Remove global vars holding interned {char,numeric,array} ctypes.
[sbcl.git] / src / code / late-type.lisp
blobe6f5bff0d03cde64279e6696bcb757c6a3874711
1 ;;;; This file contains the definition of non-CLASS types (e.g.
2 ;;;; subtypes of interesting BUILT-IN-CLASSes) and the interfaces to
3 ;;;; the type system. Common Lisp type specifiers are parsed into a
4 ;;;; somewhat canonical internal type representation that supports
5 ;;;; type union, intersection, etc. (Except that ALIEN types have
6 ;;;; moved out..)
8 ;;;; This software is part of the SBCL system. See the README file for
9 ;;;; more information.
10 ;;;;
11 ;;;; This software is derived from the CMU CL system, which was
12 ;;;; written at Carnegie Mellon University and released into the
13 ;;;; public domain. The software is in the public domain and is
14 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
15 ;;;; files for more information.
17 (in-package "SB!KERNEL")
19 (/show0 "late-type.lisp 19")
21 (!begin-collecting-cold-init-forms)
23 ;;; ### Remaining incorrectnesses:
24 ;;;
25 ;;; There are all sorts of nasty problems with open bounds on FLOAT
26 ;;; types (and probably FLOAT types in general.)
28 ;;; This condition is signalled whenever we make a UNKNOWN-TYPE so that
29 ;;; compiler warnings can be emitted as appropriate.
30 (define-condition parse-unknown-type (condition)
31 ((specifier :reader parse-unknown-type-specifier :initarg :specifier))
32 (:default-initargs
33 :specifier (missing-arg)))
35 ;;; This condition is signalled whenever we encounter a type (DEFTYPE,
36 ;;; structure, condition, class) that has been marked as deprecated.
37 (define-condition parse-deprecated-type (condition)
38 ((specifier :reader parse-deprecated-type-specifier :initarg :specifier))
39 (:default-initargs
40 :specifier (missing-arg)))
42 ;;; These functions are used as method for types which need a complex
43 ;;; subtypep method to handle some superclasses, but cover a subtree
44 ;;; of the type graph (i.e. there is no simple way for any other type
45 ;;; class to be a subtype.) There are always still complex ways,
46 ;;; namely UNION and MEMBER types, so we must give TYPE1's method a
47 ;;; chance to run, instead of immediately returning NIL, T.
48 (defun delegate-complex-subtypep-arg2 (type1 type2)
49 (let ((subtypep-arg1
50 (type-class-complex-subtypep-arg1 (type-class-info type1))))
51 (if subtypep-arg1
52 (funcall subtypep-arg1 type1 type2)
53 (values nil t))))
54 (defun delegate-complex-intersection2 (type1 type2)
55 (let ((method (type-class-complex-intersection2 (type-class-info type1))))
56 (if (and method (not (eq method #'delegate-complex-intersection2)))
57 (funcall method type2 type1)
58 (hierarchical-intersection2 type1 type2))))
60 (defun contains-unknown-type-p (ctype)
61 (typecase ctype
62 (unknown-type t)
63 (compound-type (some #'contains-unknown-type-p (compound-type-types ctype)))
64 (negation-type (contains-unknown-type-p (negation-type-type ctype)))
65 (cons-type (or (contains-unknown-type-p (cons-type-car-type ctype))
66 (contains-unknown-type-p (cons-type-cdr-type ctype))))
67 (array-type (contains-unknown-type-p (array-type-element-type ctype)))))
69 ;; Similar to (NOT CONTAINS-UNKNOWN-TYPE-P), but report that (SATISFIES F)
70 ;; is not a testable type unless F is currently bound.
71 (defun testable-type-p (ctype)
72 (typecase ctype
73 (unknown-type nil) ; must precede HAIRY because an unknown is HAIRY
74 (hairy-type
75 (let ((spec (hairy-type-specifier ctype)))
76 ;; Anything other than (SATISFIES ...) is testable
77 ;; because there's no reason to suppose that it isn't.
78 (or (neq (car spec) 'satisfies) (fboundp (cadr spec)))))
79 (compound-type (every #'testable-type-p (compound-type-types ctype)))
80 (negation-type (testable-type-p (negation-type-type ctype)))
81 (cons-type (and (testable-type-p (cons-type-car-type ctype))
82 (testable-type-p (cons-type-cdr-type ctype))))
83 ;; This case could be too strict. I think an array type is testable
84 ;; if the upgraded type is testable. Probably nobody cares though.
85 (array-type (testable-type-p (array-type-element-type ctype)))
86 (t t)))
88 ;;; This is used by !DEFINE-SUPERCLASSES to define the SUBTYPE-ARG1
89 ;;; method. INFO is a list of conses
90 ;;; (SUPERCLASS-CLASS . {GUARD-TYPE-SPECIFIER | NIL}).
91 (defun has-superclasses-complex-subtypep-arg1 (type1 type2 info)
92 ;; If TYPE2 might be concealing something related to our class
93 ;; hierarchy
94 (if (type-might-contain-other-types-p type2)
95 ;; too confusing, gotta punt
96 (values nil nil)
97 ;; ordinary case expected by old CMU CL code, where the taxonomy
98 ;; of TYPE2's representation accurately reflects the taxonomy of
99 ;; the underlying set
100 (values
101 ;; FIXME: This old CMU CL code probably deserves a comment
102 ;; explaining to us mere mortals how it works...
103 (and (sb!xc:typep type2 'classoid)
104 (dolist (x info nil)
105 (when (or (not (cdr x))
106 (csubtypep type1 (specifier-type (cdr x))))
107 (return
108 (or (eq type2 (car x))
109 (let ((inherits (layout-inherits
110 (classoid-layout (car x)))))
111 (dotimes (i (length inherits) nil)
112 (when (eq type2 (layout-classoid (svref inherits i)))
113 (return t)))))))))
114 t)))
116 ;;; This function takes a list of specs, each of the form
117 ;;; (SUPERCLASS-NAME &OPTIONAL GUARD).
118 ;;; Consider one spec (with no guard): any instance of the named
119 ;;; TYPE-CLASS is also a subtype of the named superclass and of any of
120 ;;; its superclasses. If there are multiple specs, then some will have
121 ;;; guards. We choose the first spec whose guard is a supertype of
122 ;;; TYPE1 and use its superclass. In effect, a sequence of guards
123 ;;; G0, G1, G2
124 ;;; is actually
125 ;;; G0,(and G1 (not G0)), (and G2 (not (or G0 G1))).
127 ;;; WHEN controls when the forms are executed.
128 (defmacro !define-superclasses (type-class-name specs when)
129 (with-unique-names (type-class info)
130 `(,when
131 (let ((,type-class (type-class-or-lose ',type-class-name))
132 (,info (mapcar (lambda (spec)
133 (destructuring-bind
134 (super &optional guard)
135 spec
136 (cons (find-classoid super) guard)))
137 ',specs)))
138 (setf (type-class-complex-subtypep-arg1 ,type-class)
139 (lambda (type1 type2)
140 (has-superclasses-complex-subtypep-arg1 type1 type2 ,info)))
141 (setf (type-class-complex-subtypep-arg2 ,type-class)
142 #'delegate-complex-subtypep-arg2)
143 (setf (type-class-complex-intersection2 ,type-class)
144 #'delegate-complex-intersection2)))))
146 ;;;; FUNCTION and VALUES types
147 ;;;;
148 ;;;; Pretty much all of the general type operations are illegal on
149 ;;;; VALUES types, since we can't discriminate using them, do
150 ;;;; SUBTYPEP, etc. FUNCTION types are acceptable to the normal type
151 ;;;; operations, but are generally considered to be equivalent to
152 ;;;; FUNCTION. These really aren't true types in any type theoretic
153 ;;;; sense, but we still parse them into CTYPE structures for two
154 ;;;; reasons:
156 ;;;; -- Parsing and unparsing work the same way, and indeed we can't
157 ;;;; tell whether a type is a function or values type without
158 ;;;; parsing it.
159 ;;;; -- Many of the places that can be annotated with real types can
160 ;;;; also be annotated with function or values types.
162 (!define-type-method (values :simple-subtypep :complex-subtypep-arg1)
163 (type1 type2)
164 (declare (ignore type2))
165 ;; FIXME: should be TYPE-ERROR, here and in next method
166 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type1)))
168 (!define-type-method (values :complex-subtypep-arg2)
169 (type1 type2)
170 (declare (ignore type1))
171 (error "SUBTYPEP is illegal on this type:~% ~S" (type-specifier type2)))
173 (!define-type-method (values :negate) (type)
174 (error "NOT VALUES too confusing on ~S" (type-specifier type)))
176 (!define-type-method (values :unparse) (type)
177 (cons 'values
178 (let ((unparsed (unparse-args-types type)))
179 (if (or (values-type-optional type)
180 (values-type-rest type)
181 (values-type-allowp type))
182 unparsed
183 (nconc unparsed '(&optional))))))
185 ;;; Return true if LIST1 and LIST2 have the same elements in the same
186 ;;; positions according to TYPE=. We return NIL, NIL if there is an
187 ;;; uncertain comparison.
188 (defun type=-list (list1 list2)
189 (declare (list list1 list2))
190 (do ((types1 list1 (cdr types1))
191 (types2 list2 (cdr types2)))
192 ((or (null types1) (null types2))
193 (if (or types1 types2)
194 (values nil t)
195 (values t t)))
196 (multiple-value-bind (val win)
197 (type= (first types1) (first types2))
198 (unless win
199 (return (values nil nil)))
200 (unless val
201 (return (values nil t))))))
203 (!define-type-method (values :simple-=) (type1 type2)
204 (type=-args type1 type2))
206 (!define-type-class function :enumerable nil
207 :might-contain-other-types nil)
209 ;;; a flag that we can bind to cause complex function types to be
210 ;;; unparsed as FUNCTION. This is useful when we want a type that we
211 ;;; can pass to TYPEP.
212 (!defvar *unparse-fun-type-simplify* nil)
213 ;;; A flag to prevent TYPE-OF calls by user applications from returning
214 ;;; (NOT x). TYPE-SPECIFIER usually allows it to preserve information.
215 (!defvar *unparse-allow-negation* t)
217 (!define-type-method (function :negate) (type) (make-negation-type type))
219 (!define-type-method (function :unparse) (type)
220 (if *unparse-fun-type-simplify*
221 'function
222 (list 'function
223 (if (fun-type-wild-args type)
225 (unparse-args-types type))
226 (type-specifier
227 (fun-type-returns type)))))
229 ;;; The meaning of this is a little confused. On the one hand, all
230 ;;; function objects are represented the same way regardless of the
231 ;;; arglists and return values, and apps don't get to ask things like
232 ;;; (TYPEP #'FOO (FUNCTION (FIXNUM) *)) in any meaningful way. On the
233 ;;; other hand, Python wants to reason about function types. So...
234 (!define-type-method (function :simple-subtypep) (type1 type2)
235 (flet ((fun-type-simple-p (type)
236 (not (or (fun-type-rest type)
237 (fun-type-keyp type))))
238 (every-csubtypep (types1 types2)
239 (loop
240 for a1 in types1
241 for a2 in types2
242 do (multiple-value-bind (res sure-p)
243 (csubtypep a1 a2)
244 (unless res (return (values res sure-p))))
245 finally (return (values t t)))))
246 (and/type (values-subtypep (fun-type-returns type1)
247 (fun-type-returns type2))
248 (cond ((fun-type-wild-args type2) (values t t))
249 ((fun-type-wild-args type1)
250 (cond ((fun-type-keyp type2) (values nil nil))
251 ((not (fun-type-rest type2)) (values nil t))
252 ((not (null (fun-type-required type2)))
253 (values nil t))
254 (t (and/type (type= *universal-type*
255 (fun-type-rest type2))
256 (every/type #'type=
257 *universal-type*
258 (fun-type-optional
259 type2))))))
260 ((not (and (fun-type-simple-p type1)
261 (fun-type-simple-p type2)))
262 (values nil nil))
263 (t (multiple-value-bind (min1 max1) (fun-type-nargs type1)
264 (multiple-value-bind (min2 max2) (fun-type-nargs type2)
265 (cond ((or (> max1 max2) (< min1 min2))
266 (values nil t))
267 ((and (= min1 min2) (= max1 max2))
268 (and/type (every-csubtypep
269 (fun-type-required type1)
270 (fun-type-required type2))
271 (every-csubtypep
272 (fun-type-optional type1)
273 (fun-type-optional type2))))
274 (t (every-csubtypep
275 (concatenate 'list
276 (fun-type-required type1)
277 (fun-type-optional type1))
278 (concatenate 'list
279 (fun-type-required type2)
280 (fun-type-optional type2))))))))))))
282 (!define-superclasses function ((function)) !cold-init-forms)
284 ;;; The union or intersection of two FUNCTION types is FUNCTION.
285 (!define-type-method (function :simple-union2) (type1 type2)
286 (declare (ignore type1 type2))
287 (specifier-type 'function))
288 (!define-type-method (function :simple-intersection2) (type1 type2)
289 (let ((ftype (specifier-type 'function)))
290 (cond ((eq type1 ftype) type2)
291 ((eq type2 ftype) type1)
292 (t (let ((rtype (values-type-intersection (fun-type-returns type1)
293 (fun-type-returns type2))))
294 (flet ((change-returns (ftype rtype)
295 (declare (type fun-type ftype) (type ctype rtype))
296 (make-fun-type :required (fun-type-required ftype)
297 :optional (fun-type-optional ftype)
298 :keyp (fun-type-keyp ftype)
299 :keywords (fun-type-keywords ftype)
300 :allowp (fun-type-allowp ftype)
301 :returns rtype)))
302 (cond
303 ((fun-type-wild-args type1)
304 (if (fun-type-wild-args type2)
305 (make-fun-type :wild-args t
306 :returns rtype)
307 (change-returns type2 rtype)))
308 ((fun-type-wild-args type2)
309 (change-returns type1 rtype))
310 (t (multiple-value-bind (req opt rest)
311 (args-type-op type1 type2 #'type-intersection #'max)
312 (make-fun-type :required req
313 :optional opt
314 :rest rest
315 ;; FIXME: :keys
316 :allowp (and (fun-type-allowp type1)
317 (fun-type-allowp type2))
318 :returns rtype))))))))))
320 ;;; The union or intersection of a subclass of FUNCTION with a
321 ;;; FUNCTION type is somewhat complicated.
322 (!define-type-method (function :complex-intersection2) (type1 type2)
323 (cond
324 ((type= type1 (specifier-type 'function)) type2)
325 ((csubtypep type1 (specifier-type 'function)) nil)
326 (t :call-other-method)))
327 (!define-type-method (function :complex-union2) (type1 type2)
328 (declare (ignore type2))
329 ;; TYPE2 is a FUNCTION type. If TYPE1 is a classoid type naming
330 ;; FUNCTION, then it is the union of the two; otherwise, there is no
331 ;; special union.
332 (cond
333 ((type= type1 (specifier-type 'function)) type1)
334 (t nil)))
336 (!define-type-method (function :simple-=) (type1 type2)
337 (macrolet ((compare (comparator field)
338 (let ((reader (symbolicate '#:fun-type- field)))
339 `(,comparator (,reader type1) (,reader type2)))))
340 (and/type (compare type= returns)
341 (cond ((neq (fun-type-wild-args type1) (fun-type-wild-args type2))
342 (values nil t))
343 ((eq (fun-type-wild-args type1) t)
344 (values t t))
345 (t (type=-args type1 type2))))))
347 (!define-type-class constant :inherits values)
349 (!define-type-method (constant :negate) (type)
350 (error "NOT CONSTANT too confusing on ~S" (type-specifier type)))
352 (!define-type-method (constant :unparse) (type)
353 `(constant-arg ,(type-specifier (constant-type-type type))))
355 (!define-type-method (constant :simple-=) (type1 type2)
356 (type= (constant-type-type type1) (constant-type-type type2)))
358 (!def-type-translator constant-arg ((:context context) type)
359 (make-constant-type :type (single-value-specifier-type-r context type)))
361 ;;; Return the lambda-list-like type specification corresponding
362 ;;; to an ARGS-TYPE.
363 (declaim (ftype (function (args-type) list) unparse-args-types))
364 (defun unparse-args-types (type)
365 (collect ((result))
367 (dolist (arg (args-type-required type))
368 (result (type-specifier arg)))
370 (when (args-type-optional type)
371 (result '&optional)
372 (dolist (arg (args-type-optional type))
373 (result (type-specifier arg))))
375 (when (args-type-rest type)
376 (result '&rest)
377 (result (type-specifier (args-type-rest type))))
379 (when (args-type-keyp type)
380 (result '&key)
381 (dolist (key (args-type-keywords type))
382 (result (list (key-info-name key)
383 (type-specifier (key-info-type key))))))
385 (when (args-type-allowp type)
386 (result '&allow-other-keys))
388 (result)))
390 (!def-type-translator function ((:context context)
391 &optional (args '*) (result '*))
392 (let ((result (coerce-to-values (values-specifier-type-r context result))))
393 (if (eq args '*)
394 (if (eq result *wild-type*)
395 (specifier-type 'function)
396 (make-fun-type :wild-args t :returns result))
397 (multiple-value-bind (llks required optional rest keywords)
398 (parse-args-types context args :function-type)
399 (if (and (null required)
400 (null optional)
401 (eq rest *universal-type*)
402 (not (ll-kwds-keyp llks)))
403 (if (eq result *wild-type*)
404 (specifier-type 'function)
405 (make-fun-type :wild-args t :returns result))
406 (make-fun-type :required required
407 :optional optional
408 :rest rest
409 :keyp (ll-kwds-keyp llks)
410 :keywords keywords
411 :allowp (ll-kwds-allowp llks)
412 :returns result))))))
414 (!def-type-translator values :list ((:context context) &rest values)
415 (if (eq values '*)
416 *wild-type*
417 (multiple-value-bind (llks required optional rest)
418 (parse-args-types context values :values-type)
419 (if (plusp llks)
420 (make-values-type :required required :optional optional :rest rest)
421 (make-short-values-type required)))))
423 ;;;; VALUES types interfaces
424 ;;;;
425 ;;;; We provide a few special operations that can be meaningfully used
426 ;;;; on VALUES types (as well as on any other type).
428 ;;; Return the minimum number of values possibly matching VALUES type
429 ;;; TYPE.
430 (defun values-type-min-value-count (type)
431 (etypecase type
432 (named-type
433 (ecase (named-type-name type)
434 ((t *) 0)
435 ((nil) 0)))
436 (values-type
437 (length (values-type-required type)))))
439 ;;; Return the maximum number of values possibly matching VALUES type
440 ;;; TYPE.
441 (defun values-type-max-value-count (type)
442 (etypecase type
443 (named-type
444 (ecase (named-type-name type)
445 ((t *) call-arguments-limit)
446 ((nil) 0)))
447 (values-type
448 (if (values-type-rest type)
449 call-arguments-limit
450 (+ (length (values-type-optional type))
451 (length (values-type-required type)))))))
453 (defun values-type-may-be-single-value-p (type)
454 (<= (values-type-min-value-count type)
456 (values-type-max-value-count type)))
458 ;;; VALUES type with a single value.
459 (defun type-single-value-p (type)
460 (and (%values-type-p type)
461 (not (values-type-rest type))
462 (null (values-type-optional type))
463 (singleton-p (values-type-required type))))
465 ;;; Return the type of the first value indicated by TYPE. This is used
466 ;;; by people who don't want to have to deal with VALUES types.
467 #!-sb-fluid (declaim (freeze-type values-type))
468 ; (inline single-value-type))
469 (defun single-value-type (type)
470 (declare (type ctype type))
471 (cond ((eq type *wild-type*)
472 *universal-type*)
473 ((eq type *empty-type*)
474 *empty-type*)
475 ((not (values-type-p type))
476 type)
477 ((car (args-type-required type)))
478 (t (type-union (specifier-type 'null)
479 (or (car (args-type-optional type))
480 (args-type-rest type)
481 (specifier-type 'null))))))
483 ;;; Return the minimum number of arguments that a function can be
484 ;;; called with, and the maximum number or NIL. If not a function
485 ;;; type, return NIL, NIL.
486 (defun fun-type-nargs (type)
487 (declare (type ctype type))
488 (if (and (fun-type-p type) (not (fun-type-wild-args type)))
489 (let ((fixed (length (args-type-required type))))
490 (if (or (args-type-rest type)
491 (args-type-keyp type)
492 (args-type-allowp type))
493 (values fixed nil)
494 (values fixed (+ fixed (length (args-type-optional type))))))
495 (values nil nil)))
497 ;;; Determine whether TYPE corresponds to a definite number of values.
498 ;;; The first value is a list of the types for each value, and the
499 ;;; second value is the number of values. If the number of values is
500 ;;; not fixed, then return NIL and :UNKNOWN.
501 (defun values-types (type)
502 (declare (type ctype type))
503 (cond ((or (eq type *wild-type*) (eq type *empty-type*))
504 (values nil :unknown))
505 ((or (args-type-optional type)
506 (args-type-rest type))
507 (values nil :unknown))
509 (let ((req (args-type-required type)))
510 (values req (length req))))))
512 ;;; Return two values:
513 ;;; 1. A list of all the positional (fixed and optional) types.
514 ;;; 2. The &REST type (if any). If no &REST, then the DEFAULT-TYPE.
515 (defun values-type-types (type &optional (default-type *empty-type*))
516 (declare (type ctype type))
517 (if (eq type *wild-type*)
518 (values nil *universal-type*)
519 (values (append (args-type-required type)
520 (args-type-optional type))
521 (cond ((args-type-rest type))
522 (t default-type)))))
524 ;;; types of values in (the <type> (values o_1 ... o_n))
525 (defun values-type-out (type count)
526 (declare (type ctype type) (type unsigned-byte count))
527 (if (eq type *wild-type*)
528 (make-list count :initial-element *universal-type*)
529 (collect ((res))
530 (flet ((process-types (types)
531 (loop for type in types
532 while (plusp count)
533 do (decf count)
534 do (res type))))
535 (process-types (values-type-required type))
536 (process-types (values-type-optional type))
537 (when (plusp count)
538 (loop with rest = (the ctype (values-type-rest type))
539 repeat count
540 do (res rest))))
541 (res))))
543 ;;; types of variable in (m-v-bind (v_1 ... v_n) (the <type> ...
544 (defun values-type-in (type count)
545 (declare (type ctype type) (type unsigned-byte count))
546 (if (eq type *wild-type*)
547 (make-list count :initial-element *universal-type*)
548 (collect ((res))
549 (let ((null-type (specifier-type 'null)))
550 (loop for type in (values-type-required type)
551 while (plusp count)
552 do (decf count)
553 do (res type))
554 (loop for type in (values-type-optional type)
555 while (plusp count)
556 do (decf count)
557 do (res (type-union type null-type)))
558 (when (plusp count)
559 (loop with rest = (acond ((values-type-rest type)
560 (type-union it null-type))
561 (t null-type))
562 repeat count
563 do (res rest))))
564 (res))))
566 ;;; Return a list of OPERATION applied to the types in TYPES1 and
567 ;;; TYPES2, padding with REST2 as needed. TYPES1 must not be shorter
568 ;;; than TYPES2. The second value is T if OPERATION always returned a
569 ;;; true second value.
570 (defun fixed-values-op (types1 types2 rest2 operation)
571 (declare (list types1 types2) (type ctype rest2) (type function operation))
572 (let ((exact t))
573 (values (mapcar (lambda (t1 t2)
574 (multiple-value-bind (res win)
575 (funcall operation t1 t2)
576 (unless win
577 (setq exact nil))
578 res))
579 types1
580 (append types2
581 (make-list (- (length types1) (length types2))
582 :initial-element rest2)))
583 exact)))
585 ;;; If TYPE isn't a values type, then make it into one.
586 (defun-cached (%coerce-to-values :hash-bits 8 :hash-function #'type-hash-value)
587 ((type eq))
588 (cond ((multiple-value-bind (res sure)
589 (csubtypep (specifier-type 'null) type)
590 (and (not res) sure))
591 ;; FIXME: What should we do with (NOT SURE)?
592 (make-values-type :required (list type) :rest *universal-type*))
594 (make-values-type :optional (list type) :rest *universal-type*))))
596 (defun coerce-to-values (type)
597 (declare (type ctype type))
598 (cond ((or (eq type *universal-type*)
599 (eq type *wild-type*))
600 *wild-type*)
601 ((values-type-p type)
602 type)
603 (t (%coerce-to-values type))))
605 ;;; Return type, corresponding to ANSI short form of VALUES type
606 ;;; specifier.
607 (defun make-short-values-type (types)
608 (declare (list types))
609 (let ((last-required (position-if
610 (lambda (type)
611 (not/type (csubtypep (specifier-type 'null) type)))
612 types
613 :from-end t)))
614 (if last-required
615 (make-values-type :required (subseq types 0 (1+ last-required))
616 :optional (subseq types (1+ last-required))
617 :rest *universal-type*)
618 (make-values-type :optional types :rest *universal-type*))))
620 (defun make-single-value-type (type)
621 (make-values-type :required (list type)))
623 ;;; Do the specified OPERATION on TYPE1 and TYPE2, which may be any
624 ;;; type, including VALUES types. With VALUES types such as:
625 ;;; (VALUES a0 a1)
626 ;;; (VALUES b0 b1)
627 ;;; we compute the more useful result
628 ;;; (VALUES (<operation> a0 b0) (<operation> a1 b1))
629 ;;; rather than the precise result
630 ;;; (<operation> (values a0 a1) (values b0 b1))
631 ;;; This has the virtue of always keeping the VALUES type specifier
632 ;;; outermost, and retains all of the information that is really
633 ;;; useful for static type analysis. We want to know what is always
634 ;;; true of each value independently. It is worthless to know that if
635 ;;; the first value is B0 then the second will be B1.
637 ;;; If the VALUES count signatures differ, then we produce a result with
638 ;;; the required VALUE count chosen by NREQ when applied to the number
639 ;;; of required values in TYPE1 and TYPE2. Any &KEY values become
640 ;;; &REST T (anyone who uses keyword values deserves to lose.)
642 ;;; The second value is true if the result is definitely empty or if
643 ;;; OPERATION returned true as its second value each time we called
644 ;;; it. Since we approximate the intersection of VALUES types, the
645 ;;; second value being true doesn't mean the result is exact.
646 (defun args-type-op (type1 type2 operation nreq)
647 (declare (type ctype type1 type2)
648 (type function operation nreq))
649 (when (eq type1 type2)
650 (values type1 t))
651 (multiple-value-bind (types1 rest1)
652 (values-type-types type1)
653 (multiple-value-bind (types2 rest2)
654 (values-type-types type2)
655 (multiple-value-bind (rest rest-exact)
656 (funcall operation rest1 rest2)
657 (multiple-value-bind (res res-exact)
658 (if (< (length types1) (length types2))
659 (fixed-values-op types2 types1 rest1 operation)
660 (fixed-values-op types1 types2 rest2 operation))
661 (let* ((req (funcall nreq
662 (length (args-type-required type1))
663 (length (args-type-required type2))))
664 (required (subseq res 0 req))
665 (opt (subseq res req)))
666 (values required opt rest
667 (and rest-exact res-exact))))))))
669 (defun values-type-op (type1 type2 operation nreq)
670 (multiple-value-bind (required optional rest exactp)
671 (args-type-op type1 type2 operation nreq)
672 (values (make-values-type :required required
673 :optional optional
674 :rest rest)
675 exactp)))
677 (defun compare-key-args (type1 type2)
678 (let ((keys1 (args-type-keywords type1))
679 (keys2 (args-type-keywords type2)))
680 (and (= (length keys1) (length keys2))
681 (eq (args-type-allowp type1)
682 (args-type-allowp type2))
683 (loop for key1 in keys1
684 for match = (find (key-info-name key1)
685 keys2 :key #'key-info-name)
686 always (and match
687 (type= (key-info-type key1)
688 (key-info-type match)))))))
690 (defun type=-args (type1 type2)
691 (macrolet ((compare (comparator field)
692 (let ((reader (symbolicate '#:args-type- field)))
693 `(,comparator (,reader type1) (,reader type2)))))
694 (and/type
695 (cond ((null (args-type-rest type1))
696 (values (null (args-type-rest type2)) t))
697 ((null (args-type-rest type2))
698 (values nil t))
700 (compare type= rest)))
701 (and/type (and/type (compare type=-list required)
702 (compare type=-list optional))
703 (if (or (args-type-keyp type1) (args-type-keyp type2))
704 (values (compare-key-args type1 type2) t)
705 (values t t))))))
707 ;;; Do a union or intersection operation on types that might be values
708 ;;; types. The result is optimized for utility rather than exactness,
709 ;;; but it is guaranteed that it will be no smaller (more restrictive)
710 ;;; than the precise result.
712 ;;; The return convention seems to be analogous to
713 ;;; TYPES-EQUAL-OR-INTERSECT. -- WHN 19990910.
714 (defun-cached (values-type-union :hash-function #'type-cache-hash
715 :hash-bits 8)
716 ((type1 eq) (type2 eq))
717 (declare (type ctype type1 type2))
718 (cond ((or (eq type1 *wild-type*) (eq type2 *wild-type*)) *wild-type*)
719 ((eq type1 *empty-type*) type2)
720 ((eq type2 *empty-type*) type1)
722 (values (values-type-op type1 type2 #'type-union #'min)))))
724 (defun-cached (values-type-intersection :hash-function #'type-cache-hash
725 :hash-bits 8)
726 ((type1 eq) (type2 eq))
727 (declare (type ctype type1 type2))
728 (cond ((eq type1 *wild-type*)
729 (coerce-to-values type2))
730 ((or (eq type2 *wild-type*) (eq type2 *universal-type*))
731 type1)
732 ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
733 *empty-type*)
734 ((and (not (values-type-p type2))
735 (values-type-required type1))
736 (let ((req1 (values-type-required type1)))
737 (make-values-type :required (cons (type-intersection (first req1) type2)
738 (rest req1))
739 :optional (values-type-optional type1)
740 :rest (values-type-rest type1)
741 :allowp (values-type-allowp type1))))
743 (values (values-type-op type1 (coerce-to-values type2)
744 #'type-intersection
745 #'max)))))
747 ;;; This is like TYPES-EQUAL-OR-INTERSECT, except that it sort of
748 ;;; works on VALUES types. Note that due to the semantics of
749 ;;; VALUES-TYPE-INTERSECTION, this might return (VALUES T T) when
750 ;;; there isn't really any intersection.
751 (defun values-types-equal-or-intersect (type1 type2)
752 (cond ((or (eq type1 *empty-type*) (eq type2 *empty-type*))
753 (values t t))
754 ((or (eq type1 *wild-type*) (eq type2 *wild-type*))
755 (values t t))
757 (let ((res (values-type-intersection type1 type2)))
758 (values (not (eq res *empty-type*))
759 t)))))
761 ;;; a SUBTYPEP-like operation that can be used on any types, including
762 ;;; VALUES types
763 (defun-cached (values-subtypep :hash-function #'type-cache-hash
764 :hash-bits 8
765 :values 2)
766 ((type1 eq) (type2 eq))
767 (declare (type ctype type1 type2))
768 (cond ((or (eq type2 *wild-type*) (eq type2 *universal-type*)
769 (eq type1 *empty-type*))
770 (values t t))
771 ((eq type1 *wild-type*)
772 (values (eq type2 *wild-type*) t))
773 ((or (eq type2 *empty-type*)
774 (not (values-types-equal-or-intersect type1 type2)))
775 (values nil t))
776 ((and (not (values-type-p type2))
777 (values-type-required type1))
778 (csubtypep (first (values-type-required type1))
779 type2))
780 (t (setq type2 (coerce-to-values type2))
781 (multiple-value-bind (types1 rest1) (values-type-types type1)
782 (multiple-value-bind (types2 rest2) (values-type-types type2)
783 (cond ((< (length (values-type-required type1))
784 (length (values-type-required type2)))
785 (values nil t))
786 ((< (length types1) (length types2))
787 (values nil nil))
789 (do ((t1 types1 (rest t1))
790 (t2 types2 (rest t2)))
791 ((null t2)
792 (csubtypep rest1 rest2))
793 (multiple-value-bind (res win-p)
794 (csubtypep (first t1) (first t2))
795 (unless win-p
796 (return (values nil nil)))
797 (unless res
798 (return (values nil t))))))))))))
800 ;;;; type method interfaces
802 ;;; like SUBTYPEP, only works on CTYPE structures
803 (defun-cached (csubtypep :hash-function #'type-cache-hash
804 :hash-bits 10
805 :memoizer memoize
806 :values 2)
807 ((type1 eq) (type2 eq))
808 (declare (type ctype type1 type2))
809 (cond ((or (eq type1 type2)
810 (eq type1 *empty-type*)
811 (eq type2 *universal-type*))
812 (values t t))
813 #+nil
814 ((eq type1 *universal-type*)
815 (values nil t))
817 (memoize
818 (!invoke-type-method :simple-subtypep :complex-subtypep-arg2
819 type1 type2
820 :complex-arg1 :complex-subtypep-arg1)))))
822 ;;; Just parse the type specifiers and call CSUBTYPE.
823 (defun sb!xc:subtypep (type1 type2 &optional environment)
824 #!+sb-doc
825 "Return two values indicating the relationship between type1 and type2.
826 If values are T and T, type1 definitely is a subtype of type2.
827 If values are NIL and T, type1 definitely is not a subtype of type2.
828 If values are NIL and NIL, it couldn't be determined."
829 (declare (type lexenv-designator environment) (ignore environment))
830 (declare (explicit-check))
831 (csubtypep (specifier-type type1) (specifier-type type2)))
833 ;;; If two types are definitely equivalent, return true. The second
834 ;;; value indicates whether the first value is definitely correct.
835 ;;; This should only fail in the presence of HAIRY types.
836 (defun-cached (type= :hash-function #'type-cache-hash
837 :hash-bits 11
838 :memoizer memoize
839 :values 2)
840 ((type1 eq) (type2 eq))
841 (declare (type ctype type1 type2))
842 (cond ((eq type1 type2)
843 (values t t))
844 ;; If args are not EQ, but both allow TYPE= optimization,
845 ;; and at least one is interned, then return no and certainty.
846 ;; Most of the interned CTYPEs admit this optimization,
847 ;; NUMERIC and MEMBER types do as well.
848 ((and (minusp (logior (type-hash-value type1) (type-hash-value type2)))
849 (logtest (logand (type-hash-value type1) (type-hash-value type2))
850 +type-admits-type=-optimization+))
851 (values nil t))
853 (memoize (!invoke-type-method :simple-= :complex-= type1 type2)))))
855 ;;; Not exactly the negation of TYPE=, since when the relationship is
856 ;;; uncertain, we still return NIL, NIL. This is useful in cases where
857 ;;; the conservative assumption is =.
858 (defun type/= (type1 type2)
859 (declare (type ctype type1 type2))
860 (multiple-value-bind (res win) (type= type1 type2)
861 (if win
862 (values (not res) t)
863 (values nil nil))))
865 ;;; the type method dispatch case of TYPE-UNION2
866 (defun %type-union2 (type1 type2)
867 ;; As in %TYPE-INTERSECTION2, it seems to be a good idea to give
868 ;; both argument orders a chance at COMPLEX-INTERSECTION2. Unlike
869 ;; %TYPE-INTERSECTION2, though, I don't have a specific case which
870 ;; demonstrates this is actually necessary. Also unlike
871 ;; %TYPE-INTERSECTION2, there seems to be no need to distinguish
872 ;; between not finding a method and having a method return NIL.
873 (flet ((1way (x y)
874 (!invoke-type-method :simple-union2 :complex-union2
876 :default nil)))
877 (declare (inline 1way))
878 (or (1way type1 type2)
879 (1way type2 type1))))
881 ;;; Find a type which includes both types. Any inexactness is
882 ;;; represented by the fuzzy element types; we return a single value
883 ;;; that is precise to the best of our knowledge. This result is
884 ;;; simplified into the canonical form, thus is not a UNION-TYPE
885 ;;; unless we find no other way to represent the result.
886 (defun-cached (type-union2 :hash-function #'type-cache-hash
887 :hash-bits 11
888 :memoizer memoize)
889 ((type1 eq) (type2 eq))
890 ;; KLUDGE: This was generated from TYPE-INTERSECTION2 by Ye Olde Cut And
891 ;; Paste technique of programming. If it stays around (as opposed to
892 ;; e.g. fading away in favor of some CLOS solution) the shared logic
893 ;; should probably become shared code. -- WHN 2001-03-16
894 (declare (type ctype type1 type2))
895 (let ((t2 nil))
896 (if (eq type1 type2)
897 type1
898 (memoize
899 (cond
900 ;; CSUBTYPEP for array-types answers questions about the
901 ;; specialized type, yet for union we want to take the
902 ;; expressed type in account too.
903 ((and (not (and (array-type-p type1) (array-type-p type2)))
904 (or (setf t2 (csubtypep type1 type2))
905 (csubtypep type2 type1)))
906 (if t2 type2 type1))
907 ((or (union-type-p type1)
908 (union-type-p type2))
909 ;; Unions of UNION-TYPE should have the UNION-TYPE-TYPES
910 ;; values broken out and united separately. The full TYPE-UNION
911 ;; function knows how to do this, so let it handle it.
912 (type-union type1 type2))
914 ;; the ordinary case: we dispatch to type methods
915 (%type-union2 type1 type2)))))))
917 ;;; the type method dispatch case of TYPE-INTERSECTION2
918 (defun %type-intersection2 (type1 type2)
919 ;; We want to give both argument orders a chance at
920 ;; COMPLEX-INTERSECTION2. Without that, the old CMU CL type
921 ;; methods could give noncommutative results, e.g.
922 ;; (TYPE-INTERSECTION2 *EMPTY-TYPE* SOME-HAIRY-TYPE)
923 ;; => NIL, NIL
924 ;; (TYPE-INTERSECTION2 SOME-HAIRY-TYPE *EMPTY-TYPE*)
925 ;; => #<NAMED-TYPE NIL>, T
926 ;; We also need to distinguish between the case where we found a
927 ;; type method, and it returned NIL, and the case where we fell
928 ;; through without finding any type method. An example of the first
929 ;; case is the intersection of a HAIRY-TYPE with some ordinary type.
930 ;; An example of the second case is the intersection of two
931 ;; completely-unrelated types, e.g. CONS and NUMBER, or SYMBOL and
932 ;; ARRAY.
934 ;; (Why yes, CLOS probably *would* be nicer..)
935 (flet ((1way (x y)
936 (!invoke-type-method :simple-intersection2 :complex-intersection2
938 :default :call-other-method)))
939 (declare (inline 1way))
940 (let ((xy (1way type1 type2)))
941 (or (and (not (eql xy :call-other-method)) xy)
942 (let ((yx (1way type2 type1)))
943 (or (and (not (eql yx :call-other-method)) yx)
944 (cond ((and (eql xy :call-other-method)
945 (eql yx :call-other-method))
946 *empty-type*)
948 nil))))))))
950 (defun-cached (type-intersection2 :hash-function #'type-cache-hash
951 :hash-bits 11
952 :memoizer memoize
953 :values 1)
954 ((type1 eq) (type2 eq))
955 (declare (type ctype type1 type2))
956 (if (eq type1 type2)
957 ;; FIXME: For some reason, this doesn't catch e.g. type1 =
958 ;; type2 = (SPECIFIER-TYPE
959 ;; 'SOME-UNKNOWN-TYPE). Investigate. - CSR, 2002-04-10
960 type1
961 (memoize
962 (cond
963 ((or (intersection-type-p type1)
964 (intersection-type-p type2))
965 ;; Intersections of INTERSECTION-TYPE should have the
966 ;; INTERSECTION-TYPE-TYPES values broken out and intersected
967 ;; separately. The full TYPE-INTERSECTION function knows how
968 ;; to do that, so let it handle it.
969 (type-intersection type1 type2))
971 ;; the ordinary case: we dispatch to type methods
972 (%type-intersection2 type1 type2))))))
974 ;;; Return as restrictive and simple a type as we can discover that is
975 ;;; no more restrictive than the intersection of TYPE1 and TYPE2. At
976 ;;; worst, we arbitrarily return one of the arguments as the first
977 ;;; value (trying not to return a hairy type).
978 (defun type-approx-intersection2 (type1 type2)
979 (cond ((type-intersection2 type1 type2))
980 ((hairy-type-p type1) type2)
981 (t type1)))
983 ;;; a test useful for checking whether a derived type matches a
984 ;;; declared type
986 ;;; The first value is true unless the types don't intersect and
987 ;;; aren't equal. The second value is true if the first value is
988 ;;; definitely correct. NIL is considered to intersect with any type.
989 ;;; If T is a subtype of either type, then we also return T, T. This
990 ;;; way we recognize that hairy types might intersect with T.
992 ;;; Well now given the statement above that this is "useful for ..."
993 ;;; a particular thing, I see how treating *empty-type* magically could
994 ;;; be useful, however given all the _other_ calls to this function within
995 ;;; this file, it seems suboptimal, because logically it is wrong.
996 (defun types-equal-or-intersect (type1 type2)
997 (declare (type ctype type1 type2))
998 (if (or (eq type1 *empty-type*) (eq type2 *empty-type*))
999 (values t t)
1000 (let ((intersection2 (type-intersection2 type1 type2)))
1001 (cond ((not intersection2)
1002 (if (or (csubtypep *universal-type* type1)
1003 (csubtypep *universal-type* type2))
1004 (values t t)
1005 (values t nil)))
1006 ((eq intersection2 *empty-type*) (values nil t))
1007 (t (values t t))))))
1009 ;;; Return a Common Lisp type specifier corresponding to the TYPE
1010 ;;; object.
1011 (defun type-specifier (type)
1012 (declare (type ctype type))
1013 (funcall (type-class-unparse (type-class-info type)) type))
1015 ;;; Don't try to define a print method until it's actually gonna work!
1016 ;;; (Otherwise this would be near the DEFSTRUCT)
1017 (def!method print-object ((ctype ctype) stream)
1018 (print-unreadable-object (ctype stream :type t)
1019 (prin1 (type-specifier ctype) stream)))
1021 ;;; Same here.
1022 ;;; Just dump it as a specifier. (We'll convert it back upon loading.)
1023 (defun make-type-load-form (type)
1024 (declare (type ctype type))
1025 `(specifier-type ',(type-specifier type)))
1027 (defun-cached (type-negation :hash-function #'type-hash-value
1028 :hash-bits 8
1029 :values 1)
1030 ((type eq))
1031 (declare (type ctype type))
1032 (funcall (type-class-negate (type-class-info type)) type))
1034 (defun-cached (type-singleton-p :hash-function #'type-hash-value
1035 :hash-bits 8
1036 :values 2)
1037 ((type eq))
1038 (declare (type ctype type))
1039 (let ((function (type-class-singleton-p (type-class-info type))))
1040 (if function
1041 (funcall function type)
1042 (values nil nil))))
1044 ;;; (VALUES-SPECIFIER-TYPE and SPECIFIER-TYPE moved from here to
1045 ;;; early-type.lisp by WHN ca. 19990201.)
1047 ;;; Take a list of type specifiers, computing the translation of each
1048 ;;; specifier and defining it as a builtin type.
1049 ;;; Seee the comments in 'type-init' for why this is a slightly
1050 ;;; screwy way to go about it.
1051 (declaim (ftype (function (list) (values)) !precompute-types))
1052 (defun !precompute-types (specs)
1053 (dolist (spec specs)
1054 (let ((res (handler-bind
1055 ((parse-unknown-type
1056 (lambda (c)
1057 (declare (ignore c))
1058 ;; We can handle conditions at this point,
1059 ;; but win32 can not perform i/o here because
1060 ;; !MAKE-COLD-STDERR-STREAM has no implementation.
1061 #!-win32
1062 (progn (write-string "//caught: parse-unknown ")
1063 (write spec)
1064 (terpri)))))
1065 (specifier-type spec))))
1066 (unless (unknown-type-p res)
1067 (setf (info :type :builtin spec) res)
1068 (setf (info :type :kind spec) :primitive))))
1069 (values))
1071 ;;;; general TYPE-UNION and TYPE-INTERSECTION operations
1072 ;;;;
1073 ;;;; These are fully general operations on CTYPEs: they'll always
1074 ;;;; return a CTYPE representing the result.
1076 ;;; shared logic for unions and intersections: Return a list of
1077 ;;; types representing the same types as INPUT-TYPES, but with
1078 ;;; COMPOUND-TYPEs satisfying %COMPOUND-TYPE-P broken up into their
1079 ;;; component types, and with any SIMPLY2 simplifications applied.
1080 (macrolet
1081 ((def (name compound-type-p simplify2)
1082 `(defun ,name (types)
1083 (when types
1084 (multiple-value-bind (first rest)
1085 (if (,compound-type-p (car types))
1086 (values (car (compound-type-types (car types)))
1087 (append (cdr (compound-type-types (car types)))
1088 (cdr types)))
1089 (values (car types) (cdr types)))
1090 (let ((rest (,name rest)) u)
1091 (dolist (r rest (cons first rest))
1092 (when (setq u (,simplify2 first r))
1093 (return (,name (nsubstitute u r rest)))))))))))
1094 (def simplify-intersections intersection-type-p type-intersection2)
1095 (def simplify-unions union-type-p type-union2))
1097 (defun maybe-distribute-one-union (union-type types)
1098 (let* ((intersection (apply #'type-intersection types))
1099 (union (mapcar (lambda (x) (type-intersection x intersection))
1100 (union-type-types union-type))))
1101 (if (notany (lambda (x) (or (hairy-type-p x)
1102 (intersection-type-p x)))
1103 union)
1104 union
1105 nil)))
1107 (defun type-intersection (&rest input-types)
1108 (%type-intersection input-types))
1109 (defun-cached (%type-intersection :hash-bits 10 :hash-function #'type-list-cache-hash)
1110 ((input-types equal))
1111 (let ((simplified-types (simplify-intersections input-types)))
1112 (declare (type list simplified-types))
1113 ;; We want to have a canonical representation of types (or failing
1114 ;; that, punt to HAIRY-TYPE). Canonical representation would have
1115 ;; intersections inside unions but not vice versa, since you can
1116 ;; always achieve that by the distributive rule. But we don't want
1117 ;; to just apply the distributive rule, since it would be too easy
1118 ;; to end up with unreasonably huge type expressions. So instead
1119 ;; we try to generate a simple type by distributing the union; if
1120 ;; the type can't be made simple, we punt to HAIRY-TYPE.
1121 (if (and (cdr simplified-types) (some #'union-type-p simplified-types))
1122 (let* ((first-union (find-if #'union-type-p simplified-types))
1123 (other-types (coerce (remove first-union simplified-types)
1124 'list))
1125 (distributed (maybe-distribute-one-union first-union
1126 other-types)))
1127 (if distributed
1128 (apply #'type-union distributed)
1129 (%make-hairy-type `(and ,@(map 'list #'type-specifier
1130 simplified-types)))))
1131 (cond
1132 ((null simplified-types) *universal-type*)
1133 ((null (cdr simplified-types)) (car simplified-types))
1134 (t (%make-intersection-type
1135 (some #'type-enumerable simplified-types)
1136 simplified-types))))))
1138 (defun type-union (&rest input-types)
1139 (%type-union input-types))
1140 (defun-cached (%type-union :hash-bits 8 :hash-function #'type-list-cache-hash)
1141 ((input-types equal))
1142 (let ((simplified-types (simplify-unions input-types)))
1143 (cond
1144 ((null simplified-types) *empty-type*)
1145 ((null (cdr simplified-types)) (car simplified-types))
1146 (t (make-union-type
1147 (every #'type-enumerable simplified-types)
1148 simplified-types)))))
1150 ;;;; built-in types
1152 ;; This is used when parsing (SATISFIES KEYWORDP)
1153 ;; so that simplifications can be made when computing intersections,
1154 ;; without which we would see this kind of "empty-type in disguise"
1155 ;; (AND (SATISFIES KEYWORDP) CONS)
1156 ;; This isn't *keyword-type* because KEYWORD is implemented
1157 ;; as the intersection of SYMBOL and (SATISFIES KEYWORDP)
1158 ;; We could also intern the KEYWORD type but that would require
1159 ;; hacking the INTERSECTION logic.
1160 (defglobal *satisfies-keywordp-type* -1)
1162 ;; Here too I discovered more than 1000 instances in a particular
1163 ;; Lisp image, when really this is *EMPTY-TYPE*.
1164 ;; (AND (SATISFIES LEGAL-FUN-NAME-P) (SIMPLE-ARRAY CHARACTER (*)))
1165 (defglobal *fun-name-type* -1)
1167 ;; !LATE-TYPE-COLD-INIT can't be GCd - there are lambdas in the toplevel code
1168 ;; component that leak out and persist - but everything below is GCable.
1169 ;; This leads to about 20KB of extra code being retained on x86-64.
1170 ;; An educated guess is that DEFINE-SUPERCLASSES is responsible for the problem.
1171 (defun !late-type-cold-init2 ()
1172 (!intern-important-fun-type-instances)
1173 (!intern-important-member-type-instances)
1174 (!intern-important-cons-type-instances)
1175 (setf *satisfies-keywordp-type*
1176 (mark-ctype-interned (%make-hairy-type '(satisfies keywordp))))
1177 (setf *fun-name-type*
1178 (mark-ctype-interned (%make-hairy-type '(satisfies legal-fun-name-p))))
1179 ;; This is not an important type- no attempt is made to return exactly this
1180 ;; object when parsing FUNCTION. In fact we return the classoid instead
1181 (setf *universal-fun-type*
1182 (make-fun-type :wild-args t :returns *wild-type*)))
1184 (!define-type-method (named :simple-=) (type1 type2)
1185 ;;(aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1186 (values (eq type1 type2) t))
1188 (defun cons-type-might-be-empty-type (type)
1189 (declare (type cons-type type))
1190 (let ((car-type (cons-type-car-type type))
1191 (cdr-type (cons-type-cdr-type type)))
1193 (if (cons-type-p car-type)
1194 (cons-type-might-be-empty-type car-type)
1195 (multiple-value-bind (yes surep)
1196 (type= car-type *empty-type*)
1197 (aver (not yes))
1198 (not surep)))
1199 (if (cons-type-p cdr-type)
1200 (cons-type-might-be-empty-type cdr-type)
1201 (multiple-value-bind (yes surep)
1202 (type= cdr-type *empty-type*)
1203 (aver (not yes))
1204 (not surep))))))
1206 (defun cons-type-length-info (type)
1207 (declare (type cons-type type))
1208 (do ((min 1 (1+ min))
1209 (cdr (cons-type-cdr-type type) (cons-type-cdr-type cdr)))
1210 ((not (cons-type-p cdr))
1211 (cond
1212 ((csubtypep cdr (specifier-type 'null))
1213 (values min t))
1214 ((csubtypep *universal-type* cdr)
1215 (values min nil))
1216 ((type/= (type-intersection (specifier-type 'cons) cdr) *empty-type*)
1217 (values min nil))
1218 ((type/= (type-intersection (specifier-type 'null) cdr) *empty-type*)
1219 (values min t))
1220 (t (values min :maybe))))
1221 ()))
1223 (!define-type-method (named :complex-=) (type1 type2)
1224 (cond
1225 ((and (eq type2 *empty-type*)
1226 (or (and (intersection-type-p type1)
1227 ;; not allowed to be unsure on these... FIXME: keep
1228 ;; the list of CL types that are intersection types
1229 ;; once and only once.
1230 (not (or (type= type1 (specifier-type 'ratio))
1231 (type= type1 (specifier-type 'keyword)))))
1232 (and (cons-type-p type1)
1233 (cons-type-might-be-empty-type type1))))
1234 ;; things like (AND (EQL 0) (SATISFIES ODDP)) or (AND FUNCTION
1235 ;; STREAM) can get here. In general, we can't really tell
1236 ;; whether these are equal to NIL or not, so
1237 (values nil nil))
1238 ((type-might-contain-other-types-p type1)
1239 (invoke-complex-=-other-method type1 type2))
1240 (t (values nil t))))
1242 (!define-type-method (named :simple-subtypep) (type1 type2)
1243 (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1244 (aver (not (eq type1 type2)))
1245 (values (or (eq type1 *empty-type*)
1246 (eq type2 *wild-type*)
1247 (eq type2 *universal-type*)) t))
1249 (!define-type-method (named :complex-subtypep-arg1) (type1 type2)
1250 ;; This AVER causes problems if we write accurate methods for the
1251 ;; union (and possibly intersection) types which then delegate to
1252 ;; us; while a user shouldn't get here, because of the odd status of
1253 ;; *wild-type* a type-intersection executed by the compiler can. -
1254 ;; CSR, 2002-04-10
1256 ;; (aver (not (eq type1 *wild-type*))) ; * isn't really a type.
1257 (cond ((eq type1 *empty-type*)
1259 (;; When TYPE2 might be the universal type in disguise
1260 (type-might-contain-other-types-p type2)
1261 ;; Now that the UNION and HAIRY COMPLEX-SUBTYPEP-ARG2 methods
1262 ;; can delegate to us (more or less as CALL-NEXT-METHOD) when
1263 ;; they're uncertain, we can't just barf on COMPOUND-TYPE and
1264 ;; HAIRY-TYPEs as we used to. Instead we deal with the
1265 ;; problem (where at least part of the problem is cases like
1266 ;; (SUBTYPEP T '(SATISFIES FOO))
1267 ;; or
1268 ;; (SUBTYPEP T '(AND (SATISFIES FOO) (SATISFIES BAR)))
1269 ;; where the second type is a hairy type like SATISFIES, or
1270 ;; is a compound type which might contain a hairy type) by
1271 ;; returning uncertainty.
1272 (values nil nil))
1273 ((eq type1 *funcallable-instance-type*)
1274 (values (eq type2 (specifier-type 'function)) t))
1276 ;; This case would have been picked off by the SIMPLE-SUBTYPEP
1277 ;; method, and so shouldn't appear here.
1278 (aver (not (named-type-p type2)))
1279 ;; Since TYPE2 is not EQ *UNIVERSAL-TYPE* and is not another
1280 ;; named type in disguise, TYPE2 is not a superset of TYPE1.
1281 (values nil t))))
1283 (!define-type-method (named :complex-subtypep-arg2) (type1 type2)
1284 (aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1285 (cond ((eq type2 *universal-type*)
1286 (values t t))
1287 ;; some CONS types can conceal danger
1288 ((and (cons-type-p type1) (cons-type-might-be-empty-type type1))
1289 (values nil nil))
1290 ((type-might-contain-other-types-p type1)
1291 ;; those types can be other types in disguise. So we'd
1292 ;; better delegate.
1293 (invoke-complex-subtypep-arg1-method type1 type2))
1294 ((and (or (eq type2 *instance-type*)
1295 (eq type2 *funcallable-instance-type*))
1296 (member-type-p type1))
1297 ;; member types can be subtypep INSTANCE and
1298 ;; FUNCALLABLE-INSTANCE in surprising ways.
1299 (invoke-complex-subtypep-arg1-method type1 type2))
1300 ((and (eq type2 *extended-sequence-type*) (classoid-p type1))
1301 (let* ((layout (classoid-layout type1))
1302 (inherits (layout-inherits layout))
1303 (sequencep (find (classoid-layout (find-classoid 'sequence))
1304 inherits)))
1305 (values (if sequencep t nil) t)))
1306 ((and (eq type2 *instance-type*) (classoid-p type1))
1307 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1308 (values nil t)
1309 (let* ((layout (classoid-layout type1))
1310 (inherits (layout-inherits layout))
1311 (functionp (find (classoid-layout (find-classoid 'function))
1312 inherits)))
1313 (cond
1314 (functionp
1315 (values nil t))
1316 ((eq type1 (find-classoid 'function))
1317 (values nil t))
1318 ((or (structure-classoid-p type1)
1319 #+nil
1320 (condition-classoid-p type1))
1321 (values t t))
1322 (t (values nil nil))))))
1323 ((and (eq type2 *funcallable-instance-type*) (classoid-p type1))
1324 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1325 (values nil t)
1326 (let* ((layout (classoid-layout type1))
1327 (inherits (layout-inherits layout))
1328 (functionp (find (classoid-layout (find-classoid 'function))
1329 inherits)))
1330 (values (if functionp t nil) t))))
1332 ;; FIXME: This seems to rely on there only being 4 or 5
1333 ;; NAMED-TYPE values, and the exclusion of various
1334 ;; possibilities above. It would be good to explain it and/or
1335 ;; rewrite it so that it's clearer.
1336 (values nil t))))
1338 (!define-type-method (named :complex-intersection2) (type1 type2)
1339 ;; FIXME: This assertion failed when I added it in sbcl-0.6.11.13.
1340 ;; Perhaps when bug 85 is fixed it can be reenabled.
1341 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1342 (cond
1343 ((eq type2 *extended-sequence-type*)
1344 (typecase type1
1345 (structure-classoid *empty-type*)
1346 (classoid
1347 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1348 *empty-type*
1349 (if (find (classoid-layout (find-classoid 'sequence))
1350 (layout-inherits (classoid-layout type1)))
1351 type1
1352 nil)))
1354 (if (or (type-might-contain-other-types-p type1)
1355 (member-type-p type1))
1357 *empty-type*))))
1358 ((eq type2 *instance-type*)
1359 (typecase type1
1360 (structure-classoid type1)
1361 (classoid
1362 (if (and (not (member type1 *non-instance-classoid-types*
1363 :key #'find-classoid))
1364 (not (eq type1 (find-classoid 'function)))
1365 (not (find (classoid-layout (find-classoid 'function))
1366 (layout-inherits (classoid-layout type1)))))
1368 *empty-type*))
1370 (if (or (type-might-contain-other-types-p type1)
1371 (member-type-p type1))
1373 *empty-type*))))
1374 ((eq type2 *funcallable-instance-type*)
1375 (typecase type1
1376 (structure-classoid *empty-type*)
1377 (classoid
1378 (if (member type1 *non-instance-classoid-types* :key #'find-classoid)
1379 *empty-type*
1380 (if (find (classoid-layout (find-classoid 'function))
1381 (layout-inherits (classoid-layout type1)))
1382 type1
1383 (if (type= type1 (find-classoid 'function))
1384 type2
1385 nil))))
1386 (fun-type nil)
1388 (if (or (type-might-contain-other-types-p type1)
1389 (member-type-p type1))
1391 *empty-type*))))
1392 (t (hierarchical-intersection2 type1 type2))))
1394 (!define-type-method (named :complex-union2) (type1 type2)
1395 ;; Perhaps when bug 85 is fixed this can be reenabled.
1396 ;;(aver (not (eq type2 *wild-type*))) ; * isn't really a type.
1397 (cond
1398 ((eq type2 *extended-sequence-type*)
1399 (if (classoid-p type1)
1400 (if (or (member type1 *non-instance-classoid-types*
1401 :key #'find-classoid)
1402 (not (find (classoid-layout (find-classoid 'sequence))
1403 (layout-inherits (classoid-layout type1)))))
1405 type2)
1406 nil))
1407 ((eq type2 *instance-type*)
1408 (if (classoid-p type1)
1409 (if (or (member type1 *non-instance-classoid-types*
1410 :key #'find-classoid)
1411 (find (classoid-layout (find-classoid 'function))
1412 (layout-inherits (classoid-layout type1))))
1414 type2)
1415 nil))
1416 ((eq type2 *funcallable-instance-type*)
1417 (if (classoid-p type1)
1418 (if (or (member type1 *non-instance-classoid-types*
1419 :key #'find-classoid)
1420 (not (find (classoid-layout (find-classoid 'function))
1421 (layout-inherits (classoid-layout type1)))))
1423 (if (eq type1 (specifier-type 'function))
1424 type1
1425 type2))
1426 nil))
1427 (t (hierarchical-union2 type1 type2))))
1429 (!define-type-method (named :negate) (x)
1430 (aver (not (eq x *wild-type*)))
1431 (cond
1432 ((eq x *universal-type*) *empty-type*)
1433 ((eq x *empty-type*) *universal-type*)
1434 ((or (eq x *instance-type*)
1435 (eq x *funcallable-instance-type*)
1436 (eq x *extended-sequence-type*))
1437 (make-negation-type x))
1438 (t (bug "NAMED type unexpected: ~S" x))))
1440 (!define-type-method (named :unparse) (x)
1441 (named-type-name x))
1443 ;;;; hairy and unknown types
1444 ;;;; DEFINE-TYPE-CLASS HAIRY is in 'early-type'
1446 (!define-type-method (hairy :negate) (x) (make-negation-type x))
1448 (!define-type-method (hairy :unparse) (x)
1449 (hairy-type-specifier x))
1451 (!define-type-method (hairy :simple-subtypep) (type1 type2)
1452 (let ((hairy-spec1 (hairy-type-specifier type1))
1453 (hairy-spec2 (hairy-type-specifier type2)))
1454 (cond ((equal-but-no-car-recursion hairy-spec1 hairy-spec2)
1455 (values t t))
1456 ((maybe-reparse-specifier! type1)
1457 (csubtypep type1 type2))
1458 ((maybe-reparse-specifier! type2)
1459 (csubtypep type1 type2))
1461 (values nil nil)))))
1463 (!define-type-method (hairy :complex-subtypep-arg2) (type1 type2)
1464 (if (maybe-reparse-specifier! type2)
1465 (csubtypep type1 type2)
1466 (let ((specifier (hairy-type-specifier type2)))
1467 (cond ((and (consp specifier) (eql (car specifier) 'satisfies))
1468 (case (cadr specifier)
1469 ((keywordp) (if (type= type1 (specifier-type 'symbol))
1470 (values nil t)
1471 (invoke-complex-subtypep-arg1-method type1 type2)))
1472 (t (invoke-complex-subtypep-arg1-method type1 type2))))
1474 (invoke-complex-subtypep-arg1-method type1 type2))))))
1476 (!define-type-method (hairy :complex-subtypep-arg1) (type1 type2)
1477 (if (maybe-reparse-specifier! type1)
1478 (csubtypep type1 type2)
1479 (values nil nil)))
1481 (!define-type-method (hairy :complex-=) (type1 type2)
1482 (if (maybe-reparse-specifier! type2)
1483 (type= type1 type2)
1484 (values nil nil)))
1486 (!define-type-method (hairy :simple-intersection2 :complex-intersection2)
1487 (type1 type2)
1488 (acond ((type= type1 type2)
1489 type1)
1490 ((eq type2 *satisfies-keywordp-type*)
1491 ;; (AND (MEMBER A) (SATISFIES KEYWORDP)) is possibly non-empty
1492 ;; if A is re-homed as :A. However as a special case that really
1493 ;; does occur, (AND (MEMBER NIL) (SATISFIES KEYWORDP))
1494 ;; is empty because of the illegality of changing NIL's package.
1495 (if (eq type1 *null-type*)
1496 *empty-type*
1497 (multiple-value-bind (answer certain)
1498 (types-equal-or-intersect type1 (specifier-type 'symbol))
1499 (and (not answer) certain *empty-type*))))
1500 ((eq type2 *fun-name-type*)
1501 (multiple-value-bind (answer certain)
1502 (types-equal-or-intersect type1 (specifier-type 'symbol))
1503 (and (not answer)
1504 certain
1505 (multiple-value-bind (answer certain)
1506 (types-equal-or-intersect type1 (specifier-type 'cons))
1507 (and (not answer) certain *empty-type*)))))
1508 ((and (typep (hairy-type-specifier type2) '(cons (eql satisfies)))
1509 (info :function :predicate-truth-constraint
1510 (cadr (hairy-type-specifier type2))))
1511 (multiple-value-bind (answer certain)
1512 (types-equal-or-intersect type1 (specifier-type it))
1513 (and (not answer) certain *empty-type*)))))
1515 (!define-type-method (hairy :simple-union2)
1516 (type1 type2)
1517 (if (type= type1 type2)
1518 type1
1519 nil))
1521 (!define-type-method (hairy :simple-=) (type1 type2)
1522 (if (equal-but-no-car-recursion (hairy-type-specifier type1)
1523 (hairy-type-specifier type2))
1524 (values t t)
1525 (values nil nil)))
1527 (!def-type-translator satisfies :list (&whole whole predicate-name)
1528 (unless (symbolp predicate-name)
1529 (error 'simple-type-error
1530 :datum predicate-name
1531 :expected-type 'symbol
1532 :format-control "The SATISFIES predicate name is not a symbol: ~S"
1533 :format-arguments (list predicate-name)))
1534 (case predicate-name
1535 (keywordp *satisfies-keywordp-type*)
1536 (legal-fun-name-p *fun-name-type*)
1537 (t (%make-hairy-type whole))))
1539 ;;;; negation types
1541 (!define-type-method (negation :negate) (x)
1542 (negation-type-type x))
1544 (!define-type-method (negation :unparse) (x)
1545 (if (type= (negation-type-type x) (specifier-type 'cons))
1546 'atom
1547 `(not ,(type-specifier (negation-type-type x)))))
1549 (!define-type-method (negation :simple-subtypep) (type1 type2)
1550 (csubtypep (negation-type-type type2) (negation-type-type type1)))
1552 (!define-type-method (negation :complex-subtypep-arg2) (type1 type2)
1553 (let* ((complement-type2 (negation-type-type type2))
1554 (intersection2 (type-intersection2 type1
1555 complement-type2)))
1556 (if intersection2
1557 ;; FIXME: if uncertain, maybe try arg1?
1558 (type= intersection2 *empty-type*)
1559 (invoke-complex-subtypep-arg1-method type1 type2))))
1561 (!define-type-method (negation :complex-subtypep-arg1) (type1 type2)
1562 ;; "Incrementally extended heuristic algorithms tend inexorably toward the
1563 ;; incomprehensible." -- http://www.unlambda.com/~james/lambda/lambda.txt
1565 ;; You may not believe this. I couldn't either. But then I sat down
1566 ;; and drew lots of Venn diagrams. Comments involving a and b refer
1567 ;; to the call (subtypep '(not a) 'b) -- CSR, 2002-02-27.
1568 (block nil
1569 ;; (Several logical truths in this block are true as long as
1570 ;; b/=T. As of sbcl-0.7.1.28, it seems impossible to construct a
1571 ;; case with b=T where we actually reach this type method, but
1572 ;; we'll test for and exclude this case anyway, since future
1573 ;; maintenance might make it possible for it to end up in this
1574 ;; code.)
1575 (multiple-value-bind (equal certain)
1576 (type= type2 *universal-type*)
1577 (unless certain
1578 (return (values nil nil)))
1579 (when equal
1580 (return (values t t))))
1581 (let ((complement-type1 (negation-type-type type1)))
1582 ;; Do the special cases first, in order to give us a chance if
1583 ;; subtype/supertype relationships are hairy.
1584 (multiple-value-bind (equal certain)
1585 (type= complement-type1 type2)
1586 ;; If a = b, ~a is not a subtype of b (unless b=T, which was
1587 ;; excluded above).
1588 (unless certain
1589 (return (values nil nil)))
1590 (when equal
1591 (return (values nil t))))
1592 ;; KLUDGE: ANSI requires that the SUBTYPEP result between any
1593 ;; two built-in atomic type specifiers never be uncertain. This
1594 ;; is hard to do cleanly for the built-in types whose
1595 ;; definitions include (NOT FOO), i.e. CONS and RATIO. However,
1596 ;; we can do it with this hack, which uses our global knowledge
1597 ;; that our implementation of the type system uses disjoint
1598 ;; implementation types to represent disjoint sets (except when
1599 ;; types are contained in other types). (This is a KLUDGE
1600 ;; because it's fragile. Various changes in internal
1601 ;; representation in the type system could make it start
1602 ;; confidently returning incorrect results.) -- WHN 2002-03-08
1603 (unless (or (type-might-contain-other-types-p complement-type1)
1604 (type-might-contain-other-types-p type2))
1605 ;; Because of the way our types which don't contain other
1606 ;; types are disjoint subsets of the space of possible values,
1607 ;; (SUBTYPEP '(NOT AA) 'B)=NIL when AA and B are simple (and B
1608 ;; is not T, as checked above).
1609 (return (values nil t)))
1610 ;; The old (TYPE= TYPE1 TYPE2) branch would never be taken, as
1611 ;; TYPE1 and TYPE2 will only be equal if they're both NOT types,
1612 ;; and then the :SIMPLE-SUBTYPEP method would be used instead.
1613 ;; But a CSUBTYPEP relationship might still hold:
1614 (multiple-value-bind (equal certain)
1615 (csubtypep complement-type1 type2)
1616 ;; If a is a subtype of b, ~a is not a subtype of b (unless
1617 ;; b=T, which was excluded above).
1618 (unless certain
1619 (return (values nil nil)))
1620 (when equal
1621 (return (values nil t))))
1622 (multiple-value-bind (equal certain)
1623 (csubtypep type2 complement-type1)
1624 ;; If b is a subtype of a, ~a is not a subtype of b. (FIXME:
1625 ;; That's not true if a=T. Do we know at this point that a is
1626 ;; not T?)
1627 (unless certain
1628 (return (values nil nil)))
1629 (when equal
1630 (return (values nil t))))
1631 ;; old CSR comment ca. 0.7.2, now obsoleted by the SIMPLE-CTYPE?
1632 ;; KLUDGE case above: Other cases here would rely on being able
1633 ;; to catch all possible cases, which the fragility of this type
1634 ;; system doesn't inspire me; for instance, if a is type= to ~b,
1635 ;; then we want T, T; if this is not the case and the types are
1636 ;; disjoint (have an intersection of *empty-type*) then we want
1637 ;; NIL, T; else if the union of a and b is the *universal-type*
1638 ;; then we want T, T. So currently we still claim to be unsure
1639 ;; about e.g. (subtypep '(not fixnum) 'single-float).
1641 ;; OTOH we might still get here:
1642 (values nil nil))))
1644 (!define-type-method (negation :complex-=) (type1 type2)
1645 ;; (NOT FOO) isn't equivalent to anything that's not a negation
1646 ;; type, except possibly a type that might contain it in disguise.
1647 (declare (ignore type2))
1648 (if (type-might-contain-other-types-p type1)
1649 (values nil nil)
1650 (values nil t)))
1652 (!define-type-method (negation :simple-intersection2) (type1 type2)
1653 (let ((not1 (negation-type-type type1))
1654 (not2 (negation-type-type type2)))
1655 (cond
1656 ((csubtypep not1 not2) type2)
1657 ((csubtypep not2 not1) type1)
1658 ;; Why no analagous clause to the disjoint in the SIMPLE-UNION2
1659 ;; method, below? The clause would read
1661 ;; ((EQ (TYPE-UNION NOT1 NOT2) *UNIVERSAL-TYPE*) *EMPTY-TYPE*)
1663 ;; but with proper canonicalization of negation types, there's
1664 ;; no way of constructing two negation types with union of their
1665 ;; negations being the universal type.
1667 (aver (not (eq (type-union not1 not2) *universal-type*)))
1668 nil))))
1670 (defun maybe-complex-array-refinement (type1 type2)
1671 (let* ((ntype (negation-type-type type2))
1672 (ndims (array-type-dimensions ntype))
1673 (ncomplexp (array-type-complexp ntype))
1674 (nseltype (array-type-specialized-element-type ntype))
1675 (neltype (array-type-element-type ntype)))
1676 (if (and (eql ndims '*) (null ncomplexp)
1677 (eq neltype *wild-type*) (eq nseltype *wild-type*))
1678 (make-array-type (array-type-dimensions type1)
1679 :complexp t
1680 :element-type (array-type-element-type type1)
1681 :specialized-element-type (array-type-specialized-element-type type1)))))
1683 (!define-type-method (negation :complex-intersection2) (type1 type2)
1684 (cond
1685 ((csubtypep type1 (negation-type-type type2)) *empty-type*)
1686 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1687 type1)
1688 ((and (array-type-p type1) (array-type-p (negation-type-type type2)))
1689 (maybe-complex-array-refinement type1 type2))
1690 (t nil)))
1692 (!define-type-method (negation :simple-union2) (type1 type2)
1693 (let ((not1 (negation-type-type type1))
1694 (not2 (negation-type-type type2)))
1695 (cond
1696 ((csubtypep not1 not2) type1)
1697 ((csubtypep not2 not1) type2)
1698 ((eq (type-intersection not1 not2) *empty-type*)
1699 *universal-type*)
1700 (t nil))))
1702 (!define-type-method (negation :complex-union2) (type1 type2)
1703 (cond
1704 ((csubtypep (negation-type-type type2) type1) *universal-type*)
1705 ((eq (type-intersection type1 (negation-type-type type2)) *empty-type*)
1706 type2)
1707 (t nil)))
1709 (!define-type-method (negation :simple-=) (type1 type2)
1710 (type= (negation-type-type type1) (negation-type-type type2)))
1712 (!def-type-translator not :list ((:context context) typespec)
1713 (type-negation (specifier-type-r context typespec)))
1715 ;;;; numeric types
1717 (declaim (inline numeric-type-equal))
1718 (defun numeric-type-equal (type1 type2)
1719 (and (eq (numeric-type-class type1) (numeric-type-class type2))
1720 (eq (numeric-type-format type1) (numeric-type-format type2))
1721 (eq (numeric-type-complexp type1) (numeric-type-complexp type2))))
1723 (!define-type-method (number :simple-=) (type1 type2)
1724 (values
1725 (and (numeric-type-equal type1 type2)
1726 (equalp (numeric-type-low type1) (numeric-type-low type2))
1727 (equalp (numeric-type-high type1) (numeric-type-high type2)))
1730 (!define-type-method (number :negate) (type)
1731 (if (and (null (numeric-type-low type)) (null (numeric-type-high type)))
1732 (make-negation-type type)
1733 (type-union
1734 (make-negation-type (modified-numeric-type type :low nil :high nil))
1735 (cond
1736 ((null (numeric-type-low type))
1737 (modified-numeric-type
1738 type
1739 :low (let ((h (numeric-type-high type)))
1740 (if (consp h) (car h) (list h)))
1741 :high nil))
1742 ((null (numeric-type-high type))
1743 (modified-numeric-type
1744 type
1745 :low nil
1746 :high (let ((l (numeric-type-low type)))
1747 (if (consp l) (car l) (list l)))))
1748 (t (type-union
1749 (modified-numeric-type
1750 type
1751 :low nil
1752 :high (let ((l (numeric-type-low type)))
1753 (if (consp l) (car l) (list l))))
1754 (modified-numeric-type
1755 type
1756 :low (let ((h (numeric-type-high type)))
1757 (if (consp h) (car h) (list h)))
1758 :high nil)))))))
1760 (!define-type-method (number :unparse) (type)
1761 (let* ((complexp (numeric-type-complexp type))
1762 (low (numeric-type-low type))
1763 (high (numeric-type-high type))
1764 (base (case (numeric-type-class type)
1765 (integer 'integer)
1766 (rational 'rational)
1767 (float (or (numeric-type-format type) 'float))
1768 (t 'real))))
1769 (let ((base+bounds
1770 (cond ((and (eq base 'integer) high low)
1771 (let ((high-count (logcount high))
1772 (high-length (integer-length high)))
1773 (cond ((= low 0)
1774 (cond ((= high 0) '(integer 0 0))
1775 ((= high 1) 'bit)
1776 ((and (= high-count high-length)
1777 (plusp high-length))
1778 `(unsigned-byte ,high-length))
1780 `(mod ,(1+ high)))))
1781 ((and (= low sb!xc:most-negative-fixnum)
1782 (= high sb!xc:most-positive-fixnum))
1783 'fixnum)
1784 ((and (= low (lognot high))
1785 (= high-count high-length)
1786 (> high-count 0))
1787 `(signed-byte ,(1+ high-length)))
1789 `(integer ,low ,high)))))
1790 (high `(,base ,(or low '*) ,high))
1791 (low
1792 (if (and (eq base 'integer) (= low 0))
1793 'unsigned-byte
1794 `(,base ,low)))
1795 (t base))))
1796 (ecase complexp
1797 (:real
1798 base+bounds)
1799 (:complex
1800 (aver (neq base+bounds 'real))
1801 `(complex ,base+bounds))
1802 ((nil)
1803 (aver (eq base+bounds 'real))
1804 'number)))))
1806 (!define-type-method (number :singleton-p) (type)
1807 (let ((low (numeric-type-low type))
1808 (high (numeric-type-high type)))
1809 (if (and low
1810 (eql low high)
1811 (eql (numeric-type-complexp type) :real)
1812 (member (numeric-type-class type) '(integer rational
1813 #-sb-xc-host float)))
1814 (values t (numeric-type-low type))
1815 (values nil nil))))
1817 ;;; Return true if X is "less than or equal" to Y, taking open bounds
1818 ;;; into consideration. CLOSED is the predicate used to test the bound
1819 ;;; on a closed interval (e.g. <=), and OPEN is the predicate used on
1820 ;;; open bounds (e.g. <). Y is considered to be the outside bound, in
1821 ;;; the sense that if it is infinite (NIL), then the test succeeds,
1822 ;;; whereas if X is infinite, then the test fails (unless Y is also
1823 ;;; infinite).
1825 ;;; This is for comparing bounds of the same kind, e.g. upper and
1826 ;;; upper. Use NUMERIC-BOUND-TEST* for different kinds of bounds.
1827 (defmacro numeric-bound-test (x y closed open)
1828 `(cond ((not ,y) t)
1829 ((not ,x) nil)
1830 ((consp ,x)
1831 (if (consp ,y)
1832 (,closed (car ,x) (car ,y))
1833 (,closed (car ,x) ,y)))
1835 (if (consp ,y)
1836 (,open ,x (car ,y))
1837 (,closed ,x ,y)))))
1839 ;;; This is used to compare upper and lower bounds. This is different
1840 ;;; from the same-bound case:
1841 ;;; -- Since X = NIL is -infinity, whereas y = NIL is +infinity, we
1842 ;;; return true if *either* arg is NIL.
1843 ;;; -- an open inner bound is "greater" and also squeezes the interval,
1844 ;;; causing us to use the OPEN test for those cases as well.
1845 (defmacro numeric-bound-test* (x y closed open)
1846 `(cond ((not ,y) t)
1847 ((not ,x) t)
1848 ((consp ,x)
1849 (if (consp ,y)
1850 (,open (car ,x) (car ,y))
1851 (,open (car ,x) ,y)))
1853 (if (consp ,y)
1854 (,open ,x (car ,y))
1855 (,closed ,x ,y)))))
1857 ;;; Return whichever of the numeric bounds X and Y is "maximal"
1858 ;;; according to the predicates CLOSED (e.g. >=) and OPEN (e.g. >).
1859 ;;; This is only meaningful for maximizing like bounds, i.e. upper and
1860 ;;; upper. If MAX-P is true, then we return NIL if X or Y is NIL,
1861 ;;; otherwise we return the other arg.
1862 (defmacro numeric-bound-max (x y closed open max-p)
1863 (once-only ((n-x x)
1864 (n-y y))
1865 `(cond ((not ,n-x) ,(if max-p nil n-y))
1866 ((not ,n-y) ,(if max-p nil n-x))
1867 ((consp ,n-x)
1868 (if (consp ,n-y)
1869 (if (,closed (car ,n-x) (car ,n-y)) ,n-x ,n-y)
1870 (if (,open (car ,n-x) ,n-y) ,n-x ,n-y)))
1872 (if (consp ,n-y)
1873 (if (,open (car ,n-y) ,n-x) ,n-y ,n-x)
1874 (if (,closed ,n-y ,n-x) ,n-y ,n-x))))))
1876 (!define-type-method (number :simple-subtypep) (type1 type2)
1877 (let ((class1 (numeric-type-class type1))
1878 (class2 (numeric-type-class type2))
1879 (complexp2 (numeric-type-complexp type2))
1880 (format2 (numeric-type-format type2))
1881 (low1 (numeric-type-low type1))
1882 (high1 (numeric-type-high type1))
1883 (low2 (numeric-type-low type2))
1884 (high2 (numeric-type-high type2)))
1885 ;; If one is complex and the other isn't, they are disjoint.
1886 (cond ((not (or (eq (numeric-type-complexp type1) complexp2)
1887 (null complexp2)))
1888 (values nil t))
1889 ;; If the classes are specified and different, the types are
1890 ;; disjoint unless type2 is RATIONAL and type1 is INTEGER.
1891 ;; [ or type1 is INTEGER and type2 is of the form (RATIONAL
1892 ;; X X) for integral X, but this is dealt with in the
1893 ;; canonicalization inside MAKE-NUMERIC-TYPE ]
1894 ((not (or (eq class1 class2)
1895 (null class2)
1896 (and (eq class1 'integer) (eq class2 'rational))))
1897 (values nil t))
1898 ;; If the float formats are specified and different, the types
1899 ;; are disjoint.
1900 ((not (or (eq (numeric-type-format type1) format2)
1901 (null format2)))
1902 (values nil t))
1903 ;; Check the bounds.
1904 ((and (numeric-bound-test low1 low2 >= >)
1905 (numeric-bound-test high1 high2 <= <))
1906 (values t t))
1908 (values nil t)))))
1910 (!define-superclasses number ((number)) !cold-init-forms)
1912 ;;; If the high bound of LOW is adjacent to the low bound of HIGH,
1913 ;;; then return true, otherwise NIL.
1914 (defun numeric-types-adjacent (low high)
1915 (let ((low-bound (numeric-type-high low))
1916 (high-bound (numeric-type-low high)))
1917 (cond ((not (and low-bound high-bound)) nil)
1918 ((and (consp low-bound) (consp high-bound)) nil)
1919 ((consp low-bound)
1920 (let ((low-value (car low-bound)))
1921 (or (eql low-value high-bound)
1922 (and (eql low-value
1923 (load-time-value (make-unportable-float
1924 :single-float-negative-zero)))
1925 (eql high-bound 0f0))
1926 (and (eql low-value 0f0)
1927 (eql high-bound
1928 (load-time-value (make-unportable-float
1929 :single-float-negative-zero))))
1930 (and (eql low-value
1931 (load-time-value (make-unportable-float
1932 :double-float-negative-zero)))
1933 (eql high-bound 0d0))
1934 (and (eql low-value 0d0)
1935 (eql high-bound
1936 (load-time-value (make-unportable-float
1937 :double-float-negative-zero)))))))
1938 ((consp high-bound)
1939 (let ((high-value (car high-bound)))
1940 (or (eql high-value low-bound)
1941 (and (eql high-value
1942 (load-time-value (make-unportable-float
1943 :single-float-negative-zero)))
1944 (eql low-bound 0f0))
1945 (and (eql high-value 0f0)
1946 (eql low-bound
1947 (load-time-value (make-unportable-float
1948 :single-float-negative-zero))))
1949 (and (eql high-value
1950 (load-time-value (make-unportable-float
1951 :double-float-negative-zero)))
1952 (eql low-bound 0d0))
1953 (and (eql high-value 0d0)
1954 (eql low-bound
1955 (load-time-value (make-unportable-float
1956 :double-float-negative-zero)))))))
1957 ((and (eq (numeric-type-class low) 'integer)
1958 (eq (numeric-type-class high) 'integer))
1959 (eql (1+ low-bound) high-bound))
1961 nil))))
1963 ;;; Return a numeric type that is a supertype for both TYPE1 and TYPE2.
1965 ;;; Binding *APPROXIMATE-NUMERIC-UNIONS* to T allows merging non-adjacent
1966 ;;; numeric types, eg (OR (INTEGER 0 12) (INTEGER 20 128)) => (INTEGER 0 128),
1967 ;;; the compiler does this occasionally during type-derivation to avoid
1968 ;;; creating absurdly complex unions of numeric types.
1969 (defvar *approximate-numeric-unions* nil)
1971 (!define-type-method (number :simple-union2) (type1 type2)
1972 (declare (type numeric-type type1 type2))
1973 (cond ((csubtypep type1 type2) type2)
1974 ((csubtypep type2 type1) type1)
1976 (let ((class1 (numeric-type-class type1))
1977 (format1 (numeric-type-format type1))
1978 (complexp1 (numeric-type-complexp type1))
1979 (class2 (numeric-type-class type2))
1980 (format2 (numeric-type-format type2))
1981 (complexp2 (numeric-type-complexp type2)))
1982 (cond
1983 ((and (eq class1 class2)
1984 (eq format1 format2)
1985 (eq complexp1 complexp2)
1986 (or *approximate-numeric-unions*
1987 (numeric-types-intersect type1 type2)
1988 (numeric-types-adjacent type1 type2)
1989 (numeric-types-adjacent type2 type1)))
1990 (make-numeric-type
1991 :class class1
1992 :format format1
1993 :complexp complexp1
1994 :low (numeric-bound-max (numeric-type-low type1)
1995 (numeric-type-low type2)
1996 <= < t)
1997 :high (numeric-bound-max (numeric-type-high type1)
1998 (numeric-type-high type2)
1999 >= > t)))
2000 ;; FIXME: These two clauses are almost identical, and the
2001 ;; consequents are in fact identical in every respect.
2002 ((and (eq class1 'rational)
2003 (eq class2 'integer)
2004 (eq format1 format2)
2005 (eq complexp1 complexp2)
2006 (integerp (numeric-type-low type2))
2007 (integerp (numeric-type-high type2))
2008 (= (numeric-type-low type2) (numeric-type-high type2))
2009 (or *approximate-numeric-unions*
2010 (numeric-types-adjacent type1 type2)
2011 (numeric-types-adjacent type2 type1)))
2012 (make-numeric-type
2013 :class 'rational
2014 :format format1
2015 :complexp complexp1
2016 :low (numeric-bound-max (numeric-type-low type1)
2017 (numeric-type-low type2)
2018 <= < t)
2019 :high (numeric-bound-max (numeric-type-high type1)
2020 (numeric-type-high type2)
2021 >= > t)))
2022 ((and (eq class1 'integer)
2023 (eq class2 'rational)
2024 (eq format1 format2)
2025 (eq complexp1 complexp2)
2026 (integerp (numeric-type-low type1))
2027 (integerp (numeric-type-high type1))
2028 (= (numeric-type-low type1) (numeric-type-high type1))
2029 (or *approximate-numeric-unions*
2030 (numeric-types-adjacent type1 type2)
2031 (numeric-types-adjacent type2 type1)))
2032 (make-numeric-type
2033 :class 'rational
2034 :format format1
2035 :complexp complexp1
2036 :low (numeric-bound-max (numeric-type-low type1)
2037 (numeric-type-low type2)
2038 <= < t)
2039 :high (numeric-bound-max (numeric-type-high type1)
2040 (numeric-type-high type2)
2041 >= > t)))
2042 (t nil))))))
2045 (!cold-init-forms ;; is !PRECOMPUTE-TYPES not doing the right thing?
2046 (setf (info :type :kind 'number) :primitive)
2047 (setf (info :type :builtin 'number)
2048 (make-numeric-type :complexp nil)))
2050 (!def-type-translator complex ((:context context) &optional (typespec '*))
2051 (if (eq typespec '*)
2052 (specifier-type '(complex real))
2053 (labels ((not-numeric ()
2054 (error "The component type for COMPLEX is not numeric: ~S"
2055 typespec))
2056 (not-real ()
2057 (error "The component type for COMPLEX is not a subtype of REAL: ~S"
2058 typespec))
2059 (complex1 (component-type)
2060 (unless (numeric-type-p component-type)
2061 (not-numeric))
2062 (when (eq (numeric-type-complexp component-type) :complex)
2063 (not-real))
2064 (if (csubtypep component-type (specifier-type '(eql 0)))
2065 *empty-type*
2066 (modified-numeric-type component-type
2067 :complexp :complex)))
2068 (do-complex (ctype)
2069 (cond
2070 ((eq ctype *empty-type*) *empty-type*)
2071 ((eq ctype *universal-type*) (not-real))
2072 ((typep ctype 'numeric-type) (complex1 ctype))
2073 ((typep ctype 'union-type)
2074 (apply #'type-union
2075 (mapcar #'do-complex (union-type-types ctype))))
2076 ((typep ctype 'member-type)
2077 (apply #'type-union
2078 (mapcar-member-type-members
2079 (lambda (x) (do-complex (ctype-of x)))
2080 ctype)))
2081 ((and (typep ctype 'intersection-type)
2082 ;; FIXME: This is very much a
2083 ;; not-quite-worst-effort, but we are required to do
2084 ;; something here because of our representation of
2085 ;; RATIO as (AND RATIONAL (NOT INTEGER)): we must
2086 ;; allow users to ask about (COMPLEX RATIO). This
2087 ;; will of course fail to work right on such types
2088 ;; as (AND INTEGER (SATISFIES ZEROP))...
2089 (let ((numbers (remove-if-not
2090 #'numeric-type-p
2091 (intersection-type-types ctype))))
2092 (and (car numbers)
2093 (null (cdr numbers))
2094 (eq (numeric-type-complexp (car numbers)) :real)
2095 (complex1 (car numbers))))))
2097 (multiple-value-bind (subtypep certainly)
2098 (csubtypep ctype (specifier-type 'real))
2099 (if (and (not subtypep) certainly)
2100 (not-real)
2101 ;; ANSI just says that TYPESPEC is any subtype of
2102 ;; type REAL, not necessarily a NUMERIC-TYPE. In
2103 ;; particular, at this point TYPESPEC could legally
2104 ;; be a hairy type like (AND NUMBER (SATISFIES
2105 ;; REALP) (SATISFIES ZEROP)), in which case we fall
2106 ;; through the logic above and end up here,
2107 ;; stumped.
2108 ;; FIXME: (COMPLEX NUMBER) is not rejected but should
2109 ;; be, as NUMBER is clearly not a subtype of real.
2110 (bug "~@<(known bug #145): The type ~S is too hairy to be ~
2111 used for a COMPLEX component.~:@>"
2112 typespec)))))))
2113 (let ((ctype (specifier-type-r context typespec)))
2114 (do-complex ctype)))))
2116 ;;; If X is *, return NIL, otherwise return the bound, which must be a
2117 ;;; member of TYPE or a one-element list of a member of TYPE.
2118 #!-sb-fluid (declaim (inline canonicalized-bound))
2119 (defun canonicalized-bound (bound type)
2120 (cond ((eq bound '*) nil)
2121 ((or (sb!xc:typep bound type)
2122 (and (consp bound)
2123 (sb!xc:typep (car bound) type)
2124 (null (cdr bound))))
2125 bound)
2127 (error "Bound is not ~S, a ~S or a list of a ~S: ~S"
2129 type
2130 type
2131 bound))))
2133 (!def-type-translator integer (&optional (low '*) (high '*))
2134 (let* ((l (canonicalized-bound low 'integer))
2135 (lb (if (consp l) (1+ (car l)) l))
2136 (h (canonicalized-bound high 'integer))
2137 (hb (if (consp h) (1- (car h)) h)))
2138 (if (and hb lb (< hb lb))
2139 *empty-type*
2140 (make-numeric-type :class 'integer
2141 :complexp :real
2142 :enumerable (not (null (and l h)))
2143 :low lb
2144 :high hb))))
2146 (defmacro !def-bounded-type (type class format)
2147 `(!def-type-translator ,type (&optional (low '*) (high '*))
2148 (let ((lb (canonicalized-bound low ',type))
2149 (hb (canonicalized-bound high ',type)))
2150 (if (not (numeric-bound-test* lb hb <= <))
2151 *empty-type*
2152 (make-numeric-type :class ',class
2153 :format ',format
2154 :low lb
2155 :high hb)))))
2157 (!def-bounded-type rational rational nil)
2159 ;;; Unlike CMU CL, we represent the types FLOAT and REAL as
2160 ;;; UNION-TYPEs of more primitive types, in order to make
2161 ;;; type representation more unique, avoiding problems in the
2162 ;;; simplification of things like
2163 ;;; (subtypep '(or (single-float -1.0 1.0) (single-float 0.1))
2164 ;;; '(or (real -1 7) (single-float 0.1) (single-float -1.0 1.0)))
2165 ;;; When we allowed REAL to remain as a separate NUMERIC-TYPE,
2166 ;;; it was too easy for the first argument to be simplified to
2167 ;;; '(SINGLE-FLOAT -1.0), and for the second argument to be simplified
2168 ;;; to '(OR (REAL -1 7) (SINGLE-FLOAT 0.1)) and then for the
2169 ;;; SUBTYPEP to fail (returning NIL,T instead of T,T) because
2170 ;;; the first argument can't be seen to be a subtype of any of the
2171 ;;; terms in the second argument.
2173 ;;; The old CMU CL way was:
2174 ;;; (!def-bounded-type float float nil)
2175 ;;; (!def-bounded-type real nil nil)
2177 ;;; FIXME: If this new way works for a while with no weird new
2178 ;;; problems, we can go back and rip out support for separate FLOAT
2179 ;;; and REAL flavors of NUMERIC-TYPE. The new way was added in
2180 ;;; sbcl-0.6.11.22, 2001-03-21.
2182 ;;; FIXME: It's probably necessary to do something to fix the
2183 ;;; analogous problem with INTEGER and RATIONAL types. Perhaps
2184 ;;; bounded RATIONAL types should be represented as (OR RATIO INTEGER).
2185 (defun coerce-bound (bound type upperp inner-coerce-bound-fun)
2186 (declare (type function inner-coerce-bound-fun))
2187 (if (eql bound '*)
2188 bound
2189 (funcall inner-coerce-bound-fun bound type upperp)))
2190 (defun inner-coerce-real-bound (bound type upperp)
2191 #+sb-xc-host (declare (ignore upperp))
2192 (let #+sb-xc-host ()
2193 #-sb-xc-host
2194 ((nl (load-time-value (symbol-value 'sb!xc:most-negative-long-float)))
2195 (pl (load-time-value (symbol-value 'sb!xc:most-positive-long-float))))
2196 (let ((nbound (if (consp bound) (car bound) bound))
2197 (consp (consp bound)))
2198 (ecase type
2199 (rational
2200 (if consp
2201 (list (rational nbound))
2202 (rational nbound)))
2203 (float
2204 (cond
2205 ((floatp nbound) bound)
2207 ;; Coerce to the widest float format available, to avoid
2208 ;; unnecessary loss of precision, but don't coerce
2209 ;; unrepresentable numbers, except on the host where we
2210 ;; shouldn't be making these types (but KLUDGE: can't even
2211 ;; assert portably that we're not).
2212 #-sb-xc-host
2213 (ecase upperp
2214 ((nil)
2215 (when (< nbound nl) (return-from inner-coerce-real-bound nl)))
2216 ((t)
2217 (when (> nbound pl) (return-from inner-coerce-real-bound pl))))
2218 (let ((result (coerce nbound 'long-float)))
2219 (if consp (list result) result)))))))))
2220 (defun inner-coerce-float-bound (bound type upperp)
2221 #+sb-xc-host (declare (ignore upperp))
2222 (let #+sb-xc-host ()
2223 #-sb-xc-host
2224 ((nd (load-time-value (symbol-value 'sb!xc:most-negative-double-float)))
2225 (pd (load-time-value (symbol-value 'sb!xc:most-positive-double-float)))
2226 (ns (load-time-value (symbol-value 'sb!xc:most-negative-single-float)))
2227 (ps (load-time-value
2228 (symbol-value 'sb!xc:most-positive-single-float))))
2229 (let ((nbound (if (consp bound) (car bound) bound))
2230 (consp (consp bound)))
2231 (ecase type
2232 (single-float
2233 (cond
2234 ((typep nbound 'single-float) bound)
2236 #-sb-xc-host
2237 (ecase upperp
2238 ((nil)
2239 (when (< nbound ns) (return-from inner-coerce-float-bound ns)))
2240 ((t)
2241 (when (> nbound ps) (return-from inner-coerce-float-bound ps))))
2242 (let ((result (coerce nbound 'single-float)))
2243 (if consp (list result) result)))))
2244 (double-float
2245 (cond
2246 ((typep nbound 'double-float) bound)
2248 #-sb-xc-host
2249 (ecase upperp
2250 ((nil)
2251 (when (< nbound nd) (return-from inner-coerce-float-bound nd)))
2252 ((t)
2253 (when (> nbound pd) (return-from inner-coerce-float-bound pd))))
2254 (let ((result (coerce nbound 'double-float)))
2255 (if consp (list result) result)))))))))
2256 (defun coerced-real-bound (bound type upperp)
2257 (coerce-bound bound type upperp #'inner-coerce-real-bound))
2258 (defun coerced-float-bound (bound type upperp)
2259 (coerce-bound bound type upperp #'inner-coerce-float-bound))
2260 (!def-type-translator real (&optional (low '*) (high '*))
2261 (specifier-type `(or (float ,(coerced-real-bound low 'float nil)
2262 ,(coerced-real-bound high 'float t))
2263 (rational ,(coerced-real-bound low 'rational nil)
2264 ,(coerced-real-bound high 'rational t)))))
2265 (!def-type-translator float (&optional (low '*) (high '*))
2266 (specifier-type
2267 `(or (single-float ,(coerced-float-bound low 'single-float nil)
2268 ,(coerced-float-bound high 'single-float t))
2269 (double-float ,(coerced-float-bound low 'double-float nil)
2270 ,(coerced-float-bound high 'double-float t))
2271 #!+long-float ,(error "stub: no long float support yet"))))
2273 (defmacro !define-float-format (f)
2274 `(!def-bounded-type ,f float ,f))
2276 ;; (!define-float-format short-float) ; it's a DEFTYPE
2277 (!define-float-format single-float)
2278 (!define-float-format double-float)
2279 ;; long-float support is dead.
2280 ;; (!define-float-format long-float) ; also a DEFTYPE
2282 (defun numeric-types-intersect (type1 type2)
2283 (declare (type numeric-type type1 type2))
2284 (let* ((class1 (numeric-type-class type1))
2285 (class2 (numeric-type-class type2))
2286 (complexp1 (numeric-type-complexp type1))
2287 (complexp2 (numeric-type-complexp type2))
2288 (format1 (numeric-type-format type1))
2289 (format2 (numeric-type-format type2))
2290 (low1 (numeric-type-low type1))
2291 (high1 (numeric-type-high type1))
2292 (low2 (numeric-type-low type2))
2293 (high2 (numeric-type-high type2)))
2294 ;; If one is complex and the other isn't, then they are disjoint.
2295 (cond ((not (or (eq complexp1 complexp2)
2296 (null complexp1) (null complexp2)))
2297 nil)
2298 ;; If either type is a float, then the other must either be
2299 ;; specified to be a float or unspecified. Otherwise, they
2300 ;; are disjoint.
2301 ((and (eq class1 'float)
2302 (not (member class2 '(float nil)))) nil)
2303 ((and (eq class2 'float)
2304 (not (member class1 '(float nil)))) nil)
2305 ;; If the float formats are specified and different, the
2306 ;; types are disjoint.
2307 ((not (or (eq format1 format2) (null format1) (null format2)))
2308 nil)
2310 ;; Check the bounds. This is a bit odd because we must
2311 ;; always have the outer bound of the interval as the
2312 ;; second arg.
2313 (if (numeric-bound-test high1 high2 <= <)
2314 (or (and (numeric-bound-test low1 low2 >= >)
2315 (numeric-bound-test* low1 high2 <= <))
2316 (and (numeric-bound-test low2 low1 >= >)
2317 (numeric-bound-test* low2 high1 <= <)))
2318 (or (and (numeric-bound-test* low2 high1 <= <)
2319 (numeric-bound-test low2 low1 >= >))
2320 (and (numeric-bound-test high2 high1 <= <)
2321 (numeric-bound-test* high2 low1 >= >))))))))
2323 ;;; Take the numeric bound X and convert it into something that can be
2324 ;;; used as a bound in a numeric type with the specified CLASS and
2325 ;;; FORMAT. If UP-P is true, then we round up as needed, otherwise we
2326 ;;; round down. UP-P true implies that X is a lower bound, i.e. (N) > N.
2328 ;;; This is used by NUMERIC-TYPE-INTERSECTION to mash the bound into
2329 ;;; the appropriate type number. X may only be a float when CLASS is
2330 ;;; FLOAT.
2332 ;;; ### Note: it is possible for the coercion to a float to overflow
2333 ;;; or underflow. This happens when the bound doesn't fit in the
2334 ;;; specified format. In this case, we should really return the
2335 ;;; appropriate {Most | Least}-{Positive | Negative}-XXX-Float float
2336 ;;; of desired format. But these conditions aren't currently signalled
2337 ;;; in any useful way.
2339 ;;; Also, when converting an open rational bound into a float we
2340 ;;; should probably convert it to a closed bound of the closest float
2341 ;;; in the specified format. KLUDGE: In general, open float bounds are
2342 ;;; screwed up. -- (comment from original CMU CL)
2343 (defun round-numeric-bound (x class format up-p)
2344 (if x
2345 (let ((cx (if (consp x) (car x) x)))
2346 (ecase class
2347 ((nil rational) x)
2348 (integer
2349 (if (and (consp x) (integerp cx))
2350 (if up-p (1+ cx) (1- cx))
2351 (if up-p (ceiling cx) (floor cx))))
2352 (float
2353 (let ((res
2354 (cond
2355 ((and format (subtypep format 'double-float))
2356 (if (<= most-negative-double-float cx most-positive-double-float)
2357 (coerce cx format)
2358 nil))
2360 (if (<= most-negative-single-float cx most-positive-single-float)
2361 ;; FIXME: bug #389
2362 (coerce cx (or format 'single-float))
2363 nil)))))
2364 (if (consp x) (list res) res)))))
2365 nil))
2367 ;;; Handle the case of type intersection on two numeric types. We use
2368 ;;; TYPES-EQUAL-OR-INTERSECT to throw out the case of types with no
2369 ;;; intersection. If an attribute in TYPE1 is unspecified, then we use
2370 ;;; TYPE2's attribute, which must be at least as restrictive. If the
2371 ;;; types intersect, then the only attributes that can be specified
2372 ;;; and different are the class and the bounds.
2374 ;;; When the class differs, we use the more restrictive class. The
2375 ;;; only interesting case is RATIONAL/INTEGER, since RATIONAL includes
2376 ;;; INTEGER.
2378 ;;; We make the result lower (upper) bound the maximum (minimum) of
2379 ;;; the argument lower (upper) bounds. We convert the bounds into the
2380 ;;; appropriate numeric type before maximizing. This avoids possible
2381 ;;; confusion due to mixed-type comparisons (but I think the result is
2382 ;;; the same).
2383 (!define-type-method (number :simple-intersection2) (type1 type2)
2384 (declare (type numeric-type type1 type2))
2385 (if (numeric-types-intersect type1 type2)
2386 (let* ((class1 (numeric-type-class type1))
2387 (class2 (numeric-type-class type2))
2388 (class (ecase class1
2389 ((nil) class2)
2390 ((integer float) class1)
2391 (rational (if (eq class2 'integer)
2392 'integer
2393 'rational))))
2394 (format (or (numeric-type-format type1)
2395 (numeric-type-format type2))))
2396 (make-numeric-type
2397 :class class
2398 :format format
2399 :complexp (or (numeric-type-complexp type1)
2400 (numeric-type-complexp type2))
2401 :low (numeric-bound-max
2402 (round-numeric-bound (numeric-type-low type1)
2403 class format t)
2404 (round-numeric-bound (numeric-type-low type2)
2405 class format t)
2406 > >= nil)
2407 :high (numeric-bound-max
2408 (round-numeric-bound (numeric-type-high type1)
2409 class format nil)
2410 (round-numeric-bound (numeric-type-high type2)
2411 class format nil)
2412 < <= nil)))
2413 *empty-type*))
2415 ;;; Given two float formats, return the one with more precision. If
2416 ;;; either one is null, return NIL.
2417 (defun float-format-max (f1 f2)
2418 (when (and f1 f2)
2419 (dolist (f *float-formats* (error "bad float format: ~S" f1))
2420 (when (or (eq f f1) (eq f f2))
2421 (return f)))))
2423 ;;; Return the result of an operation on TYPE1 and TYPE2 according to
2424 ;;; the rules of numeric contagion. This is always NUMBER, some float
2425 ;;; format (possibly complex) or RATIONAL. Due to rational
2426 ;;; canonicalization, there isn't much we can do here with integers or
2427 ;;; rational complex numbers.
2429 ;;; If either argument is not a NUMERIC-TYPE, then return NUMBER. This
2430 ;;; is useful mainly for allowing types that are technically numbers,
2431 ;;; but not a NUMERIC-TYPE.
2432 (defun numeric-contagion (type1 type2)
2433 (if (and (numeric-type-p type1) (numeric-type-p type2))
2434 (let ((class1 (numeric-type-class type1))
2435 (class2 (numeric-type-class type2))
2436 (format1 (numeric-type-format type1))
2437 (format2 (numeric-type-format type2))
2438 (complexp1 (numeric-type-complexp type1))
2439 (complexp2 (numeric-type-complexp type2)))
2440 (cond ((or (null complexp1)
2441 (null complexp2))
2442 (specifier-type 'number))
2443 ((eq class1 'float)
2444 (make-numeric-type
2445 :class 'float
2446 :format (ecase class2
2447 (float (float-format-max format1 format2))
2448 ((integer rational) format1)
2449 ((nil)
2450 ;; A double-float with any real number is a
2451 ;; double-float.
2452 #!-long-float
2453 (if (eq format1 'double-float)
2454 'double-float
2455 nil)
2456 ;; A long-float with any real number is a
2457 ;; long-float.
2458 #!+long-float
2459 (if (eq format1 'long-float)
2460 'long-float
2461 nil)))
2462 :complexp (if (or (eq complexp1 :complex)
2463 (eq complexp2 :complex))
2464 :complex
2465 :real)))
2466 ((eq class2 'float) (numeric-contagion type2 type1))
2467 ((and (eq complexp1 :real) (eq complexp2 :real))
2468 (make-numeric-type
2469 :class (and class1 class2 'rational)
2470 :complexp :real))
2472 (specifier-type 'number))))
2473 (specifier-type 'number)))
2475 ;;;; array types
2477 (!define-type-method (array :simple-=) (type1 type2)
2478 (cond ((not (and (equal (array-type-dimensions type1)
2479 (array-type-dimensions type2))
2480 (eq (array-type-complexp type1)
2481 (array-type-complexp type2))))
2482 (values nil t))
2483 ((or (unknown-type-p (array-type-element-type type1))
2484 (unknown-type-p (array-type-element-type type2)))
2485 (type= (array-type-element-type type1)
2486 (array-type-element-type type2)))
2488 (values (type= (array-type-specialized-element-type type1)
2489 (array-type-specialized-element-type type2))
2490 t))))
2492 (!define-type-method (array :negate) (type)
2493 ;; FIXME (and hint to PFD): we're vulnerable here to attacks of the
2494 ;; form "are (AND ARRAY (NOT (ARRAY T))) and (OR (ARRAY BIT) (ARRAY
2495 ;; NIL) (ARRAY CHAR) ...) equivalent?" -- CSR, 2003-12-10
2496 ;; A symptom of the aforementioned is that the following are not TYPE=
2497 ;; (AND (VECTOR T) (NOT SIMPLE-ARRAY)) ; an ARRAY-TYPE
2498 ;; (AND (VECTOR T) (NOT SIMPLE-VECTOR)) ; an INTERSECTION-TYPE
2499 ;; even though (VECTOR T) makes it so that the (NOT) clause in each can
2500 ;; only provide one additional bit of information: that the vector
2501 ;; is complex as opposed to simple. The rank and element-type are fixed.
2502 (if (and (eq (array-type-dimensions type) '*)
2503 (eq (array-type-complexp type) 't)
2504 (eq (array-type-element-type type) *wild-type*))
2505 ;; (NOT <hairy-array>) = either SIMPLE-ARRAY or (NOT ARRAY).
2506 ;; This is deliberately asymmetric - trying to say that NOT simple-array
2507 ;; equals hairy-array leads to infinite recursion.
2508 (type-union (make-array-type '* :complexp nil
2509 :element-type *wild-type*)
2510 (make-negation-type
2511 (make-array-type '* :element-type *wild-type*)))
2512 (make-negation-type type)))
2514 (!define-type-method (array :unparse) (type)
2515 (let* ((dims (array-type-dimensions type))
2516 ;; Compare the specialised element type and the
2517 ;; derived element type. If the derived type
2518 ;; is so small that it jumps to a smaller upgraded
2519 ;; element type, use the specialised element type.
2521 ;; This protects from unparsing
2522 ;; (and (vector (or bit symbol))
2523 ;; (vector (or bit character)))
2524 ;; i.e., the intersection of two T array types,
2525 ;; as a bit vector.
2526 (stype (array-type-specialized-element-type type))
2527 (dtype (array-type-element-type type))
2528 (utype (%upgraded-array-element-type dtype))
2529 (eltype (type-specifier (if (type= stype utype)
2530 dtype
2531 stype)))
2532 (complexp (array-type-complexp type)))
2533 (if (and (eq complexp t) (not *unparse-allow-negation*))
2534 (setq complexp :maybe))
2535 (cond ((eq dims '*)
2536 (if (eq eltype '*)
2537 (ecase complexp
2538 ((t) '(and array (not simple-array)))
2539 ((:maybe) 'array)
2540 ((nil) 'simple-array))
2541 (ecase complexp
2542 ((t) `(and (array ,eltype) (not simple-array)))
2543 ((:maybe) `(array ,eltype))
2544 ((nil) `(simple-array ,eltype)))))
2545 ((= (length dims) 1)
2546 (if complexp
2547 (let ((answer
2548 (if (eq (car dims) '*)
2549 (case eltype
2550 (bit 'bit-vector)
2551 ((base-char #!-sb-unicode character) 'base-string)
2552 (* 'vector)
2553 (t `(vector ,eltype)))
2554 (case eltype
2555 (bit `(bit-vector ,(car dims)))
2556 ((base-char #!-sb-unicode character)
2557 `(base-string ,(car dims)))
2558 (t `(vector ,eltype ,(car dims)))))))
2559 (if (eql complexp :maybe)
2560 answer
2561 `(and ,answer (not simple-array))))
2562 (if (eq (car dims) '*)
2563 (case eltype
2564 (bit 'simple-bit-vector)
2565 ((base-char #!-sb-unicode character) 'simple-base-string)
2566 ((t) 'simple-vector)
2567 (t `(simple-array ,eltype (*))))
2568 (case eltype
2569 (bit `(simple-bit-vector ,(car dims)))
2570 ((base-char #!-sb-unicode character)
2571 `(simple-base-string ,(car dims)))
2572 ((t) `(simple-vector ,(car dims)))
2573 (t `(simple-array ,eltype ,dims))))))
2575 (ecase complexp
2576 ((t) `(and (array ,eltype ,dims) (not simple-array)))
2577 ((:maybe) `(array ,eltype ,dims))
2578 ((nil) `(simple-array ,eltype ,dims)))))))
2580 (!define-type-method (array :simple-subtypep) (type1 type2)
2581 (let ((dims1 (array-type-dimensions type1))
2582 (dims2 (array-type-dimensions type2))
2583 (complexp2 (array-type-complexp type2)))
2584 (cond (;; not subtypep unless dimensions are compatible
2585 (not (or (eq dims2 '*)
2586 (and (not (eq dims1 '*))
2587 ;; (sbcl-0.6.4 has trouble figuring out that
2588 ;; DIMS1 and DIMS2 must be lists at this
2589 ;; point, and knowing that is important to
2590 ;; compiling EVERY efficiently.)
2591 (= (length (the list dims1))
2592 (length (the list dims2)))
2593 (every (lambda (x y)
2594 (or (eq y '*) (eql x y)))
2595 (the list dims1)
2596 (the list dims2)))))
2597 (values nil t))
2598 ;; not subtypep unless complexness is compatible
2599 ((not (or (eq complexp2 :maybe)
2600 (eq (array-type-complexp type1) complexp2)))
2601 (values nil t))
2602 ;; Since we didn't fail any of the tests above, we win
2603 ;; if the TYPE2 element type is wild.
2604 ((eq (array-type-element-type type2) *wild-type*)
2605 (values t t))
2606 (;; Since we didn't match any of the special cases above, if
2607 ;; either element type is unknown we can only give a good
2608 ;; answer if they are the same.
2609 (or (unknown-type-p (array-type-element-type type1))
2610 (unknown-type-p (array-type-element-type type2)))
2611 (if (type= (array-type-element-type type1)
2612 (array-type-element-type type2))
2613 (values t t)
2614 (values nil nil)))
2615 (;; Otherwise, the subtype relationship holds iff the
2616 ;; types are equal, and they're equal iff the specialized
2617 ;; element types are identical.
2619 (values (type= (array-type-specialized-element-type type1)
2620 (array-type-specialized-element-type type2))
2621 t)))))
2623 (!define-superclasses array
2624 ((vector vector) (array))
2625 !cold-init-forms)
2627 (defun array-types-intersect (type1 type2)
2628 (declare (type array-type type1 type2))
2629 (let ((dims1 (array-type-dimensions type1))
2630 (dims2 (array-type-dimensions type2))
2631 (complexp1 (array-type-complexp type1))
2632 (complexp2 (array-type-complexp type2)))
2633 ;; See whether dimensions are compatible.
2634 (cond ((not (or (eq dims1 '*) (eq dims2 '*)
2635 (and (= (length dims1) (length dims2))
2636 (every (lambda (x y)
2637 (or (eq x '*) (eq y '*) (= x y)))
2638 dims1 dims2))))
2639 (values nil t))
2640 ;; See whether complexpness is compatible.
2641 ((not (or (eq complexp1 :maybe)
2642 (eq complexp2 :maybe)
2643 (eq complexp1 complexp2)))
2644 (values nil t))
2645 ;; Old comment:
2647 ;; If either element type is wild, then they intersect.
2648 ;; Otherwise, the types must be identical.
2650 ;; FIXME: There seems to have been a fair amount of
2651 ;; confusion about the distinction between requested element
2652 ;; type and specialized element type; here is one of
2653 ;; them. If we request an array to hold objects of an
2654 ;; unknown type, we can do no better than represent that
2655 ;; type as an array specialized on wild-type. We keep the
2656 ;; requested element-type in the -ELEMENT-TYPE slot, and
2657 ;; *WILD-TYPE* in the -SPECIALIZED-ELEMENT-TYPE. So, here,
2658 ;; we must test for the SPECIALIZED slot being *WILD-TYPE*,
2659 ;; not just the ELEMENT-TYPE slot. Maybe the return value
2660 ;; in that specific case should be T, NIL? Or maybe this
2661 ;; function should really be called
2662 ;; ARRAY-TYPES-COULD-POSSIBLY-INTERSECT? In any case, this
2663 ;; was responsible for bug #123, and this whole issue could
2664 ;; do with a rethink and/or a rewrite. -- CSR, 2002-08-21
2665 ((or (eq (array-type-specialized-element-type type1) *wild-type*)
2666 (eq (array-type-specialized-element-type type2) *wild-type*)
2667 (type= (array-type-specialized-element-type type1)
2668 (array-type-specialized-element-type type2)))
2670 (values t t))
2672 (values nil t)))))
2674 (defun unite-array-types-complexp (type1 type2)
2675 (let ((complexp1 (array-type-complexp type1))
2676 (complexp2 (array-type-complexp type2)))
2677 (cond
2678 ((eq complexp1 complexp2)
2679 ;; both types are the same complexp-ity
2680 (values complexp1 t))
2681 ((eq complexp1 :maybe)
2682 ;; type1 is wild-complexp
2683 (values :maybe type1))
2684 ((eq complexp2 :maybe)
2685 ;; type2 is wild-complexp
2686 (values :maybe type2))
2688 ;; both types partition the complexp-space
2689 (values :maybe nil)))))
2691 (defun unite-array-types-dimensions (type1 type2)
2692 (let ((dims1 (array-type-dimensions type1))
2693 (dims2 (array-type-dimensions type2)))
2694 (cond ((equal dims1 dims2)
2695 ;; both types are same dimensionality
2696 (values dims1 t))
2697 ((eq dims1 '*)
2698 ;; type1 is wild-dimensions
2699 (values '* type1))
2700 ((eq dims2 '*)
2701 ;; type2 is wild-dimensions
2702 (values '* type2))
2703 ((not (= (length dims1) (length dims2)))
2704 ;; types have different number of dimensions
2705 (values :incompatible nil))
2707 ;; we need to check on a per-dimension basis
2708 (let* ((supertype1 t)
2709 (supertype2 t)
2710 (compatible t)
2711 (result (mapcar (lambda (dim1 dim2)
2712 (cond
2713 ((equal dim1 dim2)
2714 dim1)
2715 ((eq dim1 '*)
2716 (setf supertype2 nil)
2718 ((eq dim2 '*)
2719 (setf supertype1 nil)
2722 (setf compatible nil))))
2723 dims1 dims2)))
2724 (cond
2725 ((or (not compatible)
2726 (and (not supertype1)
2727 (not supertype2)))
2728 (values :incompatible nil))
2729 ((and supertype1 supertype2)
2730 (values result supertype1))
2732 (values result (if supertype1 type1 type2)))))))))
2734 (defun unite-array-types-element-types (type1 type2)
2735 ;; FIXME: We'd love to be able to unite the full set of specialized
2736 ;; array element types up to *wild-type*, but :simple-union2 is
2737 ;; performed pairwise, so we don't have a good hook for it and our
2738 ;; representation doesn't allow us to easily detect the situation
2739 ;; anyway.
2740 ;; But see SIMPLIFY-ARRAY-UNIONS which is able to do something like that.
2741 (let* ((eltype1 (array-type-element-type type1))
2742 (eltype2 (array-type-element-type type2))
2743 (stype1 (array-type-specialized-element-type type1))
2744 (stype2 (array-type-specialized-element-type type2))
2745 (wild1 (eq eltype1 *wild-type*))
2746 (wild2 (eq eltype2 *wild-type*)))
2747 (cond
2748 ((type= eltype1 eltype2)
2749 (values eltype1 stype1 t))
2750 (wild1
2751 (values eltype1 stype1 type1))
2752 (wild2
2753 (values eltype2 stype2 type2))
2754 ((not (type= stype1 stype2))
2755 ;; non-wild types that don't share UAET don't unite
2756 (values :incompatible nil nil))
2757 ((csubtypep eltype1 eltype2)
2758 (values eltype2 stype2 type2))
2759 ((csubtypep eltype2 eltype1)
2760 (values eltype1 stype1 type1))
2762 (values :incompatible nil nil)))))
2764 (defun unite-array-types-supertypes-compatible-p (&rest supertypes)
2765 ;; supertypes are compatible if they are all T, if there is a single
2766 ;; NIL and all the rest are T, or if all non-T supertypes are the
2767 ;; same and not NIL.
2768 (let ((interesting-supertypes
2769 (remove t supertypes)))
2770 (or (not interesting-supertypes)
2771 (equal interesting-supertypes '(nil))
2772 ;; supertypes are (OR BOOLEAN ARRAY-TYPE), so...
2773 (typep (remove-duplicates interesting-supertypes)
2774 '(cons array-type null)))))
2776 (!define-type-method (array :simple-union2) (type1 type2)
2777 (multiple-value-bind
2778 (result-eltype result-stype eltype-supertype)
2779 (unite-array-types-element-types type1 type2)
2780 (multiple-value-bind
2781 (result-complexp complexp-supertype)
2782 (unite-array-types-complexp type1 type2)
2783 (multiple-value-bind
2784 (result-dimensions dimensions-supertype)
2785 (unite-array-types-dimensions type1 type2)
2786 (when (and (not (eq result-dimensions :incompatible))
2787 (not (eq result-eltype :incompatible))
2788 (unite-array-types-supertypes-compatible-p
2789 eltype-supertype complexp-supertype dimensions-supertype))
2790 (make-array-type result-dimensions
2791 :complexp result-complexp
2792 :element-type result-eltype
2793 :specialized-element-type result-stype))))))
2795 (!define-type-method (array :simple-intersection2) (type1 type2)
2796 (declare (type array-type type1 type2))
2797 (if (array-types-intersect type1 type2)
2798 (let ((dims1 (array-type-dimensions type1))
2799 (dims2 (array-type-dimensions type2))
2800 (complexp1 (array-type-complexp type1))
2801 (complexp2 (array-type-complexp type2))
2802 (eltype1 (array-type-element-type type1))
2803 (eltype2 (array-type-element-type type2))
2804 (stype1 (array-type-specialized-element-type type1))
2805 (stype2 (array-type-specialized-element-type type2)))
2806 (make-array-type (cond ((eq dims1 '*) dims2)
2807 ((eq dims2 '*) dims1)
2809 (mapcar (lambda (x y) (if (eq x '*) y x))
2810 dims1 dims2)))
2811 :complexp (if (eq complexp1 :maybe) complexp2 complexp1)
2812 :element-type (cond
2813 ((eq eltype1 *wild-type*) eltype2)
2814 ((eq eltype2 *wild-type*) eltype1)
2815 (t (type-intersection eltype1 eltype2)))
2816 :specialized-element-type (cond
2817 ((eq stype1 *wild-type*) stype2)
2818 ((eq stype2 *wild-type*) stype1)
2820 (aver (type= stype1 stype2))
2821 stype1))))
2822 *empty-type*))
2824 ;;; Check a supplied dimension list to determine whether it is legal,
2825 ;;; and return it in canonical form (as either '* or a list).
2826 (defun canonical-array-dimensions (dims)
2827 (typecase dims
2828 ((member *) dims)
2829 (integer
2830 (when (minusp dims)
2831 (error "Arrays can't have a negative number of dimensions: ~S" dims))
2832 (when (>= dims sb!xc:array-rank-limit)
2833 (error "array type with too many dimensions: ~S" dims))
2834 (make-list dims :initial-element '*))
2835 (list
2836 (when (>= (length dims) sb!xc:array-rank-limit)
2837 (error "array type with too many dimensions: ~S" dims))
2838 (dolist (dim dims)
2839 (unless (eq dim '*)
2840 (unless (and (integerp dim)
2841 (>= dim 0)
2842 (< dim sb!xc:array-dimension-limit))
2843 (error "bad dimension in array type: ~S" dim))))
2844 dims)
2846 (error "Array dimensions is not a list, integer or *:~% ~S" dims))))
2848 ;;;; MEMBER types
2850 (!define-type-class member :enumerable t
2851 :might-contain-other-types nil)
2853 (!define-type-method (member :negate) (type)
2854 (let ((xset (member-type-xset type))
2855 (fp-zeroes (member-type-fp-zeroes type)))
2856 (if fp-zeroes
2857 ;; Hairy case, which needs to do a bit of float type
2858 ;; canonicalization.
2859 (apply #'type-intersection
2860 (if (xset-empty-p xset)
2861 *universal-type*
2862 (make-negation-type (make-member-type xset nil)))
2863 (mapcar
2864 (lambda (x)
2865 (let* ((opposite (neg-fp-zero x))
2866 (type (ctype-of opposite)))
2867 (type-union
2868 (make-negation-type
2869 (modified-numeric-type type :low nil :high nil))
2870 (modified-numeric-type type :low nil :high (list opposite))
2871 (make-eql-type opposite)
2872 (modified-numeric-type type :low (list opposite) :high nil))))
2873 fp-zeroes))
2874 ;; Easy case
2875 (make-negation-type type))))
2877 (!define-type-method (member :unparse) (type)
2878 (let ((members (member-type-members type)))
2879 (cond ((equal members '(nil)) 'null)
2880 (t `(member ,@members)))))
2882 (!define-type-method (member :singleton-p) (type)
2883 (if (eql 1 (member-type-size type))
2884 (values t (first (member-type-members type)))
2885 (values nil nil)))
2887 (!define-type-method (member :simple-subtypep) (type1 type2)
2888 (values (and (xset-subset-p (member-type-xset type1)
2889 (member-type-xset type2))
2890 (subsetp (member-type-fp-zeroes type1)
2891 (member-type-fp-zeroes type2)))
2894 (!define-type-method (member :complex-subtypep-arg1) (type1 type2)
2895 (block punt
2896 (mapc-member-type-members
2897 (lambda (elt)
2898 (multiple-value-bind (ok surep) (ctypep elt type2)
2899 (unless surep
2900 (return-from punt (values nil nil)))
2901 (unless ok
2902 (return-from punt (values nil t)))))
2903 type1)
2904 (values t t)))
2906 ;;; We punt if the odd type is enumerable and intersects with the
2907 ;;; MEMBER type. If not enumerable, then it is definitely not a
2908 ;;; subtype of the MEMBER type.
2909 (!define-type-method (member :complex-subtypep-arg2) (type1 type2)
2910 (cond ((not (type-enumerable type1)) (values nil t))
2911 ((types-equal-or-intersect type1 type2)
2912 (invoke-complex-subtypep-arg1-method type1 type2))
2913 (t (values nil t))))
2915 (!define-type-method (member :simple-intersection2) (type1 type2)
2916 (make-member-type (xset-intersection (member-type-xset type1)
2917 (member-type-xset type2))
2918 (intersection (member-type-fp-zeroes type1)
2919 (member-type-fp-zeroes type2))))
2921 (!define-type-method (member :complex-intersection2) (type1 type2)
2922 (block punt
2923 (let ((xset (alloc-xset))
2924 (fp-zeroes nil))
2925 (mapc-member-type-members
2926 (lambda (member)
2927 (multiple-value-bind (ok sure) (ctypep member type1)
2928 (unless sure
2929 (return-from punt nil))
2930 (when ok
2931 (if (fp-zero-p member)
2932 (pushnew member fp-zeroes)
2933 (add-to-xset member xset)))))
2934 type2)
2935 (if (and (xset-empty-p xset) (not fp-zeroes))
2936 *empty-type*
2937 (make-member-type xset fp-zeroes)))))
2939 ;;; We don't need a :COMPLEX-UNION2, since the only interesting case is
2940 ;;; a union type, and the member/union interaction is handled by the
2941 ;;; union type method.
2942 (!define-type-method (member :simple-union2) (type1 type2)
2943 (make-member-type (xset-union (member-type-xset type1)
2944 (member-type-xset type2))
2945 (union (member-type-fp-zeroes type1)
2946 (member-type-fp-zeroes type2))))
2948 (!define-type-method (member :simple-=) (type1 type2)
2949 (let ((xset1 (member-type-xset type1))
2950 (xset2 (member-type-xset type2))
2951 (l1 (member-type-fp-zeroes type1))
2952 (l2 (member-type-fp-zeroes type2)))
2953 (values (and (eql (xset-count xset1) (xset-count xset2))
2954 (xset-subset-p xset1 xset2)
2955 (xset-subset-p xset2 xset1)
2956 (subsetp l1 l2)
2957 (subsetp l2 l1))
2958 t)))
2960 (!define-type-method (member :complex-=) (type1 type2)
2961 (if (type-enumerable type1)
2962 (multiple-value-bind (val win) (csubtypep type2 type1)
2963 (if (or val (not win))
2964 (values nil nil)
2965 (values nil t)))
2966 (values nil t)))
2968 (!def-type-translator member :list (&rest members)
2969 (if members
2970 (let (ms numbers char-codes)
2971 (dolist (m (remove-duplicates members))
2972 (typecase m
2973 (character (push (sb!xc:char-code m) char-codes))
2974 (real (if (and (floatp m) (zerop m))
2975 (push m ms)
2976 (push (ctype-of m) numbers)))
2977 (t (push m ms))))
2978 (apply #'type-union
2979 (member-type-from-list ms)
2980 (make-character-set-type (mapcar (lambda (x) (cons x x))
2981 (sort char-codes #'<)))
2982 (nreverse numbers)))
2983 *empty-type*))
2985 ;;;; intersection types
2986 ;;;;
2987 ;;;; Until version 0.6.10.6, SBCL followed the original CMU CL approach
2988 ;;;; of punting on all AND types, not just the unreasonably complicated
2989 ;;;; ones. The change was motivated by trying to get the KEYWORD type
2990 ;;;; to behave sensibly:
2991 ;;;; ;; reasonable definition
2992 ;;;; (DEFTYPE KEYWORD () '(AND SYMBOL (SATISFIES KEYWORDP)))
2993 ;;;; ;; reasonable behavior
2994 ;;;; (AVER (SUBTYPEP 'KEYWORD 'SYMBOL))
2995 ;;;; Without understanding a little about the semantics of AND, we'd
2996 ;;;; get (SUBTYPEP 'KEYWORD 'SYMBOL)=>NIL,NIL and, for entirely
2997 ;;;; parallel reasons, (SUBTYPEP 'RATIO 'NUMBER)=>NIL,NIL. That's
2998 ;;;; not so good..)
2999 ;;;;
3000 ;;;; We still follow the example of CMU CL to some extent, by punting
3001 ;;;; (to the opaque HAIRY-TYPE) on sufficiently complicated types
3002 ;;;; involving AND.
3004 (!define-type-class intersection
3005 :enumerable #'compound-type-enumerable
3006 :might-contain-other-types t)
3008 (!define-type-method (intersection :negate) (type)
3009 (apply #'type-union
3010 (mapcar #'type-negation (intersection-type-types type))))
3012 ;;; A few intersection types have special names. The others just get
3013 ;;; mechanically unparsed.
3014 (!define-type-method (intersection :unparse) (type)
3015 (declare (type ctype type))
3016 (or (find type '(ratio keyword compiled-function) :key #'specifier-type :test #'type=)
3017 `(and ,@(mapcar #'type-specifier (intersection-type-types type)))))
3019 ;;; shared machinery for type equality: true if every type in the set
3020 ;;; TYPES1 matches a type in the set TYPES2 and vice versa
3021 (defun type=-set (types1 types2)
3022 (flet ((type<=-set (x y)
3023 (declare (type list x y))
3024 (every/type (lambda (x y-element)
3025 (any/type #'type= y-element x))
3026 x y)))
3027 (and/type (type<=-set types1 types2)
3028 (type<=-set types2 types1))))
3030 ;;; Two intersection types are equal if their subtypes are equal sets.
3032 ;;; FIXME: Might it be better to use
3033 ;;; (AND (SUBTYPEP X Y) (SUBTYPEP Y X))
3034 ;;; instead, since SUBTYPEP is the usual relationship that we care
3035 ;;; most about, so it would be good to leverage any ingenuity there
3036 ;;; in this more obscure method?
3037 (!define-type-method (intersection :simple-=) (type1 type2)
3038 (type=-set (intersection-type-types type1)
3039 (intersection-type-types type2)))
3041 (defun %intersection-complex-subtypep-arg1 (type1 type2)
3042 (type= type1 (type-intersection type1 type2)))
3044 (defun %intersection-simple-subtypep (type1 type2)
3045 (every/type #'%intersection-complex-subtypep-arg1
3046 type1
3047 (intersection-type-types type2)))
3049 (!define-type-method (intersection :simple-subtypep) (type1 type2)
3050 (%intersection-simple-subtypep type1 type2))
3052 (!define-type-method (intersection :complex-subtypep-arg1) (type1 type2)
3053 (%intersection-complex-subtypep-arg1 type1 type2))
3055 (defun %intersection-complex-subtypep-arg2 (type1 type2)
3056 (every/type #'csubtypep type1 (intersection-type-types type2)))
3058 (!define-type-method (intersection :complex-subtypep-arg2) (type1 type2)
3059 (%intersection-complex-subtypep-arg2 type1 type2))
3061 ;;; FIXME: This will look eeriely familiar to readers of the UNION
3062 ;;; :SIMPLE-INTERSECTION2 :COMPLEX-INTERSECTION2 method. That's
3063 ;;; because it was generated by cut'n'paste methods. Given that
3064 ;;; intersections and unions have all sorts of symmetries known to
3065 ;;; mathematics, it shouldn't be beyond the ken of some programmers to
3066 ;;; reflect those symmetries in code in a way that ties them together
3067 ;;; more strongly than having two independent near-copies :-/
3068 (!define-type-method (intersection :simple-union2 :complex-union2)
3069 (type1 type2)
3070 ;; Within this method, type2 is guaranteed to be an intersection
3071 ;; type:
3072 (aver (intersection-type-p type2))
3073 ;; Make sure to call only the applicable methods...
3074 (cond ((and (intersection-type-p type1)
3075 (%intersection-simple-subtypep type1 type2)) type2)
3076 ((and (intersection-type-p type1)
3077 (%intersection-simple-subtypep type2 type1)) type1)
3078 ((and (not (intersection-type-p type1))
3079 (%intersection-complex-subtypep-arg2 type1 type2))
3080 type2)
3081 ((and (not (intersection-type-p type1))
3082 (%intersection-complex-subtypep-arg1 type2 type1))
3083 type1)
3084 ;; KLUDGE: This special (and somewhat hairy) magic is required
3085 ;; to deal with the RATIONAL/INTEGER special case. The UNION
3086 ;; of (INTEGER * -1) and (AND (RATIONAL * -1/2) (NOT INTEGER))
3087 ;; should be (RATIONAL * -1/2) -- CSR, 2003-02-28
3088 ((and (csubtypep type2 (specifier-type 'ratio))
3089 (numeric-type-p type1)
3090 (csubtypep type1 (specifier-type 'integer))
3091 (csubtypep type2
3092 (make-numeric-type
3093 :class 'rational
3094 :complexp nil
3095 :low (if (null (numeric-type-low type1))
3097 (list (1- (numeric-type-low type1))))
3098 :high (if (null (numeric-type-high type1))
3100 (list (1+ (numeric-type-high type1)))))))
3101 (let* ((intersected (intersection-type-types type2))
3102 (remaining (remove (specifier-type '(not integer))
3103 intersected
3104 :test #'type=)))
3105 (and (not (equal intersected remaining))
3106 (type-union type1 (apply #'type-intersection remaining)))))
3108 (let ((accumulator *universal-type*))
3109 (do ((t2s (intersection-type-types type2) (cdr t2s)))
3110 ((null t2s) accumulator)
3111 (let ((union (type-union type1 (car t2s))))
3112 (when (union-type-p union)
3113 ;; we have to give up here -- there are all sorts of
3114 ;; ordering worries, but it's better than before.
3115 ;; Doing exactly the same as in the UNION
3116 ;; :SIMPLE/:COMPLEX-INTERSECTION2 method causes stack
3117 ;; overflow with the mutual recursion never bottoming
3118 ;; out.
3119 (if (and (eq accumulator *universal-type*)
3120 (null (cdr t2s)))
3121 ;; KLUDGE: if we get here, we have a partially
3122 ;; simplified result. While this isn't by any
3123 ;; means a universal simplification, including
3124 ;; this logic here means that we can get (OR
3125 ;; KEYWORD (NOT KEYWORD)) canonicalized to T.
3126 (return union)
3127 (return nil)))
3128 (setf accumulator
3129 (type-intersection accumulator union))))))))
3131 (!def-type-translator and :list ((:context context) &rest type-specifiers)
3132 (apply #'type-intersection
3133 (mapcar (lambda (x) (specifier-type-r context x))
3134 type-specifiers)))
3136 ;;;; union types
3138 (!define-type-class union
3139 :enumerable #'compound-type-enumerable
3140 :might-contain-other-types t)
3142 (!define-type-method (union :negate) (type)
3143 (declare (type ctype type))
3144 (apply #'type-intersection
3145 (mapcar #'type-negation (union-type-types type))))
3147 ;;; The LIST, FLOAT and REAL types have special names. Other union
3148 ;;; types just get mechanically unparsed.
3149 (!define-type-method (union :unparse) (type)
3150 (declare (type ctype type))
3151 (cond
3152 ((type= type (specifier-type 'list)) 'list)
3153 ((type= type (specifier-type 'float)) 'float)
3154 ((type= type (specifier-type 'real)) 'real)
3155 ((type= type (specifier-type 'sequence)) 'sequence)
3156 ((type= type (specifier-type 'bignum)) 'bignum)
3157 ((type= type (specifier-type 'simple-string)) 'simple-string)
3158 ((type= type (specifier-type 'string)) 'string)
3159 ((type= type (specifier-type 'complex)) 'complex)
3160 (t `(or ,@(mapcar #'type-specifier (union-type-types type))))))
3162 ;;; Two union types are equal if they are each subtypes of each
3163 ;;; other. We need to be this clever because our complex subtypep
3164 ;;; methods are now more accurate; we don't get infinite recursion
3165 ;;; because the simple-subtypep method delegates to complex-subtypep
3166 ;;; of the individual types of type1. - CSR, 2002-04-09
3168 ;;; Previous comment, now obsolete, but worth keeping around because
3169 ;;; it is true, though too strong a condition:
3171 ;;; Two union types are equal if their subtypes are equal sets.
3172 (!define-type-method (union :simple-=) (type1 type2)
3173 (multiple-value-bind (subtype certain?)
3174 (csubtypep type1 type2)
3175 (if subtype
3176 (csubtypep type2 type1)
3177 ;; we might as well become as certain as possible.
3178 (if certain?
3179 (values nil t)
3180 (multiple-value-bind (subtype certain?)
3181 (csubtypep type2 type1)
3182 (declare (ignore subtype))
3183 (values nil certain?))))))
3185 (!define-type-method (union :complex-=) (type1 type2)
3186 (declare (ignore type1))
3187 (if (some #'type-might-contain-other-types-p
3188 (union-type-types type2))
3189 (values nil nil)
3190 (values nil t)))
3192 ;;; Similarly, a union type is a subtype of another if and only if
3193 ;;; every element of TYPE1 is a subtype of TYPE2.
3194 (defun union-simple-subtypep (type1 type2)
3195 (every/type (swapped-args-fun #'union-complex-subtypep-arg2)
3196 type2
3197 (union-type-types type1)))
3199 (!define-type-method (union :simple-subtypep) (type1 type2)
3200 (union-simple-subtypep type1 type2))
3202 (defun union-complex-subtypep-arg1 (type1 type2)
3203 (every/type (swapped-args-fun #'csubtypep)
3204 type2
3205 (union-type-types type1)))
3207 (!define-type-method (union :complex-subtypep-arg1) (type1 type2)
3208 (union-complex-subtypep-arg1 type1 type2))
3210 (defun union-complex-subtypep-arg2 (type1 type2)
3211 ;; At this stage, we know that type2 is a union type and type1
3212 ;; isn't. We might as well check this, though:
3213 (aver (union-type-p type2))
3214 (aver (not (union-type-p type1)))
3215 ;; was: (any/type #'csubtypep type1 (union-type-types type2)), which
3216 ;; turns out to be too restrictive, causing bug 91.
3218 ;; the following reimplementation might look dodgy. It is dodgy. It
3219 ;; depends on the union :complex-= method not doing very much work
3220 ;; -- certainly, not using subtypep. Reasoning:
3222 ;; A is a subset of (B1 u B2)
3223 ;; <=> A n (B1 u B2) = A
3224 ;; <=> (A n B1) u (A n B2) = A
3226 ;; But, we have to be careful not to delegate this type= to
3227 ;; something that could invoke subtypep, which might get us back
3228 ;; here -> stack explosion. We therefore ensure that the second type
3229 ;; (which is the one that's dispatched on) is either a union type
3230 ;; (where we've ensured that the complex-= method will not call
3231 ;; subtypep) or something with no union types involved, in which
3232 ;; case we'll never come back here.
3234 ;; If we don't do this, then e.g.
3235 ;; (SUBTYPEP '(MEMBER 3) '(OR (SATISFIES FOO) (SATISFIES BAR)))
3236 ;; would loop infinitely, as the member :complex-= method is
3237 ;; implemented in terms of subtypep.
3239 ;; Ouch. - CSR, 2002-04-10
3240 (multiple-value-bind (sub-value sub-certain?)
3241 (type= type1
3242 (apply #'type-union
3243 (mapcar (lambda (x) (type-intersection type1 x))
3244 (union-type-types type2))))
3245 (if sub-certain?
3246 (values sub-value sub-certain?)
3247 ;; The ANY/TYPE expression above is a sufficient condition for
3248 ;; subsetness, but not a necessary one, so we might get a more
3249 ;; certain answer by this CALL-NEXT-METHOD-ish step when the
3250 ;; ANY/TYPE expression is uncertain.
3251 (invoke-complex-subtypep-arg1-method type1 type2))))
3253 (!define-type-method (union :complex-subtypep-arg2) (type1 type2)
3254 (union-complex-subtypep-arg2 type1 type2))
3256 (!define-type-method (union :simple-intersection2 :complex-intersection2)
3257 (type1 type2)
3258 ;; The CSUBTYPEP clauses here let us simplify e.g.
3259 ;; (TYPE-INTERSECTION2 (SPECIFIER-TYPE 'LIST)
3260 ;; (SPECIFIER-TYPE '(OR LIST VECTOR)))
3261 ;; (where LIST is (OR CONS NULL)).
3263 ;; The tests are more or less (CSUBTYPEP TYPE1 TYPE2) and vice
3264 ;; versa, but it's important that we pre-expand them into
3265 ;; specialized operations on individual elements of
3266 ;; UNION-TYPE-TYPES, instead of using the ordinary call to
3267 ;; CSUBTYPEP, in order to avoid possibly invoking any methods which
3268 ;; might in turn invoke (TYPE-INTERSECTION2 TYPE1 TYPE2) and thus
3269 ;; cause infinite recursion.
3271 ;; Within this method, type2 is guaranteed to be a union type:
3272 (aver (union-type-p type2))
3273 ;; Make sure to call only the applicable methods...
3274 (cond ((and (union-type-p type1)
3275 (union-simple-subtypep type1 type2)) type1)
3276 ((and (union-type-p type1)
3277 (union-simple-subtypep type2 type1)) type2)
3278 ((and (not (union-type-p type1))
3279 (union-complex-subtypep-arg2 type1 type2))
3280 type1)
3281 ((and (not (union-type-p type1))
3282 (union-complex-subtypep-arg1 type2 type1))
3283 type2)
3285 ;; KLUDGE: This code accumulates a sequence of TYPE-UNION2
3286 ;; operations in a particular order, and gives up if any of
3287 ;; the sub-unions turn out not to be simple. In other cases
3288 ;; ca. sbcl-0.6.11.15, that approach to taking a union was a
3289 ;; bad idea, since it can overlook simplifications which
3290 ;; might occur if the terms were accumulated in a different
3291 ;; order. It's possible that that will be a problem here too.
3292 ;; However, I can't think of a good example to demonstrate
3293 ;; it, and without an example to demonstrate it I can't write
3294 ;; test cases, and without test cases I don't want to
3295 ;; complicate the code to address what's still a hypothetical
3296 ;; problem. So I punted. -- WHN 2001-03-20
3297 (let ((accumulator *empty-type*))
3298 (dolist (t2 (union-type-types type2) accumulator)
3299 (setf accumulator
3300 (type-union accumulator
3301 (type-intersection type1 t2))))))))
3303 (!def-type-translator or :list ((:context context) &rest type-specifiers)
3304 (let ((type (apply #'type-union
3305 (mapcar (lambda (x) (specifier-type-r context x))
3306 type-specifiers))))
3307 (if (union-type-p type)
3308 (sb!kernel::simplify-array-unions type)
3309 type)))
3311 ;;;; CONS types
3313 (!define-type-class cons :enumerable nil :might-contain-other-types nil)
3315 (!def-type-translator cons ((:context context)
3316 &optional (car-type-spec '*) (cdr-type-spec '*))
3317 (let ((car-type (single-value-specifier-type-r context car-type-spec))
3318 (cdr-type (single-value-specifier-type-r context cdr-type-spec)))
3319 (make-cons-type car-type cdr-type)))
3321 (!define-type-method (cons :negate) (type)
3322 (if (and (eq (cons-type-car-type type) *universal-type*)
3323 (eq (cons-type-cdr-type type) *universal-type*))
3324 (make-negation-type type)
3325 (type-union
3326 (make-negation-type (specifier-type 'cons))
3327 (cond
3328 ((and (not (eq (cons-type-car-type type) *universal-type*))
3329 (not (eq (cons-type-cdr-type type) *universal-type*)))
3330 (type-union
3331 (make-cons-type
3332 (type-negation (cons-type-car-type type))
3333 *universal-type*)
3334 (make-cons-type
3335 *universal-type*
3336 (type-negation (cons-type-cdr-type type)))))
3337 ((not (eq (cons-type-car-type type) *universal-type*))
3338 (make-cons-type
3339 (type-negation (cons-type-car-type type))
3340 *universal-type*))
3341 ((not (eq (cons-type-cdr-type type) *universal-type*))
3342 (make-cons-type
3343 *universal-type*
3344 (type-negation (cons-type-cdr-type type))))
3345 (t (bug "Weird CONS type ~S" type))))))
3347 (!define-type-method (cons :unparse) (type)
3348 (let ((car-eltype (type-specifier (cons-type-car-type type)))
3349 (cdr-eltype (type-specifier (cons-type-cdr-type type))))
3350 (if (and (member car-eltype '(t *))
3351 (member cdr-eltype '(t *)))
3352 'cons
3353 `(cons ,car-eltype ,cdr-eltype))))
3355 (!define-type-method (cons :simple-=) (type1 type2)
3356 (declare (type cons-type type1 type2))
3357 (multiple-value-bind (car-match car-win)
3358 (type= (cons-type-car-type type1) (cons-type-car-type type2))
3359 (multiple-value-bind (cdr-match cdr-win)
3360 (type= (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3361 (cond ((and car-match cdr-match)
3362 (aver (and car-win cdr-win))
3363 (values t t))
3365 (values nil
3366 ;; FIXME: Ideally we would like to detect and handle
3367 ;; (CONS UNKNOWN INTEGER) (CONS UNKNOWN SYMBOL) => NIL, T
3368 ;; but just returning a secondary true on (and car-win cdr-win)
3369 ;; unfortunately breaks other things. --NS 2006-08-16
3370 (and (or (and (not car-match) car-win)
3371 (and (not cdr-match) cdr-win))
3372 (not (and (cons-type-might-be-empty-type type1)
3373 (cons-type-might-be-empty-type type2))))))))))
3375 (!define-type-method (cons :simple-subtypep) (type1 type2)
3376 (declare (type cons-type type1 type2))
3377 (multiple-value-bind (val-car win-car)
3378 (csubtypep (cons-type-car-type type1) (cons-type-car-type type2))
3379 (multiple-value-bind (val-cdr win-cdr)
3380 (csubtypep (cons-type-cdr-type type1) (cons-type-cdr-type type2))
3381 (if (and val-car val-cdr)
3382 (values t (and win-car win-cdr))
3383 (values nil (or (and (not val-car) win-car)
3384 (and (not val-cdr) win-cdr)))))))
3386 ;;; Give up if a precise type is not possible, to avoid returning
3387 ;;; overly general types.
3388 (!define-type-method (cons :simple-union2) (type1 type2)
3389 (declare (type cons-type type1 type2))
3390 (let ((car-type1 (cons-type-car-type type1))
3391 (car-type2 (cons-type-car-type type2))
3392 (cdr-type1 (cons-type-cdr-type type1))
3393 (cdr-type2 (cons-type-cdr-type type2))
3394 car-not1
3395 car-not2)
3396 ;; UGH. -- CSR, 2003-02-24
3397 (macrolet ((frob-car (car1 car2 cdr1 cdr2
3398 &optional (not1 nil not1p))
3399 `(type-union
3400 (make-cons-type ,car1 (type-union ,cdr1 ,cdr2))
3401 (make-cons-type
3402 (type-intersection ,car2
3403 ,(if not1p
3404 not1
3405 `(type-negation ,car1)))
3406 ,cdr2))))
3407 (cond ((type= car-type1 car-type2)
3408 (make-cons-type car-type1
3409 (type-union cdr-type1 cdr-type2)))
3410 ((type= cdr-type1 cdr-type2)
3411 (make-cons-type (type-union car-type1 car-type2)
3412 cdr-type1))
3413 ((csubtypep car-type1 car-type2)
3414 (frob-car car-type1 car-type2 cdr-type1 cdr-type2))
3415 ((csubtypep car-type2 car-type1)
3416 (frob-car car-type2 car-type1 cdr-type2 cdr-type1))
3417 ;; more general case of the above, but harder to compute
3418 ((progn
3419 (setf car-not1 (type-negation car-type1))
3420 (multiple-value-bind (yes win)
3421 (csubtypep car-type2 car-not1)
3422 (and (not yes) win)))
3423 (frob-car car-type1 car-type2 cdr-type1 cdr-type2 car-not1))
3424 ((progn
3425 (setf car-not2 (type-negation car-type2))
3426 (multiple-value-bind (yes win)
3427 (csubtypep car-type1 car-not2)
3428 (and (not yes) win)))
3429 (frob-car car-type2 car-type1 cdr-type2 cdr-type1 car-not2))
3430 ;; Don't put these in -- consider the effect of taking the
3431 ;; union of (CONS (INTEGER 0 2) (INTEGER 5 7)) and
3432 ;; (CONS (INTEGER 0 3) (INTEGER 5 6)).
3433 #+nil
3434 ((csubtypep cdr-type1 cdr-type2)
3435 (frob-cdr car-type1 car-type2 cdr-type1 cdr-type2))
3436 #+nil
3437 ((csubtypep cdr-type2 cdr-type1)
3438 (frob-cdr car-type2 car-type1 cdr-type2 cdr-type1))))))
3440 (!define-type-method (cons :simple-intersection2) (type1 type2)
3441 (declare (type cons-type type1 type2))
3442 (let ((car-int2 (type-intersection2 (cons-type-car-type type1)
3443 (cons-type-car-type type2)))
3444 (cdr-int2 (type-intersection2 (cons-type-cdr-type type1)
3445 (cons-type-cdr-type type2))))
3446 (cond
3447 ((and car-int2 cdr-int2) (make-cons-type car-int2 cdr-int2))
3448 (car-int2 (make-cons-type car-int2
3449 (type-intersection
3450 (cons-type-cdr-type type1)
3451 (cons-type-cdr-type type2))))
3452 (cdr-int2 (make-cons-type
3453 (type-intersection (cons-type-car-type type1)
3454 (cons-type-car-type type2))
3455 cdr-int2)))))
3457 (!define-superclasses cons ((cons)) !cold-init-forms)
3459 ;;;; CHARACTER-SET types
3461 (!def-type-translator character-set
3462 (&optional (pairs '((0 . #.(1- sb!xc:char-code-limit)))))
3463 (make-character-set-type pairs))
3465 (!define-type-method (character-set :negate) (type)
3466 (let ((pairs (character-set-type-pairs type)))
3467 (if (and (= (length pairs) 1)
3468 (= (caar pairs) 0)
3469 (= (cdar pairs) (1- sb!xc:char-code-limit)))
3470 (make-negation-type type)
3471 (let ((not-character
3472 (make-negation-type
3473 (make-character-set-type
3474 '((0 . #.(1- sb!xc:char-code-limit)))))))
3475 (type-union
3476 not-character
3477 (make-character-set-type
3478 (let (not-pairs)
3479 (when (> (caar pairs) 0)
3480 (push (cons 0 (1- (caar pairs))) not-pairs))
3481 (do* ((tail pairs (cdr tail))
3482 (high1 (cdar tail) (cdar tail))
3483 (low2 (caadr tail) (caadr tail)))
3484 ((null (cdr tail))
3485 (when (< (cdar tail) (1- sb!xc:char-code-limit))
3486 (push (cons (1+ (cdar tail))
3487 (1- sb!xc:char-code-limit))
3488 not-pairs))
3489 (nreverse not-pairs))
3490 (push (cons (1+ high1) (1- low2)) not-pairs)))))))))
3492 (!define-type-method (character-set :unparse) (type)
3493 (cond
3494 ((type= type (specifier-type 'character)) 'character)
3495 ((type= type (specifier-type 'base-char)) 'base-char)
3496 ((type= type (specifier-type 'extended-char)) 'extended-char)
3497 ((type= type (specifier-type 'standard-char)) 'standard-char)
3499 ;; Unparse into either MEMBER or CHARACTER-SET. We use MEMBER if there
3500 ;; are at most as many characters as there are character code ranges.
3501 ;; (basically saying to use MEMBER if each range is one character)
3502 (let* ((pairs (character-set-type-pairs type))
3503 (count (length pairs))
3504 (chars (loop named outer
3505 for (low . high) in pairs
3506 nconc (loop for code from low upto high
3507 collect (sb!xc:code-char code)
3508 when (minusp (decf count))
3509 do (return-from outer t)))))
3510 (if (eq chars t)
3511 `(character-set ,pairs)
3512 `(member ,@chars))))))
3514 (!define-type-method (character-set :singleton-p) (type)
3515 (let* ((pairs (character-set-type-pairs type))
3516 (pair (first pairs)))
3517 (if (and (typep pairs '(cons t null))
3518 (eql (car pair) (cdr pair)))
3519 (values t (code-char (car pair)))
3520 (values nil nil))))
3522 (!define-type-method (character-set :simple-=) (type1 type2)
3523 (let ((pairs1 (character-set-type-pairs type1))
3524 (pairs2 (character-set-type-pairs type2)))
3525 (values (equal pairs1 pairs2) t)))
3527 (!define-type-method (character-set :simple-subtypep) (type1 type2)
3528 (values
3529 (dolist (pair (character-set-type-pairs type1) t)
3530 (unless (position pair (character-set-type-pairs type2)
3531 :test (lambda (x y) (and (>= (car x) (car y))
3532 (<= (cdr x) (cdr y)))))
3533 (return nil)))
3536 (!define-type-method (character-set :simple-union2) (type1 type2)
3537 ;; KLUDGE: the canonizing in the MAKE-CHARACTER-SET-TYPE function
3538 ;; actually does the union for us. It might be a little fragile to
3539 ;; rely on it.
3540 (make-character-set-type
3541 (merge 'list
3542 (copy-alist (character-set-type-pairs type1))
3543 (copy-alist (character-set-type-pairs type2))
3544 #'< :key #'car)))
3546 (!define-type-method (character-set :simple-intersection2) (type1 type2)
3547 ;; KLUDGE: brute force.
3549 (let (pairs)
3550 (dolist (pair1 (character-set-type-pairs type1)
3551 (make-character-set-type
3552 (sort pairs #'< :key #'car)))
3553 (dolist (pair2 (character-set-type-pairs type2))
3554 (cond
3555 ((<= (car pair1) (car pair2) (cdr pair1))
3556 (push (cons (car pair2) (min (cdr pair1) (cdr pair2))) pairs))
3557 ((<= (car pair2) (car pair1) (cdr pair2))
3558 (push (cons (car pair1) (min (cdr pair1) (cdr pair2))) pairs))))))
3560 (make-character-set-type
3561 (intersect-type-pairs
3562 (character-set-type-pairs type1)
3563 (character-set-type-pairs type2))))
3566 ;;; Intersect two ordered lists of pairs
3567 ;;; Each list is of the form ((start1 . end1) ... (startn . endn)),
3568 ;;; where start1 <= end1 < start2 <= end2 < ... < startn <= endn.
3569 ;;; Each pair represents the integer interval start..end.
3571 (defun intersect-type-pairs (alist1 alist2)
3572 (if (and alist1 alist2)
3573 (let ((res nil)
3574 (pair1 (pop alist1))
3575 (pair2 (pop alist2)))
3576 (loop
3577 (when (> (car pair1) (car pair2))
3578 (rotatef pair1 pair2)
3579 (rotatef alist1 alist2))
3580 (let ((pair1-cdr (cdr pair1)))
3581 (cond
3582 ((> (car pair2) pair1-cdr)
3583 ;; No over lap -- discard pair1
3584 (unless alist1 (return))
3585 (setq pair1 (pop alist1)))
3586 ((<= (cdr pair2) pair1-cdr)
3587 (push (cons (car pair2) (cdr pair2)) res)
3588 (cond
3589 ((= (cdr pair2) pair1-cdr)
3590 (unless alist1 (return))
3591 (unless alist2 (return))
3592 (setq pair1 (pop alist1)
3593 pair2 (pop alist2)))
3594 (t ;; (< (cdr pair2) pair1-cdr)
3595 (unless alist2 (return))
3596 (setq pair1 (cons (1+ (cdr pair2)) pair1-cdr))
3597 (setq pair2 (pop alist2)))))
3598 (t ;; (> (cdr pair2) (cdr pair1))
3599 (push (cons (car pair2) pair1-cdr) res)
3600 (unless alist1 (return))
3601 (setq pair2 (cons (1+ pair1-cdr) (cdr pair2)))
3602 (setq pair1 (pop alist1))))))
3603 (nreverse res))
3604 nil))
3607 ;;; Return the type that describes all objects that are in X but not
3608 ;;; in Y. If we can't determine this type, then return NIL.
3610 ;;; For now, we only are clever dealing with union and member types.
3611 ;;; If either type is not a union type, then we pretend that it is a
3612 ;;; union of just one type. What we do is remove from X all the types
3613 ;;; that are a subtype any type in Y. If any type in X intersects with
3614 ;;; a type in Y but is not a subtype, then we give up.
3616 ;;; We must also special-case any member type that appears in the
3617 ;;; union. We remove from X's members all objects that are TYPEP to Y.
3618 ;;; If Y has any members, we must be careful that none of those
3619 ;;; members are CTYPEP to any of Y's non-member types. We give up in
3620 ;;; this case, since to compute that difference we would have to break
3621 ;;; the type from X into some collection of types that represents the
3622 ;;; type without that particular element. This seems too hairy to be
3623 ;;; worthwhile, given its low utility.
3624 (defun type-difference (x y)
3625 (if (and (numeric-type-p x) (numeric-type-p y))
3626 ;; Numeric types are easy. Are there any others we should handle like this?
3627 (type-intersection x (type-negation y))
3628 (let ((x-types (if (union-type-p x) (union-type-types x) (list x)))
3629 (y-types (if (union-type-p y) (union-type-types y) (list y))))
3630 (collect ((res))
3631 (dolist (x-type x-types)
3632 (if (member-type-p x-type)
3633 (let ((xset (alloc-xset))
3634 (fp-zeroes nil))
3635 (mapc-member-type-members
3636 (lambda (elt)
3637 (multiple-value-bind (ok sure) (ctypep elt y)
3638 (unless sure
3639 (return-from type-difference nil))
3640 (unless ok
3641 (if (fp-zero-p elt)
3642 (pushnew elt fp-zeroes)
3643 (add-to-xset elt xset)))))
3644 x-type)
3645 (unless (and (xset-empty-p xset) (not fp-zeroes))
3646 (res (make-member-type xset fp-zeroes))))
3647 (dolist (y-type y-types (res x-type))
3648 (multiple-value-bind (val win) (csubtypep x-type y-type)
3649 (unless win (return-from type-difference nil))
3650 (when val (return))
3651 (when (types-equal-or-intersect x-type y-type)
3652 (return-from type-difference nil))))))
3653 (let ((y-mem (find-if #'member-type-p y-types)))
3654 (when y-mem
3655 (dolist (x-type x-types)
3656 (unless (member-type-p x-type)
3657 (mapc-member-type-members
3658 (lambda (member)
3659 (multiple-value-bind (ok sure) (ctypep member x-type)
3660 (when (or (not sure) ok)
3661 (return-from type-difference nil))))
3662 y-mem)))))
3663 (apply #'type-union (res))))))
3665 (!def-type-translator array ((:context context)
3666 &optional (element-type '*)
3667 (dimensions '*))
3668 (let ((eltype (if (eq element-type '*)
3669 *wild-type*
3670 (specifier-type-r context element-type))))
3671 (make-array-type (canonical-array-dimensions dimensions)
3672 :complexp :maybe
3673 :element-type eltype
3674 :specialized-element-type (%upgraded-array-element-type
3675 eltype))))
3677 (!def-type-translator simple-array ((:context context)
3678 &optional (element-type '*)
3679 (dimensions '*))
3680 (let ((eltype (if (eq element-type '*)
3681 *wild-type*
3682 (specifier-type-r context element-type))))
3683 (make-array-type (canonical-array-dimensions dimensions)
3684 :complexp nil
3685 :element-type eltype
3686 :specialized-element-type (%upgraded-array-element-type
3687 eltype))))
3689 ;;;; SIMD-PACK types
3690 #!+sb-simd-pack
3691 (progn
3692 (!define-type-class simd-pack :enumerable nil
3693 :might-contain-other-types nil)
3695 ;; Though this involves a recursive call to parser, parsing context need not
3696 ;; be passed down, because an unknown-type condition is an immediate failure.
3697 (!def-type-translator simd-pack (&optional (element-type-spec '*))
3698 (if (eql element-type-spec '*)
3699 (%make-simd-pack-type *simd-pack-element-types*)
3700 (make-simd-pack-type (single-value-specifier-type element-type-spec))))
3702 (!define-type-method (simd-pack :negate) (type)
3703 (let ((remaining (set-difference *simd-pack-element-types*
3704 (simd-pack-type-element-type type)))
3705 (not-simd-pack (make-negation-type (specifier-type 'simd-pack))))
3706 (if remaining
3707 (type-union not-simd-pack (%make-simd-pack-type remaining))
3708 not-simd-pack)))
3710 (!define-type-method (simd-pack :unparse) (type)
3711 (let ((eltypes (simd-pack-type-element-type type)))
3712 (cond ((equal eltypes *simd-pack-element-types*)
3713 'simd-pack)
3714 ((= 1 (length eltypes))
3715 `(simd-pack ,(first eltypes)))
3717 `(or ,@(mapcar (lambda (eltype)
3718 `(simd-pack ,eltype))
3719 eltypes))))))
3721 (!define-type-method (simd-pack :simple-=) (type1 type2)
3722 (declare (type simd-pack-type type1 type2))
3723 (null (set-exclusive-or (simd-pack-type-element-type type1)
3724 (simd-pack-type-element-type type2))))
3726 (!define-type-method (simd-pack :simple-subtypep) (type1 type2)
3727 (declare (type simd-pack-type type1 type2))
3728 (subsetp (simd-pack-type-element-type type1)
3729 (simd-pack-type-element-type type2)))
3731 (!define-type-method (simd-pack :simple-union2) (type1 type2)
3732 (declare (type simd-pack-type type1 type2))
3733 (%make-simd-pack-type (union (simd-pack-type-element-type type1)
3734 (simd-pack-type-element-type type2))))
3736 (!define-type-method (simd-pack :simple-intersection2) (type1 type2)
3737 (declare (type simd-pack-type type1 type2))
3738 (let ((intersection (intersection (simd-pack-type-element-type type1)
3739 (simd-pack-type-element-type type2))))
3740 (if intersection
3741 (%make-simd-pack-type intersection)
3742 *empty-type*)))
3744 (!define-superclasses simd-pack ((simd-pack)) !cold-init-forms))
3746 ;;;; utilities shared between cross-compiler and target system
3748 ;;; Does the type derived from compilation of an actual function
3749 ;;; definition satisfy declarations of a function's type?
3750 (defun defined-ftype-matches-declared-ftype-p (defined-ftype declared-ftype)
3751 (declare (type ctype defined-ftype declared-ftype))
3752 (flet ((is-built-in-class-function-p (ctype)
3753 (and (built-in-classoid-p ctype)
3754 (eq (built-in-classoid-name ctype) 'function))))
3755 (cond (;; DECLARED-FTYPE could certainly be #<BUILT-IN-CLASS FUNCTION>;
3756 ;; that's what happens when we (DECLAIM (FTYPE FUNCTION FOO)).
3757 (is-built-in-class-function-p declared-ftype)
3758 ;; In that case, any definition satisfies the declaration.
3760 (;; It's not clear whether or how DEFINED-FTYPE might be
3761 ;; #<BUILT-IN-CLASS FUNCTION>, but it's not obviously
3762 ;; invalid, so let's handle that case too, just in case.
3763 (is-built-in-class-function-p defined-ftype)
3764 ;; No matter what DECLARED-FTYPE might be, we can't prove
3765 ;; that an object of type FUNCTION doesn't satisfy it, so
3766 ;; we return success no matter what.
3768 (;; Otherwise both of them must be FUN-TYPE objects.
3770 ;; FIXME: For now we only check compatibility of the return
3771 ;; type, not argument types, and we don't even check the
3772 ;; return type very precisely (as per bug 94a). It would be
3773 ;; good to do a better job. Perhaps to check the
3774 ;; compatibility of the arguments, we should (1) redo
3775 ;; VALUES-TYPES-EQUAL-OR-INTERSECT as
3776 ;; ARGS-TYPES-EQUAL-OR-INTERSECT, and then (2) apply it to
3777 ;; the ARGS-TYPE slices of the FUN-TYPEs. (ARGS-TYPE
3778 ;; is a base class both of VALUES-TYPE and of FUN-TYPE.)
3779 (values-types-equal-or-intersect
3780 (fun-type-returns defined-ftype)
3781 (fun-type-returns declared-ftype))))))
3783 ;;; This messy case of CTYPE for NUMBER is shared between the
3784 ;;; cross-compiler and the target system.
3785 (defun ctype-of-number (x)
3786 (let ((num (if (complexp x) (realpart x) x)))
3787 (multiple-value-bind (complexp low high)
3788 (if (complexp x)
3789 (let ((imag (imagpart x)))
3790 (values :complex (min num imag) (max num imag)))
3791 (values :real num num))
3792 (make-numeric-type :class (etypecase num
3793 (integer (if (complexp x)
3794 (if (integerp (imagpart x))
3795 'integer
3796 'rational)
3797 'integer))
3798 (rational 'rational)
3799 (float 'float))
3800 :format (and (floatp num) (float-format-name num))
3801 :complexp complexp
3802 :low low
3803 :high high))))
3805 ;;; The following function is a generic driver for approximating
3806 ;;; set-valued functions over types. Putting this here because it'll
3807 ;;; probably be useful for a lot of type analyses.
3809 ;;; Let f be a function from values of type X to Y, e.g., ARRAY-RANK.
3811 ;;; We compute an over or under-approximation of the set
3813 ;;; F(TYPE) = { f(x) : x in TYPE /\ x in X } \subseteq Y
3815 ;;; via set-valued approximations of f, OVER and UNDER.
3817 ;;; These functions must have the property that
3818 ;;; Forall TYPE, OVER(TYPE) \superseteq F(TYPE) and
3819 ;;; Forall TYPE, UNDER(TYPE) \subseteq F(TYPE)
3821 ;;; The driver is also parameterised over the finite set
3822 ;;; representation.
3824 ;;; Union, intersection and difference are binary functions to compute
3825 ;;; set union, intersection and difference. Top and bottom are the
3826 ;;; concrete representations for the universe and empty sets; we never
3827 ;;; call the set functions on top or bottom, so it's safe to use
3828 ;;; special values there.
3830 ;;; Arguments:
3832 ;;; TYPE: the ctype for which we wish to approximate F(TYPE)
3833 ;;; OVERAPPROXIMATE: true if we wish to overapproximate, nil otherwise.
3834 ;;; You usually want T.
3835 ;;; UNION/INTERSECTION/DIFFERENCE: implementations of finite set operations.
3836 ;;; Conform to cl::(union/intersection/set-difference). Passing NIL will
3837 ;;; disable some cleverness and result in quicker computation of coarser
3838 ;;; approximations. However, passing difference without union and intersection
3839 ;;; will probably not end well.
3840 ;;; TOP/BOTTOM: concrete representation of the universe and empty set. Finite
3841 ;;; set operations are never called on TOP/BOTTOM, so it's safe to use special
3842 ;;; values there.
3843 ;;; OVER/UNDER: the set-valued approximations of F.
3845 ;;; Implementation details.
3847 ;;; It's a straightforward walk down the type.
3848 ;;; Union types -> take the union of children, intersection ->
3849 ;;; intersect. There is some complication for negation types: we must
3850 ;;; not only negate the result, but also flip from overapproximating
3851 ;;; to underapproximating in the children (or vice versa).
3853 ;;; We represent sets as a pair of (negate-p finite-set) in order to
3854 ;;; support negation types.
3856 (declaim (inline generic-abstract-type-function))
3857 (defun generic-abstract-type-function
3858 (type overapproximate
3859 union intersection difference
3860 top bottom
3861 over under)
3862 (labels ((union* (x y)
3863 ;; wrappers to avoid calling union/intersection on
3864 ;; top/bottom.
3865 (cond ((or (eql x top)
3866 (eql y top))
3867 top)
3868 ((eql x bottom) y)
3869 ((eql y bottom) x)
3871 (funcall union x y))))
3872 (intersection* (x y)
3873 (cond ((or (eql x bottom)
3874 (eql y bottom))
3875 bottom)
3876 ((eql x top) y)
3877 ((eql y top) x)
3879 (funcall intersection x y))))
3880 (unite (not-x-p x not-y-p y)
3881 ;; if we only have one negated set, it's x.
3882 (when not-y-p
3883 (rotatef not-x-p not-y-p)
3884 (rotatef x y))
3885 (cond ((and not-x-p not-y-p)
3886 ;; -x \/ -y = -(x /\ y)
3887 (normalize t (intersection* x y)))
3888 (not-x-p
3889 ;; -x \/ y = -(x \ y)
3890 (cond ((eql x top)
3891 (values nil y))
3892 ((or (eql y top)
3893 (eql x bottom))
3894 (values nil top))
3895 ((eql y bottom)
3896 (values t x))
3898 (normalize t
3899 (funcall difference x y)))))
3901 (values nil (union* x y)))))
3902 (intersect (not-x-p x not-y-p y)
3903 (when not-y-p
3904 (rotatef not-x-p not-y-p)
3905 (rotatef x y))
3906 (cond ((and not-x-p not-y-p)
3907 ;; -x /\ -y = -(x \/ y)
3908 (normalize t (union* x y)))
3909 (not-x-p
3910 ;; -x /\ y = y \ x
3911 (cond ((or (eql x top) (eql y bottom))
3912 (values nil bottom))
3913 ((eql x bottom)
3914 (values nil y))
3915 ((eql y top)
3916 (values t x))
3918 (values nil (funcall difference y x)))))
3920 (values nil (intersection* x y)))))
3921 (normalize (not-x-p x)
3922 ;; catch some easy cases of redundant negation.
3923 (cond ((not not-x-p)
3924 (values nil x))
3925 ((eql x top)
3926 bottom)
3927 ((eql x bottom)
3928 top)
3930 (values t x))))
3931 (default (overapproximate)
3932 ;; default value
3933 (if overapproximate top bottom))
3934 (walk-union (types overapproximate)
3935 ;; Only do this if union is provided.
3936 (unless union
3937 (return-from walk-union (default overapproximate)))
3938 ;; Reduce/union from bottom.
3939 (let ((not-acc-p nil)
3940 (acc bottom))
3941 (dolist (type types (values not-acc-p acc))
3942 (multiple-value-bind (not x)
3943 (walk type overapproximate)
3944 (setf (values not-acc-p acc)
3945 (unite not-acc-p acc not x)))
3946 ;; Early exit on top set.
3947 (when (and (eql acc top)
3948 (not not-acc-p))
3949 (return (values nil top))))))
3950 (walk-intersection (types overapproximate)
3951 ;; Skip if we don't know how to intersect sets
3952 (unless intersection
3953 (return-from walk-intersection (default overapproximate)))
3954 ;; Reduce/intersection from top
3955 (let ((not-acc-p nil)
3956 (acc top))
3957 (dolist (type types (values not-acc-p acc))
3958 (multiple-value-bind (not x)
3959 (walk type overapproximate)
3960 (setf (values not-acc-p acc)
3961 (intersect not-acc-p acc not x)))
3962 (when (and (eql acc bottom)
3963 (not not-acc-p))
3964 (return (values nil bottom))))))
3965 (walk-negate (type overapproximate)
3966 ;; Don't introduce negated types if we don't know how to
3967 ;; subtract sets.
3968 (unless difference
3969 (return-from walk-negate (default overapproximate)))
3970 (multiple-value-bind (not x)
3971 (walk type (not overapproximate))
3972 (normalize (not not) x)))
3973 (walk (type overapproximate)
3974 (typecase type
3975 (union-type
3976 (walk-union (union-type-types type) overapproximate))
3977 ((cons (member or union))
3978 (walk-union (rest type) overapproximate))
3979 (intersection-type
3980 (walk-intersection (intersection-type-types type) overapproximate))
3981 ((cons (member and intersection))
3982 (walk-intersection (rest type) overapproximate))
3983 (negation-type
3984 (walk-negate (negation-type-type type) overapproximate))
3985 ((cons (eql not))
3986 (walk-negate (second type) overapproximate))
3988 (values nil
3989 (if overapproximate
3990 (if over
3991 (funcall over type)
3992 (default t))
3993 (if under
3994 (funcall under type)
3995 (default nil))))))))
3996 (multiple-value-call #'normalize (walk type overapproximate))))
3997 (declaim (notinline generic-abstract-type-function))
3999 ;;; Standard list representation of sets. Use CL:* for the universe.
4000 (defun list-abstract-type-function (type over &key under (overapproximate t))
4001 (declare (inline generic-abstract-type-function))
4002 (generic-abstract-type-function
4003 type overapproximate
4004 #'union #'intersection #'set-difference
4005 '* nil
4006 over under))
4008 (!defun-from-collected-cold-init-forms !late-type-cold-init)
4010 #-sb-xc (!late-type-cold-init2)
4012 (/show0 "late-type.lisp end of file")