1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
19 ;;;; function representation" before you seriously mess with this
22 ;;; Verify that the NAME is a legal name for a variable and return a
23 ;;; VAR structure for it, filling in info if it is globally special.
24 ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
25 ;;; list of names which have previously been bound. If the NAME is in
26 ;;; this list, then we error out.
27 (declaim (ftype (sfunction (t list
&optional t
) lambda-var
) varify-lambda-arg
))
28 (defun varify-lambda-arg (name names-so-far
&optional
(context "lambda list"))
29 (declare (inline member
))
30 (unless (symbolp name
)
31 (compiler-error "~S is not a symbol, and cannot be used as a variable." name
))
32 (when (member name names-so-far
:test
#'eq
)
33 (compiler-error "The variable ~S occurs more than once in the ~A."
36 (let ((kind (info :variable
:kind name
)))
37 (cond ((keywordp name
)
38 (compiler-error "~S is a keyword, and cannot be used as a local variable."
41 (compiler-error "~@<~S names a defined constant, and cannot be used as a ~
45 (compiler-error "~@<~S names a global lexical variable, and cannot be used ~
46 as a local variable.~:@>"
49 (let ((specvar (find-free-var name
)))
50 (make-lambda-var :%source-name name
51 :type
(leaf-type specvar
)
52 :where-from
(leaf-where-from specvar
)
55 (make-lambda-var :%source-name name
)))))
57 ;;; Make the default keyword for a &KEY arg, checking that the keyword
58 ;;; isn't already used by one of the VARS.
59 (declaim (ftype (sfunction (symbol list t
) symbol
) make-keyword-for-arg
))
60 (defun make-keyword-for-arg (symbol vars keywordify
)
61 (let ((key (if (and keywordify
(not (keywordp symbol
)))
65 (let ((info (lambda-var-arg-info var
)))
67 (eq (arg-info-kind info
) :keyword
)
68 (eq (arg-info-key info
) key
))
70 "The keyword ~S appears more than once in the lambda list."
74 ;;; Parse a lambda list into a list of VAR structures, stripping off
75 ;;; any &AUX bindings. Each arg name is checked for legality, and
76 ;;; duplicate names are checked for. If an arg is globally special,
77 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
78 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
79 ;;; which contains the extra information. If we hit something losing,
80 ;;; we bug out with COMPILER-ERROR. These values are returned:
81 ;;; 1. a list of the var structures for each top level argument;
82 ;;; 2. a flag indicating whether &KEY was specified;
83 ;;; 3. a flag indicating whether other &KEY args are allowed;
84 ;;; 4. a list of the &AUX variables; and
85 ;;; 5. a list of the &AUX values.
86 (declaim (ftype (sfunction (list) (values list boolean boolean list list
))
88 (defun make-lambda-vars (list)
89 (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
90 morep more-context more-count
)
91 (parse-lambda-list list
)
92 (declare (ignore auxp
)) ; since we just iterate over AUX regardless
97 (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
98 ;; for optionals and keywords args.
99 (parse-default (spec info
)
100 (when (consp (cdr spec
))
101 (setf (arg-info-default info
) (second spec
))
102 (when (consp (cddr spec
))
103 (let* ((supplied-p (third spec
))
104 (supplied-var (varify-lambda-arg supplied-p
106 (setf (arg-info-supplied-p info
) supplied-var
)
107 (names-so-far supplied-p
)
108 (when (> (length (the list spec
)) 3)
110 "The list ~S is too long to be an arg specifier."
113 (dolist (name required
)
114 (let ((var (varify-lambda-arg name
(names-so-far))))
116 (names-so-far name
)))
118 (dolist (spec optional
)
120 (let ((var (varify-lambda-arg spec
(names-so-far))))
121 (setf (lambda-var-arg-info var
)
122 (make-arg-info :kind
:optional
))
125 (let* ((name (first spec
))
126 (var (varify-lambda-arg name
(names-so-far)))
127 (info (make-arg-info :kind
:optional
)))
128 (setf (lambda-var-arg-info var
) info
)
131 (parse-default spec info
))))
134 (let ((var (varify-lambda-arg rest
(names-so-far))))
135 (setf (lambda-var-arg-info var
) (make-arg-info :kind
:rest
))
137 (names-so-far rest
)))
140 (let ((var (varify-lambda-arg more-context
(names-so-far))))
141 (setf (lambda-var-arg-info var
)
142 (make-arg-info :kind
:more-context
))
144 (names-so-far more-context
))
145 (let ((var (varify-lambda-arg more-count
(names-so-far))))
146 (setf (lambda-var-arg-info var
)
147 (make-arg-info :kind
:more-count
))
149 (names-so-far more-count
)))
154 (let ((var (varify-lambda-arg spec
(names-so-far))))
155 (setf (lambda-var-arg-info var
)
156 (make-arg-info :kind
:keyword
157 :key
(make-keyword-for-arg spec
161 (names-so-far spec
)))
163 (let* ((name (first spec
))
164 (var (varify-lambda-arg name
(names-so-far)))
167 :key
(make-keyword-for-arg name
(vars) t
))))
168 (setf (lambda-var-arg-info var
) info
)
171 (parse-default spec info
)))
173 (let ((head (first spec
)))
174 (unless (proper-list-of-length-p head
2)
175 (error "malformed &KEY argument specifier: ~S" spec
))
176 (let* ((name (second head
))
177 (var (varify-lambda-arg name
(names-so-far)))
180 :key
(make-keyword-for-arg (first head
)
183 (setf (lambda-var-arg-info var
) info
)
186 (parse-default spec info
))))))
190 (let ((var (varify-lambda-arg spec nil
)))
193 (names-so-far spec
)))
195 (unless (proper-list-of-length-p spec
1 2)
196 (compiler-error "malformed &AUX binding specifier: ~S"
198 (let* ((name (first spec
))
199 (var (varify-lambda-arg name nil
)))
201 (aux-vals (second spec
))
202 (names-so-far name
)))))
204 (values (vars) keyp allowp
(aux-vars) (aux-vals))))))
206 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
207 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
208 ;;; converting the body. If there are no bindings, just convert the
209 ;;; body, otherwise do one binding and recurse on the rest.
211 ;;; FIXME: This could and probably should be converted to use
212 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
213 ;;; so I'm not motivated. Patches will be accepted...
214 (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals
216 (declare (type ctran start next
) (type (or lvar null
) result
)
217 (list body aux-vars aux-vals
))
219 (let ((*lexenv
* (make-lexenv :vars
(copy-list post-binding-lexenv
))))
220 (ir1-convert-progn-body start next result body
))
221 (let ((ctran (make-ctran))
222 (fun-lvar (make-lvar))
223 (fun (ir1-convert-lambda-body body
224 (list (first aux-vars
))
225 :aux-vars
(rest aux-vars
)
226 :aux-vals
(rest aux-vals
)
227 :post-binding-lexenv post-binding-lexenv
228 :debug-name
(debug-name
231 (reference-leaf start ctran fun-lvar fun
)
232 (ir1-convert-combination-args fun-lvar ctran next result
233 (list (first aux-vals
)))))
236 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
237 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
238 ;;; around the body. If there are no special bindings, we just convert
239 ;;; the body, otherwise we do one special binding and recurse on the
242 ;;; We make a cleanup and introduce it into the lexical
243 ;;; environment. If there are multiple special bindings, the cleanup
244 ;;; for the blocks will end up being the innermost one. We force NEXT
245 ;;; to start a block outside of this cleanup, causing cleanup code to
246 ;;; be emitted when the scope is exited.
247 (defun ir1-convert-special-bindings
248 (start next result body aux-vars aux-vals svars post-binding-lexenv
)
249 (declare (type ctran start next
) (type (or lvar null
) result
)
250 (list body aux-vars aux-vals svars
))
253 (ir1-convert-aux-bindings start next result body aux-vars aux-vals
254 post-binding-lexenv
))
256 (ctran-starts-block next
)
257 (let ((cleanup (make-cleanup :kind
:special-bind
))
259 (bind-ctran (make-ctran))
260 (cleanup-ctran (make-ctran)))
261 (ir1-convert start bind-ctran nil
262 `(%special-bind
',(lambda-var-specvar var
) ,var
))
263 (setf (cleanup-mess-up cleanup
) (ctran-use bind-ctran
))
264 (let ((*lexenv
* (make-lexenv :cleanup cleanup
)))
265 (ir1-convert bind-ctran cleanup-ctran nil
'(%cleanup-point
))
266 (ir1-convert-special-bindings cleanup-ctran next result
267 body aux-vars aux-vals
269 post-binding-lexenv
)))))
272 ;;; Create a lambda node out of some code, returning the result. The
273 ;;; bindings are specified by the list of VAR structures VARS. We deal
274 ;;; with adding the names to the LEXENV-VARS for the conversion. The
275 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
276 ;;; and linked to the component head and tail.
278 ;;; We detect special bindings here, replacing the original VAR in the
279 ;;; lambda list with a temporary variable. We then pass a list of the
280 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
281 ;;; the special binding code.
283 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
284 ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT.
286 ;;; AUX-VARS is a list of VAR structures for variables that are to be
287 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
288 ;;; to get the initial value for the corresponding AUX-VAR.
289 (defun ir1-convert-lambda-body (body
294 (source-name '.anonymous.
)
296 (note-lexical-bindings t
)
299 (declare (list body vars aux-vars aux-vals
))
301 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
302 (aver-live-component *current-component
*)
304 (let* ((bind (make-bind))
305 (lambda (make-lambda :vars vars
307 :%source-name source-name
308 :%debug-name debug-name
309 :system-lambda-p system-lambda
))
310 (result-ctran (make-ctran))
311 (result-lvar (make-lvar)))
313 (awhen (lexenv-lambda *lexenv
*)
314 (push lambda
(lambda-children it
))
315 (setf (lambda-parent lambda
) it
))
317 ;; just to check: This function should fail internal assertions if
318 ;; we didn't set up a valid debug name above.
320 ;; (In SBCL we try to make everything have a debug name, since we
321 ;; lack the omniscient perspective the original implementors used
322 ;; to decide which things didn't need one.)
323 (functional-debug-name lambda
)
325 (setf (lambda-home lambda
) lambda
)
330 ;; As far as I can see, LAMBDA-VAR-HOME should never have
331 ;; been set before. Let's make sure. -- WHN 2001-09-29
332 (aver (not (lambda-var-home var
)))
333 (setf (lambda-var-home var
) lambda
)
334 (let ((specvar (lambda-var-specvar var
)))
337 (new-venv (cons (leaf-source-name specvar
) specvar
)))
339 (when note-lexical-bindings
340 (note-lexical-binding (leaf-source-name var
)))
341 (new-venv (cons (leaf-source-name var
) var
))))))
343 (let ((*lexenv
* (make-lexenv :vars
(new-venv)
346 (setf (bind-lambda bind
) lambda
)
347 (setf (node-lexenv bind
) *lexenv
*)
349 (let ((block (ctran-starts-block result-ctran
)))
350 (let ((return (make-return :result result-lvar
:lambda lambda
))
351 (tail-set (make-tail-set :funs
(list lambda
))))
352 (setf (lambda-tail-set lambda
) tail-set
)
353 (setf (lambda-return lambda
) return
)
354 (setf (lvar-dest result-lvar
) return
)
355 (link-node-to-previous-ctran return result-ctran
)
356 (setf (block-last block
) return
))
357 (link-blocks block
(component-tail *current-component
*)))
359 (with-component-last-block (*current-component
*
360 (ctran-block result-ctran
))
361 (let ((prebind-ctran (make-ctran))
362 (postbind-ctran (make-ctran)))
363 (ctran-starts-block prebind-ctran
)
364 (link-node-to-previous-ctran bind prebind-ctran
)
365 (use-ctran bind postbind-ctran
)
366 (ir1-convert-special-bindings postbind-ctran result-ctran
368 aux-vars aux-vals
(svars)
369 post-binding-lexenv
)))))
371 (link-blocks (component-head *current-component
*) (node-block bind
))
372 (push lambda
(component-new-functionals *current-component
*))
376 ;;; Entry point CLAMBDAs have a special kind
377 (defun register-entry-point (entry dispatcher
)
378 (declare (type clambda entry
)
379 (type optional-dispatch dispatcher
))
380 (setf (functional-kind entry
) :optional
)
381 (setf (leaf-ever-used entry
) t
)
382 (setf (lambda-optional-dispatch entry
) dispatcher
)
385 ;;; Create the actual entry-point function for an optional entry
386 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
387 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
388 ;;; to the VARS by name. The VALS are passed in the reverse order.
390 ;;; If any of the copies of the vars are referenced more than once,
391 ;;; then we mark the corresponding var as EVER-USED to inhibit
392 ;;; "defined but not read" warnings for arguments that are only used
393 ;;; by default forms.
394 (defun convert-optional-entry (fun vars vals defaults name
)
395 (declare (type clambda fun
) (list vars vals defaults
))
396 (let* ((fvars (reverse vars
))
397 (arg-vars (mapcar (lambda (var)
399 :%source-name
(leaf-source-name var
)
400 :type
(leaf-type var
)
401 :where-from
(leaf-where-from var
)
402 :specvar
(lambda-var-specvar var
)))
404 (fun (collect ((default-bindings)
406 (dolist (default defaults
)
407 (if (sb!xc
:constantp default
)
408 (default-vals default
)
409 (let ((var (sb!xc
:gensym
)))
410 (default-bindings `(,var
,default
))
411 (default-vals var
))))
412 (let ((bindings (default-bindings))
413 (call `(%funcall
,fun
,@(reverse vals
) ,@(default-vals))))
414 (ir1-convert-lambda-body (if bindings
415 `((let (,@bindings
) ,call
))
418 ;; FIXME: Would be nice to
419 ;; share these names instead
420 ;; of consing up several
421 ;; identical ones. Oh well.
422 :debug-name
(debug-name
425 :note-lexical-bindings nil
426 :system-lambda t
)))))
427 (mapc (lambda (var arg-var
)
428 (when (cdr (leaf-refs arg-var
))
429 (setf (leaf-ever-used var
) t
)))
433 ;;; This function deals with supplied-p vars in optional arguments. If
434 ;;; the there is no supplied-p arg, then we just call
435 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
436 ;;; optional entry that calls the result. If there is a supplied-p
437 ;;; var, then we add it into the default vars and throw a T into the
438 ;;; entry values. The resulting entry point function is returned.
439 (defun generate-optional-default-entry (res default-vars default-vals
440 entry-vars entry-vals
441 vars supplied-p-p body
443 source-name debug-name
444 force post-binding-lexenv
446 (declare (type optional-dispatch res
)
447 (list default-vars default-vals entry-vars entry-vals vars body
449 (let* ((arg (first vars
))
450 (arg-name (leaf-source-name arg
))
451 (info (lambda-var-arg-info arg
))
452 (default (arg-info-default info
))
453 (supplied-p (arg-info-supplied-p info
))
455 (not (sb!xc
:constantp
(arg-info-default info
)))))
457 (ir1-convert-hairy-args
459 (list* supplied-p arg default-vars
)
460 (list* (leaf-source-name supplied-p
) arg-name default-vals
)
461 (cons arg entry-vars
)
462 (list* t arg-name entry-vals
)
463 (rest vars
) t body aux-vars aux-vals
464 source-name debug-name
465 force post-binding-lexenv system-lambda
)
466 (ir1-convert-hairy-args
468 (cons arg default-vars
)
469 (cons arg-name default-vals
)
470 (cons arg entry-vars
)
471 (cons arg-name entry-vals
)
472 (rest vars
) supplied-p-p body aux-vars aux-vals
473 source-name debug-name
474 force post-binding-lexenv system-lambda
))))
476 ;; We want to delay converting the entry, but there exist
477 ;; problems: hidden references should not be established to
478 ;; lambdas of kind NIL should not have (otherwise the compiler
479 ;; might let-convert or delete them) and to variables.
480 (let ((name (or debug-name source-name
)))
482 supplied-p-p
; this entry will be of kind NIL
483 (and (lambda-p ep
) (eq (lambda-kind ep
) nil
)))
484 (convert-optional-entry ep
485 default-vars default-vals
486 (if supplied-p
(list default nil
) (list default
))
488 (let* ((default `',(constant-form-value default
))
489 (defaults (if supplied-p
(list default nil
) (list default
))))
490 ;; DEFAULT can contain a reference to a
491 ;; to-be-optimized-away function/block/tag, so better to
492 ;; reduce code now (but we possibly lose syntax checking
493 ;; in an unreachable code).
495 (register-entry-point
496 (convert-optional-entry (force ep
)
497 default-vars default-vals
502 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
503 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
504 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
506 ;;; The most interesting thing that we do is parse keywords. We create
507 ;;; a bunch of temporary variables to hold the result of the parse,
508 ;;; and then loop over the supplied arguments, setting the appropriate
509 ;;; temps for the supplied keyword. Note that it is significant that
510 ;;; we iterate over the keywords in reverse order --- this implements
511 ;;; the CL requirement that (when a keyword appears more than once)
512 ;;; the first value is used.
514 ;;; If there is no supplied-p var, then we initialize the temp to the
515 ;;; default and just pass the temp into the main entry. Since
516 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
517 ;;; know that the default is constant, and thus safe to evaluate out
520 ;;; If there is a supplied-p var, then we create temps for both the
521 ;;; value and the supplied-p, and pass them into the main entry,
522 ;;; letting it worry about defaulting.
524 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
525 ;;; until we have scanned all the keywords.
526 (defun convert-more-entry (res entry-vars entry-vals rest morep keys name
)
527 (declare (type optional-dispatch res
) (list entry-vars entry-vals keys
))
529 (arg-vals (reverse entry-vals
))
533 (dolist (var (reverse entry-vars
))
534 (arg-vars (make-lambda-var :%source-name
(leaf-source-name var
)
535 :type
(leaf-type var
)
536 :where-from
(leaf-where-from var
))))
538 (let* ((n-context (sb!xc
:gensym
"N-CONTEXT-"))
539 (context-temp (make-lambda-var :%source-name n-context
))
540 (n-count (sb!xc
:gensym
"N-COUNT-"))
541 (count-temp (make-lambda-var :%source-name n-count
542 :type
(specifier-type 'index
))))
544 (arg-vars context-temp count-temp
)
547 (arg-vals `(%listify-rest-args
,n-context
,n-count
)))
552 ;; The reason for all the noise with
553 ;; STACK-GROWS-DOWNWARD-NOT-UPWARD is to enable generation of
554 ;; slightly more efficient code on x86oid processors. (We can
555 ;; hoist the negation of the index outside the main parsing loop
556 ;; and take advantage of the base+index+displacement addressing
558 (when (optional-dispatch-keyp res
)
559 (let ((n-index (sb!xc
:gensym
"N-INDEX-"))
560 (n-key (sb!xc
:gensym
"N-KEY-"))
561 (n-value-temp (sb!xc
:gensym
"N-VALUE-TEMP-"))
562 (n-allowp (sb!xc
:gensym
"N-ALLOWP-"))
563 (n-lose (sb!xc
:gensym
"N-LOSE-"))
564 (n-losep (sb!xc
:gensym
"N-LOSEP-"))
565 (allowp (or (optional-dispatch-allowp res
)
566 (policy *lexenv
* (zerop safety
))))
569 (temps #!-stack-grows-downward-not-upward
570 `(,n-index
(1- ,n-count
))
571 #!+stack-grows-downward-not-upward
572 `(,n-index
(- (1- ,n-count
)))
573 #!-stack-grows-downward-not-upward n-value-temp
574 #!-stack-grows-downward-not-upward n-key
)
575 (body `(declare (fixnum ,n-index
)
576 #!-stack-grows-downward-not-upward
577 (ignorable ,n-value-temp
,n-key
)))
581 (let* ((info (lambda-var-arg-info key
))
582 (default (arg-info-default info
))
583 (keyword (arg-info-key info
))
584 (supplied-p (arg-info-supplied-p info
))
585 (n-value (sb!xc
:gensym
"N-VALUE-"))
586 (clause (cond (supplied-p
587 (let ((n-supplied (sb!xc
:gensym
"N-SUPPLIED-")))
589 (arg-vals n-value n-supplied
)
590 `((eq ,n-key
',keyword
)
592 (setq ,n-value
,n-value-temp
))))
595 `((eq ,n-key
',keyword
)
596 (setq ,n-value
,n-value-temp
))))))
597 (when (and (not allowp
) (eq keyword
:allow-other-keys
))
598 (setq found-allow-p t
)
600 (append clause
`((setq ,n-allowp
,n-value-temp
)))))
602 (temps `(,n-value
,default
))
606 (temps n-allowp n-lose n-losep
)
607 (unless found-allow-p
608 (tests `((eq ,n-key
:allow-other-keys
)
609 (setq ,n-allowp
,n-value-temp
))))
615 `(when (oddp ,n-count
)
616 (%odd-key-args-error
)))
619 #!-stack-grows-downward-not-upward
621 (declare (optimize (safety 0)))
623 (when (minusp ,n-index
) (return))
624 (setf ,n-value-temp
(%more-arg
,n-context
,n-index
))
626 (setq ,n-key
(%more-arg
,n-context
,n-index
))
629 #!+stack-grows-downward-not-upward
630 `(locally (declare (optimize (safety 0)))
632 (when (plusp ,n-index
) (return))
633 (multiple-value-bind (,n-value-temp
,n-key
)
634 (%more-kw-arg
,n-context
,n-index
)
635 (declare (ignorable ,n-value-temp
,n-key
))
640 (body `(when (and ,n-losep
(not ,n-allowp
))
641 (%unknown-key-arg-error
,n-lose
)))))))
643 (let ((ep (ir1-convert-lambda-body
646 (%funcall
,(optional-dispatch-main-entry res
)
649 :debug-name
(debug-name '&more-processor name
)
650 :note-lexical-bindings nil
652 (setf (optional-dispatch-more-entry res
)
653 (register-entry-point ep res
)))))
657 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
658 ;;; or &KEY arg. The arguments are similar to that function, but we
659 ;;; split off any &REST arg and pass it in separately. REST is the
660 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
661 ;;; the &KEY argument vars.
663 ;;; When there are &KEY arguments, we introduce temporary gensym
664 ;;; variables to hold the values while keyword defaulting is in
665 ;;; progress to get the required sequential binding semantics.
667 ;;; This gets interesting mainly when there are &KEY arguments with
668 ;;; supplied-p vars or non-constant defaults. In either case, pass in
669 ;;; a supplied-p var. If the default is non-constant, we introduce an
670 ;;; IF in the main entry that tests the supplied-p var and decides
671 ;;; whether to evaluate the default or not. In this case, the real
672 ;;; incoming value is NIL, so we must union NULL with the declared
673 ;;; type when computing the type for the main entry's argument.
674 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
675 rest more-context more-count keys supplied-p-p
676 body aux-vars aux-vals source-name debug-name
677 post-binding-lexenv system-lambda
)
678 (declare (type optional-dispatch res
)
679 (list default-vars default-vals entry-vars entry-vals keys body
681 (collect ((main-vars (reverse default-vars
))
682 (main-vals default-vals cons
)
688 (unless (lambda-var-ignorep rest
)
689 ;; Make up two extra variables, and squirrel them away in
690 ;; ARG-INFO-DEFAULT for transforming (VALUES-LIST REST) into
691 ;; (%MORE-ARG-VALUES CONTEXT 0 COUNT) when possible.
692 (let* ((context-name (sb!xc
:gensym
"REST-CONTEXT-"))
693 (context (make-lambda-var :%source-name context-name
694 :arg-info
(make-arg-info :kind
:more-context
)))
695 (count-name (sb!xc
:gensym
"REST-COUNT-"))
696 (count (make-lambda-var :%source-name count-name
697 :arg-info
(make-arg-info :kind
:more-count
)
698 :type
(specifier-type 'index
))))
699 (setf (arg-info-default (lambda-var-arg-info rest
)) (list context count
)
700 (lambda-var-ever-used context
) t
701 (lambda-var-ever-used count
) t
)
702 (setf more-context context
705 (main-vars more-context
)
707 (main-vars more-count
)
711 (let* ((info (lambda-var-arg-info key
))
712 (default (arg-info-default info
))
713 (hairy-default (not (sb!xc
:constantp default
)))
714 (supplied-p (arg-info-supplied-p info
))
715 (n-val (make-symbol (format nil
717 (leaf-source-name key
))))
718 (val-temp (make-lambda-var :%source-name n-val
)))
721 (cond ((or hairy-default supplied-p
)
722 (let* ((n-supplied (sb!xc
:gensym
"N-SUPPLIED-"))
723 (supplied-temp (make-lambda-var
724 :%source-name n-supplied
)))
726 (setf (arg-info-supplied-p info
) supplied-temp
))
728 (setf (arg-info-default info
) nil
))
729 (main-vars supplied-temp
)
732 (bind-vals `(if ,n-supplied
,n-val
,default
)))
734 (main-vals default nil
)
737 (bind-vars supplied-p
)
738 (bind-vals n-supplied
))))
740 (main-vals (arg-info-default info
))
741 (bind-vals n-val
)))))
743 (let* ((main-entry (ir1-convert-lambda-body
745 :aux-vars
(append (bind-vars) aux-vars
)
746 :aux-vals
(append (bind-vals) aux-vals
)
747 :post-binding-lexenv post-binding-lexenv
748 :source-name source-name
749 :debug-name debug-name
750 :system-lambda system-lambda
))
751 (name (or debug-name source-name
))
752 (last-entry (convert-optional-entry main-entry default-vars
753 (main-vals) () name
)))
754 (setf (optional-dispatch-main-entry res
)
755 (register-entry-point main-entry res
))
756 (convert-more-entry res entry-vars entry-vals rest more-context keys
759 (push (register-entry-point
761 (convert-optional-entry last-entry entry-vars entry-vals
765 (optional-dispatch-entry-points res
))
768 ;;; This function generates the entry point functions for the
769 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
770 ;;; of arguments, analyzing the arglist on the way down and generating
771 ;;; entry points on the way up.
773 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
774 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
775 ;;; names of the DEFAULT-VARS.
777 ;;; ENTRY-VARS is a reversed list of processed argument vars,
778 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
779 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
780 ;;; It has the var name for each required or optional arg, and has T
781 ;;; for each supplied-p arg.
783 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
784 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
785 ;;; argument has already been processed; only in this case are the
786 ;;; DEFAULT-XXX and ENTRY-XXX different.
788 ;;; The result at each point is a lambda which should be called by the
789 ;;; above level to default the remaining arguments and evaluate the
790 ;;; body. We cause the body to be evaluated by converting it and
791 ;;; returning it as the result when the recursion bottoms out.
793 ;;; Each level in the recursion also adds its entry point function to
794 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
795 ;;; function and the entry point function will be the same, but when
796 ;;; SUPPLIED-P args are present they may be different.
798 ;;; When we run into a &REST or &KEY arg, we punt out to
799 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
800 (defun ir1-convert-hairy-args (res default-vars default-vals
801 entry-vars entry-vals
802 vars supplied-p-p body aux-vars
804 source-name debug-name
805 force post-binding-lexenv
807 (declare (type optional-dispatch res
)
808 (list default-vars default-vals entry-vars entry-vals vars body
810 (aver (or debug-name
(neq '.anonymous. source-name
)))
812 (if (optional-dispatch-keyp res
)
813 ;; Handle &KEY with no keys...
814 (ir1-convert-more res default-vars default-vals
815 entry-vars entry-vals
816 nil nil nil vars supplied-p-p body aux-vars
817 aux-vals source-name debug-name
818 post-binding-lexenv system-lambda
)
819 (let* ((name (or debug-name source-name
))
820 (fun (ir1-convert-lambda-body
821 body
(reverse default-vars
)
824 :post-binding-lexenv post-binding-lexenv
825 :source-name source-name
826 :debug-name debug-name
827 :system-lambda system-lambda
)))
829 (setf (optional-dispatch-main-entry res
) fun
)
830 (register-entry-point fun res
)
831 (push (if supplied-p-p
832 (register-entry-point
833 (convert-optional-entry fun entry-vars entry-vals
()
837 (optional-dispatch-entry-points res
))
839 ((not (lambda-var-arg-info (first vars
)))
840 (let* ((arg (first vars
))
841 (nvars (cons arg default-vars
))
842 (nvals (cons (leaf-source-name arg
) default-vals
)))
843 (ir1-convert-hairy-args res nvars nvals nvars nvals
844 (rest vars
) nil body aux-vars aux-vals
845 source-name debug-name
846 nil post-binding-lexenv system-lambda
)))
848 (let* ((arg (first vars
))
849 (info (lambda-var-arg-info arg
))
850 (kind (arg-info-kind info
)))
853 (let ((ep (generate-optional-default-entry
854 res default-vars default-vals
855 entry-vars entry-vals vars supplied-p-p body
857 source-name debug-name
858 force post-binding-lexenv
860 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
861 (push (if (lambda-p ep
)
862 (register-entry-point
864 (convert-optional-entry
865 ep entry-vars entry-vals nil
866 (or debug-name source-name
))
869 (progn (aver (not supplied-p-p
))
871 (optional-dispatch-entry-points res
))
874 (ir1-convert-more res default-vars default-vals
875 entry-vars entry-vals
876 arg nil nil
(rest vars
) supplied-p-p body
878 source-name debug-name
879 post-binding-lexenv system-lambda
))
881 (ir1-convert-more res default-vars default-vals
882 entry-vars entry-vals
883 nil arg
(second vars
) (cddr vars
) supplied-p-p
884 body aux-vars aux-vals
885 source-name debug-name
886 post-binding-lexenv system-lambda
))
888 (ir1-convert-more res default-vars default-vals
889 entry-vars entry-vals
890 nil nil nil vars supplied-p-p body aux-vars
891 aux-vals source-name debug-name
892 post-binding-lexenv system-lambda
)))))))
894 ;;; This function deals with the case where we have to make an
895 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
896 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
897 ;;; figure out the MIN-ARGS and MAX-ARGS.
898 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
899 &key post-binding-lexenv
900 (source-name '.anonymous.
)
901 debug-name system-lambda
)
902 (declare (list body vars aux-vars aux-vals
))
903 (aver (or debug-name
(neq '.anonymous. source-name
)))
904 (let ((res (make-optional-dispatch :arglist vars
907 :%source-name source-name
908 :%debug-name debug-name
909 :plist
`(:ir1-environment
912 (min (or (position-if #'lambda-var-arg-info vars
) (length vars
))))
913 (aver-live-component *current-component
*)
914 (ir1-convert-hairy-args res
() () () () vars nil body aux-vars aux-vals
915 source-name debug-name nil post-binding-lexenv
917 ;; ir1-convert-hairy-args can throw 'locall-already-let-converted
918 ;; push optional-dispatch into the current component only after it
920 (push res
(component-new-functionals *current-component
*))
921 (setf (optional-dispatch-min-args res
) min
)
922 (setf (optional-dispatch-max-args res
)
923 (+ (1- (length (optional-dispatch-entry-points res
))) min
))
927 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
928 (defun ir1-convert-lambda (form &key
(source-name '.anonymous.
)
929 debug-name maybe-add-debug-catch
932 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
935 (unless (eq (car form
) 'lambda
)
936 (compiler-error "~S was expected but ~S was found:~% ~S"
940 (unless (and (consp (cdr form
)) (listp (cadr form
)))
942 "The lambda expression has a missing or non-list lambda list:~% ~S"
944 (when (and system-lambda maybe-add-debug-catch
)
945 (bug "Both SYSTEM-LAMBDA and MAYBE-ADD-DEBUG-CATCH specified"))
946 (unless (or debug-name
(neq '.anonymous. source-name
))
947 (setf debug-name
(name-lambdalike form
)))
948 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals
)
949 (make-lambda-vars (cadr form
))
950 (multiple-value-bind (forms decls doc
) (parse-body (cddr form
))
951 (binding* (((*lexenv
* result-type post-binding-lexenv
)
952 (process-decls decls
(append aux-vars vars
) nil
954 (debug-catch-p (and maybe-add-debug-catch
955 *allow-instrumenting
*
957 (>= insert-debug-catch
2))))
958 (forms (if debug-catch-p
959 (wrap-forms-in-debug-catch forms
)
961 (forms (if (eq result-type
*wild-type
*)
963 `((the ,(type-specifier result-type
) (progn ,@forms
)))))
964 (*allow-instrumenting
* (and (not system-lambda
) *allow-instrumenting
*))
965 (res (cond ((or (find-if #'lambda-var-arg-info vars
) keyp
)
966 (ir1-convert-hairy-lambda forms vars keyp
969 :post-binding-lexenv post-binding-lexenv
970 :source-name source-name
971 :debug-name debug-name
972 :system-lambda system-lambda
))
974 (ir1-convert-lambda-body forms vars
977 :post-binding-lexenv post-binding-lexenv
978 :source-name source-name
979 :debug-name debug-name
980 :system-lambda system-lambda
)))))
981 (setf (functional-inline-expansion res
) form
)
982 (setf (functional-arg-documentation res
) (cadr form
))
983 (setf (functional-documentation res
) doc
)
984 (when (boundp '*lambda-conversions
*)
985 ;; KLUDGE: Not counting TL-XEPs is a lie, of course, but
986 ;; keeps things less confusing to users of TIME, where this
988 (unless (and (consp debug-name
) (eq 'tl-xep
(car debug-name
)))
989 (incf *lambda-conversions
*)))
992 (defun wrap-forms-in-debug-catch (forms)
993 #!+unwind-to-frame-and-call-vop
994 `((multiple-value-prog1
997 ;; Just ensure that there won't be any tail-calls, IR2 magic will
1000 #!-unwind-to-frame-and-call-vop
1001 `( ;; Normally, we'll return from this block with the below RETURN-FROM.
1004 ;; If DEBUG-CATCH-TAG is thrown (with a thunk as the value) the
1005 ;; RETURN-FROM is elided and we funcall the thunk instead. That
1006 ;; thunk might either return a value (for a RETURN-FROM-FRAME)
1007 ;; or call this same function again (for a RESTART-FRAME).
1008 ;; -- JES, 2007-01-09
1011 ;; Use a constant catch tag instead of consing a new one for every
1012 ;; entry to this block. The uniquencess of the catch tags is
1013 ;; ensured when the tag is throw by the debugger. It'll allocate a
1014 ;; new tag, and modify the reference this tag in the proper
1015 ;; catch-block structure to refer to that new tag. This
1016 ;; significantly decreases the runtime cost of high debug levels.
1017 ;; -- JES, 2007-01-09
1018 (catch 'debug-catch-tag
1019 (return-from return-value-tag
1023 ;;; helper for LAMBDA-like things, to massage them into a form
1024 ;;; suitable for IR1-CONVERT-LAMBDA.
1025 (defun ir1-convert-lambdalike (thing
1027 (source-name '.anonymous.
)
1029 (when (and (not debug-name
) (eq '.anonymous. source-name
))
1030 (setf debug-name
(name-lambdalike thing
)))
1033 (ir1-convert-lambda thing
1034 :maybe-add-debug-catch t
1035 :source-name source-name
1036 :debug-name debug-name
))
1038 (let ((name (cadr thing
))
1039 (lambda-expression `(lambda ,@(cddr thing
))))
1040 (if (and name
(legal-fun-name-p name
))
1041 (let ((defined-fun-res (get-defined-fun name
(second lambda-expression
)))
1042 (res (ir1-convert-lambda lambda-expression
1043 :maybe-add-debug-catch t
1044 :source-name name
)))
1045 (assert-global-function-definition-type name res
)
1046 (push res
(defined-fun-functionals defined-fun-res
))
1047 (unless (eq (defined-fun-inlinep defined-fun-res
) :notinline
)
1050 (policy ref
(> recognize-self-calls
0)))
1051 res defined-fun-res
))
1053 (ir1-convert-lambda lambda-expression
1054 :maybe-add-debug-catch t
1056 (or name
(name-lambdalike thing
))))))
1057 ((lambda-with-lexenv)
1058 (ir1-convert-inline-lambda thing
1059 :source-name source-name
1060 :debug-name debug-name
))))
1062 ;;;; defining global functions
1064 ;;; Convert FUN as a lambda in the null environment, but use the
1065 ;;; current compilation policy. Note that FUN may be a
1066 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
1067 ;;; reflect the state at the definition site.
1068 (defun ir1-convert-inline-lambda (fun
1070 (source-name '.anonymous.
)
1073 (when (and (not debug-name
) (eq '.anonymous. source-name
))
1074 (setf debug-name
(name-lambdalike fun
)))
1075 (destructuring-bind (decls macros symbol-macros
&rest body
)
1076 (if (eq (car fun
) 'lambda-with-lexenv
)
1078 `(() () () .
,(cdr fun
)))
1079 (let* ((*lexenv
* (make-lexenv
1080 :default
(process-decls decls nil nil
1081 :lexenv
(make-null-lexenv))
1082 :vars
(copy-list symbol-macros
)
1083 :funs
(mapcar (lambda (x)
1085 (macro .
,(coerce (cdr x
) 'function
))))
1087 ;; Inherit MUFFLE-CONDITIONS from the call-site lexenv
1088 ;; rather than the definition-site lexenv, since it seems
1089 ;; like a much more common case.
1090 :handled-conditions
(lexenv-handled-conditions *lexenv
*)
1091 :policy
(lexenv-policy *lexenv
*)))
1092 (clambda (ir1-convert-lambda `(lambda ,@body
)
1093 :source-name source-name
1094 :debug-name debug-name
1095 :system-lambda system-lambda
)))
1096 (setf (functional-inline-expanded clambda
) t
)
1099 ;;; Given a lambda-list, return a FUN-TYPE object representing the signature:
1100 ;;; return type is *, and each individual arguments type is T -- but we get
1101 ;;; the argument counts and keywords.
1102 (defun ftype-from-lambda-list (lambda-list)
1103 (multiple-value-bind (req opt restp rest-name keyp key-list allowp morep
)
1104 (parse-lambda-list lambda-list
)
1105 (declare (ignore rest-name
))
1107 (mapcar (constantly t
) list
)))
1108 (let ((reqs (t req
))
1109 (opts (when opt
(cons '&optional
(t opt
))))
1110 ;; When it comes to building a type, &REST means pretty much the
1111 ;; same thing as &MORE.
1112 (rest (when (or morep restp
) (list '&rest t
)))
1114 (cons '&key
(mapcar (lambda (spec)
1115 (let ((key/var
(if (consp spec
)
1118 (list (if (consp key
/var
)
1120 (keywordicate key
/var
))
1123 (allow (when allowp
(list '&allow-other-keys
))))
1124 (specifier-type `(function (,@reqs
,@opts
,@rest
,@keys
,@allow
) *))))))
1126 ;;; Get a DEFINED-FUN object for a function we are about to define. If
1127 ;;; the function has been forward referenced, then substitute for the
1128 ;;; previous references.
1129 (defun get-defined-fun (name &optional
(lambda-list nil lp
))
1130 (proclaim-as-fun-name name
)
1131 (when (boundp '*free-funs
*)
1132 (let ((found (find-free-fun name
"shouldn't happen! (defined-fun)")))
1133 (note-name-defined name
:function
)
1134 (cond ((not (defined-fun-p found
))
1135 (aver (not (info :function
:inlinep name
)))
1136 (let* ((where-from (leaf-where-from found
))
1137 (res (make-defined-fun
1139 :where-from
(if (eq where-from
:declared
)
1142 :type
(if (eq :declared where-from
)
1145 (ftype-from-lambda-list lambda-list
)
1146 (specifier-type 'function
))))))
1147 (substitute-leaf res found
)
1148 (setf (gethash name
*free-funs
*) res
)))
1149 ;; If *FREE-FUNS* has a previously converted definition
1150 ;; for this name, then blow it away and try again.
1151 ((defined-fun-functionals found
)
1152 (remhash name
*free-funs
*)
1153 (get-defined-fun name lambda-list
))
1156 ;;; Check a new global function definition for consistency with
1157 ;;; previous declaration or definition, and assert argument/result
1158 ;;; types if appropriate. This assertion is suppressed by the
1159 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
1160 ;;; check their argument types as a consequence of type dispatching.
1161 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
1162 (defun assert-new-definition (var fun
)
1163 (let ((type (leaf-type var
))
1164 (for-real (eq (leaf-where-from var
) :declared
))
1165 (info (info :function
:info
(leaf-source-name var
))))
1166 (assert-definition-type
1168 ;; KLUDGE: Common Lisp is such a dynamic language that in general
1169 ;; all we can do here in general is issue a STYLE-WARNING. It
1170 ;; would be nice to issue a full WARNING in the special case of
1171 ;; of type mismatches within a compilation unit (as in section
1172 ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't
1173 ;; keep track of whether the mismatched data came from the same
1174 ;; compilation unit, so we can't do that. -- WHN 2001-02-11
1175 :lossage-fun
#'compiler-style-warn
1176 :unwinnage-fun
(cond (info #'compiler-style-warn
)
1177 (for-real #'compiler-notify
)
1182 (ir1-attributep (fun-info-attributes info
)
1185 "previous declaration"
1186 "previous definition"))))
1188 ;;; Used for global inline expansion. Earlier something like this was
1189 ;;; used by %DEFUN too. FIXME: And now it's probably worth rethinking
1190 ;;; whether this function is a good idea at all.
1191 (defun ir1-convert-inline-expansion (name expansion var inlinep info
)
1192 ;; Unless a :INLINE function, we temporarily clobber the inline
1193 ;; expansion. This prevents recursive inline expansion of
1194 ;; opportunistic pseudo-inlines.
1195 (unless (eq inlinep
:inline
)
1196 (setf (defined-fun-inline-expansion var
) nil
))
1197 (let ((fun (ir1-convert-inline-lambda expansion
1199 ;; prevent instrumentation of
1200 ;; known function expansions
1201 :system-lambda
(and info t
))))
1202 (setf (functional-inlinep fun
) inlinep
)
1203 (assert-new-definition var fun
)
1204 (setf (defined-fun-inline-expansion var
) expansion
)
1205 ;; Associate VAR with the FUN -- and in case of an optional dispatch
1206 ;; with the various entry-points. This allows XREF to know where the
1207 ;; inline CLAMBDA comes from.
1208 (flet ((note-inlining (f)
1211 (setf (functional-inline-expanded f
) var
))
1213 ;; Delayed entry-point.
1215 (setf (functional-inline-expanded (cdr f
)) var
)
1216 (let ((old-thunk (cdr f
)))
1217 (setf (cdr f
) (lambda ()
1218 (let ((g (funcall old-thunk
)))
1219 (setf (functional-inline-expanded g
) var
)
1222 (when (optional-dispatch-p fun
)
1223 (note-inlining (optional-dispatch-main-entry fun
))
1224 (note-inlining (optional-dispatch-more-entry fun
))
1225 (mapc #'note-inlining
(optional-dispatch-entry-points fun
))))
1226 ;; substitute for any old references
1227 (unless (or (not *block-compile
*)
1229 (or (fun-info-transforms info
)
1230 (fun-info-templates info
)
1231 (fun-info-ir2-convert info
))))
1232 (substitute-leaf fun var
))
1235 (defun %set-inline-expansion
(name defined-fun inline-lambda
)
1236 (cond (inline-lambda
1237 (setf (info :function
:inline-expansion-designator name
)
1240 (setf (defined-fun-inline-expansion defined-fun
)
1243 (clear-info :function
:inline-expansion-designator name
))))
1245 ;;; the even-at-compile-time part of DEFUN
1247 ;;; The INLINE-LAMBDA is a LAMBDA-WITH-LEXENV, or NIL if there is no
1248 ;;; inline expansion.
1249 (defun %compiler-defun
(name inline-lambda compile-toplevel
)
1250 (let ((defined-fun nil
)) ; will be set below if we're in the compiler
1251 (when compile-toplevel
1252 (with-single-package-locked-error
1253 (:symbol name
"defining ~S as a function")
1256 (get-defined-fun name
(fifth inline-lambda
))
1257 (get-defined-fun name
))))
1258 (when (boundp '*lexenv
*)
1259 (aver (fasl-output-p *compile-object
*))
1260 (if (member name
*fun-names-in-this-file
* :test
#'equal
)
1261 (warn 'duplicate-definition
:name name
)
1262 (push name
*fun-names-in-this-file
*)))
1263 (%set-inline-expansion name defined-fun inline-lambda
))
1265 (become-defined-fun-name name
)
1267 ;; old CMU CL comment:
1268 ;; If there is a type from a previous definition, blast it,
1269 ;; since it is obsolete.
1270 (when (and defined-fun
(neq :declared
(leaf-where-from defined-fun
)))
1271 (setf (leaf-type defined-fun
)
1272 ;; FIXME: If this is a block compilation thing, shouldn't
1273 ;; we be setting the type to the full derived type for the
1274 ;; definition, instead of this most general function type?
1275 (specifier-type 'function
))))
1280 ;;; Entry point utilities
1282 ;;; Return a function for the Nth entry point.
1283 (defun optional-dispatch-entry-point-fun (dispatcher n
)
1284 (declare (type optional-dispatch dispatcher
)
1285 (type unsigned-byte n
))
1286 (let* ((env (getf (optional-dispatch-plist dispatcher
) :ir1-environment
))
1287 (*lexenv
* (first env
))
1288 (*current-path
* (second env
)))
1289 (force (nth n
(optional-dispatch-entry-points dispatcher
)))))