1 type2)
1152 ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1153 (values (eq type1 type2) t))
1155 (defun cons-type-might-be-empty-type (type)
1156 (declare (type cons-type type))
1157 (let ((car-type (cons-type-car-type type))
1158 (cdr-type (cons-type-cdr-type type)))
1160 (if (cons-type-p car-type)
1161 (cons-type-might-be-empty-type car-type)
1162 (multiple-value-bind (yes surep)
1163 (type= car-type *empty-type*)
1164 (aver (not yes))
1165 (not surep)))
1166 (if (cons-type-p cdr-type)
1167 (cons-type-might-be-empty-type cdr-type)
1168 (multiple-value-bind (yes surep)
1169 (type= cdr-type *empty-type*)
1170 (aver (not yes))
1171 (not surep))))))
1173 (!define-type-method (named :complex-=) (type1 type2)
1174 (cond
1175 ((and (eq type2 *empty-type*)
1176 (or (and (intersection-type-p type1)
1177 ;; not allowed to be unsure on these... FIXME: keep
1178 ;; the list of CL types that are intersection types
1179 ;; once and only once.
1180 (not (or (type= type1 (specifier-type 'ratio))
1181 (type= type1 (specifier-type 'keyword)))))
1182 (and (cons-type-p type1)
1183 (cons-type-might-be-empty-type type1))))
1184 ;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
1185 ;; STREAM) can get here. In general, we can't really tell
1186 ;; whether these are equal to NIL or not, so
1187 (values nil nil))
1188 ((type-might-contain-other-types-p type1)
1189 (invoke-complex-=-other-method type1 type2))
1190 (t (values nil t))))
1192 (!define-type-method (named :simple-subtypep) (type1 type2)
1193 (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1194 (aver (not (eq type1 type2)))
1195 (values (or (eq type1 *empty-type*)
1196 (eq type2 *wild-type*)
1197 (eq type2 *universal-type*)) t))
1199 (!define-type-method (named :complex-subtypep-arg1) (type1 type2)
1200 ;; This AVER causes problems if we write accurate methods for the
1201 ;; union (and possibly intersection) types which then delegate to
1202 ;; us; while a user shouldn't get here, because of the odd status of
1203 ;; *wild-type* a type-intersection executed by the compiler can. -
1204 ;; CSR, 2002-04-10
1206 ;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1207 (cond ((eq type1 *empty-type*)
1209 (;; When TYPE2 might be the universal type in disguise
1210 (type-might-contain-other-types-p type2)
1211 ;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
1212 ;; can delegate to us (more or less as CALL-NEXT-METHOD) when
1213 ;; they're uncertain, we can't just barf on COMPOUND-TYPE and
1214 ;; HAIRY-TYPEs as we used to. Instead we deal with the
1215 ;; problem (where at least part of the problem is cases like
1216 ;; (SUBTYPEP T '(SATISFIES FOO))
1217 ;; or
1218 ;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
1219 ;; where the second type is a hairy type like SATISFIES, or
1220 ;; is a compound type which might contain a hairy type) by
1221 ;; returning uncertainty.
1222 (values nil nil))
1223 ((eq type1 *funcallable-instance-type*)
1224 (values (eq type2 (specifier-type 'function)) t))
1226 ;; This case would have been picked off by the SIMPLE-SUBTYPEP
1227 ;; method, and so shouldn't appear here.
1228 (aver (not (named-type-p type2)))
1229 ;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
1230 ;; named type in disguise, TYPE2 is not a superset of TYPE1.
1231 (values nil t))))
1233 (!define-type-method (named :complex-subtypep-arg2) (type1 type2)
1234 (aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1235 (cond ((eq type2 *universal-type*)
1236 (values t t))
1237 ;; some CONS types can conceal danger
1238 ((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
1239 (values nil nil))
1240 ((type-might-contain-other-types-p type1)
1241 ;; those types can be other types in disguise. So we'd
1242 ;; better delegate.
1243 (invoke-complex-subtypep-arg1-method type1 type2))
1244 ((and (or (eq type2 *instance-type*)
1245 (eq type2 *funcallable-instance-type*))
1246 (member-type-p type1))
1247 ;; member types can be subtypep INSTANCE and
1248 ;; FUNCALLABLE-INSTANCE in surprising ways.
1249 (invoke-complex-subtypep-arg1-method type1 type2))
1250 ((and (eq type2 *extended-sequence-type*) (classoid-p type1))
1251 (let* ((layout (classoid-layout type1))
1252 (inherits (layout-inherits layout))
1253 (sequencep (find (classoid-layout (find-classoid 'sequence))
1254 inherits)))
1255 (values (if sequencep t nil) t)))
1256 ((and (eq type2 *instance-type*) (classoid-p type1))
1257 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1258 (values nil t)
1259 (let* ((layout (classoid-layout type1))
1260 (inherits (layout-inherits layout))
1261 (functionp (find (classoid-layout (find-classoid 'function))
1262 inherits)))
1263 (cond
1264 (functionp
1265 (values nil t))
1266 ((eq type1 (find-classoid 'function))
1267 (values nil t))
1268 ((or (structure-classoid-p type1)
1269 #+nil
1270 (condition-classoid-p type1))
1271 (values t t))
1272 (t (values nil nil))))))
1273 ((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
1274 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1275 (values nil t)
1276 (let* ((layout (classoid-layout type1))
1277 (inherits (layout-inherits layout))
1278 (functionp (find (classoid-layout (find-classoid 'function))
1279 inherits)))
1280 (values (if functionp t nil) t))))
1282 ;; FIXME: This seems to rely on there only being 4 or 5
1283 ;; NAMED-TYPE values, and the exclusion of various
1284 ;; possibilities above. It would be good to explain it and/or
1285 ;; rewrite it so that it's clearer.
1286 (values nil t))))
1288 (!define-type-method (named :complex-intersection2) (type1 type2)
1289 ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
1290 ;; Perhaps when bug 85 is fixed it can be reenabled.
1291 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1292 (cond
1293 ((eq type2 *extended-sequence-type*)
1294 (typecase type1
1295 (structure-classoid *empty-type*)
1296 (classoid
1297 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1298 *empty-type*
1299 (if (find (classoid-layout (find-classoid 'sequence))
1300 (layout-inherits (classoid-layout type1)))
1301 type1
1302 nil)))
1304 (if (or (type-might-contain-other-types-p type1)
1305 (member-type-p type1))
1307 *empty-type*))))
1308 ((eq type2 *instance-type*)
1309 (typecase type1
1310 (structure-classoid type1)
1311 (classoid
1312 (if (and (not (member type1 *non-instance-classoid-types*
1313 :key #'find-classoid))
1314 (not (eq type1 (find-classoid 'function)))
1315 (not (find (classoid-layout (find-classoid 'function))
1316 (layout-inherits (classoid-layout type1)))))
1318 *empty-type*))
1320 (if (or (type-might-contain-other-types-p type1)
1321 (member-type-p type1))
1323 *empty-type*))))
1324 ((eq type2 *funcallable-instance-type*)
1325 (typecase type1
1326 (structure-classoid *empty-type*)
1327 (classoid
1328 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1329 *empty-type*
1330 (if (find (classoid-layout (find-classoid 'function))
1331 (layout-inherits (classoid-layout type1)))
1332 type1
1333 (if (type= type1 (find-classoid 'function))
1334 type2
1335 nil))))
1336 (fun-type nil)
1338 (if (or (type-might-contain-other-types-p type1)
1339 (member-type-p type1))
1341 *empty-type*))))
1342 (t (hierarchical-intersection2 type1 type2))))
1344 (!define-type-method (named :complex-union2) (type1 type2)
1345 ;; Perhaps when bug 85 is fixed this can be reenabled.
1346 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1347 (cond
1348 ((eq type2 *extended-sequence-type*)
1349 (if (classoid-p type1)
1350 (if (or (member type1 *non-instance-classoid-types*
1351 :key #'find-classoid)
1352 (not (find (classoid-layout (find-classoid 'sequence))
1353 (layout-inherits (classoid-layout type1)))))
1355 type2)
1356 nil))
1357 ((eq type2 *instance-type*)
1358 (if (classoid-p type1)
1359 (if (or (member type1 *non-instance-classoid-types*
1360 :key #'find-classoid)
1361 (find (classoid-layout (find-classoid 'function))
1362 (layout-inherits (classoid-layout type1))))
1364 type2)
1365 nil))
1366 ((eq type2 *funcallable-instance-type*)
1367 (if (classoid-p type1)
1368 (if (or (member type1 *non-instance-classoid-types*
1369 :key #'find-classoid)
1370 (not (find (classoid-layout (find-classoid 'function))
1371 (layout-inherits (classoid-layout type1)))))
1373 (if (eq type1 (specifier-type 'function))
1374 type1
1375 type2))
1376 nil))
1377 (t (hierarchical-union2 type1 type2))))
1379 (!define-type-method (named :negate) (x)
1380 (aver (not (eq x *wild-type*)))
1381 (cond
1382 ((eq x *universal-type*) *empty-type*)
1383 ((eq x *empty-type*) *universal-type*)
1384 ((or (eq x *instance-type*)
1385 (eq x *funcallable-instance-type*)
1386 (eq x *extended-sequence-type*))
1387 (make-negation-type :type x))
1388 (t (bug "NAMED type unexpected: ~S" x))))
1390 (!define-type-method (named :unparse) (x)
1391 (named-type-name x))
1393 ;;;; hairy and unknown types
1395 (!define-type-method (hairy :negate) (x)
1396 (make-negation-type :type x))
1398 (!define-type-method (hairy :unparse) (x)
1399 (hairy-type-specifier x))
1401 (!define-type-method (hairy :simple-subtypep) (type1 type2)
1402 (let ((hairy-spec1 (hairy-type-specifier type1))
1403 (hairy-spec2 (hairy-type-specifier type2)))
1404 (cond ((equal-but-no-car-recursion hairy-spec1 hairy-spec2)
1405 (values t t))
1406 ((maybe-reparse-specifier! type1)
1407 (csubtypep type1 type2))
1408 ((maybe-reparse-specifier! type2)
1409 (csubtypep type1 type2))
1411 (values nil nil)))))
1413 (!define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
1414 (if (maybe-reparse-specifier! type2)
1415 (csubtypep type1 type2)
1416 (let ((specifier (hairy-type-specifier type2)))
1417 (cond ((and (consp specifier) (eql (car specifier) 'satisfies))
1418 (case (cadr specifier)
1419 ((keywordp) (if (type= type1 (specifier-type 'symbol))
1420 (values nil t)
1421 (invoke-complex-subtypep-arg1-method type1 type2)))
1422 (t (invoke-complex-subtypep-arg1-method type1 type2))))
1424 (invoke-complex-subtypep-arg1-method type1 type2))))))
1426 (!define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
1427 (if (maybe-reparse-specifier! type1)
1428 (csubtypep type1 type2)
1429 (values nil nil)))
1431 (!define-type-method (hairy :complex-=) (type1 type2)
1432 (if (maybe-reparse-specifier! type2)
1433 (type= type1 type2)
1434 (values nil nil)))
1436 (!define-type-method (hairy :simple-intersection2 :complex-intersection2)
1437 (type1 type2)
1438 (cond ((type= type1 type2)
1439 type1)
1440 ((eq type2 *satisfies-keywordp-type*)
1441 ;; (AND (MEMBER A) (SATISFIES KEYWORDP)) is possibly non-empty
1442 ;; if A is re-homed as :A. However as a special case that really
1443 ;; does occur, (AND (MEMBER NIL) (SATISFIES KEYWORDP))
1444 ;; is empty because of the illegality of changing NIL's package.
1445 (if (eq type1 *null-type*)
1446 *empty-type*
1447 (multiple-value-bind (answer certain)
1448 (types-equal-or-intersect type1 (specifier-type 'symbol))
1449 (if (and (not answer) certain)
1450 *empty-type*
1451 nil))))
1452 ((eq type2 *fun-name-type*)
1453 (multiple-value-bind (answer certain)
1454 (types-equal-or-intersect type1 (specifier-type 'symbol))
1455 (if (and (not answer) certain)
1456 (multiple-value-bind (answer certain)
1457 (types-equal-or-intersect type1 (specifier-type 'cons))
1458 (if (and (not answer) certain)
1459 *empty-type*
1460 nil))
1461 nil)))
1462 (t nil)))
1464 (!define-type-method (hairy :simple-union2)
1465 (type1 type2)
1466 (if (type= type1 type2)
1467 type1
1468 nil))
1470 (!define-type-method (hairy :simple-=) (type1 type2)
1471 (if (equal-but-no-car-recursion (hairy-type-specifier type1)
1472 (hairy-type-specifier type2))
1473 (values t t)
1474 (values nil nil)))
1476 (!def-type-translator satisfies (&whole whole fun)
1477 (declare (ignore fun))
1478 ;; Check legality of arguments.
1479 (destructuring-bind (satisfies predicate-name) whole
1480 (declare (ignore satisfies))
1481 (unless (symbolp predicate-name)
1482 (error 'simple-type-error
1483 :datum predicate-name
1484 :expected-type 'symbol
1485 :format-control "The SATISFIES predicate name is not a symbol: ~S"
1486 :format-arguments (list predicate-name)))
1487 ;; Create object.
1488 (case predicate-name
1489 (keywordp *satisfies-keywordp-type*)
1490 (legal-fun-name-p *fun-name-type*)
1491 (t (%make-hairy-type whole)))))
1493 ;;;; negation types
1495 (!define-type-method (negation :negate) (x)
1496 (negation-type-type x))
1498 (!define-type-method (negation :unparse) (x)
1499 (if (type= (negation-type-type x) (specifier-type 'cons))
1500 'atom
1501 `(not ,(type-specifier (negation-type-type x)))))
1503 (!define-type-method (negation :simple-subtypep) (type1 type2)
1504 (csubtypep (negation-type-type type2) (negation-type-type type1)))
1506 (!define-type-method (negation :complex-subtypep-arg2) (type1 type2)
1507 (let* ((complement-type2 (negation-type-type type2))
1508 (intersection2 (type-intersection2 type1
1509 complement-type2)))
1510 (if intersection2
1511 ;; FIXME: if uncertain, maybe try arg1?
1512 (type= intersection2 *empty-type*)
1513 (invoke-complex-subtypep-arg1-method type1 type2))))
1515 (!define-type-method (negation :complex-subtypep-arg1) (type1 type2)
1516 ;; "Incrementally extended heuristic algorithms tend inexorably toward the
1517 ;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
1519 ;; You may not believe this. I couldn't either. But then I sat down
1520 ;; and drew lots of Venn diagrams. Comments involving a and b refer
1521 ;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
1522 (block nil
1523 ;; (Several logical truths in this block are true as long as
1524 ;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
1525 ;; case with b=T where we actually reach this type method, but
1526 ;; we'll test for and exclude this case anyway, since future
1527 ;; maintenance might make it possible for it to end up in this
1528 ;; code.)
1529 (multiple-value-bind (equal certain)
1530 (type= type2 *universal-type*)
1531 (unless certain
1532 (return (values nil nil)))
1533 (when equal
1534 (return (values t t))))
1535 (let ((complement-type1 (negation-type-type type1)))
1536 ;; Do the special cases first, in order to give us a chance if
1537 ;; subtype/supertype relationships are hairy.
1538 (multiple-value-bind (equal certain)
1539 (type= complement-type1 type2)
1540 ;; If a = b, ~a is not a subtype of b (unless b=T, which was
1541 ;; excluded above).
1542 (unless certain
1543 (return (values nil nil)))
1544 (when equal
1545 (return (values nil t))))
1546 ;; KLUDGE: ANSI requires that the SUBTYPEP result between any
1547 ;; two built-in atomic type specifiers never be uncertain. This
1548 ;; is hard to do cleanly for the built-in types whose
1549 ;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
1550 ;; we can do it with this hack, which uses our global knowledge
1551 ;; that our implementation of the type system uses disjoint
1552 ;; implementation types to represent disjoint sets (except when
1553 ;; types are contained in other types). (This is a KLUDGE
1554 ;; because it's fragile. Various changes in internal
1555 ;; representation in the type system could make it start
1556 ;; confidently returning incorrect results.) -- WHN 2002-03-08
1557 (unless (or (type-might-contain-other-types-p complement-type1)
1558 (type-might-contain-other-types-p type2))
1559 ;; Because of the way our types which don't contain other
1560 ;; types are disjoint subsets of the space of possible values,
1561 ;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
1562 ;; is not T, as checked above).
1563 (return (values nil t)))
1564 ;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
1565 ;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
1566 ;; and then the :SIMPLE-SUBTYPEP method would be used instead.
1567 ;; But a CSUBTYPEP relationship might still hold:
1568 (multiple-value-bind (equal certain)
1569 (csubtypep complement-type1 type2)
1570 ;; If a is a subtype of b, ~a is not a subtype of b (unless
1571 ;; b=T, which was excluded above).
1572 (unless certain
1573 (return (values nil nil)))
1574 (when equal
1575 (return (values nil t))))
1576 (multiple-value-bind (equal certain)
1577 (csubtypep type2 complement-type1)
1578 ;; If b is a subtype of a, ~a is not a subtype of b. (FIXME:
1579 ;; That's not true if a=T. Do we know at this point that a is
1580 ;; not T?)
1581 (unless certain
1582 (return (values nil nil)))
1583 (when equal
1584 (return (values nil t))))
1585 ;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
1586 ;; KLUDGE case above: Other cases here would rely on being able
1587 ;; to catch all possible cases, which the fragility of this type
1588 ;; system doesn't inspire me; for instance, if a is type= to ~b,
1589 ;; then we want T, T; if this is not the case and the types are
1590 ;; disjoint (have an intersection of *empty-type*) then we want
1591 ;; NIL, T; else if the union of a and b is the *universal-type*
1592 ;; then we want T, T. So currently we still claim to be unsure
1593 ;; about e.g. (subtypep '(not fixnum) 'single-float).
1595 ;; OTOH we might still get here:
1596 (values nil nil))))
1598 (!define-type-method (negation :complex-=) (type1 type2)
1599 ;; (NOT FOO) isn't equivalent to anything that's not a negation
1600 ;; type, except possibly a type that might contain it in disguise.
1601 (declare (ignore type2))
1602 (if (type-might-contain-other-types-p type1)
1603 (values nil nil)
1604 (values nil t)))
1606 (!define-type-method (negation :simple-intersection2) (type1 type2)
1607 (let ((not1 (negation-type-type type1))
1608 (not2 (negation-type-type type2)))
1609 (cond
1610 ((csubtypep not1 not2) type2)
1611 ((csubtypep not2 not1) type1)
1612 ;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
1613 ;; method, below? The clause would read
1615 ;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
1617 ;; but with proper canonicalization of negation types, there's
1618 ;; no way of constructing two negation types with union of their
1619 ;; negations being the universal type.
1621 (aver (not (eq (type-union not1 not2) *universal-type*)))
1622 nil))))
1624 (defun maybe-complex-array-refinement (type1 type2)
1625 (let* ((ntype (negation-type-type type2))
1626 (ndims (array-type-dimensions ntype))
1627 (ncomplexp (array-type-complexp ntype))
1628 (nseltype (array-type-specialized-element-type ntype))
1629 (neltype (array-type-element-type ntype)))
1630 (if (and (eql ndims '*) (null ncomplexp)
1631 (eql neltype *wild-type*) (eql nseltype *wild-type*))
1632 (make-array-type (array-type-dimensions type1)
1633 :complexp t
1634 :element-type (array-type-element-type type1)
1635 :specialized-element-type (array-type-specialized-element-type type1)))))
1637 (!define-type-method (negation :complex-intersection2) (type1 type2)
1638 (cond
1639 ((csubtypep type1 (negation-type-type type2)) *empty-type*)
1640 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1641 type1)
1642 ((and (array-type-p type1) (array-type-p (negation-type-type type2)))
1643 (maybe-complex-array-refinement type1 type2))
1644 (t nil)))
1646 (!define-type-method (negation :simple-union2) (type1 type2)
1647 (let ((not1 (negation-type-type type1))
1648 (not2 (negation-type-type type2)))
1649 (cond
1650 ((csubtypep not1 not2) type1)
1651 ((csubtypep not2 not1) type2)
1652 ((eq (type-intersection not1 not2) *empty-type*)
1653 *universal-type*)
1654 (t nil))))
1656 (!define-type-method (negation :complex-union2) (type1 type2)
1657 (cond
1658 ((csubtypep (negation-type-type type2) type1) *universal-type*)
1659 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1660 type2)
1661 (t nil)))
1663 (!define-type-method (negation :simple-=) (type1 type2)
1664 (type= (negation-type-type type1) (negation-type-type type2)))
1666 (!def-type-translator not (typespec)
1667 (type-negation (specifier-type typespec)))
1669 ;;;; numeric types
1671 (!define-type-class number :enumerable #'numeric-type-enumerable
1672 :might-contain-other-types nil)
1674 (declaim (inline numeric-type-equal))
1675 (defun numeric-type-equal (type1 type2)
1676 (and (eq (numeric-type-class type1) (numeric-type-class type2))
1677 (eq (numeric-type-format type1) (numeric-type-format type2))
1678 (eq (numeric-type-complexp type1) (numeric-type-complexp type2))))
1680 (!define-type-method (number :simple-=) (type1 type2)
1681 (values
1682 (and (numeric-type-equal type1 type2)
1683 (equalp (numeric-type-low type1) (numeric-type-low type2))
1684 (equalp (numeric-type-high type1) (numeric-type-high type2)))
1687 (!define-type-method (number :negate) (type)
1688 (if (and (null (numeric-type-low type)) (null (numeric-type-high type)))
1689 (make-negation-type :type type)
1690 (type-union
1691 (make-negation-type
1692 :type (modified-numeric-type type :low nil :high nil))
1693 (cond
1694 ((null (numeric-type-low type))
1695 (modified-numeric-type
1696 type
1697 :low (let ((h (numeric-type-high type)))
1698 (if (consp h) (car h) (list h)))
1699 :high nil))
1700 ((null (numeric-type-high type))
1701 (modified-numeric-type
1702 type
1703 :low nil
1704 :high (let ((l (numeric-type-low type)))
1705 (if (consp l) (car l) (list l)))))
1706 (t (type-union
1707 (modified-numeric-type
1708 type
1709 :low nil
1710 :high (let ((l (numeric-type-low type)))
1711 (if (consp l) (car l) (list l))))
1712 (modified-numeric-type
1713 type
1714 :low (let ((h (numeric-type-high type)))
1715 (if (consp h) (car h) (list h)))
1716 :high nil)))))))
1718 (!define-type-method (number :unparse) (type)
1719 (let* ((complexp (numeric-type-complexp type))
1720 (low (numeric-type-low type))
1721 (high (numeric-type-high type))
1722 (base (case (numeric-type-class type)
1723 (integer 'integer)
1724 (rational 'rational)
1725 (float (or (numeric-type-format type) 'float))
1726 (t 'real))))
1727 (let ((base+bounds
1728 (cond ((and (eq base 'integer) high low)
1729 (let ((high-count (logcount high))
1730 (high-length (integer-length high)))
1731 (cond ((= low 0)
1732 (cond ((= high 0) '(integer 0 0))
1733 ((= high 1) 'bit)
1734 ((and (= high-count high-length)
1735 (plusp high-length))
1736 `(unsigned-byte ,high-length))
1738 `(mod ,(1+ high)))))
1739 ((and (= low sb!xc:most-negative-fixnum)
1740 (= high sb!xc:most-positive-fixnum))
1741 'fixnum)
1742 ((and (= low (lognot high))
1743 (= high-count high-length)
1744 (> high-count 0))
1745 `(signed-byte ,(1+ high-length)))
1747 `(integer ,low ,high)))))
1748 (high `(,base ,(or low '*) ,high))
1749 (low
1750 (if (and (eq base 'integer) (= low 0))
1751 'unsigned-byte
1752 `(,base ,low)))
1753 (t base))))
1754 (ecase complexp
1755 (:real
1756 base+bounds)
1757 (:complex
1758 (aver (neq base+bounds 'real))
1759 `(complex ,base+bounds))
1760 ((nil)
1761 (aver (eq base+bounds 'real))
1762 'number)))))
1764 (!define-type-method (number :singleton-p) (type)
1765 (let ((low (numeric-type-low type))
1766 (high (numeric-type-high type)))
1767 (if (and low
1768 (eql low high)
1769 (eql (numeric-type-complexp type) :real)
1770 (member (numeric-type-class type) '(integer rational
1771 #-sb-xc-host float)))
1772 (values t (numeric-type-low type))
1773 (values nil nil))))
1775 ;;; Return true if X is "less than or equal" to Y, taking open bounds
1776 ;;; into consideration. CLOSED is the predicate used to test the bound
1777 ;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
1778 ;;; open bounds (e.g. <). Y is considered to be the outside bound, in
1779 ;;; the sense that if it is infinite (NIL), then the test succeeds,
1780 ;;; whereas if X is infinite, then the test fails (unless Y is also
1781 ;;; infinite).
1783 ;;; This is for comparing bounds of the same kind, e.g. upper and
1784 ;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
1785 (defmacro numeric-bound-test (x y closed open)
1786 `(cond ((not ,y) t)
1787 ((not ,x) nil)
1788 ((consp ,x)
1789 (if (consp ,y)
1790 (,closed (car ,x) (car ,y))
1791 (,closed (car ,x) ,y)))
1793 (if (consp ,y)
1794 (,open ,x (car ,y))
1795 (,closed ,x ,y)))))
1797 ;;; This is used to compare upper and lower bounds. This is different
1798 ;;; from the same-bound case:
1799 ;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
1800 ;;; return true if *either* arg is NIL.
1801 ;;; -- an open inner bound is "greater" and also squeezes the interval,
1802 ;;; causing us to use the OPEN test for those cases as well.
1803 (defmacro numeric-bound-test* (x y closed open)
1804 `(cond ((not ,y) t)
1805 ((not ,x) t)
1806 ((consp ,x)
1807 (if (consp ,y)
1808 (,open (car ,x) (car ,y))
1809 (,open (car ,x) ,y)))
1811 (if (consp ,y)
1812 (,open ,x (car ,y))
1813 (,closed ,x ,y)))))
1815 ;;; Return whichever of the numeric bounds X and Y is "maximal"
1816 ;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
1817 ;;; This is only meaningful for maximizing like bounds, i.e. upper and
1818 ;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
1819 ;;; otherwise we return the other arg.
1820 (defmacro numeric-bound-max (x y closed open max-p)
1821 (once-only ((n-x x)
1822 (n-y y))
1823 `(cond ((not ,n-x) ,(if max-p nil n-y))
1824 ((not ,n-y) ,(if max-p nil n-x))
1825 ((consp ,n-x)
1826 (if (consp ,n-y)
1827 (if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
1828 (if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
1830 (if (consp ,n-y)
1831 (if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
1832 (if (,closed ,n-y ,n-x) ,n-y ,n-x))))))
1834 (!define-type-method (number :simple-subtypep) (type1 type2)
1835 (let ((class1 (numeric-type-class type1))
1836 (class2 (numeric-type-class type2))
1837 (complexp2 (numeric-type-complexp type2))
1838 (format2 (numeric-type-format type2))
1839 (low1 (numeric-type-low type1))
1840 (high1 (numeric-type-high type1))
1841 (low2 (numeric-type-low type2))
1842 (high2 (numeric-type-high type2)))
1843 ;; If one is complex and the other isn't, they are disjoint.
1844 (cond ((not (or (eq (numeric-type-complexp type1) complexp2)
1845 (null complexp2)))
1846 (values nil t))
1847 ;; If the classes are specified and different, the types are
1848 ;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
1849 ;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
1850 ;; X X) for integral X, but this is dealt with in the
1851 ;; canonicalization inside MAKE-NUMERIC-TYPE ]
1852 ((not (or (eq class1 class2)
1853 (null class2)
1854 (and (eq class1 'integer) (eq class2 'rational))))
1855 (values nil t))
1856 ;; If the float formats are specified and different, the types
1857 ;; are disjoint.
1858 ((not (or (eq (numeric-type-format type1) format2)
1859 (null format2)))
1860 (values nil t))
1861 ;; Check the bounds.
1862 ((and (numeric-bound-test low1 low2 >= >)
1863 (numeric-bound-test high1 high2 <= <))
1864 (values t t))
1866 (values nil t)))))
1868 (!define-superclasses number ((number)) !cold-init-forms)
1870 ;;; If the high bound of LOW is adjacent to the low bound of HIGH,
1871 ;;; then return true, otherwise NIL.
1872 (defun numeric-types-adjacent (low high)
1873 (let ((low-bound (numeric-type-high low))
1874 (high-bound (numeric-type-low high)))
1875 (cond ((not (and low-bound high-bound)) nil)
1876 ((and (consp low-bound) (consp high-bound)) nil)
1877 ((consp low-bound)
1878 (let ((low-value (car low-bound)))
1879 (or (eql low-value high-bound)
1880 (and (eql low-value
1881 (load-time-value (make-unportable-float
1882 :single-float-negative-zero)))
1883 (eql high-bound 0f0))
1884 (and (eql low-value 0f0)
1885 (eql high-bound
1886 (load-time-value (make-unportable-float
1887 :single-float-negative-zero))))
1888 (and (eql low-value
1889 (load-time-value (make-unportable-float
1890 :double-float-negative-zero)))
1891 (eql high-bound 0d0))
1892 (and (eql low-value 0d0)
1893 (eql high-bound
1894 (load-time-value (make-unportable-float
1895 :double-float-negative-zero)))))))
1896 ((consp high-bound)
1897 (let ((high-value (car high-bound)))
1898 (or (eql high-value low-bound)
1899 (and (eql high-value
1900 (load-time-value (make-unportable-float
1901 :single-float-negative-zero)))
1902 (eql low-bound 0f0))
1903 (and (eql high-value 0f0)
1904 (eql low-bound
1905 (load-time-value (make-unportable-float
1906 :single-float-negative-zero))))
1907 (and (eql high-value
1908 (load-time-value (make-unportable-float
1909 :double-float-negative-zero)))
1910 (eql low-bound 0d0))
1911 (and (eql high-value 0d0)
1912 (eql low-bound
1913 (load-time-value (make-unportable-float
1914 :double-float-negative-zero)))))))
1915 ((and (eq (numeric-type-class low) 'integer)
1916 (eq (numeric-type-class high) 'integer))
1917 (eql (1+ low-bound) high-bound))
1919 nil))))
1921 ;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.
1923 ;;; Binding *APPROXIMATE-NUMERIC-UNIONS* to T allows merging non-adjacent
1924 ;;; numeric types, eg (OR (INTEGER 0 12) (INTEGER 20 128)) => (INTEGER 0 128),
1925 ;;; the compiler does this occasionally during type-derivation to avoid
1926 ;;; creating absurdly complex unions of numeric types.
1927 (defvar *approximate-numeric-unions* nil)
1929 (!define-type-method (number :simple-union2) (type1 type2)
1930 (declare (type numeric-type type1 type2))
1931 (cond ((csubtypep type1 type2) type2)
1932 ((csubtypep type2 type1) type1)
1934 (let ((class1 (numeric-type-class type1))
1935 (format1 (numeric-type-format type1))
1936 (complexp1 (numeric-type-complexp type1))
1937 (class2 (numeric-type-class type2))
1938 (format2 (numeric-type-format type2))
1939 (complexp2 (numeric-type-complexp type2)))
1940 (cond
1941 ((and (eq class1 class2)
1942 (eq format1 format2)
1943 (eq complexp1 complexp2)
1944 (or *approximate-numeric-unions*
1945 (numeric-types-intersect type1 type2)
1946 (numeric-types-adjacent type1 type2)
1947 (numeric-types-adjacent type2 type1)))
1948 (make-numeric-type
1949 :class class1
1950 :format format1
1951 :complexp complexp1
1952 :low (numeric-bound-max (numeric-type-low type1)
1953 (numeric-type-low type2)
1954 <= < t)
1955 :high (numeric-bound-max (numeric-type-high type1)
1956 (numeric-type-high type2)
1957 >= > t)))
1958 ;; FIXME: These two clauses are almost identical, and the
1959 ;; consequents are in fact identical in every respect.
1960 ((and (eq class1 'rational)
1961 (eq class2 'integer)
1962 (eq format1 format2)
1963 (eq complexp1 complexp2)
1964 (integerp (numeric-type-low type2))
1965 (integerp (numeric-type-high type2))
1966 (= (numeric-type-low type2) (numeric-type-high type2))
1967 (or *approximate-numeric-unions*
1968 (numeric-types-adjacent type1 type2)
1969 (numeric-types-adjacent type2 type1)))
1970 (make-numeric-type
1971 :class 'rational
1972 :format format1
1973 :complexp complexp1
1974 :low (numeric-bound-max (numeric-type-low type1)
1975 (numeric-type-low type2)
1976 <= < t)
1977 :high (numeric-bound-max (numeric-type-high type1)
1978 (numeric-type-high type2)
1979 >= > t)))
1980 ((and (eq class1 'integer)
1981 (eq class2 'rational)
1982 (eq format1 format2)
1983 (eq complexp1 complexp2)
1984 (integerp (numeric-type-low type1))
1985 (integerp (numeric-type-high type1))
1986 (= (numeric-type-low type1) (numeric-type-high type1))
1987 (or *approximate-numeric-unions*
1988 (numeric-types-adjacent type1 type2)
1989 (numeric-types-adjacent type2 type1)))
1990 (make-numeric-type
1991 :class 'rational
1992 :format format1
1993 :complexp complexp1
1994 :low (numeric-bound-max (numeric-type-low type1)
1995 (numeric-type-low type2)
1996 <= < t)
1997 :high (numeric-bound-max (numeric-type-high type1)
1998 (numeric-type-high type2)
1999 >= > t)))
2000 (t nil))))))
2003 (!cold-init-forms
2004 (setf (info :type :kind 'number)
2005 #+sb-xc-host :defined #-sb-xc-host :primitive)
2006 (setf (info :type :builtin 'number)
2007 (make-numeric-type :complexp nil)))
2009 (!def-type-translator complex (&optional (typespec '*))
2010 (if (eq typespec '*)
2011 (specifier-type '(complex real))
2012 (labels ((not-numeric ()
2013 (error "The component type for COMPLEX is not numeric: ~S"
2014 typespec))
2015 (not-real ()
2016 (error "The component type for COMPLEX is not a subtype of REAL: ~S"
2017 typespec))
2018 (complex1 (component-type)
2019 (unless (numeric-type-p component-type)
2020 (not-numeric))
2021 (when (eq (numeric-type-complexp component-type) :complex)
2022 (not-real))
2023 (if (csubtypep component-type (specifier-type '(eql 0)))
2024 *empty-type*
2025 (modified-numeric-type component-type
2026 :complexp :complex)))
2027 (do-complex (ctype)
2028 (cond
2029 ((eq ctype *empty-type*) *empty-type*)
2030 ((eq ctype *universal-type*) (not-real))
2031 ((typep ctype 'numeric-type) (complex1 ctype))
2032 ((typep ctype 'union-type)
2033 (apply #'type-union
2034 (mapcar #'do-complex (union-type-types ctype))))
2035 ((typep ctype 'member-type)
2036 (apply #'type-union
2037 (mapcar-member-type-members
2038 (lambda (x) (do-complex (ctype-of x)))
2039 ctype)))
2040 ((and (typep ctype 'intersection-type)
2041 ;; FIXME: This is very much a
2042 ;; not-quite-worst-effort, but we are required to do
2043 ;; something here because of our representation of
2044 ;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
2045 ;; allow users to ask about (COMPLEX RATIO). This
2046 ;; will of course fail to work right on such types
2047 ;; as (AND INTEGER (SATISFIES ZEROP))...
2048 (let ((numbers (remove-if-not
2049 #'numeric-type-p
2050 (intersection-type-types ctype))))
2051 (and (car numbers)
2052 (null (cdr numbers))
2053 (eq (numeric-type-complexp (car numbers)) :real)
2054 (complex1 (car numbers))))))
2056 (multiple-value-bind (subtypep certainly)
2057 (csubtypep ctype (specifier-type 'real))
2058 (if (and (not subtypep) certainly)
2059 (not-real)
2060 ;; ANSI just says that TYPESPEC is any subtype of
2061 ;; type REAL, not necessarily a NUMERIC-TYPE. In
2062 ;; particular, at this point TYPESPEC could legally
2063 ;; be a hairy type like (AND NUMBER (SATISFIES
2064 ;; REALP) (SATISFIES ZEROP)), in which case we fall
2065 ;; through the logic above and end up here,
2066 ;; stumped.
2067 (bug "~@<(known bug #145): The type ~S is too hairy to be ~
2068 used for a COMPLEX component.~:@>"
2069 typespec)))))))
2070 (let ((ctype (specifier-type typespec)))
2071 (do-complex ctype)))))
2073 ;;; If X is *, return NIL, otherwise return the bound, which must be a
2074 ;;; member of TYPE or a one-element list of a member of TYPE.
2075 #!-sb-fluid (declaim (inline canonicalized-bound))
2076 (defun canonicalized-bound (bound type)
2077 (cond ((eq bound '*) nil)
2078 ((or (sb!xc:typep bound type)
2079 (and (consp bound)
2080 (sb!xc:typep (car bound) type)
2081 (null (cdr bound))))
2082 bound)
2084 (error "Bound is not ~S, a ~S or a list of a ~S: ~S"
2086 type
2087 type
2088 bound))))
2090 (!def-type-translator integer (&optional (low '*) (high '*))
2091 (let* ((l (canonicalized-bound low 'integer))
2092 (lb (if (consp l) (1+ (car l)) l))
2093 (h (canonicalized-bound high 'integer))
2094 (hb (if (consp h) (1- (car h)) h)))
2095 (if (and hb lb (< hb lb))
2096 *empty-type*
2097 (make-numeric-type :class 'integer
2098 :complexp :real
2099 :enumerable (not (null (and l h)))
2100 :low lb
2101 :high hb))))
2103 (defmacro !def-bounded-type (type class format)
2104 `(!def-type-translator ,type (&optional (low '*) (high '*))
2105 (let ((lb (canonicalized-bound low ',type))
2106 (hb (canonicalized-bound high ',type)))
2107 (if (not (numeric-bound-test* lb hb <= <))
2108 *empty-type*
2109 (make-numeric-type :class ',class
2110 :format ',format
2111 :low lb
2112 :high hb)))))
2114 (!def-bounded-type rational rational nil)
2116 ;;; Unlike CMU CL, we represent the types FLOAT and REAL as
2117 ;;; UNION-TYPEs of more primitive types, in order to make
2118 ;;; type representation more unique, avoiding problems in the
2119 ;;; simplification of things like
2120 ;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
2121 ;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
2122 ;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
2123 ;;; it was too easy for the first argument to be simplified to
2124 ;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
2125 ;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
2126 ;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
2127 ;;; the first argument can't be seen to be a subtype of any of the
2128 ;;; terms in the second argument.
2130 ;;; The old CMU CL way was:
2131 ;;; (!def-bounded-type float float nil)
2132 ;;; (!def-bounded-type real nil nil)
2134 ;;; FIXME: If this new way works for a while with no weird new
2135 ;;; problems, we can go back and rip out support for separate FLOAT
2136 ;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
2137 ;;; sbcl-0.6.11.22, 2001-03-21.
2139 ;;; FIXME: It's probably necessary to do something to fix the
2140 ;;; analogous problem with INTEGER and RATIONAL types. Perhaps
2141 ;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER).
2142 (defun coerce-bound (bound type upperp inner-coerce-bound-fun)
2143 (declare (type function inner-coerce-bound-fun))
2144 (if (eql bound '*)
2145 bound
2146 (funcall inner-coerce-bound-fun bound type upperp)))
2147 (defun inner-coerce-real-bound (bound type upperp)
2148 #+sb-xc-host (declare (ignore upperp))
2149 (let #+sb-xc-host ()
2150 #-sb-xc-host
2151 ((nl (load-time-value (symbol-value 'sb!xc:most-negative-long-float)))
2152 (pl (load-time-value (symbol-value 'sb!xc:most-positive-long-float))))
2153 (let ((nbound (if (consp bound) (car bound) bound))
2154 (consp (consp bound)))
2155 (ecase type
2156 (rational
2157 (if consp
2158 (list (rational nbound))
2159 (rational nbound)))
2160 (float
2161 (cond
2162 ((floatp nbound) bound)
2164 ;; Coerce to the widest float format available, to avoid
2165 ;; unnecessary loss of precision, but don't coerce
2166 ;; unrepresentable numbers, except on the host where we
2167 ;; shouldn't be making these types (but KLUDGE: can't even
2168 ;; assert portably that we're not).
2169 #-sb-xc-host
2170 (ecase upperp
2171 ((nil)
2172 (when (< nbound nl) (return-from inner-coerce-real-bound nl)))
2173 ((t)
2174 (when (> nbound pl) (return-from inner-coerce-real-bound pl))))
2175 (let ((result (coerce nbound 'long-float)))
2176 (if consp (list result) result)))))))))
2177 (defun inner-coerce-float-bound (bound type upperp)
2178 #+sb-xc-host (declare (ignore upperp))
2179 (let #+sb-xc-host ()
2180 #-sb-xc-host
2181 ((nd (load-time-value (symbol-value 'sb!xc:most-negative-double-float)))
2182 (pd (load-time-value (symbol-value 'sb!xc:most-positive-double-float)))
2183 (ns (load-time-value (symbol-value 'sb!xc:most-negative-single-float)))
2184 (ps (load-time-value
2185 (symbol-value 'sb!xc:most-positive-single-float))))
2186 (let ((nbound (if (consp bound) (car bound) bound))
2187 (consp (consp bound)))
2188 (ecase type
2189 (single-float
2190 (cond
2191 ((typep nbound 'single-float) bound)
2193 #-sb-xc-host
2194 (ecase upperp
2195 ((nil)
2196 (when (< nbound ns) (return-from inner-coerce-float-bound ns)))
2197 ((t)
2198 (when (> nbound ps) (return-from inner-coerce-float-bound ps))))
2199 (let ((result (coerce nbound 'single-float)))
2200 (if consp (list result) result)))))
2201 (double-float
2202 (cond
2203 ((typep nbound 'double-float) bound)
2205 #-sb-xc-host
2206 (ecase upperp
2207 ((nil)
2208 (when (< nbound nd) (return-from inner-coerce-float-bound nd)))
2209 ((t)
2210 (when (> nbound pd) (return-from inner-coerce-float-bound pd))))
2211 (let ((result (coerce nbound 'double-float)))
2212 (if consp (list result) result)))))))))
2213 (defun coerced-real-bound (bound type upperp)
2214 (coerce-bound bound type upperp #'inner-coerce-real-bound))
2215 (defun coerced-float-bound (bound type upperp)
2216 (coerce-bound bound type upperp #'inner-coerce-float-bound))
2217 (!def-type-translator real (&optional (low '*) (high '*))
2218 (specifier-type `(or (float ,(coerced-real-bound low 'float nil)
2219 ,(coerced-real-bound high 'float t))
2220 (rational ,(coerced-real-bound low 'rational nil)
2221 ,(coerced-real-bound high 'rational t)))))
2222 (!def-type-translator float (&optional (low '*) (high '*))
2223 (specifier-type
2224 `(or (single-float ,(coerced-float-bound low 'single-float nil)
2225 ,(coerced-float-bound high 'single-float t))
2226 (double-float ,(coerced-float-bound low 'double-float nil)
2227 ,(coerced-float-bound high 'double-float t))
2228 #!+long-float ,(error "stub: no long float support yet"))))
2230 (defmacro !define-float-format (f)
2231 `(!def-bounded-type ,f float ,f))
2233 (!define-float-format short-float)
2234 (!define-float-format single-float)
2235 (!define-float-format double-float)
2236 (!define-float-format long-float)
2238 (defun numeric-types-intersect (type1 type2)
2239 (declare (type numeric-type type1 type2))
2240 (let* ((class1 (numeric-type-class type1))
2241 (class2 (numeric-type-class type2))
2242 (complexp1 (numeric-type-complexp type1))
2243 (complexp2 (numeric-type-complexp type2))
2244 (format1 (numeric-type-format type1))
2245 (format2 (numeric-type-format type2))
2246 (low1 (numeric-type-low type1))
2247 (high1 (numeric-type-high type1))
2248 (low2 (numeric-type-low type2))
2249 (high2 (numeric-type-high type2)))
2250 ;; If one is complex and the other isn't, then they are disjoint.
2251 (cond ((not (or (eq complexp1 complexp2)
2252 (null complexp1) (null complexp2)))
2253 nil)
2254 ;; If either type is a float, then the other must either be
2255 ;; specified to be a float or unspecified. Otherwise, they
2256 ;; are disjoint.
2257 ((and (eq class1 'float)
2258 (not (member class2 '(float nil)))) nil)
2259 ((and (eq class2 'float)
2260 (not (member class1 '(float nil)))) nil)
2261 ;; If the float formats are specified and different, the
2262 ;; types are disjoint.
2263 ((not (or (eq format1 format2) (null format1) (null format2)))
2264 nil)
2266 ;; Check the bounds. This is a bit odd because we must
2267 ;; always have the outer bound of the interval as the
2268 ;; second arg.
2269 (if (numeric-bound-test high1 high2 <= <)
2270 (or (and (numeric-bound-test low1 low2 >= >)
2271 (numeric-bound-test* low1 high2 <= <))
2272 (and (numeric-bound-test low2 low1 >= >)
2273 (numeric-bound-test* low2 high1 <= <)))
2274 (or (and (numeric-bound-test* low2 high1 <= <)
2275 (numeric-bound-test low2 low1 >= >))
2276 (and (numeric-bound-test high2 high1 <= <)
2277 (numeric-bound-test* high2 low1 >= >))))))))
2279 ;;; Take the numeric bound X and convert it into something that can be
2280 ;;; used as a bound in a numeric type with the specified CLASS and
2281 ;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
2282 ;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
2284 ;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
2285 ;;; the appropriate type number. X may only be a float when CLASS is
2286 ;;; FLOAT.
2288 ;;; ### Note: it is possible for the coercion to a float to overflow
2289 ;;; or underflow. This happens when the bound doesn't fit in the
2290 ;;; specified format. In this case, we should really return the
2291 ;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
2292 ;;; of desired format. But these conditions aren't currently signalled
2293 ;;; in any useful way.
2295 ;;; Also, when converting an open rational bound into a float we
2296 ;;; should probably convert it to a closed bound of the closest float
2297 ;;; in the specified format. KLUDGE: In general, open float bounds are
2298 ;;; screwed up. -- (comment from original CMU CL)
2299 (defun round-numeric-bound (x class format up-p)
2300 (if x
2301 (let ((cx (if (consp x) (car x) x)))
2302 (ecase class
2303 ((nil rational) x)
2304 (integer
2305 (if (and (consp x) (integerp cx))
2306 (if up-p (1+ cx) (1- cx))
2307 (if up-p (ceiling cx) (floor cx))))
2308 (float
2309 (let ((res
2310 (cond
2311 ((and format (subtypep format 'double-float))
2312 (if (<= most-negative-double-float cx most-positive-double-float)
2313 (coerce cx format)
2314 nil))
2316 (if (<= most-negative-single-float cx most-positive-single-float)
2317 ;; FIXME: bug #389
2318 (coerce cx (or format 'single-float))
2319 nil)))))
2320 (if (consp x) (list res) res)))))
2321 nil))
2323 ;;; Handle the case of type intersection on two numeric types. We use
2324 ;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
2325 ;;; intersection. If an attribute in TYPE1 is unspecified, then we use
2326 ;;; TYPE2's attribute, which must be at least as restrictive. If the
2327 ;;; types intersect, then the only attributes that can be specified
2328 ;;; and different are the class and the bounds.
2330 ;;; When the class differs, we use the more restrictive class. The
2331 ;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
2332 ;;; INTEGER.
2334 ;;; We make the result lower (upper) bound the maximum (minimum) of
2335 ;;; the argument lower (upper) bounds. We convert the bounds into the
2336 ;;; appropriate numeric type before maximizing. This avoids possible
2337 ;;; confusion due to mixed-type comparisons (but I think the result is
2338 ;;; the same).
2339 (!define-type-method (number :simple-intersection2) (type1 type2)
2340 (declare (type numeric-type type1 type2))
2341 (if (numeric-types-intersect type1 type2)
2342 (let* ((class1 (numeric-type-class type1))
2343 (class2 (numeric-type-class type2))
2344 (class (ecase class1
2345 ((nil) class2)
2346 ((integer float) class1)
2347 (rational (if (eq class2 'integer)
2348 'integer
2349 'rational))))
2350 (format (or (numeric-type-format type1)
2351 (numeric-type-format type2))))
2352 (make-numeric-type
2353 :class class
2354 :format format
2355 :complexp (or (numeric-type-complexp type1)
2356 (numeric-type-complexp type2))
2357 :low (numeric-bound-max
2358 (round-numeric-bound (numeric-type-low type1)
2359 class format t)
2360 (round-numeric-bound (numeric-type-low type2)
2361 class format t)
2362 > >= nil)
2363 :high (numeric-bound-max
2364 (round-numeric-bound (numeric-type-high type1)
2365 class format nil)
2366 (round-numeric-bound (numeric-type-high type2)
2367 class format nil)
2368 < <= nil)))
2369 *empty-type*))
2371 ;;; Given two float formats, return the one with more precision. If
2372 ;;; either one is null, return NIL.
2373 (defun float-format-max (f1 f2)
2374 (when (and f1 f2)
2375 (dolist (f *float-formats* (error "bad float format: ~S" f1))
2376 (when (or (eq f f1) (eq f f2))
2377 (return f)))))
2379 ;;; Return the result of an operation on TYPE1 and TYPE2 according to
2380 ;;; the rules of numeric contagion. This is always NUMBER, some float
2381 ;;; format (possibly complex) or RATIONAL. Due to rational
2382 ;;; canonicalization, there isn't much we can do here with integers or
2383 ;;; rational complex numbers.
2385 ;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
2386 ;;; is useful mainly for allowing types that are technically numbers,
2387 ;;; but not a NUMERIC-TYPE.
2388 (defun numeric-contagion (type1 type2)
2389 (if (and (numeric-type-p type1) (numeric-type-p type2))
2390 (let ((class1 (numeric-type-class type1))
2391 (class2 (numeric-type-class type2))
2392 (format1 (numeric-type-format type1))
2393 (format2 (numeric-type-format type2))
2394 (complexp1 (numeric-type-complexp type1))
2395 (complexp2 (numeric-type-complexp type2)))
2396 (cond ((or (null complexp1)
2397 (null complexp2))
2398 (specifier-type 'number))
2399 ((eq class1 'float)
2400 (make-numeric-type
2401 :class 'float
2402 :format (ecase class2
2403 (float (float-format-max format1 format2))
2404 ((integer rational) format1)
2405 ((nil)
2406 ;; A double-float with any real number is a
2407 ;; double-float.
2408 #!-long-float
2409 (if (eq format1 'double-float)
2410 'double-float
2411 nil)
2412 ;; A long-float with any real number is a
2413 ;; long-float.
2414 #!+long-float
2415 (if (eq format1 'long-float)
2416 'long-float
2417 nil)))
2418 :complexp (if (or (eq complexp1 :complex)
2419 (eq complexp2 :complex))
2420 :complex
2421 :real)))
2422 ((eq class2 'float) (numeric-contagion type2 type1))
2423 ((and (eq complexp1 :real) (eq complexp2 :real))
2424 (make-numeric-type
2425 :class (and class1 class2 'rational)
2426 :complexp :real))
2428 (specifier-type 'number))))
2429 (specifier-type 'number)))
2431 ;;;; array types
2433 (!define-type-class array :enumerable nil
2434 :might-contain-other-types nil)
2436 (!define-type-method (array :simple-=) (type1 type2)
2437 (cond ((not (and (equal (array-type-dimensions type1)
2438 (array-type-dimensions type2))
2439 (eq (array-type-complexp type1)
2440 (array-type-complexp type2))))
2441 (values nil t))
2442 ((or (unknown-type-p (array-type-element-type type1))
2443 (unknown-type-p (array-type-element-type type2)))
2444 (type= (array-type-element-type type1)
2445 (array-type-element-type type2)))
2447 (values (type= (array-type-specialized-element-type type1)
2448 (array-type-specialized-element-type type2))
2449 t))))
2451 (!define-type-method (array :negate) (type)
2452 ;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
2453 ;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
2454 ;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
2455 ;; A symptom of the aforementioned is that the following are not TYPE=
2456 ;; (AND (VECTOR T) (NOT SIMPLE-ARRAY)) ; an ARRAY-TYPE
2457 ;; (AND (VECTOR T) (NOT SIMPLE-VECTOR)) ; an INTERSECTION-TYPE
2458 ;; even though (VECTOR T) makes it so that the (NOT) clause in each can
2459 ;; only provide one additional bit of information: that the vector
2460 ;; is complex as opposed to simple. The rank and element-type are fixed.
2461 (if (and (eq (array-type-dimensions type) '*)
2462 (eq (array-type-complexp type) 't)
2463 (eq (array-type-element-type type) *wild-type*))
2464 ;; (NOT <hairy-array>) = either SIMPLE-ARRAY or (NOT ARRAY).
2465 ;; This is deliberately asymmetric - trying to say that NOT simple-array
2466 ;; equals hairy-array leads to infinite recursion.
2467 (type-union (make-array-type '* :complexp nil
2468 :element-type *wild-type*)
2469 (make-negation-type
2470 :type (make-array-type '* :element-type *wild-type*)))
2471 (make-negation-type :type type)))
2473 (!define-type-method (array :unparse) (type)
2474 (let* ((dims (array-type-dimensions type))
2475 ;; Compare the specialised element type and the
2476 ;; derived element type. If the derived type
2477 ;; is so small that it jumps to a smaller upgraded
2478 ;; element type, use the specialised element type.
2480 ;; This protects from unparsing
2481 ;; (and (vector (or bit symbol))
2482 ;; (vector (or bit character)))
2483 ;; i.e., the intersection of two T array types,
2484 ;; as a bit vector.
2485 (stype (array-type-specialized-element-type type))
2486 (dtype (array-type-element-type type))
2487 (utype (%upgraded-array-element-type dtype))
2488 (eltype (type-specifier (if (type= stype utype)
2489 dtype
2490 stype)))
2491 (complexp (array-type-complexp type)))
2492 (if (and (eq complexp t) (not *unparse-allow-negation*))
2493 (setq complexp :maybe))
2494 (cond ((eq dims '*)
2495 (if (eq eltype '*)
2496 (ecase complexp
2497 ((t) '(and array (not simple-array)))
2498 ((:maybe) 'array)
2499 ((nil) 'simple-array))
2500 (ecase complexp
2501 ((t) `(and (array ,eltype) (not simple-array)))
2502 ((:maybe) `(array ,eltype))
2503 ((nil) `(simple-array ,eltype)))))
2504 ((= (length dims) 1)
2505 (if complexp
2506 (let ((answer
2507 (if (eq (car dims) '*)
2508 (case eltype
2509 (bit 'bit-vector)
2510 ((base-char #!-sb-unicode character) 'base-string)
2511 (* 'vector)
2512 (t `(vector ,eltype)))
2513 (case eltype
2514 (bit `(bit-vector ,(car dims)))
2515 ((base-char #!-sb-unicode character)
2516 `(base-string ,(car dims)))
2517 (t `(vector ,eltype ,(car dims)))))))
2518 (if (eql complexp :maybe)
2519 answer
2520 `(and ,answer (not simple-array))))
2521 (if (eq (car dims) '*)
2522 (case eltype
2523 (bit 'simple-bit-vector)
2524 ((base-char #!-sb-unicode character) 'simple-base-string)
2525 ((t) 'simple-vector)
2526 (t `(simple-array ,eltype (*))))
2527 (case eltype
2528 (bit `(simple-bit-vector ,(car dims)))
2529 ((base-char #!-sb-unicode character)
2530 `(simple-base-string ,(car dims)))
2531 ((t) `(simple-vector ,(car dims)))
2532 (t `(simple-array ,eltype ,dims))))))
2534 (ecase complexp
2535 ((t) `(and (array ,eltype ,dims) (not simple-array)))
2536 ((:maybe) `(array ,eltype ,dims))
2537 ((nil) `(simple-array ,eltype ,dims)))))))
2539 (!define-type-method (array :simple-subtypep) (type1 type2)
2540 (let ((dims1 (array-type-dimensions type1))
2541 (dims2 (array-type-dimensions type2))
2542 (complexp2 (array-type-complexp type2)))
2543 (cond (;; not subtypep unless dimensions are compatible
2544 (not (or (eq dims2 '*)
2545 (and (not (eq dims1 '*))
2546 ;; (sbcl-0.6.4 has trouble figuring out that
2547 ;; DIMS1 and DIMS2 must be lists at this
2548 ;; point, and knowing that is important to
2549 ;; compiling EVERY efficiently.)
2550 (= (length (the list dims1))
2551 (length (the list dims2)))
2552 (every (lambda (x y)
2553 (or (eq y '*) (eql x y)))
2554 (the list dims1)
2555 (the list dims2)))))
2556 (values nil t))
2557 ;; not subtypep unless complexness is compatible
2558 ((not (or (eq complexp2 :maybe)
2559 (eq (array-type-complexp type1) complexp2)))
2560 (values nil t))
2561 ;; Since we didn't fail any of the tests above, we win
2562 ;; if the TYPE2 element type is wild.
2563 ((eq (array-type-element-type type2) *wild-type*)
2564 (values t t))
2565 (;; Since we didn't match any of the special cases above, if
2566 ;; either element type is unknown we can only give a good
2567 ;; answer if they are the same.
2568 (or (unknown-type-p (array-type-element-type type1))
2569 (unknown-type-p (array-type-element-type type2)))
2570 (if (type= (array-type-element-type type1)
2571 (array-type-element-type type2))
2572 (values t t)
2573 (values nil nil)))
2574 (;; Otherwise, the subtype relationship holds iff the
2575 ;; types are equal, and they're equal iff the specialized
2576 ;; element types are identical.
2578 (values (type= (array-type-specialized-element-type type1)
2579 (array-type-specialized-element-type type2))
2580 t)))))
2582 (!define-superclasses array
2583 ((vector vector) (array))
2584 !cold-init-forms)
2586 (defun array-types-intersect (type1 type2)
2587 (declare (type array-type type1 type2))
2588 (let ((dims1 (array-type-dimensions type1))
2589 (dims2 (array-type-dimensions type2))
2590 (complexp1 (array-type-complexp type1))
2591 (complexp2 (array-type-complexp type2)))
2592 ;; See whether dimensions are compatible.
2593 (cond ((not (or (eq dims1 '*) (eq dims2 '*)
2594 (and (= (length dims1) (length dims2))
2595 (every (lambda (x y)
2596 (or (eq x '*) (eq y '*) (= x y)))
2597 dims1 dims2))))
2598 (values nil t))
2599 ;; See whether complexpness is compatible.
2600 ((not (or (eq complexp1 :maybe)
2601 (eq complexp2 :maybe)
2602 (eq complexp1 complexp2)))
2603 (values nil t))
2604 ;; Old comment:
2606 ;; If either element type is wild, then they intersect.
2607 ;; Otherwise, the types must be identical.
2609 ;; FIXME: There seems to have been a fair amount of
2610 ;; confusion about the distinction between requested element
2611 ;; type and specialized element type; here is one of
2612 ;; them. If we request an array to hold objects of an
2613 ;; unknown type, we can do no better than represent that
2614 ;; type as an array specialized on wild-type. We keep the
2615 ;; requested element-type in the -ELEMENT-TYPE slot, and
2616 ;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE. So, here,
2617 ;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
2618 ;; not just the ELEMENT-TYPE slot. Maybe the return value
2619 ;; in that specific case should be T, NIL? Or maybe this
2620 ;; function should really be called
2621 ;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT? In any case, this
2622 ;; was responsible for bug #123, and this whole issue could
2623 ;; do with a rethink and/or a rewrite. -- CSR, 2002-08-21
2624 ((or (eq (array-type-specialized-element-type type1) *wild-type*)
2625 (eq (array-type-specialized-element-type type2) *wild-type*)
2626 (type= (array-type-specialized-element-type type1)
2627 (array-type-specialized-element-type type2)))
2629 (values t t))
2631 (values nil t)))))
2633 (defun unite-array-types-complexp (type1 type2)
2634 (let ((complexp1 (array-type-complexp type1))
2635 (complexp2 (array-type-complexp type2)))
2636 (cond
2637 ((eq complexp1 complexp2)
2638 ;; both types are the same complexp-ity
2639 (values complexp1 t))
2640 ((eq complexp1 :maybe)
2641 ;; type1 is wild-complexp
2642 (values :maybe type1))
2643 ((eq complexp2 :maybe)
2644 ;; type2 is wild-complexp
2645 (values :maybe type2))
2647 ;; both types partition the complexp-space
2648 (values :maybe nil)))))
2650 (defun unite-array-types-dimensions (type1 type2)
2651 (let ((dims1 (array-type-dimensions type1))
2652 (dims2 (array-type-dimensions type2)))
2653 (cond ((equal dims1 dims2)
2654 ;; both types are same dimensionality
2655 (values dims1 t))
2656 ((eq dims1 '*)
2657 ;; type1 is wild-dimensions
2658 (values '* type1))
2659 ((eq dims2 '*)
2660 ;; type2 is wild-dimensions
2661 (values '* type2))
2662 ((not (= (length dims1) (length dims2)))
2663 ;; types have different number of dimensions
2664 (values :incompatible nil))
2666 ;; we need to check on a per-dimension basis
2667 (let* ((supertype1 t)
2668 (supertype2 t)
2669 (compatible t)
2670 (result (mapcar (lambda (dim1 dim2)
2671 (cond
2672 ((equal dim1 dim2)
2673 dim1)
2674 ((eq dim1 '*)
2675 (setf supertype2 nil)
2677 ((eq dim2 '*)
2678 (setf supertype1 nil)
2681 (setf compatible nil))))
2682 dims1 dims2)))
2683 (cond
2684 ((or (not compatible)
2685 (and (not supertype1)
2686 (not supertype2)))
2687 (values :incompatible nil))
2688 ((and supertype1 supertype2)
2689 (values result supertype1))
2691 (values result (if supertype1 type1 type2)))))))))
2693 (defun unite-array-types-element-types (type1 type2)
2694 ;; FIXME: We'd love to be able to unite the full set of specialized
2695 ;; array element types up to *wild-type*, but :simple-union2 is
2696 ;; performed pairwise, so we don't have a good hook for it and our
2697 ;; representation doesn't allow us to easily detect the situation
2698 ;; anyway.
2699 ;; But see SIMPLIFY-ARRAY-UNIONS which is able to do something like that.
2700 (let* ((eltype1 (array-type-element-type type1))
2701 (eltype2 (array-type-element-type type2))
2702 (stype1 (array-type-specialized-element-type type1))
2703 (stype2 (array-type-specialized-element-type type2))
2704 (wild1 (eq eltype1 *wild-type*))
2705 (wild2 (eq eltype2 *wild-type*)))
2706 (cond
2707 ((type= eltype1 eltype2)
2708 (values eltype1 stype1 t))
2709 (wild1
2710 (values eltype1 stype1 type1))
2711 (wild2
2712 (values eltype2 stype2 type2))
2713 ((not (type= stype1 stype2))
2714 ;; non-wild types that don't share UAET don't unite
2715 (values :incompatible nil nil))
2716 ((csubtypep eltype1 eltype2)
2717 (values eltype2 stype2 type2))
2718 ((csubtypep eltype2 eltype1)
2719 (values eltype1 stype1 type1))
2721 (values :incompatible nil nil)))))
2723 (defun unite-array-types-supertypes-compatible-p (&rest supertypes)
2724 ;; supertypes are compatible if they are all T, if there is a single
2725 ;; NIL and all the rest are T, or if all non-T supertypes are the
2726 ;; same and not NIL.
2727 (let ((interesting-supertypes
2728 (remove t supertypes)))
2729 (or (not interesting-supertypes)
2730 (equal interesting-supertypes '(nil))
2731 ;; supertypes are (OR BOOLEAN ARRAY-TYPE), so...
2732 (typep (remove-duplicates interesting-supertypes)
2733 '(cons array-type null)))))
2735 (!define-type-method (array :simple-union2) (type1 type2)
2736 (multiple-value-bind
2737 (result-eltype result-stype eltype-supertype)
2738 (unite-array-types-element-types type1 type2)
2739 (multiple-value-bind
2740 (result-complexp complexp-supertype)
2741 (unite-array-types-complexp type1 type2)
2742 (multiple-value-bind
2743 (result-dimensions dimensions-supertype)
2744 (unite-array-types-dimensions type1 type2)
2745 (when (and (not (eq result-dimensions :incompatible))
2746 (not (eq result-eltype :incompatible))
2747 (unite-array-types-supertypes-compatible-p
2748 eltype-supertype complexp-supertype dimensions-supertype))
2749 (make-array-type result-dimensions
2750 :complexp result-complexp
2751 :element-type result-eltype
2752 :specialized-element-type result-stype))))))
2754 (!define-type-method (array :simple-intersection2) (type1 type2)
2755 (declare (type array-type type1 type2))
2756 (if (array-types-intersect type1 type2)
2757 (let ((dims1 (array-type-dimensions type1))
2758 (dims2 (array-type-dimensions type2))
2759 (complexp1 (array-type-complexp type1))
2760 (complexp2 (array-type-complexp type2))
2761 (eltype1 (array-type-element-type type1))
2762 (eltype2 (array-type-element-type type2))
2763 (stype1 (array-type-specialized-element-type type1))
2764 (stype2 (array-type-specialized-element-type type2)))
2765 (make-array-type (cond ((eq dims1 '*) dims2)
2766 ((eq dims2 '*) dims1)
2768 (mapcar (lambda (x y) (if (eq x '*) y x))
2769 dims1 dims2)))
2770 :complexp (if (eq complexp1 :maybe) complexp2 complexp1)
2771 :element-type (cond
2772 ((eq eltype1 *wild-type*) eltype2)
2773 ((eq eltype2 *wild-type*) eltype1)
2774 (t (type-intersection eltype1 eltype2)))
2775 :specialized-element-type (cond
2776 ((eq stype1 *wild-type*) stype2)
2777 ((eq stype2 *wild-type*) stype1)
2779 (aver (type= stype1 stype2))
2780 stype1))))
2781 *empty-type*))
2783 ;;; Check a supplied dimension list to determine whether it is legal,
2784 ;;; and return it in canonical form (as either '* or a list).
2785 (defun canonical-array-dimensions (dims)
2786 (typecase dims
2787 ((member *) dims)
2788 (integer
2789 (when (minusp dims)
2790 (error "Arrays can't have a negative number of dimensions: ~S" dims))
2791 (when (>= dims sb!xc:array-rank-limit)
2792 (error "array type with too many dimensions: ~S" dims))
2793 (make-list dims :initial-element '*))
2794 (list
2795 (when (>= (length dims) sb!xc:array-rank-limit)
2796 (error "array type with too many dimensions: ~S" dims))
2797 (dolist (dim dims)
2798 (unless (eq dim '*)
2799 (unless (and (integerp dim)
2800 (>= dim 0)
2801 (< dim sb!xc:array-dimension-limit))
2802 (error "bad dimension in array type: ~S" dim))))
2803 dims)
2805 (error "Array dimensions is not a list, integer or *:~% ~S" dims))))
2807 ;;;; MEMBER types
2809 (!define-type-class member :enumerable t
2810 :might-contain-other-types nil)
2812 ;; this is ridiculously order-sensitive: the DEFSTRUCT is in 'early-type'
2813 ;; as is MAKE-MEMBER-TYPE, the only user of *NULL-TYPE*.
2814 ;; But the type-class is here, and you can't make a CTYPE object
2815 ;; until a type-class exists for it. Type-classes are akin to layouts,
2816 ;; and ought to be as primordial, and dumped during Genesis.
2817 ;; I have a patch to do exactly that, but until then...
2818 (!cold-init-forms
2819 (setf *null-type* (%make-member-type (xset-from-list '(nil)) nil)
2820 *boolean-type* (%make-member-type (xset-from-list '(t nil)) nil)))
2822 (!define-type-method (member :negate) (type)
2823 (let ((xset (member-type-xset type))
2824 (fp-zeroes (member-type-fp-zeroes type)))
2825 (if fp-zeroes
2826 ;; Hairy case, which needs to do a bit of float type
2827 ;; canonicalization.
2828 (apply #'type-intersection
2829 (if (xset-empty-p xset)
2830 *universal-type*
2831 (make-negation-type
2832 :type (make-member-type :xset xset)))
2833 (mapcar
2834 (lambda (x)
2835 (let* ((opposite (neg-fp-zero x))
2836 (type (ctype-of opposite)))
2837 (type-union
2838 (make-negation-type
2839 :type (modified-numeric-type type :low nil :high nil))
2840 (modified-numeric-type type :low nil :high (list opposite))
2841 (make-member-type :members (list opposite))
2842 (modified-numeric-type type :low (list opposite) :high nil))))
2843 fp-zeroes))
2844 ;; Easy case
2845 (make-negation-type :type type))))
2847 (!define-type-method (member :unparse) (type)
2848 (let ((members (member-type-members type)))
2849 (cond ((equal members '(nil)) 'null)
2850 (t `(member ,@members)))))
2852 (!define-type-method (member :singleton-p) (type)
2853 (if (eql 1 (member-type-size type))
2854 (values t (first (member-type-members type)))
2855 (values nil nil)))
2857 (!define-type-method (member :simple-subtypep) (type1 type2)
2858 (values (and (xset-subset-p (member-type-xset type1)
2859 (member-type-xset type2))
2860 (subsetp (member-type-fp-zeroes type1)
2861 (member-type-fp-zeroes type2)))
2864 (!define-type-method (member :complex-subtypep-arg1) (type1 type2)
2865 (block punt
2866 (mapc-member-type-members
2867 (lambda (elt)
2868 (multiple-value-bind (ok surep) (ctypep elt type2)
2869 (unless surep
2870 (return-from punt (values nil nil)))
2871 (unless ok
2872 (return-from punt (values nil t)))))
2873 type1)
2874 (values t t)))
2876 ;;; We punt if the odd type is enumerable and intersects with the
2877 ;;; MEMBER type. If not enumerable, then it is definitely not a
2878 ;;; subtype of the MEMBER type.
2879 (!define-type-method (member :complex-subtypep-arg2) (type1 type2)
2880 (cond ((not (type-enumerable type1)) (values nil t))
2881 ((types-equal-or-intersect type1 type2)
2882 (invoke-complex-subtypep-arg1-method type1 type2))
2883 (t (values nil t))))
2885 (!define-type-method (member :simple-intersection2) (type1 type2)
2886 (make-member-type :xset (xset-intersection (member-type-xset type1)
2887 (member-type-xset type2))
2888 :fp-zeroes (intersection (member-type-fp-zeroes type1)
2889 (member-type-fp-zeroes type2))))
2891 (!define-type-method (member :complex-intersection2) (type1 type2)
2892 (block punt
2893 (let ((xset (alloc-xset))
2894 (fp-zeroes nil))
2895 (mapc-member-type-members
2896 (lambda (member)
2897 (multiple-value-bind (ok sure) (ctypep member type1)
2898 (unless sure
2899 (return-from punt nil))
2900 (when ok
2901 (if (fp-zero-p member)
2902 (pushnew member fp-zeroes)
2903 (add-to-xset member xset)))))
2904 type2)
2905 (if (and (xset-empty-p xset) (not fp-zeroes))
2906 *empty-type*
2907 (make-member-type :xset xset :fp-zeroes fp-zeroes)))))
2909 ;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
2910 ;;; a union type, and the member/union interaction is handled by the
2911 ;;; union type method.
2912 (!define-type-method (member :simple-union2) (type1 type2)
2913 (make-member-type :xset (xset-union (member-type-xset type1)
2914 (member-type-xset type2))
2915 :fp-zeroes (union (member-type-fp-zeroes type1)
2916 (member-type-fp-zeroes type2))))
2918 (!define-type-method (member :simple-=) (type1 type2)
2919 (let ((xset1 (member-type-xset type1))
2920 (xset2 (member-type-xset type2))
2921 (l1 (member-type-fp-zeroes type1))
2922 (l2 (member-type-fp-zeroes type2)))
2923 (values (and (eql (xset-count xset1) (xset-count xset2))
2924 (xset-subset-p xset1 xset2)
2925 (xset-subset-p xset2 xset1)
2926 (subsetp l1 l2)
2927 (subsetp l2 l1))
2928 t)))
2930 (!define-type-method (member :complex-=) (type1 type2)
2931 (if (type-enumerable type1)
2932 (multiple-value-bind (val win) (csubtypep type2 type1)
2933 (if (or val (not win))
2934 (values nil nil)
2935 (values nil t)))
2936 (values nil t)))
2938 (!def-type-translator member (&rest members)
2939 (if members
2940 (let (ms numbers char-codes)
2941 (dolist (m (remove-duplicates members))
2942 (typecase m
2943 (float (if (zerop m)
2944 (push m ms)
2945 (push (ctype-of m) numbers)))
2946 (real (push (ctype-of m) numbers))
2947 (character (push (sb!xc:char-code m) char-codes))
2948 (t (push m ms))))
2949 (apply #'type-union
2950 (if ms
2951 (make-member-type :members ms)
2952 *empty-type*)
2953 (if char-codes
2954 (make-character-set-type
2955 :pairs (mapcar (lambda (x) (cons x x))
2956 (sort char-codes #'<)))
2957 *empty-type*)
2958 (nreverse numbers)))
2959 *empty-type*))
2961 ;;;; intersection types
2962 ;;;;
2963 ;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
2964 ;;;; of punting on all AND types, not just the unreasonably complicated
2965 ;;;; ones. The change was motivated by trying to get the KEYWORD type
2966 ;;;; to behave sensibly:
2967 ;;;; ;; reasonable definition
2968 ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
2969 ;;;; ;; reasonable behavior
2970 ;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
2971 ;;;; Without understanding a little about the semantics of AND, we'd
2972 ;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
2973 ;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
2974 ;;;; not so good..)
2975 ;;;;
2976 ;;;; We still follow the example of CMU CL to some extent, by punting
2977 ;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
2978 ;;;; involving AND.
2980 (!define-type-class intersection
2981 :enumerable #'compound-type-enumerable
2982 :might-contain-other-types t)
2984 (!define-type-method (intersection :negate) (type)
2985 (apply #'type-union
2986 (mapcar #'type-negation (intersection-type-types type))))
2988 ;;; A few intersection types have special names. The others just get
2989 ;;; mechanically unparsed.
2990 (!define-type-method (intersection :unparse) (type)
2991 (declare (type ctype type))
2992 (or (find type '(ratio keyword compiled-function) :key #'specifier-type :test #'type=)
2993 `(and ,@(mapcar #'type-specifier (intersection-type-types type)))))
2995 ;;; shared machinery for type equality: true if every type in the set
2996 ;;; TYPES1 matches a type in the set TYPES2 and vice versa
2997 (defun type=-set (types1 types2)
2998 (flet ((type<=-set (x y)
2999 (declare (type list x y))
3000 (every/type (lambda (x y-element)
3001 (any/type #'type= y-element x))
3002 x y)))
3003 (and/type (type<=-set types1 types2)
3004 (type<=-set types2 types1))))
3006 ;;; Two intersection types are equal if their subtypes are equal sets.
3008 ;;; FIXME: Might it be better to use
3009 ;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
3010 ;;; instead, since SUBTYPEP is the usual relationship that we care
3011 ;;; most about, so it would be good to leverage any ingenuity there
3012 ;;; in this more obscure method?
3013 (!define-type-method (intersection :simple-=) (type1 type2)
3014 (type=-set (intersection-type-types type1)
3015 (intersection-type-types type2)))
3017 (defun %intersection-complex-subtypep-arg1 (type1 type2)
3018 (type= type1 (type-intersection type1 type2)))
3020 (defun %intersection-simple-subtypep (type1 type2)
3021 (every/type #'%intersection-complex-subtypep-arg1
3022 type1
3023 (intersection-type-types type2)))
3025 (!define-type-method (intersection :simple-subtypep) (type1 type2)
3026 (%intersection-simple-subtypep type1 type2))
3028 (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
3029 (%intersection-complex-subtypep-arg1 type1 type2))
3031 (defun %intersection-complex-subtypep-arg2 (type1 type2)
3032 (every/type #'csubtypep type1 (intersection-type-types type2)))
3034 (!define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
3035 (%intersection-complex-subtypep-arg2 type1 type2))
3037 ;;; FIXME: This will look eeriely familiar to readers of the UNION
3038 ;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method. That's
3039 ;;; because it was generated by cut'n'paste methods. Given that
3040 ;;; intersections and unions have all sorts of symmetries known to
3041 ;;; mathematics, it shouldn't be beyond the ken of some programmers to
3042 ;;; reflect those symmetries in code in a way that ties them together
3043 ;;; more strongly than having two independent near-copies :-/
3044 (!define-type-method (intersection :simple-union2 :complex-union2)
3045 (type1 type2)
3046 ;; Within this method, type2 is guaranteed to be an intersection
3047 ;; type:
3048 (aver (intersection-type-p type2))
3049 ;; Make sure to call only the applicable methods...
3050 (cond ((and (intersection-type-p type1)
3051 (%intersection-simple-subtypep type1 type2)) type2)
3052 ((and (intersection-type-p type1)
3053 (%intersection-simple-subtypep type2 type1)) type1)
3054 ((and (not (intersection-type-p type1))
3055 (%intersection-complex-subtypep-arg2 type1 type2))
3056 type2)
3057 ((and (not (intersection-type-p type1))
3058 (%intersection-complex-subtypep-arg1 type2 type1))
3059 type1)
3060 ;; KLUDGE: This special (and somewhat hairy) magic is required
3061 ;; to deal with the RATIONAL/INTEGER special case. The UNION
3062 ;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
3063 ;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
3064 ((and (csubtypep type2 (specifier-type 'ratio))
3065 (numeric-type-p type1)
3066 (csubtypep type1 (specifier-type 'integer))
3067 (csubtypep type2
3068 (make-numeric-type
3069 :class 'rational
3070 :complexp nil
3071 :low (if (null (numeric-type-low type1))
3073 (list (1- (numeric-type-low type1))))
3074 :high (if (null (numeric-type-high type1))
3076 (list (1+ (numeric-type-high type1)))))))
3077 (let* ((intersected (intersection-type-types type2))
3078 (remaining (remove (specifier-type '(not integer))
3079 intersected
3080 :test #'type=)))
3081 (and (not (equal intersected remaining))
3082 (type-union type1 (apply #'type-intersection remaining)))))
3084 (let ((accumulator *universal-type*))
3085 (do ((t2s (intersection-type-types type2) (cdr t2s)))
3086 ((null t2s) accumulator)
3087 (let ((union (type-union type1 (car t2s))))
3088 (when (union-type-p union)
3089 ;; we have to give up here -- there are all sorts of
3090 ;; ordering worries, but it's better than before.
3091 ;; Doing exactly the same as in the UNION
3092 ;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
3093 ;; overflow with the mutual recursion never bottoming
3094 ;; out.
3095 (if (and (eq accumulator *universal-type*)
3096 (null (cdr t2s)))
3097 ;; KLUDGE: if we get here, we have a partially
3098 ;; simplified result. While this isn't by any
3099 ;; means a universal simplification, including
3100 ;; this logic here means that we can get (OR
3101 ;; KEYWORD (NOT KEYWORD)) canonicalized to T.
3102 (return union)
3103 (return nil)))
3104 (setf accumulator
3105 (type-intersection accumulator union))))))))
3107 (!def-type-translator and (&whole whole &rest type-specifiers)
3108 (apply #'type-intersection
3109 (mapcar #'specifier-type type-specifiers)))
3111 ;;;; union types
3113 (!define-type-class union
3114 :enumerable #'compound-type-enumerable
3115 :might-contain-other-types t)
3117 (!define-type-method (union :negate) (type)
3118 (declare (type ctype type))
3119 (apply #'type-intersection
3120 (mapcar #'type-negation (union-type-types type))))
3122 ;;; The LIST, FLOAT and REAL types have special names. Other union
3123 ;;; types just get mechanically unparsed.
3124 (!define-type-method (union :unparse) (type)
3125 (declare (type ctype type))
3126 (cond
3127 ((type= type (specifier-type 'list)) 'list)
3128 ((type= type (specifier-type 'float)) 'float)
3129 ((type= type (specifier-type 'real)) 'real)
3130 ((type= type (specifier-type 'sequence)) 'sequence)
3131 ((type= type (specifier-type 'bignum)) 'bignum)
3132 ((type= type (specifier-type 'simple-string)) 'simple-string)
3133 ((type= type (specifier-type 'string)) 'string)
3134 ((type= type (specifier-type 'complex)) 'complex)
3135 ((type= type (specifier-type 'standard-char)) 'standard-char)
3136 (t `(or ,@(mapcar #'type-specifier (union-type-types type))))))
3138 ;;; Two union types are equal if they are each subtypes of each
3139 ;;; other. We need to be this clever because our complex subtypep
3140 ;;; methods are now more accurate; we don't get infinite recursion
3141 ;;; because the simple-subtypep method delegates to complex-subtypep
3142 ;;; of the individual types of type1. - CSR, 2002-04-09
3144 ;;; Previous comment, now obsolete, but worth keeping around because
3145 ;;; it is true, though too strong a condition:
3147 ;;; Two union types are equal if their subtypes are equal sets.
3148 (!define-type-method (union :simple-=) (type1 type2)
3149 (multiple-value-bind (subtype certain?)
3150 (csubtypep type1 type2)
3151 (if subtype
3152 (csubtypep type2 type1)
3153 ;; we might as well become as certain as possible.
3154 (if certain?
3155 (values nil t)
3156 (multiple-value-bind (subtype certain?)
3157 (csubtypep type2 type1)
3158 (declare (ignore subtype))
3159 (values nil certain?))))))
3161 (!define-type-method (union :complex-=) (type1 type2)
3162 (declare (ignore type1))
3163 (if (some #'type-might-contain-other-types-p
3164 (union-type-types type2))
3165 (values nil nil)
3166 (values nil t)))
3168 ;;; Similarly, a union type is a subtype of another if and only if
3169 ;;; every element of TYPE1 is a subtype of TYPE2.
3170 (defun union-simple-subtypep (type1 type2)
3171 (every/type (swapped-args-fun #'union-complex-subtypep-arg2)
3172 type2
3173 (union-type-types type1)))
3175 (!define-type-method (union :simple-subtypep) (type1 type2)
3176 (union-simple-subtypep type1 type2))
3178 (defun union-complex-subtypep-arg1 (type1 type2)
3179 (every/type (swapped-args-fun #'csubtypep)
3180 type2
3181 (union-type-types type1)))
3183 (!define-type-method (union :complex-subtypep-arg1) (type1 type2)
3184 (union-complex-subtypep-arg1 type1 type2))
3186 (defun union-complex-subtypep-arg2 (type1 type2)
3187 ;; At this stage, we know that type2 is a union type and type1
3188 ;; isn't. We might as well check this, though:
3189 (aver (union-type-p type2))
3190 (aver (not (union-type-p type1)))
3191 ;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
3192 ;; turns out to be too restrictive, causing bug 91.
3194 ;; the following reimplementation might look dodgy. It is dodgy. It
3195 ;; depends on the union :complex-= method not doing very much work
3196 ;; -- certainly, not using subtypep. Reasoning:
3198 ;; A is a subset of (B1 u B2)
3199 ;; <=> A n (B1 u B2) = A
3200 ;; <=> (A n B1) u (A n B2) = A
3202 ;; But, we have to be careful not to delegate this type= to
3203 ;; something that could invoke subtypep, which might get us back
3204 ;; here -> stack explosion. We therefore ensure that the second type
3205 ;; (which is the one that's dispatched on) is either a union type
3206 ;; (where we've ensured that the complex-= method will not call
3207 ;; subtypep) or something with no union types involved, in which
3208 ;; case we'll never come back here.
3210 ;; If we don't do this, then e.g.
3211 ;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
3212 ;; would loop infinitely, as the member :complex-= method is
3213 ;; implemented in terms of subtypep.
3215 ;; Ouch. - CSR, 2002-04-10
3216 (multiple-value-bind (sub-value sub-certain?)
3217 (type= type1
3218 (apply #'type-union
3219 (mapcar (lambda (x) (type-intersection type1 x))
3220 (union-type-types type2))))
3221 (if sub-certain?
3222 (values sub-value sub-certain?)
3223 ;; The ANY/TYPE expression above is a sufficient condition for
3224 ;; subsetness, but not a necessary one, so we might get a more
3225 ;; certain answer by this CALL-NEXT-METHOD-ish step when the
3226 ;; ANY/TYPE expression is uncertain.
3227 (invoke-complex-subtypep-arg1-method type1 type2))))
3229 (!define-type-method (union :complex-subtypep-arg2) (type1 type2)
3230 (union-complex-subtypep-arg2 type1 type2))
3232 (!define-type-method (union :simple-intersection2 :complex-intersection2)
3233 (type1 type2)
3234 ;; The CSUBTYPEP clauses here let us simplify e.g.
3235 ;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
3236 ;; (SPECIFIER-TYPE '(OR LIST VECTOR)))
3237 ;; (where LIST is (OR CONS NULL)).
3239 ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
3240 ;; versa, but it's important that we pre-expand them into
3241 ;; specialized operations on individual elements of
3242 ;; UNION-TYPE-TYPES, instead of using the ordinary call to
3243 ;; CSUBTYPEP, in order to avoid possibly invoking any methods which
3244 ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
3245 ;; cause infinite recursion.
3247 ;; Within this method, type2 is guaranteed to be a union type:
3248 (aver (union-type-p type2))
3249 ;; Make sure to call only the applicable methods...
3250 (cond ((and (union-type-p type1)
3251 (union-simple-subtypep type1 type2)) type1)
3252 ((and (union-type-p type1)
3253 (union-simple-subtypep type2 type1)) type2)
3254 ((and (not (union-type-p type1))
3255 (union-complex-subtypep-arg2 type1 type2))
3256 type1)
3257 ((and (not (union-type-p type1))
3258 (union-complex-subtypep-arg1 type2 type1))
3259 type2)
3261 ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
3262 ;; operations in a particular order, and gives up if any of
3263 ;; the sub-unions turn out not to be simple. In other cases
3264 ;; ca. sbcl-0.6.11.15, that approach to taking a union was a
3265 ;; bad idea, since it can overlook simplifications which
3266 ;; might occur if the terms were accumulated in a different
3267 ;; order. It's possible that that will be a problem here too.
3268 ;; However, I can't think of a good example to demonstrate
3269 ;; it, and without an example to demonstrate it I can't write
3270 ;; test cases, and without test cases I don't want to
3271 ;; complicate the code to address what's still a hypothetical
3272 ;; problem. So I punted. -- WHN 2001-03-20
3273 (let ((accumulator *empty-type*))
3274 (dolist (t2 (union-type-types type2) accumulator)
3275 (setf accumulator
3276 (type-union accumulator
3277 (type-intersection type1 t2))))))))
3279 (!def-type-translator or (&rest type-specifiers)
3280 (let ((type (apply #'type-union
3281 (mapcar #'specifier-type type-specifiers))))
3282 (if (union-type-p type)
3283 (sb!kernel::simplify-array-unions type)
3284 type)))
3286 ;;;; CONS types
3288 (!define-type-class cons :enumerable nil :might-contain-other-types nil)
3290 ;; Another order-sensitive form. See related note at MEMBER type-class.
3291 (!cold-init-forms
3292 (setf *cons-t-t-type* (%make-cons-type *universal-type* *universal-type*)))
3294 (!def-type-translator cons (&optional (car-type-spec '*) (cdr-type-spec '*))
3295 (let ((car-type (single-value-specifier-type car-type-spec))
3296 (cdr-type (single-value-specifier-type cdr-type-spec)))
3297 (make-cons-type car-type cdr-type)))
3299 (!define-type-method (cons :negate) (type)
3300 (if (and (eq (cons-type-car-type type) *universal-type*)
3301 (eq (cons-type-cdr-type type) *universal-type*))
3302 (make-negation-type :type type)
3303 (type-union
3304 (make-negation-type :type (specifier-type 'cons))
3305 (cond
3306 ((and (not (eq (cons-type-car-type type) *universal-type*))
3307 (not (eq (cons-type-cdr-type type) *universal-type*)))
3308 (type-union
3309 (make-cons-type
3310 (type-negation (cons-type-car-type type))
3311 *universal-type*)
3312 (make-cons-type
3313 *universal-type*
3314 (type-negation (cons-type-cdr-type type)))))
3315 ((not (eq (cons-type-car-type type) *universal-type*))
3316 (make-cons-type
3317 (type-negation (cons-type-car-type type))
3318 *universal-type*))
3319 ((not (eq (cons-type-cdr-type type) *universal-type*))
3320 (make-cons-type
3321 *universal-type*
3322 (type-negation (cons-type-cdr-type type))))
3323 (t (bug "Weird CONS type ~S" type))))))
3325 (!define-type-method (cons :unparse) (type)
3326 (let ((car-eltype (type-specifier (cons-type-car-type type)))
3327 (cdr-eltype (type-specifier (cons-type-cdr-type type))))
3328 (if (and (member car-eltype '(t *))
3329 (member cdr-eltype '(t *)))
3330 'cons
3331 `(cons ,car-eltype ,cdr-eltype))))
3333 (!define-type-method (cons :simple-=) (type1 type2)
3334 (declare (type cons-type type1 type2))
3335 (multiple-value-bind (car-match car-win)
3336 (type= (cons-type-car-type type1) (cons-type-car-type type2))
3337 (multiple-value-bind (cdr-match cdr-win)
3338 (type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3339 (cond ((and car-match cdr-match)
3340 (aver (and car-win cdr-win))
3341 (values t t))
3343 (values nil
3344 ;; FIXME: Ideally we would like to detect and handle
3345 ;; (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
3346 ;; but just returning a secondary true on (and car-win cdr-win)
3347 ;; unfortunately breaks other things. --NS 2006-08-16
3348 (and (or (and (not car-match) car-win)
3349 (and (not cdr-match) cdr-win))
3350 (not (and (cons-type-might-be-empty-type type1)
3351 (cons-type-might-be-empty-type type2))))))))))
3353 (!define-type-method (cons :simple-subtypep) (type1 type2)
3354 (declare (type cons-type type1 type2))
3355 (multiple-value-bind (val-car win-car)
3356 (csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
3357 (multiple-value-bind (val-cdr win-cdr)
3358 (csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3359 (if (and val-car val-cdr)
3360 (values t (and win-car win-cdr))
3361 (values nil (or (and (not val-car) win-car)
3362 (and (not val-cdr) win-cdr)))))))
3364 ;;; Give up if a precise type is not possible, to avoid returning
3365 ;;; overly general types.
3366 (!define-type-method (cons :simple-union2) (type1 type2)
3367 (declare (type cons-type type1 type2))
3368 (let ((car-type1 (cons-type-car-type type1))
3369 (car-type2 (cons-type-car-type type2))
3370 (cdr-type1 (cons-type-cdr-type type1))
3371 (cdr-type2 (cons-type-cdr-type type2))
3372 car-not1
3373 car-not2)
3374 ;; UGH. -- CSR, 2003-02-24
3375 (macrolet ((frob-car (car1 car2 cdr1 cdr2
3376 &optional (not1 nil not1p))
3377 `(type-union
3378 (make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
3379 (make-cons-type
3380 (type-intersection ,car2
3381 ,(if not1p
3382 not1
3383 `(type-negation ,car1)))
3384 ,cdr2))))
3385 (cond ((type= car-type1 car-type2)
3386 (make-cons-type car-type1
3387 (type-union cdr-type1 cdr-type2)))
3388 ((type= cdr-type1 cdr-type2)
3389 (make-cons-type (type-union car-type1 car-type2)
3390 cdr-type1))
3391 ((csubtypep car-type1 car-type2)
3392 (frob-car car-type1 car-type2 cdr-type1 cdr-type2))
3393 ((csubtypep car-type2 car-type1)
3394 (frob-car car-type2 car-type1 cdr-type2 cdr-type1))
3395 ;; more general case of the above, but harder to compute
3396 ((progn
3397 (setf car-not1 (type-negation car-type1))
3398 (multiple-value-bind (yes win)
3399 (csubtypep car-type2 car-not1)
3400 (and (not yes) win)))
3401 (frob-car car-type1 car-type2 cdr-type1 cdr-type2 car-not1))
3402 ((progn
3403 (setf car-not2 (type-negation car-type2))
3404 (multiple-value-bind (yes win)
3405 (csubtypep car-type1 car-not2)
3406 (and (not yes) win)))
3407 (frob-car car-type2 car-type1 cdr-type2 cdr-type1 car-not2))
3408 ;; Don't put these in -- consider the effect of taking the
3409 ;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
3410 ;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
3411 #+nil
3412 ((csubtypep cdr-type1 cdr-type2)
3413 (frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
3414 #+nil
3415 ((csubtypep cdr-type2 cdr-type1)
3416 (frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))
3418 (!define-type-method (cons :simple-intersection2) (type1 type2)
3419 (declare (type cons-type type1 type2))
3420 (let ((car-int2 (type-intersection2 (cons-type-car-type type1)
3421 (cons-type-car-type type2)))
3422 (cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
3423 (cons-type-cdr-type type2))))
3424 (cond
3425 ((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
3426 (car-int2 (make-cons-type car-int2
3427 (type-intersection
3428 (cons-type-cdr-type type1)
3429 (cons-type-cdr-type type2))))
3430 (cdr-int2 (make-cons-type
3431 (type-intersection (cons-type-car-type type1)
3432 (cons-type-car-type type2))
3433 cdr-int2)))))
3435 (!define-superclasses cons ((cons)) !cold-init-forms)
3437 ;;;; CHARACTER-SET types
3439 ;; all character-set types are enumerable, but it's not possible
3440 ;; for one to be TYPE= to a MEMBER type because (MEMBER #\x)
3441 ;; is not internally represented as a MEMBER type.
3442 ;; So in case it wasn't clear already ENUMERABLE-P does not mean
3443 ;; "possibly a MEMBER type in the Lisp-theoretic sense",
3444 ;; but means "could be implemented in SBCL as a MEMBER type".
3445 (!define-type-class character-set :enumerable nil
3446 :might-contain-other-types nil)
3448 (!def-type-translator character-set
3449 (&optional (pairs '((0 . #.(1- sb!xc:char-code-limit)))))
3450 (make-character-set-type :pairs pairs))
3452 (!define-type-method (character-set :negate) (type)
3453 (let ((pairs (character-set-type-pairs type)))
3454 (if (and (= (length pairs) 1)
3455 (= (caar pairs) 0)
3456 (= (cdar pairs) (1- sb!xc:char-code-limit)))
3457 (make-negation-type :type type)
3458 (let ((not-character
3459 (make-negation-type
3460 :type (make-character-set-type
3461 :pairs '((0 . #.(1- sb!xc:char-code-limit)))))))
3462 (type-union
3463 not-character
3464 (make-character-set-type
3465 :pairs (let (not-pairs)
3466 (when (> (caar pairs) 0)
3467 (push (cons 0 (1- (caar pairs))) not-pairs))
3468 (do* ((tail pairs (cdr tail))
3469 (high1 (cdar tail) (cdar tail))
3470 (low2 (caadr tail) (caadr tail)))
3471 ((null (cdr tail))
3472 (when (< (cdar tail) (1- sb!xc:char-code-limit))
3473 (push (cons (1+ (cdar tail))
3474 (1- sb!xc:char-code-limit))
3475 not-pairs))
3476 (nreverse not-pairs))
3477 (push (cons (1+ high1) (1- low2)) not-pairs)))))))))
3479 (!define-type-method (character-set :unparse) (type)
3480 (cond
3481 ((type= type (specifier-type 'character)) 'character)
3482 ((type= type (specifier-type 'base-char)) 'base-char)
3483 ((type= type (specifier-type 'extended-char)) 'extended-char)
3484 ((type= type (specifier-type 'standard-char)) 'standard-char)
3486 ;; Unparse into either MEMBER or CHARACTER-SET. We use MEMBER if there
3487 ;; are at most as many characters as there are character code ranges.
3488 ;; (basically saying to use MEMBER if each range is one character)
3489 (let* ((pairs (character-set-type-pairs type))
3490 (count (length pairs))
3491 (chars (loop named outer
3492 for (low . high) in pairs
3493 nconc (loop for code from low upto high
3494 collect (sb!xc:code-char code)
3495 when (minusp (decf count))
3496 do (return-from outer t)))))
3497 (if (eq chars t)
3498 `(character-set ,pairs)
3499 `(member ,@chars))))))
3501 (!define-type-method (character-set :singleton-p) (type)
3502 (let* ((pairs (character-set-type-pairs type))
3503 (pair (first pairs)))
3504 (if (and (typep pairs '(cons t null))
3505 (eql (car pair) (cdr pair)))
3506 (values t (code-char (car pair)))
3507 (values nil nil))))
3509 (!define-type-method (character-set :simple-=) (type1 type2)
3510 (let ((pairs1 (character-set-type-pairs type1))
3511 (pairs2 (character-set-type-pairs type2)))
3512 (values (equal pairs1 pairs2) t)))
3514 (!define-type-method (character-set :simple-subtypep) (type1 type2)
3515 (values
3516 (dolist (pair (character-set-type-pairs type1) t)
3517 (unless (position pair (character-set-type-pairs type2)
3518 :test (lambda (x y) (and (>= (car x) (car y))
3519 (<= (cdr x) (cdr y)))))
3520 (return nil)))
3523 (!define-type-method (character-set :simple-union2) (type1 type2)
3524 ;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
3525 ;; actually does the union for us. It might be a little fragile to
3526 ;; rely on it.
3527 (make-character-set-type
3528 :pairs (merge 'list
3529 (copy-alist (character-set-type-pairs type1))
3530 (copy-alist (character-set-type-pairs type2))
3531 #'< :key #'car)))
3533 (!define-type-method (character-set :simple-intersection2) (type1 type2)
3534 ;; KLUDGE: brute force.
3536 (let (pairs)
3537 (dolist (pair1 (character-set-type-pairs type1)
3538 (make-character-set-type
3539 :pairs (sort pairs #'< :key #'car)))
3540 (dolist (pair2 (character-set-type-pairs type2))
3541 (cond
3542 ((<= (car pair1) (car pair2) (cdr pair1))
3543 (push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
3544 ((<= (car pair2) (car pair1) (cdr pair2))
3545 (push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
3547 (make-character-set-type
3548 :pairs (intersect-type-pairs
3549 (character-set-type-pairs type1)
3550 (character-set-type-pairs type2))))
3553 ;;; Intersect two ordered lists of pairs
3554 ;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
3555 ;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
3556 ;;; Each pair represents the integer interval start..end.
3558 (defun intersect-type-pairs (alist1 alist2)
3559 (if (and alist1 alist2)
3560 (let ((res nil)
3561 (pair1 (pop alist1))
3562 (pair2 (pop alist2)))
3563 (loop
3564 (when (> (car pair1) (car pair2))
3565 (rotatef pair1 pair2)
3566 (rotatef alist1 alist2))
3567 (let ((pair1-cdr (cdr pair1)))
3568 (cond
3569 ((> (car pair2) pair1-cdr)
3570 ;; No over lap -- discard pair1
3571 (unless alist1 (return))
3572 (setq pair1 (pop alist1)))
3573 ((<= (cdr pair2) pair1-cdr)
3574 (push (cons (car pair2) (cdr pair2)) res)
3575 (cond
3576 ((= (cdr pair2) pair1-cdr)
3577 (unless alist1 (return))
3578 (unless alist2 (return))
3579 (setq pair1 (pop alist1)
3580 pair2 (pop alist2)))
3581 (t ;; (< (cdr pair2) pair1-cdr)
3582 (unless alist2 (return))
3583 (setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
3584 (setq pair2 (pop alist2)))))
3585 (t ;; (> (cdr pair2) (cdr pair1))
3586 (push (cons (car pair2) pair1-cdr) res)
3587 (unless alist1 (return))
3588 (setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
3589 (setq pair1 (pop alist1))))))
3590 (nreverse res))
3591 nil))
3594 ;;; Return the type that describes all objects that are in X but not
3595 ;;; in Y. If we can't determine this type, then return NIL.
3597 ;;; For now, we only are clever dealing with union and member types.
3598 ;;; If either type is not a union type, then we pretend that it is a
3599 ;;; union of just one type. What we do is remove from X all the types
3600 ;;; that are a subtype any type in Y. If any type in X intersects with
3601 ;;; a type in Y but is not a subtype, then we give up.
3603 ;;; We must also special-case any member type that appears in the
3604 ;;; union. We remove from X's members all objects that are TYPEP to Y.
3605 ;;; If Y has any members, we must be careful that none of those
3606 ;;; members are CTYPEP to any of Y's non-member types. We give up in
3607 ;;; this case, since to compute that difference we would have to break
3608 ;;; the type from X into some collection of types that represents the
3609 ;;; type without that particular element. This seems too hairy to be
3610 ;;; worthwhile, given its low utility.
3611 (defun type-difference (x y)
3612 (if (and (numeric-type-p x) (numeric-type-p y))
3613 ;; Numeric types are easy. Are there any others we should handle like this?
3614 (type-intersection x (type-negation y))
3615 (let ((x-types (if (union-type-p x) (union-type-types x) (list x)))
3616 (y-types (if (union-type-p y) (union-type-types y) (list y))))
3617 (collect ((res))
3618 (dolist (x-type x-types)
3619 (if (member-type-p x-type)
3620 (let ((xset (alloc-xset))
3621 (fp-zeroes nil))
3622 (mapc-member-type-members
3623 (lambda (elt)
3624 (multiple-value-bind (ok sure) (ctypep elt y)
3625 (unless sure
3626 (return-from type-difference nil))
3627 (unless ok
3628 (if (fp-zero-p elt)
3629 (pushnew elt fp-zeroes)
3630 (add-to-xset elt xset)))))
3631 x-type)
3632 (unless (and (xset-empty-p xset) (not fp-zeroes))
3633 (res (make-member-type :xset xset :fp-zeroes fp-zeroes))))
3634 (dolist (y-type y-types (res x-type))
3635 (multiple-value-bind (val win) (csubtypep x-type y-type)
3636 (unless win (return-from type-difference nil))
3637 (when val (return))
3638 (when (types-equal-or-intersect x-type y-type)
3639 (return-from type-difference nil))))))
3640 (let ((y-mem (find-if #'member-type-p y-types)))
3641 (when y-mem
3642 (dolist (x-type x-types)
3643 (unless (member-type-p x-type)
3644 (mapc-member-type-members
3645 (lambda (member)
3646 (multiple-value-bind (ok sure) (ctypep member x-type)
3647 (when (or (not sure) ok)
3648 (return-from type-difference nil))))
3649 y-mem)))))
3650 (apply #'type-union (res))))))
3652 (!def-type-translator array (&optional (element-type '*)
3653 (dimensions '*))
3654 (let ((eltype (if (eq element-type '*)
3655 *wild-type*
3656 (specifier-type element-type))))
3657 (make-array-type (canonical-array-dimensions dimensions)
3658 :complexp :maybe
3659 :element-type eltype
3660 :specialized-element-type (%upgraded-array-element-type
3661 eltype))))
3663 (!def-type-translator simple-array (&optional (element-type '*)
3664 (dimensions '*))
3665 (let ((eltype (if (eq element-type '*)
3666 *wild-type*
3667 (specifier-type element-type))))
3668 (make-array-type (canonical-array-dimensions dimensions)
3669 :complexp nil
3670 :element-type eltype
3671 :specialized-element-type (%upgraded-array-element-type
3672 eltype))))
3674 ;;;; SIMD-PACK types
3675 #!+sb-simd-pack
3676 (progn
3677 (!define-type-class simd-pack :enumerable nil
3678 :might-contain-other-types nil)
3680 (!def-type-translator simd-pack (&optional (element-type-spec '*))
3681 (if (eql element-type-spec '*)
3682 (%make-simd-pack-type *simd-pack-element-types*)
3683 (make-simd-pack-type (single-value-specifier-type element-type-spec))))
3685 (!define-type-method (simd-pack :negate) (type)
3686 (let ((remaining (set-difference *simd-pack-element-types*
3687 (simd-pack-type-element-type type)))
3688 (not-simd-pack (make-negation-type :type (specifier-type 'simd-pack))))
3689 (if remaining
3690 (type-union not-simd-pack (%make-simd-pack-type remaining))
3691 not-simd-pack)))
3693 (!define-type-method (simd-pack :unparse) (type)
3694 (let ((eltypes (simd-pack-type-element-type type)))
3695 (cond ((equal eltypes *simd-pack-element-types*)
3696 'simd-pack)
3697 ((= 1 (length eltypes))
3698 `(simd-pack ,(first eltypes)))
3700 `(or ,@(mapcar (lambda (eltype)
3701 `(simd-pack ,eltype))
3702 eltypes))))))
3704 (!define-type-method (simd-pack :simple-=) (type1 type2)
3705 (declare (type simd-pack-type type1 type2))
3706 (null (set-exclusive-or (simd-pack-type-element-type type1)
3707 (simd-pack-type-element-type type2))))
3709 (!define-type-method (simd-pack :simple-subtypep) (type1 type2)
3710 (declare (type simd-pack-type type1 type2))
3711 (subsetp (simd-pack-type-element-type type1)
3712 (simd-pack-type-element-type type2)))
3714 (!define-type-method (simd-pack :simple-union2) (type1 type2)
3715 (declare (type simd-pack-type type1 type2))
3716 (%make-simd-pack-type (union (simd-pack-type-element-type type1)
3717 (simd-pack-type-element-type type2))))
3719 (!define-type-method (simd-pack :simple-intersection2) (type1 type2)
3720 (declare (type simd-pack-type type1 type2))
3721 (let ((intersection (intersection (simd-pack-type-element-type type1)
3722 (simd-pack-type-element-type type2))))
3723 (if intersection
3724 (%make-simd-pack-type intersection)
3725 *empty-type*)))
3727 (!define-superclasses simd-pack ((simd-pack)) !cold-init-forms))
3729 ;;;; utilities shared between cross-compiler and target system
3731 ;;; Does the type derived from compilation of an actual function
3732 ;;; definition satisfy declarations of a function's type?
3733 (defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
3734 (declare (type ctype defined-ftype declared-ftype))
3735 (flet ((is-built-in-class-function-p (ctype)
3736 (and (built-in-classoid-p ctype)
3737 (eq (built-in-classoid-name ctype) 'function))))
3738 (cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
3739 ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
3740 (is-built-in-class-function-p declared-ftype)
3741 ;; In that case, any definition satisfies the declaration.
3743 (;; It's not clear whether or how DEFINED-FTYPE might be
3744 ;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
3745 ;; invalid, so let's handle that case too, just in case.
3746 (is-built-in-class-function-p defined-ftype)
3747 ;; No matter what DECLARED-FTYPE might be, we can't prove
3748 ;; that an object of type FUNCTION doesn't satisfy it, so
3749 ;; we return success no matter what.
3751 (;; Otherwise both of them must be FUN-TYPE objects.
3753 ;; FIXME: For now we only check compatibility of the return
3754 ;; type, not argument types, and we don't even check the
3755 ;; return type very precisely (as per bug 94a). It would be
3756 ;; good to do a better job. Perhaps to check the
3757 ;; compatibility of the arguments, we should (1) redo
3758 ;; VALUES-TYPES-EQUAL-OR-INTERSECT as
3759 ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
3760 ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
3761 ;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
3762 (values-types-equal-or-intersect
3763 (fun-type-returns defined-ftype)
3764 (fun-type-returns declared-ftype))))))
3766 ;;; This messy case of CTYPE for NUMBER is shared between the
3767 ;;; cross-compiler and the target system.
3768 (defun ctype-of-number (x)
3769 (let ((num (if (complexp x) (realpart x) x)))
3770 (multiple-value-bind (complexp low high)
3771 (if (complexp x)
3772 (let ((imag (imagpart x)))
3773 (values :complex (min num imag) (max num imag)))
3774 (values :real num num))
3775 (make-numeric-type :class (etypecase num
3776 (integer (if (complexp x)
3777 (if (integerp (imagpart x))
3778 'integer
3779 'rational)
3780 'integer))
3781 (rational 'rational)
3782 (float 'float))
3783 :format (and (floatp num) (float-format-name num))
3784 :complexp complexp
3785 :low low
3786 :high high))))
3788 ;;; The following function is a generic driver for approximating
3789 ;;; set-valued functions over types. Putting this here because it'll
3790 ;;; probably be useful for a lot of type analyses.
3792 ;;; Let f be a function from values of type X to Y, e.g., ARRAY-RANK.
3794 ;;; We compute an over or under-approximation of the set
3796 ;;; F(TYPE) = { f(x) : x in TYPE /\ x in X } \subseteq Y
3798 ;;; via set-valued approximations of f, OVER and UNDER.
3800 ;;; These functions must have the property that
3801 ;;; Forall TYPE, OVER(TYPE) \superseteq F(TYPE) and
3802 ;;; Forall TYPE, UNDER(TYPE) \subseteq F(TYPE)
3804 ;;; The driver is also parameterised over the finite set
3805 ;;; representation.
3807 ;;; Union, intersection and difference are binary functions to compute
3808 ;;; set union, intersection and difference. Top and bottom are the
3809 ;;; concrete representations for the universe and empty sets; we never
3810 ;;; call the set functions on top or bottom, so it's safe to use
3811 ;;; special values there.
3813 ;;; Arguments:
3815 ;;; TYPE: the ctype for which we wish to approximate F(TYPE)
3816 ;;; OVERAPPROXIMATE: true if we wish to overapproximate, nil otherwise.
3817 ;;; You usually want T.
3818 ;;; UNION/INTERSECTION/DIFFERENCE: implementations of finite set operations.
3819 ;;; Conform to cl::(union/intersection/set-difference). Passing NIL will
3820 ;;; disable some cleverness and result in quicker computation of coarser
3821 ;;; approximations. However, passing difference without union and intersection
3822 ;;; will probably not end well.
3823 ;;; TOP/BOTTOM: concrete representation of the universe and empty set. Finite
3824 ;;; set operations are never called on TOP/BOTTOM, so it's safe to use special
3825 ;;; values there.
3826 ;;; OVER/UNDER: the set-valued approximations of F.
3828 ;;; Implementation details.
3830 ;;; It's a straightforward walk down the type.
3831 ;;; Union types -> take the union of children, intersection ->
3832 ;;; intersect. There is some complication for negation types: we must
3833 ;;; not only negate the result, but also flip from overapproximating
3834 ;;; to underapproximating in the children (or vice versa).
3836 ;;; We represent sets as a pair of (negate-p finite-set) in order to
3837 ;;; support negation types.
3839 (declaim (inline generic-abstract-type-function))
3840 (defun generic-abstract-type-function
3841 (type overapproximate
3842 union intersection difference
3843 top bottom
3844 over under)
3845 (labels ((union* (x y)
3846 ;; wrappers to avoid calling union/intersection on
3847 ;; top/bottom.
3848 (cond ((or (eql x top)
3849 (eql y top))
3850 top)
3851 ((eql x bottom) y)
3852 ((eql y bottom) x)
3854 (funcall union x y))))
3855 (intersection* (x y)
3856 (cond ((or (eql x bottom)
3857 (eql y bottom))
3858 bottom)
3859 ((eql x top) y)
3860 ((eql y top) x)
3862 (funcall intersection x y))))
3863 (unite (not-x-p x not-y-p y)
3864 ;; if we only have one negated set, it's x.
3865 (when not-y-p
3866 (rotatef not-x-p not-y-p)
3867 (rotatef x y))
3868 (cond ((and not-x-p not-y-p)
3869 ;; -x \/ -y = -(x /\ y)
3870 (normalize t (intersection* x y)))
3871 (not-x-p
3872 ;; -x \/ y = -(x \ y)
3873 (cond ((eql x top)
3874 (values nil y))
3875 ((or (eql y top)
3876 (eql x bottom))
3877 (values nil top))
3878 ((eql y bottom)
3879 (values t x))
3881 (normalize t
3882 (funcall difference x y)))))
3884 (values nil (union* x y)))))
3885 (intersect (not-x-p x not-y-p y)
3886 (when not-y-p
3887 (rotatef not-x-p not-y-p)
3888 (rotatef x y))
3889 (cond ((and not-x-p not-y-p)
3890 ;; -x /\ -y = -(x \/ y)
3891 (normalize t (union* x y)))
3892 (not-x-p
3893 ;; -x /\ y = y \ x
3894 (cond ((or (eql x top) (eql y bottom))
3895 (values nil bottom))
3896 ((eql x bottom)
3897 (values nil y))
3898 ((eql y top)
3899 (values t x))
3901 (values nil (funcall difference y x)))))
3903 (values nil (intersection* x y)))))
3904 (normalize (not-x-p x)
3905 ;; catch some easy cases of redundant negation.
3906 (cond ((not not-x-p)
3907 (values nil x))
3908 ((eql x top)
3909 bottom)
3910 ((eql x bottom)
3911 top)
3913 (values t x))))
3914 (default (overapproximate)
3915 ;; default value
3916 (if overapproximate top bottom))
3917 (walk-union (types overapproximate)
3918 ;; Only do this if union is provided.
3919 (unless union
3920 (return-from walk-union (default overapproximate)))
3921 ;; Reduce/union from bottom.
3922 (let ((not-acc-p nil)
3923 (acc bottom))
3924 (dolist (type types (values not-acc-p acc))
3925 (multiple-value-bind (not x)
3926 (walk type overapproximate)
3927 (setf (values not-acc-p acc)
3928 (unite not-acc-p acc not x)))
3929 ;; Early exit on top set.
3930 (when (and (eql acc top)
3931 (not not-acc-p))
3932 (return (values nil top))))))
3933 (walk-intersection (types overapproximate)
3934 ;; Skip if we don't know how to intersect sets
3935 (unless intersection
3936 (return-from walk-intersection (default overapproximate)))
3937 ;; Reduce/intersection from top
3938 (let ((not-acc-p nil)
3939 (acc top))
3940 (dolist (type types (values not-acc-p acc))
3941 (multiple-value-bind (not x)
3942 (walk type overapproximate)
3943 (setf (values not-acc-p acc)
3944 (intersect not-acc-p acc not x)))
3945 (when (and (eql acc bottom)
3946 (not not-acc-p))
3947 (return (values nil bottom))))))
3948 (walk-negate (type overapproximate)
3949 ;; Don't introduce negated types if we don't know how to
3950 ;; subtract sets.
3951 (unless difference
3952 (return-from walk-negate (default overapproximate)))
3953 (multiple-value-bind (not x)
3954 (walk type (not overapproximate))
3955 (normalize (not not) x)))
3956 (walk (type overapproximate)
3957 (typecase type
3958 (union-type
3959 (walk-union (union-type-types type) overapproximate))
3960 ((cons (member or union))
3961 (walk-union (rest type) overapproximate))
3962 (intersection-type
3963 (walk-intersection (intersection-type-types type) overapproximate))
3964 ((cons (member and intersection))
3965 (walk-intersection (rest type) overapproximate))
3966 (negation-type
3967 (walk-negate (negation-type-type type) overapproximate))
3968 ((cons (eql not))
3969 (walk-negate (second type) overapproximate))
3971 (values nil
3972 (if overapproximate
3973 (if over
3974 (funcall over type)
3975 (default t))
3976 (if under
3977 (funcall under type)
3978 (default nil))))))))
3979 (multiple-value-call #'normalize (walk type overapproximate))))
3980 (declaim (notinline generic-abstract-type-function))
3982 ;;; Standard list representation of sets. Use CL:* for the universe.
3983 (defun list-abstract-type-function (type over &key under (overapproximate t))
3984 (declare (inline generic-abstract-type-function))
3985 (generic-abstract-type-function
3986 type overapproximate
3987 #'union #'intersection #'set-difference
3988 '* nil
3989 over under))
3991 (!defun-from-collected-cold-init-forms !late-type-cold-init)
3993 (/show0 "late-type.lisp end of file")