1 #ifdef LISP_FEATURE_SB_THREAD
2 #include <architecture/i386/table.h>
3 #include <i386/user_ldt.h>
4 #include <mach/mach_init.h>
10 #include "interrupt.h"
11 #include "x86-darwin-os.h"
12 #include "genesis/fdefn.h"
14 #include <mach/mach.h>
15 #include <mach/mach_error.h>
16 #include <mach/mach_types.h>
17 #include <mach/sync_policy.h>
18 #include <mach/vm_region.h>
19 #include <mach/machine/thread_state.h>
20 #include <mach/machine/thread_status.h>
21 #include <sys/_types.h>
22 #include <sys/ucontext.h>
28 #ifdef LISP_FEATURE_SB_THREAD
30 pthread_mutex_t modify_ldt_lock
= PTHREAD_MUTEX_INITIALIZER
;
32 void set_data_desc_size(data_desc_t
* desc
, unsigned long size
)
34 desc
->limit00
= (size
- 1) & 0xffff;
35 desc
->limit16
= ((size
- 1) >> 16) &0xf;
38 void set_data_desc_addr(data_desc_t
* desc
, void* addr
)
40 desc
->base00
= (unsigned int)addr
& 0xffff;
41 desc
->base16
= ((unsigned int)addr
& 0xff0000) >> 16;
42 desc
->base24
= ((unsigned int)addr
& 0xff000000) >> 24;
47 #ifdef LISP_FEATURE_SB_THREAD
49 arch_os_load_ldt(struct thread
*thread
)
53 sel
.index
= thread
->tls_cookie
;
57 __asm__
__volatile__ ("mov %0, %%fs" : : "r"(sel
));
61 int arch_os_thread_init(struct thread
*thread
) {
62 #ifdef LISP_FEATURE_SB_THREAD
65 data_desc_t ldt_entry
= { 0, 0, 0, DESC_DATA_WRITE
,
66 3, 1, 0, DESC_DATA_32B
, DESC_GRAN_BYTE
, 0 };
68 set_data_desc_addr(&ldt_entry
, thread
);
69 set_data_desc_size(&ldt_entry
, dynamic_values_bytes
);
71 thread_mutex_lock(&modify_ldt_lock
);
72 n
= i386_set_ldt(LDT_AUTO_ALLOC
, (union ldt_entry
*) &ldt_entry
, 1);
75 perror("i386_set_ldt");
76 lose("unexpected i386_set_ldt(..) failure\n");
78 thread_mutex_unlock(&modify_ldt_lock
);
80 FSHOW_SIGNAL((stderr
, "/ TLS: Allocated LDT %x\n", n
));
82 arch_os_load_ldt(thread
);
84 pthread_setspecific(specials
,thread
);
86 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
87 mach_lisp_thread_init(thread
);
90 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
93 /* Signal handlers are run on the control stack, so if it is exhausted
94 * we had better use an alternate stack for whatever signal tells us
95 * we've exhausted it */
96 sigstack
.ss_sp
=((void *) thread
)+dynamic_values_bytes
;
98 sigstack
.ss_size
= 32*SIGSTKSZ
;
99 sigaltstack(&sigstack
,0);
101 return 1; /* success */
104 int arch_os_thread_cleanup(struct thread
*thread
) {
105 #if defined(LISP_FEATURE_SB_THREAD)
106 int n
= thread
->tls_cookie
;
108 /* Set the %%fs register back to 0 and free the ldt by setting it
111 FSHOW_SIGNAL((stderr
, "/ TLS: Freeing LDT %x\n", n
));
113 __asm__
__volatile__ ("mov %0, %%fs" : : "r"(0));
114 thread_mutex_lock(&modify_ldt_lock
);
115 i386_set_ldt(n
, NULL
, 1);
116 thread_mutex_unlock(&modify_ldt_lock
);
118 return 1; /* success */
121 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
123 void sigill_handler(int signal
, siginfo_t
*siginfo
, os_context_t
*context
);
124 void sigtrap_handler(int signal
, siginfo_t
*siginfo
, os_context_t
*context
);
125 void memory_fault_handler(int signal
, siginfo_t
*siginfo
,
126 os_context_t
*context
);
128 /* This executes in the faulting thread as part of the signal
129 * emulation. It is passed a context with the uc_mcontext field
130 * pointing to a valid block of memory. */
131 void build_fake_signal_context(os_context_t
*context
,
132 x86_thread_state32_t
*thread_state
,
133 x86_float_state32_t
*float_state
) {
134 thread_sigmask(0, NULL
, &context
->uc_sigmask
);
135 context
->uc_mcontext
->SS
= *thread_state
;
136 context
->uc_mcontext
->FS
= *float_state
;
139 /* This executes in the faulting thread as part of the signal
140 * emulation. It is effectively the inverse operation from above. */
141 void update_thread_state_from_context(x86_thread_state32_t
*thread_state
,
142 x86_float_state32_t
*float_state
,
143 os_context_t
*context
) {
144 *thread_state
= context
->uc_mcontext
->SS
;
145 *float_state
= context
->uc_mcontext
->FS
;
146 thread_sigmask(SIG_SETMASK
, &context
->uc_sigmask
, NULL
);
149 /* Modify a context to push new data on its stack. */
150 void push_context(u32 data
, x86_thread_state32_t
*thread_state
)
154 stack_pointer
= (u32
*) thread_state
->ESP
;
155 *(--stack_pointer
) = data
;
156 thread_state
->ESP
= (unsigned int) stack_pointer
;
159 void align_context_stack(x86_thread_state32_t
*thread_state
)
161 /* 16byte align the stack (provided that the stack is, as it
162 * should be, 4byte aligned. */
163 while (thread_state
->ESP
& 15) push_context(0, thread_state
);
166 /* Stack allocation starts with a context that has a mod-4 ESP value
167 * and needs to leave a context with a mod-16 ESP that will restore
168 * the old ESP value and other register state when activated. The
169 * first part of this is the recovery trampoline, which loads ESP from
170 * EBP, pops EBP, and returns. */
171 asm("_stack_allocation_recover: movl %ebp, %esp; popl %ebp; ret;");
173 void open_stack_allocation(x86_thread_state32_t
*thread_state
)
175 void stack_allocation_recover(void);
177 push_context(thread_state
->EIP
, thread_state
);
178 push_context(thread_state
->EBP
, thread_state
);
179 thread_state
->EBP
= thread_state
->ESP
;
180 thread_state
->EIP
= (unsigned int) stack_allocation_recover
;
182 align_context_stack(thread_state
);
185 /* Stack allocation of data starts with a context with a mod-16 ESP
186 * value and reserves some space on it by manipulating the ESP
188 void *stack_allocate(x86_thread_state32_t
*thread_state
, size_t size
)
190 /* round up size to 16byte multiple */
191 size
= (size
+ 15) & -16;
193 thread_state
->ESP
= ((u32
)thread_state
->ESP
) - size
;
195 return (void *)thread_state
->ESP
;
198 /* Arranging to invoke a C function is tricky, as we have to assume
199 * cdecl calling conventions (caller removes args) and x86/darwin
200 * alignment requirements. The simplest way to arrange this,
201 * actually, is to open a new stack allocation.
202 * WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
203 void call_c_function_in_context(x86_thread_state32_t
*thread_state
,
212 /* Set up to restore stack on exit. */
213 open_stack_allocation(thread_state
);
215 /* Have to keep stack 16byte aligned on x86/darwin. */
216 for (i
= (3 & -nargs
); i
; i
--) {
217 push_context(0, thread_state
);
220 thread_state
->ESP
= ((u32
)thread_state
->ESP
) - nargs
* 4;
221 stack_pointer
= (u32
*)thread_state
->ESP
;
224 for (i
= 0; i
< nargs
; i
++) {
225 //push_context(va_arg(ap, u32), thread_state);
226 stack_pointer
[i
] = va_arg(ap
, u32
);
230 push_context(thread_state
->EIP
, thread_state
);
231 thread_state
->EIP
= (unsigned int) function
;
234 void signal_emulation_wrapper(x86_thread_state32_t
*thread_state
,
235 x86_float_state32_t
*float_state
,
238 void (*handler
)(int, siginfo_t
*, void *))
241 os_context_t context
;
242 _STRUCT_MCONTEXT32 regs
;
244 context
.uc_mcontext
= ®s
;
246 /* when BSD signals are fired, they mask they signals in sa_mask
247 which always seem to be the blockable_sigset, for us, so we
249 1) save the current sigmask
250 2) block blockable signals
251 3) call the signal handler
252 4) restore the sigmask */
253 build_fake_signal_context(&context
, thread_state
, float_state
);
255 block_blockable_signals(0);
257 handler(signal
, siginfo
, &context
);
259 update_thread_state_from_context(thread_state
, float_state
, &context
);
261 /* Trap to restore the signal context. */
262 asm volatile (".long 0xffff0b0f"
263 : : "a" (thread_state
), "c" (float_state
));
266 /* Convenience wrapper for the above */
267 void call_handler_on_thread(mach_port_t thread
,
268 x86_thread_state32_t
*thread_state
,
271 void (*handler
)(int, siginfo_t
*, os_context_t
*))
273 x86_thread_state32_t new_state
;
274 x86_thread_state32_t
*save_thread_state
;
275 x86_float_state32_t
*save_float_state
;
276 mach_msg_type_number_t state_count
;
277 siginfo_t
*save_siginfo
;
279 /* Initialize the new state */
280 new_state
= *thread_state
;
281 open_stack_allocation(&new_state
);
282 stack_allocate(&new_state
, 256);
284 save_thread_state
= (x86_thread_state32_t
*)stack_allocate(&new_state
, sizeof(*save_thread_state
));
285 *save_thread_state
= *thread_state
;
286 /* Save float state */
287 save_float_state
= (x86_float_state32_t
*)stack_allocate(&new_state
, sizeof(*save_float_state
));
288 state_count
= x86_FLOAT_STATE32_COUNT
;
289 if ((ret
= thread_get_state(thread
,
291 (thread_state_t
)save_float_state
,
292 &state_count
)) != KERN_SUCCESS
)
293 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret
);
295 save_siginfo
= stack_allocate(&new_state
, sizeof(*siginfo
));
297 save_siginfo
= siginfo
;
299 *save_siginfo
= *siginfo
;
300 /* Prepare to call */
301 call_c_function_in_context(&new_state
,
302 signal_emulation_wrapper
,
309 /* Update the thread state */
310 state_count
= x86_THREAD_STATE32_COUNT
;
311 if ((ret
= thread_set_state(thread
,
313 (thread_state_t
)&new_state
,
314 state_count
)) != KERN_SUCCESS
)
315 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret
);
319 #if defined DUMP_CONTEXT
320 void dump_context(x86_thread_state32_t
*thread_state
)
325 printf("eax: %08lx ecx: %08lx edx: %08lx ebx: %08lx\n",
326 thread_state
->EAX
, thread_state
->ECX
, thread_state
->EDX
, thread_state
->EAX
);
327 printf("esp: %08lx ebp: %08lx esi: %08lx edi: %08lx\n",
328 thread_state
->ESP
, thread_state
->EBP
, thread_state
->ESI
, thread_state
->EDI
);
329 printf("eip: %08lx eflags: %08lx\n",
330 thread_state
->EIP
, thread_state
->EFLAGS
);
331 printf("cs: %04hx ds: %04hx es: %04hx "
332 "ss: %04hx fs: %04hx gs: %04hx\n",
340 stack_pointer
= (u32
*)thread_state
->ESP
;
341 for (i
= 0; i
< 48; i
+=4) {
342 printf("%08x: %08x %08x %08x %08x\n",
343 thread_state
->ESP
+ (i
* 4),
353 control_stack_exhausted_handler(int signal
, siginfo_t
*siginfo
,
354 os_context_t
*context
) {
355 extern void unblock_signals_in_context_and_maybe_warn(os_context_t
*);
356 unblock_signals_in_context_and_maybe_warn(context
);
357 arrange_return_to_lisp_function
358 (context
, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR
));
362 undefined_alien_handler(int signal
, siginfo_t
*siginfo
, os_context_t
*context
) {
363 arrange_return_to_lisp_function
364 (context
, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR
));
368 catch_exception_raise(mach_port_t exception_port
,
371 exception_type_t exception
,
372 exception_data_t code_vector
,
373 mach_msg_type_number_t code_count
)
375 x86_thread_state32_t thread_state
;
376 mach_msg_type_number_t state_count
;
379 void (*handler
)(int, siginfo_t
*, os_context_t
*) = NULL
;
381 kern_return_t ret
, dealloc_ret
;
385 FSHOW((stderr
,"/entering catch_exception_raise with exception: %d\n", exception
));
386 th
= *(struct thread
**)exception_port
;
387 /* Get state and info */
388 state_count
= x86_THREAD_STATE32_COUNT
;
389 if ((ret
= thread_get_state(thread
,
391 (thread_state_t
)&thread_state
,
392 &state_count
)) != KERN_SUCCESS
)
393 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret
);
397 /* Check if write protection fault */
398 if ((code_vector
[0] & OS_VM_PROT_ALL
) == 0) {
399 ret
= KERN_INVALID_RIGHT
;
402 addr
= (void*)code_vector
[1];
403 /* Undefined alien */
404 if (os_trunc_to_page(addr
) == undefined_alien_address
) {
405 handler
= undefined_alien_handler
;
409 if (os_trunc_to_page(addr
) == CONTROL_STACK_GUARD_PAGE(th
)) {
410 lower_thread_control_stack_guard_page(th
);
411 handler
= control_stack_exhausted_handler
;
414 /* Return from stack guard */
415 if (os_trunc_to_page(addr
) == CONTROL_STACK_RETURN_GUARD_PAGE(th
)) {
416 reset_thread_control_stack_guard_page(th
);
419 /* Regular memory fault */
420 handler
= memory_fault_handler
;
422 case EXC_BAD_INSTRUCTION
:
424 /* Check if illegal instruction trap */
425 if (code_vector
[0] != EXC_I386_INVOP
) {
426 ret
= KERN_INVALID_RIGHT
;
429 /* Check if UD2 instruction */
430 if (*(unsigned short *)thread_state
.EIP
!= 0x0b0f) {
431 /* KLUDGE: There are two ways we could get here:
432 * 1) We're executing data and we've hit some truly
433 * illegal opcode, of which there are a few, see
434 * Intel 64 and IA-32 Architectures
435 * Sofware Developer's Manual
436 * Volume 3A page 5-34)
437 * 2) The kernel started an unrelated signal handler
438 * before we got a chance to run. The context that
439 * caused the exception is saved in a stack frame
440 * somewhere down below.
441 * In either case we rely on the exception to retrigger,
442 * eventually bailing out if we're spinning on case 2).
444 static mach_port_t last_thread
;
445 static unsigned int last_eip
;
446 if (last_thread
== thread
&& last_eip
== thread_state
.EIP
)
447 ret
= KERN_INVALID_RIGHT
;
450 last_thread
= thread
;
451 last_eip
= thread_state
.EIP
;
454 /* Skip the trap code */
455 thread_state
.EIP
+= 2;
456 /* Return from handler? */
457 if (*(unsigned short *)thread_state
.EIP
== 0xffff) {
458 if ((ret
= thread_set_state(thread
,
460 (thread_state_t
)thread_state
.EAX
,
461 x86_THREAD_STATE32_COUNT
)) != KERN_SUCCESS
)
462 lose("thread_set_state (x86_THREAD_STATE32) failed %d\n", ret
);
463 if ((ret
= thread_set_state(thread
,
465 (thread_state_t
)thread_state
.ECX
,
466 x86_FLOAT_STATE32_COUNT
)) != KERN_SUCCESS
)
467 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret
);
471 handler
= sigtrap_handler
;
474 ret
= KERN_INVALID_RIGHT
;
478 siginfo
.si_signo
= signal
;
479 siginfo
.si_addr
= addr
;
480 call_handler_on_thread(thread
, &thread_state
, signal
, &siginfo
, handler
);
483 if (current_mach_task
== MACH_PORT_NULL
)
484 current_mach_task
= mach_task_self();
486 dealloc_ret
= mach_port_deallocate (current_mach_task
, thread
);
488 lose("mach_port_deallocate (thread) failed with return_code %d\n", dealloc_ret
);
491 dealloc_ret
= mach_port_deallocate (current_mach_task
, task
);
493 lose("mach_port_deallocate (task) failed with return_code %d\n", dealloc_ret
);
500 os_restore_fp_control(os_context_t
*context
)
502 /* KLUDGE: The x87 FPU control word is some nasty bitfield struct
503 * thing. Rather than deal with that, just grab it as a 16-bit
505 unsigned short fpu_control_word
=
506 *((unsigned short *)&context
->uc_mcontext
->FS
.FPU_FCW
);
507 /* reset exception flags and restore control flags on x87 FPU */
508 asm ("fldcw %0" : : "m" (fpu_control_word
));