CONTINUE restart for %UNKNOWN-KEY-ARG-ERROR.
[sbcl.git] / src / compiler / ir1tran.lisp
blob920c553874b794806936e145aae63f8cda1094be
1 ;;;; This file contains code which does the translation from Lisp code
2 ;;;; to the first intermediate representation (IR1).
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!C")
15 (declaim (special *compiler-error-bailout*))
17 ;;; *CURRENT-FORM-NUMBER* is used in FIND-SOURCE-PATHS to compute the
18 ;;; form number to associate with a source path. This should be bound
19 ;;; to an initial value of 0 before the processing of each truly
20 ;;; top level form.
21 (declaim (type index *current-form-number*))
22 (defvar *current-form-number*)
24 ;;; *SOURCE-PATHS* is a hashtable from source code forms to the path
25 ;;; taken through the source to reach the form. This provides a way to
26 ;;; keep track of the location of original source forms, even when
27 ;;; macroexpansions and other arbitary permutations of the code
28 ;;; happen. This table is initialized by calling FIND-SOURCE-PATHS on
29 ;;; the original source.
30 ;;;
31 ;;; It is fairly useless to store symbols, characters, or fixnums in
32 ;;; this table, as 42 is EQ to 42 no matter where in the source it
33 ;;; appears. GET-SOURCE-PATH and NOTE-SOURCE-PATH functions should be
34 ;;; always used to access this table.
35 (declaim (hash-table *source-paths*))
36 (defvar *source-paths*)
38 (declaim (inline source-form-has-path-p))
39 (defun source-form-has-path-p (form)
40 (not (typep form '(or symbol fixnum character))))
42 (defun get-source-path (form)
43 (when (source-form-has-path-p form)
44 (gethash form *source-paths*)))
46 (defun ensure-source-path (form)
47 (or (get-source-path form)
48 (cons (simplify-source-path-form form)
49 *current-path*)))
51 (defun simplify-source-path-form (form)
52 (if (consp form)
53 (let ((op (car form)))
54 ;; In the compiler functions can be directly represented
55 ;; by leaves. Having leaves in the source path is pretty
56 ;; hard on the poor user, however, so replace with the
57 ;; source-name when possible.
58 (if (and (leaf-p op) (leaf-has-source-name-p op))
59 (cons (leaf-source-name op) (cdr form))
60 form))
61 form))
63 (defun note-source-path (form &rest arguments)
64 (when (source-form-has-path-p form)
65 (setf (gethash form *source-paths*)
66 (apply #'list* 'original-source-start *current-form-number* arguments))))
68 ;;; *CURRENT-COMPONENT* is the COMPONENT structure which we link
69 ;;; blocks into as we generate them. This just serves to glue the
70 ;;; emitted blocks together until local call analysis and flow graph
71 ;;; canonicalization figure out what is really going on. We need to
72 ;;; keep track of all the blocks generated so that we can delete them
73 ;;; if they turn out to be unreachable.
74 ;;;
75 ;;; FIXME: It's confusing having one variable named *CURRENT-COMPONENT*
76 ;;; and another named *COMPONENT-BEING-COMPILED*. (In CMU CL they
77 ;;; were called *CURRENT-COMPONENT* and *COMPILE-COMPONENT* respectively,
78 ;;; which was also confusing.)
79 (declaim (type (or component null) *current-component*))
80 (defvar *current-component*)
82 ;;; *CURRENT-PATH* is the source path of the form we are currently
83 ;;; translating. See NODE-SOURCE-PATH in the NODE structure.
84 (declaim (list *current-path*))
85 (defvar *current-path*)
87 (defun call-with-current-source-form (thunk &rest forms)
88 (let ((*current-path* (when (and (some #'identity forms)
89 (boundp '*source-paths*))
90 (or (some #'get-source-path forms)
91 (when (boundp '*current-path*)
92 *current-path*)))))
93 (funcall thunk)))
95 (defvar *derive-function-types* nil
96 "Should the compiler assume that function types will never change,
97 so that it can use type information inferred from current definitions
98 to optimize code which uses those definitions? Setting this true
99 gives non-ANSI, early-CMU-CL behavior. It can be useful for improving
100 the efficiency of stable code.")
102 (defvar *fun-names-in-this-file* nil)
104 (defvar *post-binding-variable-lexenv* nil)
106 ;;;; namespace management utilities
108 ;; As with LEXENV-FIND, we assume use of *LEXENV*, but macroexpanders
109 ;; receive an explicit environment and should pass it.
110 ;; A declaration will trump a proclamation.
111 (defun fun-lexically-notinline-p (name &optional (env *lexenv*))
112 (let ((answer
113 (typecase env
114 (null nil)
115 #!+(and sb-fasteval (host-feature sb-xc))
116 (sb!interpreter:basic-env
117 (sb!interpreter::fun-lexically-notinline-p name env))
119 (let ((fun (cdr (assoc name (lexenv-funs env) :test #'equal))))
120 ;; FIXME: this seems to omit FUNCTIONAL
121 (when (defined-fun-p fun)
122 (return-from fun-lexically-notinline-p
123 (eq (defined-fun-inlinep fun) :notinline))))))))
124 ;; If ANSWER is NIL, go for the global value
125 (eq (or answer (info :function :inlinep name))
126 :notinline)))
128 (defun maybe-defined-here (name where)
129 (if (and (eq :defined where)
130 (member name *fun-names-in-this-file* :test #'equal))
131 :defined-here
132 where))
134 ;;; Return a GLOBAL-VAR structure usable for referencing the global
135 ;;; function NAME.
136 (defun find-global-fun (name latep)
137 (unless (info :function :kind name)
138 (setf (info :function :kind name) :function)
139 (setf (info :function :where-from name) :assumed))
140 (let ((where (info :function :where-from name)))
141 (when (and (eq where :assumed)
142 ;; In the ordinary target Lisp, it's silly to report
143 ;; undefinedness when the function is defined in the
144 ;; running Lisp. But at cross-compile time, the current
145 ;; definedness of a function is irrelevant to the
146 ;; definedness at runtime, which is what matters.
147 #-sb-xc-host (not (fboundp name))
148 ;; LATEP is true when the user has indicated that
149 ;; late-late binding is desired by using eg. a quoted
150 ;; symbol -- in which case it makes little sense to
151 ;; complain about undefined functions.
152 (not latep))
153 (note-undefined-reference name :function))
154 (let ((ftype (proclaimed-ftype name))
155 (notinline (fun-lexically-notinline-p name)))
156 (make-global-var
157 :kind :global-function
158 :%source-name name
159 :type (if (or (eq where :declared)
160 (and (not latep)
161 (not notinline)
162 *derive-function-types*))
163 ftype
164 (specifier-type 'function))
165 :defined-type (if (and (not latep) (not notinline))
166 ftype
167 (specifier-type 'function))
168 :where-from (if notinline
169 where
170 (maybe-defined-here name where))))))
172 ;;; Have some DEFINED-FUN-FUNCTIONALS of a *FREE-FUNS* entry become invalid?
173 ;;; Drop 'em.
175 ;;; This was added to fix bug 138 in SBCL. It is possible for a *FREE-FUNS*
176 ;;; entry to contain a DEFINED-FUN whose DEFINED-FUN-FUNCTIONAL object
177 ;;; contained IR1 stuff (NODEs, BLOCKs...) referring to an already compiled
178 ;;; (aka "dead") component. When this IR1 stuff was reused in a new component,
179 ;;; under further obscure circumstances it could be used by
180 ;;; WITH-IR1-ENVIRONMENT-FROM-NODE to generate a binding for
181 ;;; *CURRENT-COMPONENT*. At that point things got all confused, since IR1
182 ;;; conversion was sending code to a component which had already been compiled
183 ;;; and would never be compiled again.
185 ;;; Note: as of 1.0.24.41 this seems to happen only in XC, and the original
186 ;;; BUGS entry also makes it seem like this might not be an issue at all on
187 ;;; target.
188 (defun clear-invalid-functionals (free-fun)
189 ;; There might be other reasons that *FREE-FUN* entries could
190 ;; become invalid, but the only one we've been bitten by so far
191 ;; (sbcl-0.pre7.118) is this one:
192 (when (defined-fun-p free-fun)
193 (setf (defined-fun-functionals free-fun)
194 (delete-if (lambda (functional)
195 (or (eq (functional-kind functional) :deleted)
196 (when (lambda-p functional)
198 ;; (The main reason for this first test is to bail
199 ;; out early in cases where the LAMBDA-COMPONENT
200 ;; call in the second test would fail because links
201 ;; it needs are uninitialized or invalid.)
203 ;; If the BIND node for this LAMBDA is null, then
204 ;; according to the slot comments, the LAMBDA has
205 ;; been deleted or its call has been deleted. In
206 ;; that case, it seems rather questionable to reuse
207 ;; it, and certainly it shouldn't be necessary to
208 ;; reuse it, so we cheerfully declare it invalid.
209 (not (lambda-bind functional))
210 ;; If this IR1 stuff belongs to a dead component,
211 ;; then we can't reuse it without getting into
212 ;; bizarre confusion.
213 (eq (component-info (lambda-component functional))
214 :dead)))))
215 (defined-fun-functionals free-fun)))
216 nil))
218 ;;; If NAME already has a valid entry in *FREE-FUNS*, then return
219 ;;; the value. Otherwise, make a new GLOBAL-VAR using information from
220 ;;; the global environment and enter it in *FREE-FUNS*. If NAME
221 ;;; names a macro or special form, then we error out using the
222 ;;; supplied context which indicates what we were trying to do that
223 ;;; demanded a function.
224 (declaim (ftype (sfunction (t string) global-var) find-free-fun))
225 (defun find-free-fun (name context)
226 (or (let ((old-free-fun (gethash name *free-funs*)))
227 (when old-free-fun
228 (clear-invalid-functionals old-free-fun)
229 old-free-fun))
230 (let ((kind (info :function :kind name)))
231 (ecase kind
232 ((:macro :special-form)
233 (compiler-error "The ~(~S~) name ~S was found ~A."
234 kind name context))
235 ((:function nil)
236 (check-fun-name name)
237 (let ((expansion (fun-name-inline-expansion name))
238 (inlinep (info :function :inlinep name)))
239 (setf (gethash name *free-funs*)
240 (if (or expansion inlinep)
241 (let ((where (info :function :where-from name)))
242 (make-defined-fun
243 :%source-name name
244 :inline-expansion expansion
245 :inlinep inlinep
246 :where-from (if (eq inlinep :notinline)
247 where
248 (maybe-defined-here name where))
249 :type (if (and (eq inlinep :notinline)
250 (neq where :declared))
251 (specifier-type 'function)
252 (proclaimed-ftype name))))
253 (find-global-fun name nil)))))))))
255 ;;; Return the LEAF structure for the lexically apparent function
256 ;;; definition of NAME.
257 (declaim (ftype (sfunction (t string) leaf) find-lexically-apparent-fun))
258 (defun find-lexically-apparent-fun (name context)
259 (let ((var (lexenv-find name funs :test #'equal)))
260 (cond (var
261 (unless (leaf-p var)
262 (aver (and (consp var) (eq (car var) 'macro)))
263 (compiler-error "found macro name ~S ~A" name context))
264 var)
266 (find-free-fun name context)))))
268 (defun maybe-find-free-var (name)
269 (gethash name *free-vars*))
271 ;;; Return the LEAF node for a global variable reference to NAME. If
272 ;;; NAME is already entered in *FREE-VARS*, then we just return the
273 ;;; corresponding value. Otherwise, we make a new leaf using
274 ;;; information from the global environment and enter it in
275 ;;; *FREE-VARS*. If the variable is unknown, then we emit a warning.
276 (declaim (ftype (sfunction (t) (or leaf cons heap-alien-info)) find-free-var))
277 (defun find-free-var (name)
278 (unless (symbolp name)
279 (compiler-error "Variable name is not a symbol: ~S." name))
280 (or (gethash name *free-vars*)
281 (let ((kind (info :variable :kind name))
282 (type (info :variable :type name))
283 (where-from (info :variable :where-from name))
284 (deprecation-state (deprecated-thing-p 'variable name)))
285 (when (and (eq kind :unknown) (not deprecation-state))
286 (note-undefined-reference name :variable))
287 (setf (gethash name *free-vars*)
288 (case kind
289 (:alien
290 (info :variable :alien-info name))
291 ;; FIXME: The return value in this case should really be
292 ;; of type SB!C::LEAF. I don't feel too badly about it,
293 ;; because the MACRO idiom is scattered throughout this
294 ;; file, but it should be cleaned up so we're not
295 ;; throwing random conses around. --njf 2002-03-23
296 (:macro
297 (let ((expansion (info :variable :macro-expansion name))
298 (type (type-specifier (info :variable :type name))))
299 `(macro . (the ,type ,expansion))))
300 (:constant
301 (let ((value (symbol-value name)))
302 ;; Override the values of standard symbols in XC,
303 ;; since we can't redefine them.
304 #+sb-xc-host
305 (when (eql (find-symbol (symbol-name name) :cl) name)
306 (multiple-value-bind (xc-value foundp)
307 (xc-constant-value name)
308 (cond (foundp
309 (setf value xc-value))
310 ((not (eq value name))
311 (compiler-warn
312 "Using cross-compilation host's definition of ~S: ~A~%"
313 name (symbol-value name))))))
314 (find-constant value name)))
316 (make-global-var :kind kind
317 :%source-name name
318 :type type
319 :where-from where-from)))))))
321 ;;; Grovel over CONSTANT checking for any sub-parts that need to be
322 ;;; processed with MAKE-LOAD-FORM. We have to be careful, because
323 ;;; CONSTANT might be circular. We also check that the constant (and
324 ;;; any subparts) are dumpable at all.
325 (defun maybe-emit-make-load-forms (constant &optional (name nil namep))
326 (let ((xset (alloc-xset)))
327 (labels ((trivialp (value)
328 (typep value
329 '(or
330 #-sb-xc-host
331 (or unboxed-array #!+sb-simd-pack simd-pack)
332 #+sb-xc-host
333 (and array (not (array t)))
334 symbol
335 number
336 character
337 string))) ; subsumed by UNBOXED-ARRAY
338 (grovel (value)
339 ;; Unless VALUE is an object which which obviously
340 ;; can't contain other objects
341 (unless (trivialp value)
342 (if (xset-member-p value xset)
343 (return-from grovel nil)
344 (add-to-xset value xset))
345 (typecase value
346 (cons
347 (grovel (car value))
348 (grovel (cdr value)))
349 (simple-vector
350 (dotimes (i (length value))
351 (grovel (svref value i))))
352 ((vector t)
353 (dotimes (i (length value))
354 (grovel (aref value i))))
355 ((simple-array t)
356 ;; Even though the (ARRAY T) branch does the exact
357 ;; same thing as this branch we do this separately
358 ;; so that the compiler can use faster versions of
359 ;; array-total-size and row-major-aref.
360 (dotimes (i (array-total-size value))
361 (grovel (row-major-aref value i))))
362 ((array t)
363 (dotimes (i (array-total-size value))
364 (grovel (row-major-aref value i))))
365 (#+sb-xc-host structure!object
366 #-sb-xc-host instance
367 ;; In the target SBCL, we can dump any instance, but
368 ;; in the cross-compilation host, %INSTANCE-FOO
369 ;; functions don't work on general instances, only on
370 ;; STRUCTURE!OBJECTs.
372 ;; Behold the wonderfully clear sense of this-
373 ;; WHEN (EMIT-MAKE-LOAD-FORM VALUE)
374 ;; meaning "when you're _NOT_ using a custom load-form"
376 ;; FIXME: What about funcallable instances with
377 ;; user-defined MAKE-LOAD-FORM methods?
378 (when (emit-make-load-form value)
379 #+sb-xc-host
380 (aver (eql (layout-bitmap (%instance-layout value))
381 sb!kernel::+layout-all-tagged+))
382 (do-instance-tagged-slot (i value)
383 (grovel (%instance-ref value i)))))
385 (compiler-error
386 "Objects of type ~/sb!impl:print-type-specifier/ ~
387 can't be dumped into fasl files."
388 (type-of value)))))))
389 ;; Dump all non-trivial named constants using the name.
390 (if (and namep (not (typep constant '(or symbol character
391 ;; FIXME: Cold init breaks if we
392 ;; try to reference FP constants
393 ;; thru their names.
394 #+sb-xc-host number
395 #-sb-xc-host fixnum))))
396 (emit-make-load-form constant name)
397 (grovel constant))))
398 (values))
400 ;;;; some flow-graph hacking utilities
402 ;;; This function sets up the back link between the node and the
403 ;;; ctran which continues at it.
404 (defun link-node-to-previous-ctran (node ctran)
405 (declare (type node node) (type ctran ctran))
406 (aver (not (ctran-next ctran)))
407 (setf (ctran-next ctran) node)
408 (setf (node-prev node) ctran))
410 ;;; This function is used to set the ctran for a node, and thus
411 ;;; determine what is evaluated next. If the ctran has no block, then
412 ;;; we make it be in the block that the node is in. If the ctran heads
413 ;;; its block, we end our block and link it to that block.
414 #!-sb-fluid (declaim (inline use-ctran))
415 (defun use-ctran (node ctran)
416 (declare (type node node) (type ctran ctran))
417 (if (eq (ctran-kind ctran) :unused)
418 (let ((node-block (ctran-block (node-prev node))))
419 (setf (ctran-block ctran) node-block)
420 (setf (ctran-kind ctran) :inside-block)
421 (setf (ctran-use ctran) node)
422 (setf (node-next node) ctran))
423 (%use-ctran node ctran)))
424 (defun %use-ctran (node ctran)
425 (declare (type node node) (type ctran ctran) (inline member))
426 (let ((block (ctran-block ctran))
427 (node-block (ctran-block (node-prev node))))
428 (aver (eq (ctran-kind ctran) :block-start))
429 (when (block-last node-block)
430 (error "~S has already ended." node-block))
431 (setf (block-last node-block) node)
432 (when (block-succ node-block)
433 (error "~S already has successors." node-block))
434 (setf (block-succ node-block) (list block))
435 (when (memq node-block (block-pred block))
436 (error "~S is already a predecessor of ~S." node-block block))
437 (push node-block (block-pred block))))
439 ;;; Insert NEW before OLD in the flow-graph.
440 (defun insert-node-before (old new)
441 (let ((prev (node-prev old))
442 (temp (make-ctran)))
443 (ensure-block-start prev)
444 (setf (ctran-next prev) nil)
445 (link-node-to-previous-ctran new prev)
446 (use-ctran new temp)
447 (link-node-to-previous-ctran old temp))
448 (values))
450 ;;; This function is used to set the ctran for a node, and thus
451 ;;; determine what receives the value.
452 (defun use-lvar (node lvar)
453 (declare (type valued-node node) (type (or lvar null) lvar))
454 (aver (not (node-lvar node)))
455 (when lvar
456 (setf (node-lvar node) lvar)
457 (cond ((null (lvar-uses lvar))
458 (setf (lvar-uses lvar) node))
459 ((listp (lvar-uses lvar))
460 (aver (not (memq node (lvar-uses lvar))))
461 (push node (lvar-uses lvar)))
463 (aver (neq node (lvar-uses lvar)))
464 (setf (lvar-uses lvar) (list node (lvar-uses lvar)))))
465 (reoptimize-lvar lvar)))
467 #!-sb-fluid(declaim (inline use-continuation))
468 (defun use-continuation (node ctran lvar)
469 (use-ctran node ctran)
470 (use-lvar node lvar))
472 ;;;; exported functions
474 ;;; This function takes a form and the top level form number for that
475 ;;; form, and returns a lambda representing the translation of that
476 ;;; form in the current global environment. The returned lambda is a
477 ;;; top level lambda that can be called to cause evaluation of the
478 ;;; forms. This lambda is in the initial component. If FOR-VALUE is T,
479 ;;; then the value of the form is returned from the function,
480 ;;; otherwise NIL is returned.
482 ;;; This function may have arbitrary effects on the global environment
483 ;;; due to processing of EVAL-WHENs. All syntax error checking is
484 ;;; done, with erroneous forms being replaced by a proxy which signals
485 ;;; an error if it is evaluated. Warnings about possibly inconsistent
486 ;;; or illegal changes to the global environment will also be given.
488 ;;; We make the initial component and convert the form in a PROGN (and
489 ;;; an optional NIL tacked on the end.) We then return the lambda. We
490 ;;; bind all of our state variables here, rather than relying on the
491 ;;; global value (if any) so that IR1 conversion will be reentrant.
492 ;;; This is necessary for EVAL-WHEN processing, etc.
494 ;;; The hashtables used to hold global namespace info must be
495 ;;; reallocated elsewhere. Note also that *LEXENV* is not bound, so
496 ;;; that local macro definitions can be introduced by enclosing code.
497 (defun ir1-toplevel (form path for-value &optional (allow-instrumenting t))
498 (declare (list path))
499 (let* ((*current-path* path)
500 (component (make-empty-component))
501 (*current-component* component)
502 (*allow-instrumenting* allow-instrumenting))
503 (setf (component-name component) 'initial-component)
504 (setf (component-kind component) :initial)
505 (let* ((forms (if for-value `(,form) `(,form nil)))
506 (res (ir1-convert-lambda-body
507 forms ()
508 :debug-name (debug-name 'top-level-form #+sb-xc-host nil #-sb-xc-host form))))
509 (setf (functional-entry-fun res) res
510 (functional-arg-documentation res) ()
511 (functional-kind res) :toplevel)
512 res)))
514 ;;; This function is called on freshly read forms to record the
515 ;;; initial location of each form (and subform.) Form is the form to
516 ;;; find the paths in, and TLF-NUM is the top level form number of the
517 ;;; truly top level form.
519 ;;; This gets a bit interesting when the source code is circular. This
520 ;;; can (reasonably?) happen in the case of circular list constants.
521 (defun find-source-paths (form tlf-num)
522 (declare (type index tlf-num))
523 (let ((*current-form-number* 0))
524 (sub-find-source-paths form (list tlf-num)))
525 (values))
526 (defun sub-find-source-paths (form path)
527 (unless (get-source-path form)
528 (note-source-path form path)
529 (incf *current-form-number*)
530 (let ((pos 0)
531 (subform form)
532 (trail form))
533 (declare (fixnum pos))
534 (macrolet ((frob ()
535 `(progn
536 (when (atom subform) (return))
537 (let ((fm (car subform)))
538 (when (sb!int:comma-p fm)
539 (setf fm (sb!int:comma-expr fm)))
540 (cond ((consp fm)
541 ;; If it's a cons, recurse.
542 (sub-find-source-paths fm (cons pos path)))
543 ((eq 'quote fm)
544 ;; Don't look into quoted constants.
545 ;; KLUDGE: this can't actually know about constants.
546 ;; e.g. (let ((quote (error "foo")))) or
547 ;; (list quote (error "foo")) are not
548 ;; constants and yet are ignored.
549 (return))
550 ((not (zerop pos))
551 ;; Otherwise store the containing form. It's not
552 ;; perfect, but better than nothing.
553 (note-source-path subform pos path)))
554 (incf pos))
555 (setq subform (cdr subform))
556 (when (eq subform trail) (return)))))
557 (loop
558 (frob)
559 (frob)
560 (setq trail (cdr trail)))))))
562 ;;;; IR1-CONVERT, macroexpansion and special form dispatching
564 (declaim (ftype (sfunction (ctran ctran (or lvar null) t)
565 (values))
566 ir1-convert))
567 (macrolet (;; Bind *COMPILER-ERROR-BAILOUT* to a function that throws
568 ;; out of the body and converts a condition signalling form
569 ;; instead. The source form is converted to a string since it
570 ;; may contain arbitrary non-externalizable objects.
571 (ir1-error-bailout ((start next result form) &body body)
572 (with-unique-names (skip condition)
573 `(block ,skip
574 (let ((,condition (catch 'ir1-error-abort
575 (let ((*compiler-error-bailout*
576 (lambda (&optional e)
577 (throw 'ir1-error-abort e))))
578 ,@body
579 (return-from ,skip nil)))))
580 (ir1-convert ,start ,next ,result
581 (make-compiler-error-form ,condition
582 ,form)))))))
584 ;; Translate FORM into IR1. The code is inserted as the NEXT of the
585 ;; CTRAN START. RESULT is the LVAR which receives the value of the
586 ;; FORM to be translated. The translators call this function
587 ;; recursively to translate their subnodes.
589 ;; As a special hack to make life easier in the compiler, a LEAF
590 ;; IR1-converts into a reference to that LEAF structure. This allows
591 ;; the creation using backquote of forms that contain leaf
592 ;; references, without having to introduce dummy names into the
593 ;; namespace.
594 (defun ir1-convert (start next result form)
595 (let* ((*current-path* (ensure-source-path form))
596 (start (instrument-coverage start nil form)))
597 (ir1-error-bailout (start next result form)
598 (cond ((atom form)
599 (cond ((and (symbolp form) (not (keywordp form)))
600 (ir1-convert-var start next result form))
601 ((leaf-p form)
602 (reference-leaf start next result form))
604 (reference-constant start next result form))))
606 (ir1-convert-functoid start next result form)))))
607 (values))
609 ;; Generate a reference to a manifest constant, creating a new leaf
610 ;; if necessary.
611 (defun reference-constant (start next result value)
612 (declare (type ctran start next)
613 (type (or lvar null) result))
614 (ir1-error-bailout (start next result value)
615 (let* ((leaf (find-constant value))
616 (res (make-ref leaf)))
617 (push res (leaf-refs leaf))
618 (link-node-to-previous-ctran res start)
619 (use-continuation res next result)))
620 (values)))
622 ;;; Add FUNCTIONAL to the COMPONENT-REANALYZE-FUNCTIONALS, unless it's
623 ;;; some trivial type for which reanalysis is a trivial no-op, or
624 ;;; unless it doesn't belong in this component at all.
626 ;;; FUNCTIONAL is returned.
627 (defun maybe-reanalyze-functional (functional)
629 (aver (not (eql (functional-kind functional) :deleted))) ; bug 148
630 (aver-live-component *current-component*)
632 ;; When FUNCTIONAL is of a type for which reanalysis isn't a trivial
633 ;; no-op
634 (when (typep functional '(or optional-dispatch clambda))
636 ;; When FUNCTIONAL knows its component
637 (when (lambda-p functional)
638 (aver (eql (lambda-component functional) *current-component*)))
640 (pushnew functional
641 (component-reanalyze-functionals *current-component*)))
643 functional)
645 ;;; Generate a REF node for LEAF, frobbing the LEAF structure as
646 ;;; needed. If LEAF represents a defined function which has already
647 ;;; been converted, and is not :NOTINLINE, then reference the
648 ;;; functional instead.
649 (defun reference-leaf (start next result leaf &optional (name '.anonymous.))
650 (declare (type ctran start next) (type (or lvar null) result) (type leaf leaf))
651 (assure-leaf-live-p leaf)
652 (let* ((type (lexenv-find leaf type-restrictions))
653 (leaf (or (and (defined-fun-p leaf)
654 (not (eq (defined-fun-inlinep leaf)
655 :notinline))
656 (let ((functional (defined-fun-functional leaf)))
657 (when (and functional (not (functional-kind functional)))
658 (maybe-reanalyze-functional functional))))
659 (when (and (lambda-p leaf)
660 (memq (functional-kind leaf)
661 '(nil :optional)))
662 (maybe-reanalyze-functional leaf))
663 leaf))
664 (ref (make-ref leaf name)))
665 (push ref (leaf-refs leaf))
666 (setf (leaf-ever-used leaf) t)
667 (link-node-to-previous-ctran ref start)
668 (cond (type (let* ((ref-ctran (make-ctran))
669 (ref-lvar (make-lvar))
670 (cast (make-cast ref-lvar
671 (make-single-value-type type)
672 (lexenv-policy *lexenv*))))
673 (setf (lvar-dest ref-lvar) cast)
674 (use-continuation ref ref-ctran ref-lvar)
675 (link-node-to-previous-ctran cast ref-ctran)
676 (use-continuation cast next result)))
677 (t (use-continuation ref next result)))))
679 (defun always-boundp (name)
680 (case (info :variable :always-bound name)
681 (:always-bound t)
682 ;; Compiling to fasl considers a symbol always-bound if its
683 ;; :always-bound info value is now T or will eventually be T.
684 (:eventually (producing-fasl-file))))
686 ;;; Convert a reference to a symbolic constant or variable. If the
687 ;;; symbol is entered in the LEXENV-VARS we use that definition,
688 ;;; otherwise we find the current global definition. This is also
689 ;;; where we pick off symbol macro and alien variable references.
690 (defun ir1-convert-var (start next result name)
691 (declare (type ctran start next) (type (or lvar null) result) (symbol name))
692 (let ((var (or (lexenv-find name vars) (find-free-var name))))
693 (if (and (global-var-p var) (not (always-boundp name)))
694 ;; KLUDGE: If the variable may be unbound, convert using SYMBOL-VALUE
695 ;; which is not flushable, so that unbound dead variables signal an
696 ;; error (bug 412, lp#722734): checking for null RESULT is not enough,
697 ;; since variables can become dead due to later optimizations.
698 (ir1-convert start next result
699 (if (eq (global-var-kind var) :global)
700 `(symbol-global-value ',name)
701 `(symbol-value ',name)))
702 (etypecase var
703 (leaf
704 (cond
705 ((lambda-var-p var)
706 (let ((home (ctran-home-lambda-or-null start)))
707 (when home
708 (sset-adjoin var (lambda-calls-or-closes home))))
709 (when (lambda-var-ignorep var)
710 ;; (ANSI's specification for the IGNORE declaration requires
711 ;; that this be a STYLE-WARNING, not a full WARNING.)
712 #-sb-xc-host
713 (compiler-style-warn "reading an ignored variable: ~S" name)
714 ;; there's no need for us to accept ANSI's lameness when
715 ;; processing our own code, though.
716 #+sb-xc-host
717 (warn "reading an ignored variable: ~S" name)))
719 ;; This case signals {EARLY,LATE}-DEPRECATION-WARNING
720 ;; for CONSTANT nodes in :EARLY and :LATE deprecation
721 ;; (constants in :FINAL deprecation are represented as
722 ;; symbol-macros).
723 (aver (memq (check-deprecated-thing 'variable name)
724 '(nil :early :late)))))
725 (reference-leaf start next result var name))
726 ((cons (eql macro)) ; symbol-macro
727 ;; This case signals {EARLY,LATE,FINAL}-DEPRECATION-WARNING
728 ;; for symbol-macros. Includes variables, constants,
729 ;; etc. in :FINAL deprecation.
730 (check-deprecated-thing 'variable name)
731 ;; FIXME: [Free] type declarations. -- APD, 2002-01-26
732 (ir1-convert start next result (cdr var)))
733 (heap-alien-info
734 (ir1-convert start next result `(%heap-alien ',var))))))
735 (values))
737 ;;; Find a compiler-macro for a form, taking FUNCALL into account.
738 (defun find-compiler-macro (opname form)
739 (flet ((legal-cm-name-p (name)
740 (and (legal-fun-name-p name)
741 (or (not (symbolp name))
742 (not (sb!xc:macro-function name *lexenv*))))))
743 (if (eq opname 'funcall)
744 (let ((fun-form (cadr form)))
745 (cond ((and (consp fun-form) (eq 'function (car fun-form))
746 (not (cddr fun-form)))
747 (let ((real-fun (cadr fun-form)))
748 (if (legal-cm-name-p real-fun)
749 (values (sb!xc:compiler-macro-function real-fun *lexenv*)
750 real-fun)
751 (values nil nil))))
752 ((sb!xc:constantp fun-form *lexenv*)
753 (let ((fun (constant-form-value fun-form *lexenv*)))
754 (if (legal-cm-name-p fun)
755 ;; CLHS tells us that local functions must shadow
756 ;; compiler-macro-functions, but since the call is
757 ;; through a name, we are obviously interested
758 ;; in the global function.
759 ;; KLUDGE: CLHS 3.2.2.1.1 also says that it can be
760 ;; "a list whose car is funcall and whose cadr is
761 ;; a list (function name)", that means that
762 ;; (funcall 'name) that gets here doesn't fit the
763 ;; definition.
764 (values (sb!xc:compiler-macro-function fun nil) fun)
765 (values nil nil))))
767 (values nil nil))))
768 (if (legal-fun-name-p opname)
769 (values (sb!xc:compiler-macro-function opname *lexenv*) opname)
770 (values nil nil)))))
772 ;;; If FORM has a usable compiler macro, use it; otherwise return FORM itself.
773 ;;; Return the name of the compiler-macro as a secondary value, if applicable.
774 (defun expand-compiler-macro (form)
775 (binding* ((name (car form))
776 ((cmacro-fun cmacro-fun-name)
777 (find-compiler-macro name form)))
778 (cond
779 ((and cmacro-fun
780 ;; CLHS 3.2.2.1.3 specifies that NOTINLINE
781 ;; suppresses compiler-macros.
782 (not (fun-lexically-notinline-p cmacro-fun-name)))
783 (check-deprecated-thing 'function name)
784 (values (handler-case (careful-expand-macro cmacro-fun form t)
785 (compiler-macro-keyword-problem (condition)
786 (print-compiler-message
787 *error-output* "note: ~A" (list condition))
788 form))
789 cmacro-fun-name))
791 (values form nil)))))
793 ;;; Picks off special forms and compiler-macro expansions, and hands
794 ;;; the rest to IR1-CONVERT-COMMON-FUNCTOID
795 (defun ir1-convert-functoid (start next result form)
796 (let* ((op (car form))
797 (translator (and (symbolp op) (info :function :ir1-convert op))))
798 (if translator
799 (funcall translator start next result form)
800 (multiple-value-bind (res cmacro-fun-name)
801 (expand-compiler-macro form)
802 (cond ((eq res form)
803 (ir1-convert-common-functoid start next result form op))
805 (unless (policy *lexenv* (zerop store-xref-data))
806 (record-call cmacro-fun-name (ctran-block start)
807 *current-path*))
808 (ir1-convert start next result res)))))))
810 ;;; Handles the "common" cases: any other forms except special forms
811 ;;; and compiler-macros.
812 (defun ir1-convert-common-functoid (start next result form op)
813 (cond ((or (symbolp op) (leaf-p op))
814 (let ((lexical-def (if (leaf-p op) op (lexenv-find op funs))))
815 (typecase lexical-def
816 (null
817 (check-deprecated-thing 'function op)
818 (ir1-convert-global-functoid start next result form op))
819 (functional
820 (ir1-convert-local-combination start next result form
821 lexical-def))
822 (global-var
823 (check-deprecated-thing 'function (leaf-source-name lexical-def))
824 (ir1-convert-srctran start next result lexical-def form))
826 (aver (and (consp lexical-def) (eq (car lexical-def) 'macro)))
827 (ir1-convert start next result
828 (careful-expand-macro (cdr lexical-def) form))))))
829 ((or (atom op) (not (eq (car op) 'lambda)))
830 (compiler-error "illegal function call"))
832 ;; implicitly (LAMBDA ..) because the LAMBDA expression is
833 ;; the CAR of an executed form.
834 (ir1-convert start next result `(%funcall ,@form)))))
836 ;;; Convert anything that looks like a global function call.
837 (defun ir1-convert-global-functoid (start next result form fun)
838 (declare (type ctran start next) (type (or lvar null) result)
839 (list form))
840 (when (eql fun 'declare)
841 (compiler-error
842 "~@<There is no function named ~S. ~
843 References to ~S in some contexts (like starts of blocks) are unevaluated ~
844 expressions, but here the expression is being evaluated, which invokes ~
845 undefined behaviour.~@:>" fun fun))
846 ;; FIXME: Couldn't all the INFO calls here be converted into
847 ;; standard CL functions, like MACRO-FUNCTION or something? And what
848 ;; happens with lexically-defined (MACROLET) macros here, anyway?
849 (ecase (info :function :kind fun)
850 (:macro
851 (ir1-convert start next result
852 (careful-expand-macro (info :function :macro-function fun)
853 form))
854 (unless (policy *lexenv* (zerop store-xref-data))
855 (record-macroexpansion fun (ctran-block start) *current-path*)))
856 ((nil :function)
857 (ir1-convert-srctran start next result
858 (find-free-fun fun "shouldn't happen! (no-cmacro)")
859 form))))
861 ;;; Expand FORM using the macro whose MACRO-FUNCTION is FUN, trapping
862 ;;; errors which occur during the macroexpansion.
863 (defun careful-expand-macro (fun form &optional cmacro)
864 (flet (;; Return a string to use as a prefix in error reporting,
865 ;; telling something about which form caused the problem.
866 (wherestring ()
867 (let (;; We rely on the printer to abbreviate FORM.
868 (*print-length* 3)
869 (*print-level* 3))
870 (format nil
871 "~@<~A of ~S. Use ~S to intercept.~%~:@>"
872 (cond (cmacro
873 #-sb-xc-host "Error during compiler-macroexpansion"
874 #+sb-xc-host "Error during XC compiler-macroexpansion")
876 #-sb-xc-host "during macroexpansion"
877 #+sb-xc-host "during XC macroexpansion"))
878 form
879 '*break-on-signals*))))
880 (handler-bind (;; KLUDGE: CMU CL in its wisdom (version 2.4.6 for Debian
881 ;; Linux, anyway) raises a CL:WARNING condition (not a
882 ;; CL:STYLE-WARNING) for undefined symbols when converting
883 ;; interpreted functions, causing COMPILE-FILE to think the
884 ;; file has a real problem, causing COMPILE-FILE to return
885 ;; FAILURE-P set (not just WARNINGS-P set). Since undefined
886 ;; symbol warnings are often harmless forward references,
887 ;; and since it'd be inordinately painful to try to
888 ;; eliminate all such forward references, these warnings
889 ;; are basically unavoidable. Thus, we need to coerce the
890 ;; system to work through them, and this code does so, by
891 ;; crudely suppressing all warnings in cross-compilation
892 ;; macroexpansion. -- WHN 19990412
893 #+(and cmu sb-xc-host)
894 (warning (lambda (c)
895 (compiler-notify
896 "~@<~A~:@_~
897 ~A~:@_~
898 ~@<(KLUDGE: That was a non-STYLE WARNING. ~
899 Ordinarily that would cause compilation to ~
900 fail. However, since we're running under ~
901 CMU CL, and since CMU CL emits non-STYLE ~
902 warnings for safe, hard-to-fix things (e.g. ~
903 references to not-yet-defined functions) ~
904 we're going to have to ignore it and ~
905 proceed anyway. Hopefully we're not ~
906 ignoring anything horrible here..)~:@>~:>"
907 (wherestring)
909 (muffle-warning)
910 (bug "no MUFFLE-WARNING restart")))
911 (error
912 (lambda (c)
913 (cond
914 (cmacro
915 ;; The spec is silent on what we should do. Signaling
916 ;; a full warning but declining to expand seems like
917 ;; a conservative and sane thing to do.
918 (compiler-warn "~@<~A~@:_ ~A~:>" (wherestring) c)
919 (return-from careful-expand-macro form))
921 (compiler-error "~@<~A~@:_ ~A~:>"
922 (wherestring) c))))))
923 (funcall (valid-macroexpand-hook) fun form *lexenv*))))
925 ;;;; conversion utilities
927 ;;; Convert a bunch of forms, discarding all the values except the
928 ;;; last. If there aren't any forms, then translate a NIL.
929 (declaim (ftype (sfunction (ctran ctran (or lvar null) list) (values))
930 ir1-convert-progn-body))
931 (defun ir1-convert-progn-body (start next result body)
932 (if (endp body)
933 (reference-constant start next result nil)
934 (let ((this-start start)
935 (forms body))
936 (loop
937 (let ((form (car forms)))
938 (setf this-start
939 (maybe-instrument-progn-like this-start forms form))
940 (when (endp (cdr forms))
941 (ir1-convert this-start next result form)
942 (return))
943 (let ((this-ctran (make-ctran)))
944 (ir1-convert this-start this-ctran nil form)
945 (setq this-start this-ctran
946 forms (cdr forms)))))))
947 (values))
950 ;;;; code coverage
952 ;;; Used as the CDR of the code coverage instrumentation records
953 ;;; (instead of NIL) to ensure that any well-behaving user code will
954 ;;; not have constants EQUAL to that record. This avoids problems with
955 ;;; the records getting coalesced with non-record conses, which then
956 ;;; get mutated when the instrumentation runs. Note that it's
957 ;;; important for multiple records for the same location to be
958 ;;; coalesced. -- JES, 2008-01-02
959 ;;; Use of #. mandates :COMPILE-TOPLEVEL for several Lisps
960 ;;; even though for us it's immediately accessible to EVAL.
961 (eval-when (:compile-toplevel :load-toplevel :execute)
962 (defconstant +code-coverage-unmarked+ '%code-coverage-unmarked%))
964 ;;; Check the policy for whether we should generate code coverage
965 ;;; instrumentation. If not, just return the original START
966 ;;; ctran. Otherwise insert code coverage instrumentation after
967 ;;; START, and return the new ctran.
968 (defun instrument-coverage (start mode form)
969 ;; We don't actually use FORM for anything, it's just convenient to
970 ;; have around when debugging the instrumentation.
971 (declare (ignore form))
972 (if (and (policy *lexenv* (> store-coverage-data 0))
973 *code-coverage-records*
974 *allow-instrumenting*)
975 (let ((path (source-path-original-source *current-path*)))
976 (when mode
977 (push mode path))
978 (if (member (ctran-block start)
979 (gethash path *code-coverage-blocks*))
980 ;; If this source path has already been instrumented in
981 ;; this block, don't instrument it again.
982 start
983 (let ((store
984 ;; Get an interned record cons for the path. A cons
985 ;; with the same object identity must be used for
986 ;; each instrument for the same block.
987 (or (gethash path *code-coverage-records*)
988 (setf (gethash path *code-coverage-records*)
989 (cons path +code-coverage-unmarked+))))
990 (next (make-ctran))
991 (*allow-instrumenting* nil))
992 (push (ctran-block start)
993 (gethash path *code-coverage-blocks*))
994 (let ((*allow-instrumenting* nil))
995 (ir1-convert start next nil
996 `(locally
997 (declare (optimize speed
998 (safety 0)
999 (debug 0)
1000 (check-constant-modification 0)))
1001 ;; We're being naughty here, and
1002 ;; modifying constant data. That's ok,
1003 ;; we know what we're doing.
1004 (%rplacd ',store t))))
1005 next)))
1006 start))
1008 ;;; In contexts where we don't have a source location for FORM
1009 ;;; e.g. due to it not being a cons, but where we have a source
1010 ;;; location for the enclosing cons, use the latter source location if
1011 ;;; available. This works pretty well in practice, since many PROGNish
1012 ;;; macroexpansions will just directly splice a block of forms into
1013 ;;; some enclosing form with `(progn ,@body), thus retaining the
1014 ;;; EQness of the conses.
1015 (defun maybe-instrument-progn-like (start forms form)
1016 (or (when (and *allow-instrumenting*
1017 (not (get-source-path form)))
1018 (let ((*current-path* (get-source-path forms)))
1019 (when *current-path*
1020 (instrument-coverage start nil form))))
1021 start))
1023 (defun record-code-coverage (info cc)
1024 (setf (gethash info *code-coverage-info*) cc))
1026 (defun clear-code-coverage ()
1027 (clrhash *code-coverage-info*))
1029 (defun reset-code-coverage ()
1030 (maphash (lambda (info cc)
1031 (declare (ignore info))
1032 (dolist (cc-entry cc)
1033 (setf (cdr cc-entry) +code-coverage-unmarked+)))
1034 *code-coverage-info*))
1036 (defun code-coverage-record-marked (record)
1037 (aver (consp record))
1038 (ecase (cdr record)
1039 ((#.+code-coverage-unmarked+) nil)
1040 ((t) t)))
1043 ;;;; converting combinations
1045 ;;; Does this form look like something that we should add single-stepping
1046 ;;; instrumentation for?
1047 (defun step-form-p (form)
1048 (flet ((step-symbol-p (symbol)
1049 (and (not (member (symbol-package symbol)
1050 (load-time-value
1051 ;; KLUDGE: packages we're not interested in
1052 ;; stepping.
1053 (mapcar #'find-package '(sb!c sb!int sb!impl
1054 sb!kernel sb!pcl)) t)))
1055 ;; Consistent treatment of *FOO* vs (SYMBOL-VALUE '*FOO*):
1056 ;; we insert calls to SYMBOL-VALUE for most non-lexical
1057 ;; variable references in order to avoid them being elided
1058 ;; if the value is unused.
1059 (or (not (member symbol '(symbol-value symbol-global-value)))
1060 (not (constantp (second form)))))))
1061 (and *allow-instrumenting*
1062 (policy *lexenv* (= insert-step-conditions 3))
1063 (listp form)
1064 (symbolp (car form))
1065 (step-symbol-p (car form)))))
1067 ;;; Convert a function call where the function FUN is a LEAF. FORM is
1068 ;;; the source for the call. We return the COMBINATION node so that
1069 ;;; the caller can poke at it if it wants to.
1070 (declaim (ftype (sfunction (ctran ctran (or lvar null) list leaf) combination)
1071 ir1-convert-combination))
1072 (defun ir1-convert-combination (start next result form fun)
1073 (let ((ctran (make-ctran))
1074 (fun-lvar (make-lvar)))
1075 (ir1-convert start ctran fun-lvar `(the (or function symbol) ,fun))
1076 (let ((combination
1077 (ir1-convert-combination-args fun-lvar ctran next result
1078 (cdr form))))
1079 (when (step-form-p form)
1080 ;; Store a string representation of the form in the
1081 ;; combination node. This will let the IR2 translator know
1082 ;; that we want stepper instrumentation for this node. The
1083 ;; string will be stored in the debug-info by DUMP-1-LOCATION.
1084 (setf (combination-step-info combination)
1085 (let ((*print-pretty* t)
1086 (*print-circle* t)
1087 (*print-readably* nil))
1088 (prin1-to-string form))))
1089 combination)))
1091 ;;; Convert the arguments to a call and make the COMBINATION
1092 ;;; node. FUN-LVAR yields the function to call. ARGS is the list of
1093 ;;; arguments for the call, which defaults to the cdr of source. We
1094 ;;; return the COMBINATION node.
1095 (defun ir1-convert-combination-args (fun-lvar start next result args)
1096 (declare (type ctran start next)
1097 (type lvar fun-lvar)
1098 (type (or lvar null) result)
1099 (list args))
1100 (let ((node (make-combination fun-lvar)))
1101 (setf (lvar-dest fun-lvar) node)
1102 (collect ((arg-lvars))
1103 (let ((this-start start)
1104 (forms args))
1105 (dolist (arg args)
1106 (setf this-start
1107 (maybe-instrument-progn-like this-start forms arg))
1108 (setf forms (cdr forms))
1109 (let ((this-ctran (make-ctran))
1110 (this-lvar (make-lvar node)))
1111 (ir1-convert this-start this-ctran this-lvar arg)
1112 (setq this-start this-ctran)
1113 (arg-lvars this-lvar)))
1114 (link-node-to-previous-ctran node this-start)
1115 (use-continuation node next result)
1116 (setf (combination-args node) (arg-lvars))))
1117 node))
1119 ;;; Convert a call to a global function. If not :NOTINLINE, then we do
1120 ;;; source transforms and try out any inline expansion. If there is no
1121 ;;; expansion, but is :INLINE, then give an efficiency note (unless a
1122 ;;; known function which will quite possibly be open-coded.) Next, we
1123 ;;; go to ok-combination conversion.
1124 (defun ir1-convert-srctran (start next result var form)
1125 (declare (type ctran start next) (type (or lvar null) result)
1126 (type global-var var))
1127 (let ((name (leaf-source-name var))
1128 (inlinep (when (defined-fun-p var)
1129 (defined-fun-inlinep var))))
1130 (if (eq inlinep :notinline)
1131 (ir1-convert-combination start next result form var)
1132 (let* ((transform (info :function :source-transform name)))
1133 (if transform
1134 (multiple-value-bind (transformed pass)
1135 (if (functionp transform)
1136 (funcall transform form *lexenv*)
1137 (let ((result
1138 (if (eq (cdr transform) :predicate)
1139 (and (singleton-p (cdr form))
1140 `(%instance-typep
1141 ,(cadr form)
1142 ',(dd-name (car transform))))
1143 (slot-access-transform
1144 (if (consp name) :write :read)
1145 (cdr form) transform))))
1146 (values result (null result))))
1147 (cond (pass
1148 (ir1-convert-maybe-predicate start next result form var))
1150 (unless (policy *lexenv* (zerop store-xref-data))
1151 (record-call name (ctran-block start) *current-path*))
1152 (ir1-convert start next result transformed))))
1153 (ir1-convert-maybe-predicate start next result form var))))))
1155 ;;; KLUDGE: If we insert a synthetic IF for a function with the PREDICATE
1156 ;;; attribute, don't generate any branch coverage instrumentation for it.
1157 (defvar *instrument-if-for-code-coverage* t)
1159 ;;; If the function has the PREDICATE attribute, and the RESULT's DEST
1160 ;;; isn't an IF, then we convert (IF <form> T NIL), ensuring that a
1161 ;;; predicate always appears in a conditional context.
1163 ;;; If the function isn't a predicate, then we call
1164 ;;; IR1-CONVERT-COMBINATION-CHECKING-TYPE.
1165 (defun ir1-convert-maybe-predicate (start next result form var)
1166 (declare (type ctran start next)
1167 (type (or lvar null) result)
1168 (list form)
1169 (type global-var var))
1170 (let ((info (info :function :info (leaf-source-name var))))
1171 (if (and info
1172 (ir1-attributep (fun-info-attributes info) predicate)
1173 (not (if-p (and result (lvar-dest result)))))
1174 (let ((*instrument-if-for-code-coverage* nil))
1175 (ir1-convert start next result `(if ,form t nil)))
1176 (ir1-convert-combination-checking-type start next result form var))))
1178 ;;; Actually really convert a global function call that we are allowed
1179 ;;; to early-bind.
1181 ;;; If we know the function type of the function, then we check the
1182 ;;; call for syntactic legality with respect to the declared function
1183 ;;; type. If it is impossible to determine whether the call is correct
1184 ;;; due to non-constant keywords, then we give up, marking the call as
1185 ;;; :FULL to inhibit further error messages. We return true when the
1186 ;;; call is legal.
1188 ;;; If the call is legal, we also propagate type assertions from the
1189 ;;; function type to the arg and result lvars. We do this now so that
1190 ;;; IR1 optimize doesn't have to redundantly do the check later so
1191 ;;; that it can do the type propagation.
1192 (defun ir1-convert-combination-checking-type (start next result form var)
1193 (declare (type ctran start next) (type (or lvar null) result)
1194 (list form)
1195 (type leaf var))
1196 (let* ((node (ir1-convert-combination start next result form var))
1197 (fun-lvar (basic-combination-fun node))
1198 (type (leaf-type var)))
1199 (when (validate-call-type node type var t)
1200 (setf (lvar-%derived-type fun-lvar)
1201 (make-single-value-type type))
1202 (setf (lvar-reoptimize fun-lvar) nil)))
1203 (values))
1205 ;;; Convert a call to a local function, or if the function has already
1206 ;;; been LET converted, then throw FUNCTIONAL to
1207 ;;; LOCALL-ALREADY-LET-CONVERTED. The THROW should only happen when we
1208 ;;; are converting inline expansions for local functions during
1209 ;;; optimization.
1210 (defun ir1-convert-local-combination (start next result form functional)
1211 (assure-functional-live-p functional)
1212 (ir1-convert-combination start next result
1213 form
1214 (maybe-reanalyze-functional functional)))
1216 ;;;; PROCESS-DECLS
1218 ;;; Given a list of LAMBDA-VARs and a variable name, return the
1219 ;;; LAMBDA-VAR for that name, or NIL if it isn't found. We return the
1220 ;;; *last* variable with that name, since LET* bindings may be
1221 ;;; duplicated, and declarations always apply to the last.
1222 (declaim (ftype (sfunction (list symbol) (or lambda-var list))
1223 find-in-bindings))
1224 (defun find-in-bindings (vars name)
1225 (let ((found nil))
1226 (dolist (var vars)
1227 (cond ((leaf-p var)
1228 (when (eq (leaf-source-name var) name)
1229 (setq found var))
1230 (let ((info (lambda-var-arg-info var)))
1231 (when info
1232 (let ((supplied-p (arg-info-supplied-p info)))
1233 (when (and supplied-p
1234 (eq (leaf-source-name supplied-p) name))
1235 (setq found supplied-p))))))
1236 ((and (consp var) (eq (car var) name))
1237 (setf found (cdr var)))))
1238 found))
1240 ;;; Called by PROCESS-DECLS to deal with a variable type declaration.
1241 ;;; If a LAMBDA-VAR being bound, we intersect the type with the var's
1242 ;;; type, otherwise we add a type restriction on the var. If a symbol
1243 ;;; macro, we just wrap a THE around the expansion.
1244 (defun process-type-decl (decl res vars context)
1245 (declare (type list decl vars) (type lexenv res))
1246 (let* ((type-specifier (first decl))
1247 (type (progn
1248 (when (typep type-specifier 'type-specifier)
1249 (check-deprecated-type type-specifier))
1250 (compiler-specifier-type type-specifier))))
1251 (collect ((restr nil cons)
1252 (new-vars nil cons))
1253 (dolist (var-name (rest decl))
1254 (unless (symbolp var-name)
1255 (compiler-error "Variable name is not a symbol: ~S." var-name))
1256 (unless (eq (info :variable :kind var-name) :unknown)
1257 (program-assert-symbol-home-package-unlocked
1258 context var-name "declaring the type of ~A"))
1259 (let* ((bound-var (find-in-bindings vars var-name))
1260 (var (or bound-var
1261 (lexenv-find var-name vars)
1262 (find-free-var var-name))))
1263 (etypecase var
1264 (leaf
1265 (flet
1266 ((process-var (var bound-var)
1267 (let* ((old-type (or (lexenv-find var type-restrictions)
1268 (leaf-type var)))
1269 (int (if (or (fun-type-p type)
1270 (fun-type-p old-type))
1271 type
1272 (type-approx-intersection2
1273 old-type type))))
1274 (cond ((eq int *empty-type*)
1275 (unless (policy *lexenv* (= inhibit-warnings 3))
1276 (warn
1277 'type-warning
1278 :format-control
1279 "The type declarations ~
1280 ~/sb!impl:print-type/ and ~
1281 ~/sb!impl:print-type/ for ~
1282 ~S conflict."
1283 :format-arguments
1284 (list old-type type var-name))))
1285 (bound-var
1286 (setf (leaf-type bound-var) int
1287 (leaf-where-from bound-var) :declared))
1289 (restr (cons var int)))))))
1290 (process-var var bound-var)
1291 (awhen (and (lambda-var-p var)
1292 (lambda-var-specvar var))
1293 (process-var it nil))))
1294 (cons
1295 ;; FIXME: non-ANSI weirdness. [See lp#309122]
1296 (aver (eq (car var) 'macro))
1297 (new-vars `(,var-name . (macro . (the ,(first decl)
1298 ,(cdr var))))))
1299 (heap-alien-info
1300 (compiler-error
1301 "~S is an alien variable, so its type can't be declared."
1302 var-name)))))
1304 (if (or (restr) (new-vars))
1305 (make-lexenv :default res
1306 :type-restrictions (restr)
1307 :vars (new-vars))
1308 res))))
1310 ;;; This is somewhat similar to PROCESS-TYPE-DECL, but handles
1311 ;;; declarations for function variables. In addition to allowing
1312 ;;; declarations for functions being bound, we must also deal with
1313 ;;; declarations that constrain the type of lexically apparent
1314 ;;; functions.
1315 (defun process-ftype-decl (type-specifier res names fvars context)
1316 (declare (type list names fvars)
1317 (type lexenv res))
1318 (let ((type (compiler-specifier-type type-specifier)))
1319 (check-deprecated-type type-specifier)
1320 (unless (csubtypep type (specifier-type 'function))
1321 (compiler-style-warn "ignoring declared FTYPE: ~S (not a function type)"
1322 type-specifier)
1323 (return-from process-ftype-decl res))
1324 (collect ((res nil cons))
1325 (dolist (name names)
1326 (when (fboundp name)
1327 (program-assert-symbol-home-package-unlocked
1328 context name "declaring the ftype of ~A"))
1329 (let ((found (find name fvars :key #'leaf-source-name :test #'equal)))
1330 (cond
1331 (found
1332 (setf (leaf-type found) type)
1333 (assert-definition-type found type
1334 :unwinnage-fun #'compiler-notify
1335 :where "FTYPE declaration"))
1337 (res (cons (find-lexically-apparent-fun
1338 name "in a function type declaration")
1339 type))))))
1340 (if (res)
1341 (make-lexenv :default res :type-restrictions (res))
1342 res))))
1344 ;;; Process a special declaration, returning a new LEXENV. A non-bound
1345 ;;; special declaration is instantiated by throwing a special variable
1346 ;;; into the variables if BINDING-FORM-P is NIL, or otherwise into
1347 ;;; *POST-BINDING-VARIABLE-LEXENV*.
1348 (defun process-special-decl (spec res vars binding-form-p context)
1349 (declare (list spec vars) (type lexenv res))
1350 (collect ((new-venv nil cons))
1351 (dolist (name (cdr spec))
1352 ;; While CLHS seems to allow local SPECIAL declarations for constants,
1353 ;; whatever the semantics are supposed to be is not at all clear to me
1354 ;; -- since constants aren't allowed to be bound it should be a no-op as
1355 ;; no-one can observe the difference portably, but specials are allowed
1356 ;; to be bound... yet nowhere does it say that the special declaration
1357 ;; removes the constantness. Call it a spec bug and prohibit it. Same
1358 ;; for GLOBAL variables.
1359 (let ((kind (info :variable :kind name)))
1360 (unless (member kind '(:special :unknown))
1361 (compiler-error
1362 "Can't declare ~(~A~) variable locally special: ~S"
1363 kind name)))
1364 (program-assert-symbol-home-package-unlocked
1365 context name "declaring ~A special")
1366 (let ((var (find-in-bindings vars name)))
1367 (etypecase var
1368 (cons
1369 (aver (eq (car var) 'macro))
1370 (compiler-error
1371 "~S is a symbol-macro and thus can't be declared special."
1372 name))
1373 (lambda-var
1374 (when (lambda-var-ignorep var)
1375 ;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
1376 ;; requires that this be a STYLE-WARNING, not a full WARNING.
1377 (compiler-style-warn
1378 "The ignored variable ~S is being declared special."
1379 name))
1380 (setf (lambda-var-specvar var)
1381 (specvar-for-binding name)))
1382 (null
1383 (unless (or (assoc name (new-venv) :test #'eq))
1384 (new-venv (cons name (specvar-for-binding name))))))))
1385 (cond (binding-form-p
1386 (setf *post-binding-variable-lexenv*
1387 (append (new-venv) *post-binding-variable-lexenv*))
1388 res)
1389 ((new-venv)
1390 (make-lexenv :default res :vars (new-venv)))
1392 res))))
1394 ;;; Return a DEFINED-FUN which copies a GLOBAL-VAR but for its INLINEP
1395 ;;; (and TYPE if notinline), plus type-restrictions from the lexenv.
1396 (defun make-new-inlinep (var inlinep local-type)
1397 (declare (type global-var var) (type inlinep inlinep))
1398 (let* ((type (if (and (eq inlinep :notinline)
1399 (not (eq (leaf-where-from var) :declared)))
1400 (specifier-type 'function)
1401 (leaf-type var)))
1402 (res (make-defined-fun
1403 :%source-name (leaf-source-name var)
1404 :where-from (leaf-where-from var)
1405 :type (if local-type
1406 (type-intersection local-type type)
1407 type)
1408 :inlinep inlinep)))
1409 (when (defined-fun-p var)
1410 (setf (defined-fun-inline-expansion res)
1411 (defined-fun-inline-expansion var))
1412 (setf (defined-fun-functionals res)
1413 (defined-fun-functionals var)))
1414 ;; FIXME: Is this really right? Needs we not set the FUNCTIONAL
1415 ;; to the original global-var?
1416 res))
1418 ;;; Parse an inline/notinline declaration. If it's a local function we're
1419 ;;; defining, set its INLINEP. If a global function, add a new FENV entry.
1420 (defun process-inline-decl (spec res fvars)
1421 (let ((sense (cdr (assoc (first spec) *inlinep-translations* :test #'eq)))
1422 (new-fenv ()))
1423 (dolist (name (rest spec))
1424 (let ((fvar (find name fvars :key #'leaf-source-name :test #'equal)))
1425 (if fvar
1426 (setf (functional-inlinep fvar) sense)
1427 (let ((found (find-lexically-apparent-fun
1428 name "in an inline or notinline declaration")))
1429 (etypecase found
1430 (functional
1431 (when (policy *lexenv* (>= speed inhibit-warnings))
1432 (compiler-notify "ignoring ~A declaration not at ~
1433 definition of local function:~% ~S"
1434 sense name)))
1435 (global-var
1436 (let ((type
1437 (cdr (assoc found (lexenv-type-restrictions res)))))
1438 (push (cons name (make-new-inlinep found sense type))
1439 new-fenv))))))))
1440 (if new-fenv
1441 (make-lexenv :default res :funs new-fenv)
1442 res)))
1444 ;;; like FIND-IN-BINDINGS, but looks for #'FOO in the FVARS
1445 (defun find-in-bindings-or-fbindings (name vars fvars)
1446 (declare (list vars fvars))
1447 (typecase name
1448 (atom
1449 (find-in-bindings vars name))
1450 ((cons (eql function) (cons * null))
1451 (find (cadr name) fvars :key #'leaf-source-name :test #'equal))
1453 (compiler-error "Malformed function or variable name ~S." name))))
1455 ;;; Process an ignore/ignorable declaration, checking for various losing
1456 ;;; conditions.
1457 (defun process-ignore-decl (spec vars fvars lexenv)
1458 (declare (list spec vars fvars))
1459 (dolist (name (rest spec))
1460 (let ((var (find-in-bindings-or-fbindings name vars fvars)))
1461 (cond
1462 ((not var)
1463 ;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
1464 ;; requires that this be a STYLE-WARNING, not a full WARNING.
1465 ;; But, other Lisp hosts signal a full warning, so when building
1466 ;; the cross-compiler, compile it as #'WARN so that in a self-hosted
1467 ;; build we can at least crash in the same way,
1468 ;; until we resolve this question about how severe the warning is.
1469 (multiple-value-call #+sb-xc-host #'warn
1470 #-sb-xc-host #'compiler-style-warn
1471 "~A declaration for ~A: ~A"
1472 (first spec)
1473 (if (symbolp name)
1474 (values
1475 (case (info :variable :kind name)
1476 (:special "a special variable")
1477 (:global "a global lexical variable")
1478 (:alien "a global alien variable")
1479 (t (if (assoc name (lexenv-vars lexenv))
1480 "a variable from outer scope"
1481 "an unknown variable")))
1482 name)
1483 (values
1484 (cond ((assoc (second name) (lexenv-funs lexenv)
1485 :test #'equal)
1486 "a function from outer scope")
1487 ((info :function :kind (second name))
1488 "a global function")
1490 "an unknown function"))
1491 (second name)))))
1492 ((and (consp var) (eq (car var) 'macro))
1493 ;; Just ignore the IGNORE decl: we don't currently signal style-warnings
1494 ;; for unused symbol-macros, so there's no need to do anything.
1496 ((functional-p var)
1497 (setf (leaf-ever-used var) t))
1498 ((and (lambda-var-specvar var) (eq (first spec) 'ignore))
1499 ;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
1500 ;; requires that this be a STYLE-WARNING, not a full WARNING.
1501 (compiler-style-warn "Declaring special variable ~S to be ~A"
1502 name
1503 (first spec)))
1504 ((eq (first spec) 'ignorable)
1505 (setf (leaf-ever-used var) t))
1507 (setf (lambda-var-ignorep var) t)))))
1508 (values))
1510 (defun process-extent-decl (names vars fvars kind)
1511 (let ((extent
1512 (ecase kind
1513 (truly-dynamic-extent
1514 :always-dynamic)
1515 (dynamic-extent
1516 (when *stack-allocate-dynamic-extent*
1517 :maybe-dynamic))
1518 (indefinite-extent
1519 :indefinite))))
1520 (if extent
1521 (dolist (name names)
1522 (cond
1523 ((symbolp name)
1524 (let* ((bound-var (find-in-bindings vars name))
1525 (var (or bound-var
1526 (lexenv-find name vars)
1527 (maybe-find-free-var name))))
1528 (etypecase var
1529 (leaf
1530 (if bound-var
1531 (if (and (leaf-extent var) (neq extent (leaf-extent var)))
1532 (warn "Multiple incompatible extent declarations for ~S?" name)
1533 (setf (leaf-extent var) extent))
1534 (compiler-notify
1535 "Ignoring free ~S declaration: ~S" kind name)))
1536 (cons
1537 (compiler-error "~S on symbol-macro: ~S" kind name))
1538 (heap-alien-info
1539 (compiler-error "~S on alien-variable: ~S" kind name))
1540 (null
1541 (compiler-style-warn
1542 "Unbound variable declared ~S: ~S" kind name)))))
1543 ((and (consp name)
1544 (eq (car name) 'function)
1545 (null (cddr name))
1546 (valid-function-name-p (cadr name))
1547 (neq :indefinite extent))
1548 (let* ((fname (cadr name))
1549 (bound-fun (find fname fvars
1550 :key #'leaf-source-name
1551 :test #'equal))
1552 (fun (or bound-fun (lexenv-find fname funs))))
1553 (etypecase fun
1554 (leaf
1555 (if bound-fun
1556 #!+stack-allocatable-closures
1557 (setf (leaf-extent bound-fun) extent)
1558 #!-stack-allocatable-closures
1559 (compiler-notify
1560 "Ignoring DYNAMIC-EXTENT declaration on function ~S ~
1561 (not supported on this platform)." fname)
1562 (compiler-notify
1563 "Ignoring free DYNAMIC-EXTENT declaration: ~S" name)))
1564 (cons
1565 (compiler-error "DYNAMIC-EXTENT on macro: ~S" name))
1566 (null
1567 (compiler-style-warn
1568 "Unbound function declared DYNAMIC-EXTENT: ~S" name)))))
1570 (compiler-error "~S on a weird thing: ~S" kind name))))
1571 (when (policy *lexenv* (= speed 3))
1572 (compiler-notify "Ignoring DYNAMIC-EXTENT declarations: ~S" names)))))
1574 ;;; FIXME: This is non-ANSI, so the default should be T, or it should
1575 ;;; go away, I think.
1576 ;;; Or just rename the declaration to SB-C:RESULT-TYPE so that it's not
1577 ;;; a symbol in the CL package, and then eliminate this switch.
1578 ;;; It's permissible to have implementation-specific declarations.
1579 (defvar *suppress-values-declaration* nil
1580 "If true, processing of the VALUES declaration is inhibited.")
1582 ;;; Process a single declaration spec, augmenting the specified LEXENV
1583 ;;; RES. Return RES and result type. VARS and FVARS are as described
1584 ;;; PROCESS-DECLS.
1585 (defun process-1-decl (raw-spec res vars fvars binding-form-p context)
1586 (declare (type list raw-spec vars fvars))
1587 (declare (type lexenv res))
1588 (let ((spec (canonized-decl-spec raw-spec))
1589 (optimize-qualities))
1590 ;; FIXME: we can end up with a chain of spurious parent lexenvs,
1591 ;; when logically the processing of decls should yield at most
1592 ;; two new lexenvs: one for the bindings and one for post-binding.
1593 ;; It's possible that there's a simple fix of re-linking the resulting
1594 ;; lexenv directly to *lexenv* as its parent.
1595 (values
1596 (case (first spec)
1597 (type
1598 (process-type-decl (cdr spec) res vars context))
1599 ((ignore ignorable)
1600 (process-ignore-decl spec vars fvars res)
1601 res)
1602 (special (process-special-decl spec res vars binding-form-p context))
1603 (ftype
1604 (unless (cdr spec)
1605 (compiler-error "no type specified in FTYPE declaration: ~S" spec))
1606 (process-ftype-decl (second spec) res (cddr spec) fvars context))
1607 ((inline notinline maybe-inline)
1608 (process-inline-decl spec res fvars))
1609 (optimize
1610 (multiple-value-bind (new-policy specified-qualities)
1611 (process-optimize-decl spec (lexenv-policy res))
1612 (setq optimize-qualities specified-qualities)
1613 (make-lexenv :default res :policy new-policy)))
1614 (muffle-conditions
1615 (make-lexenv
1616 :default res
1617 :handled-conditions (process-muffle-conditions-decl
1618 spec (lexenv-handled-conditions res))))
1619 (unmuffle-conditions
1620 (make-lexenv
1621 :default res
1622 :handled-conditions (process-unmuffle-conditions-decl
1623 spec (lexenv-handled-conditions res))))
1624 ((dynamic-extent truly-dynamic-extent indefinite-extent)
1625 (process-extent-decl (cdr spec) vars fvars (first spec))
1626 res)
1627 ((disable-package-locks enable-package-locks)
1628 (make-lexenv
1629 :default res
1630 :disabled-package-locks (process-package-lock-decl
1631 spec (lexenv-disabled-package-locks res))))
1632 ;; We may want to detect LAMBDA-LIST and VALUES decls here,
1633 ;; and report them as "Misplaced" rather than "Unrecognized".
1635 (unless (info :declaration :recognized (first spec))
1636 (compiler-warn "unrecognized declaration ~S" raw-spec))
1637 (let ((fn (info :declaration :handler (first spec))))
1638 (if fn
1639 (funcall fn res spec vars fvars)
1640 res))))
1641 optimize-qualities)))
1643 ;;; Use a list of DECLARE forms to annotate the lists of LAMBDA-VAR
1644 ;;; and FUNCTIONAL structures which are being bound. In addition to
1645 ;;; filling in slots in the leaf structures, we return a new LEXENV,
1646 ;;; which reflects pervasive special and function type declarations,
1647 ;;; (NOT)INLINE declarations and OPTIMIZE declarations, and type of
1648 ;;; VALUES declarations. If BINDING-FORM-P is true, the third return
1649 ;;; value is a list of VARs that should not apply to the lexenv of the
1650 ;;; initialization forms for the bindings, but should apply to the body.
1652 ;;; This is also called in main.lisp when PROCESS-FORM handles a use
1653 ;;; of LOCALLY.
1654 (defun process-decls (decls vars fvars &key
1655 (lexenv *lexenv*) (binding-form-p nil) (context :compile)
1656 (allow-lambda-list nil))
1657 (declare (list decls vars fvars))
1658 (let ((result-type *wild-type*)
1659 (allow-values-decl allow-lambda-list)
1660 (explicit-check)
1661 (allow-explicit-check allow-lambda-list)
1662 (lambda-list (if allow-lambda-list :unspecified nil))
1663 (optimize-qualities)
1664 (*post-binding-variable-lexenv* nil))
1665 (flet ((process-it (spec decl)
1666 (cond ((atom spec)
1667 (compiler-error "malformed declaration specifier ~S in ~S"
1668 spec decl))
1669 ((and (eq allow-lambda-list t)
1670 (typep spec '(cons (eql lambda-list) (cons t null))))
1671 (setq lambda-list (cadr spec) allow-lambda-list nil))
1672 ((and allow-values-decl
1673 (typep spec '(cons (eql values)))
1674 (not *suppress-values-declaration*))
1675 ;; Why do we allow more than one VALUES decl? I don't know.
1676 (setq result-type
1677 (values-type-intersection
1678 result-type
1679 (compiler-values-specifier-type
1680 (let ((types (cdr spec)))
1681 (if (singleton-p types)
1682 (car types)
1683 `(values ,@types)))))))
1684 ((and allow-explicit-check
1685 (typep spec '(cons (eql explicit-check))))
1686 ;; EXPLICIT-CHECK by itself specifies that all argument and
1687 ;; result types are checked by the function body.
1688 ;; Alternatively, a subset of arguments, and/or :RESULT,
1689 ;; can be specified to indicate that only a subset are
1690 ;; checked; in that case, the compiler asserts all others.
1691 (awhen (remove-if (lambda (x)
1692 (or (member x vars
1693 :test #'eq
1694 :key #'lambda-var-%source-name)
1695 (eq x :result)))
1696 (cdr spec))
1697 (compiler-error "explicit-check list ~S must refer to lambda vars"
1698 it))
1699 (setq explicit-check (or (cdr spec) t)
1700 allow-explicit-check nil)) ; at most one of this decl
1702 (multiple-value-bind (new-env new-qualities)
1703 (process-1-decl spec lexenv vars fvars
1704 binding-form-p context)
1705 (setq lexenv new-env
1706 optimize-qualities
1707 (nconc new-qualities optimize-qualities)))))))
1708 (dolist (decl decls)
1709 (dolist (spec (rest decl))
1710 (if (eq context :compile)
1711 (with-current-source-form (spec decl) ; TODO this is a slight change to the previous code. make sure the behavior is identical
1712 (process-it spec decl))
1713 ;; Kludge: EVAL calls this function to deal with LOCALLY.
1714 (process-it spec decl)))))
1715 (warn-repeated-optimize-qualities (lexenv-policy lexenv) optimize-qualities)
1716 (values lexenv result-type *post-binding-variable-lexenv*
1717 lambda-list explicit-check)))
1719 (defun %processing-decls (decls vars fvars ctran lvar binding-form-p fun)
1720 (multiple-value-bind (*lexenv* result-type post-binding-lexenv)
1721 (process-decls decls vars fvars :binding-form-p binding-form-p)
1722 (cond ((eq result-type *wild-type*)
1723 (funcall fun ctran lvar post-binding-lexenv))
1725 (let ((value-ctran (make-ctran))
1726 (value-lvar (make-lvar)))
1727 (multiple-value-prog1
1728 (funcall fun value-ctran value-lvar post-binding-lexenv)
1729 (let ((cast (make-cast value-lvar result-type
1730 (lexenv-policy *lexenv*))))
1731 (link-node-to-previous-ctran cast value-ctran)
1732 (setf (lvar-dest value-lvar) cast)
1733 (use-continuation cast ctran lvar))))))))
1735 (defmacro processing-decls ((decls vars fvars ctran lvar
1736 &optional post-binding-lexenv)
1737 &body forms)
1738 (check-type ctran symbol)
1739 (check-type lvar symbol)
1740 (let ((post-binding-lexenv-p (not (null post-binding-lexenv)))
1741 (post-binding-lexenv (or post-binding-lexenv (sb!xc:gensym "LEXENV"))))
1742 `(%processing-decls ,decls ,vars ,fvars ,ctran ,lvar
1743 ,post-binding-lexenv-p
1744 (lambda (,ctran ,lvar ,post-binding-lexenv)
1745 (declare (ignorable ,post-binding-lexenv))
1746 ,@forms))))
1748 ;;; Return the SPECVAR for NAME to use when we see a local SPECIAL
1749 ;;; declaration. If there is a global variable of that name, then
1750 ;;; check that it isn't a constant and return it. Otherwise, create an
1751 ;;; anonymous GLOBAL-VAR.
1752 (defun specvar-for-binding (name)
1753 (cond ((not (eq (info :variable :where-from name) :assumed))
1754 (let ((found (find-free-var name)))
1755 (when (heap-alien-info-p found)
1756 (compiler-error
1757 "~S is an alien variable and so can't be declared special."
1758 name))
1759 (unless (global-var-p found)
1760 (compiler-error
1761 "~S is a constant and so can't be declared special."
1762 name))
1763 found))
1765 (make-global-var :kind :special
1766 :%source-name name
1767 :where-from :declared))))