Add a declaration
[sbcl.git] / src / runtime / x86-darwin-os.c
blob4b3d58600ea388b5aaa2f5fb25309ef68ec28ac1
1 #ifdef LISP_FEATURE_SB_THREAD
2 #include <architecture/i386/table.h>
3 #include <i386/user_ldt.h>
4 #include <mach/mach_init.h>
5 #endif
7 #include "thread.h"
8 #include "validate.h"
9 #include "runtime.h"
10 #include "interrupt.h"
11 #include "x86-darwin-os.h"
12 #include "genesis/fdefn.h"
14 #include <mach/mach.h>
15 #include <mach/mach_error.h>
16 #include <mach/mach_types.h>
17 #include <mach/sync_policy.h>
18 #include <mach/vm_region.h>
19 #include <mach/machine/thread_state.h>
20 #include <mach/machine/thread_status.h>
21 #include <sys/_types.h>
22 #include <sys/ucontext.h>
23 #include <pthread.h>
24 #include <assert.h>
25 #include <stdlib.h>
26 #include <stdio.h>
28 #ifdef LISP_FEATURE_SB_THREAD
30 pthread_mutex_t modify_ldt_lock = PTHREAD_MUTEX_INITIALIZER;
32 void set_data_desc_size(data_desc_t* desc, unsigned long size)
34 desc->limit00 = (size - 1) & 0xffff;
35 desc->limit16 = ((size - 1) >> 16) &0xf;
38 void set_data_desc_addr(data_desc_t* desc, void* addr)
40 desc->base00 = (unsigned int)addr & 0xffff;
41 desc->base16 = ((unsigned int)addr & 0xff0000) >> 16;
42 desc->base24 = ((unsigned int)addr & 0xff000000) >> 24;
45 #endif
47 #ifdef LISP_FEATURE_SB_THREAD
48 void
49 arch_os_load_ldt(struct thread *thread)
51 sel_t sel;
53 sel.index = thread->tls_cookie;
54 sel.rpl = USER_PRIV;
55 sel.ti = SEL_LDT;
57 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(sel));
59 #endif
61 int arch_os_thread_init(struct thread *thread) {
62 #ifdef LISP_FEATURE_SB_THREAD
63 int n;
65 data_desc_t ldt_entry = { 0, 0, 0, DESC_DATA_WRITE,
66 3, 1, 0, DESC_DATA_32B, DESC_GRAN_BYTE, 0 };
68 set_data_desc_addr(&ldt_entry, thread);
69 set_data_desc_size(&ldt_entry, dynamic_values_bytes);
71 thread_mutex_lock(&modify_ldt_lock);
72 n = i386_set_ldt(LDT_AUTO_ALLOC, (union ldt_entry*) &ldt_entry, 1);
74 if (n < 0) {
75 perror("i386_set_ldt");
76 lose("unexpected i386_set_ldt(..) failure\n");
78 thread_mutex_unlock(&modify_ldt_lock);
80 FSHOW_SIGNAL((stderr, "/ TLS: Allocated LDT %x\n", n));
81 thread->tls_cookie=n;
82 arch_os_load_ldt(thread);
84 pthread_setspecific(specials,thread);
85 #endif
86 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
87 mach_lisp_thread_init(thread);
88 #endif
90 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
91 stack_t sigstack;
93 /* Signal handlers are run on the control stack, so if it is exhausted
94 * we had better use an alternate stack for whatever signal tells us
95 * we've exhausted it */
96 sigstack.ss_sp=((void *) thread)+dynamic_values_bytes;
97 sigstack.ss_flags=0;
98 sigstack.ss_size = 32*SIGSTKSZ;
99 sigaltstack(&sigstack,0);
100 #endif
101 return 1; /* success */
104 int arch_os_thread_cleanup(struct thread *thread) {
105 #if defined(LISP_FEATURE_SB_THREAD)
106 int n = thread->tls_cookie;
108 /* Set the %%fs register back to 0 and free the ldt by setting it
109 * to NULL.
111 FSHOW_SIGNAL((stderr, "/ TLS: Freeing LDT %x\n", n));
113 __asm__ __volatile__ ("mov %0, %%fs" : : "r"(0));
114 thread_mutex_lock(&modify_ldt_lock);
115 i386_set_ldt(n, NULL, 1);
116 thread_mutex_unlock(&modify_ldt_lock);
117 #endif
118 return 1; /* success */
121 #ifdef LISP_FEATURE_MACH_EXCEPTION_HANDLER
123 void sigill_handler(int signal, siginfo_t *siginfo, os_context_t *context);
124 void sigtrap_handler(int signal, siginfo_t *siginfo, os_context_t *context);
125 void memory_fault_handler(int signal, siginfo_t *siginfo,
126 os_context_t *context);
128 /* This executes in the faulting thread as part of the signal
129 * emulation. It is passed a context with the uc_mcontext field
130 * pointing to a valid block of memory. */
131 void build_fake_signal_context(os_context_t *context,
132 x86_thread_state32_t *thread_state,
133 x86_float_state32_t *float_state) {
134 thread_sigmask(0, NULL, &context->uc_sigmask);
135 context->uc_mcontext->SS = *thread_state;
136 context->uc_mcontext->FS = *float_state;
139 /* This executes in the faulting thread as part of the signal
140 * emulation. It is effectively the inverse operation from above. */
141 void update_thread_state_from_context(x86_thread_state32_t *thread_state,
142 x86_float_state32_t *float_state,
143 os_context_t *context) {
144 *thread_state = context->uc_mcontext->SS;
145 *float_state = context->uc_mcontext->FS;
146 thread_sigmask(SIG_SETMASK, &context->uc_sigmask, NULL);
149 /* Modify a context to push new data on its stack. */
150 void push_context(u32 data, x86_thread_state32_t *thread_state)
152 u32 *stack_pointer;
154 stack_pointer = (u32*) thread_state->ESP;
155 *(--stack_pointer) = data;
156 thread_state->ESP = (unsigned int) stack_pointer;
159 void align_context_stack(x86_thread_state32_t *thread_state)
161 /* 16byte align the stack (provided that the stack is, as it
162 * should be, 4byte aligned. */
163 while (thread_state->ESP & 15) push_context(0, thread_state);
166 /* Stack allocation starts with a context that has a mod-4 ESP value
167 * and needs to leave a context with a mod-16 ESP that will restore
168 * the old ESP value and other register state when activated. The
169 * first part of this is the recovery trampoline, which loads ESP from
170 * EBP, pops EBP, and returns. */
171 asm("_stack_allocation_recover: movl %ebp, %esp; popl %ebp; ret;");
173 void open_stack_allocation(x86_thread_state32_t *thread_state)
175 void stack_allocation_recover(void);
177 push_context(thread_state->EIP, thread_state);
178 push_context(thread_state->EBP, thread_state);
179 thread_state->EBP = thread_state->ESP;
180 thread_state->EIP = (unsigned int) stack_allocation_recover;
182 align_context_stack(thread_state);
185 /* Stack allocation of data starts with a context with a mod-16 ESP
186 * value and reserves some space on it by manipulating the ESP
187 * register. */
188 void *stack_allocate(x86_thread_state32_t *thread_state, size_t size)
190 /* round up size to 16byte multiple */
191 size = (size + 15) & -16;
193 thread_state->ESP = ((u32)thread_state->ESP) - size;
195 return (void *)thread_state->ESP;
198 /* Arranging to invoke a C function is tricky, as we have to assume
199 * cdecl calling conventions (caller removes args) and x86/darwin
200 * alignment requirements. The simplest way to arrange this,
201 * actually, is to open a new stack allocation.
202 * WARNING!!! THIS DOES NOT PRESERVE REGISTERS! */
203 void call_c_function_in_context(x86_thread_state32_t *thread_state,
204 void *function,
205 int nargs,
206 ...)
208 va_list ap;
209 int i;
210 u32 *stack_pointer;
212 /* Set up to restore stack on exit. */
213 open_stack_allocation(thread_state);
215 /* Have to keep stack 16byte aligned on x86/darwin. */
216 for (i = (3 & -nargs); i; i--) {
217 push_context(0, thread_state);
220 thread_state->ESP = ((u32)thread_state->ESP) - nargs * 4;
221 stack_pointer = (u32 *)thread_state->ESP;
223 va_start(ap, nargs);
224 for (i = 0; i < nargs; i++) {
225 //push_context(va_arg(ap, u32), thread_state);
226 stack_pointer[i] = va_arg(ap, u32);
228 va_end(ap);
230 push_context(thread_state->EIP, thread_state);
231 thread_state->EIP = (unsigned int) function;
234 void signal_emulation_wrapper(x86_thread_state32_t *thread_state,
235 x86_float_state32_t *float_state,
236 int signal,
237 siginfo_t *siginfo,
238 void (*handler)(int, siginfo_t *, void *))
241 /* CLH: FIXME **NOTE: HACK ALERT!** Ideally, we would allocate
242 * context and regs on the stack as local variables, but this
243 * causes problems for the lisp debugger. When it walks the stack
244 * for a back trace, it sees the 1) address of the local variable
245 * on the stack and thinks that is a frame pointer to a lisp
246 * frame, and, 2) the address of the sap that we alloc'ed in
247 * dynamic space and thinks that is a return address, so it,
248 * heuristicly (and wrongly), chooses that this should be
249 * interpreted as a lisp frame instead of as a C frame.
250 * We can work around this in this case by os_validating the
251 * context (and regs just for symmetry).
254 os_context_t *context;
255 mcontext_t *regs;
257 context = (os_context_t*) os_validate(0, sizeof(os_context_t));
258 regs = (mcontext_t*) os_validate(0, sizeof(mcontext_t));
259 context->uc_mcontext = regs;
261 /* when BSD signals are fired, they mask they signals in sa_mask
262 which always seem to be the blockable_sigset, for us, so we
263 need to:
264 1) save the current sigmask
265 2) block blockable signals
266 3) call the signal handler
267 4) restore the sigmask */
269 build_fake_signal_context(context, thread_state, float_state);
271 block_blockable_signals(0, 0);
273 handler(signal, siginfo, context);
275 update_thread_state_from_context(thread_state, float_state, context);
277 os_invalidate((os_vm_address_t)context, sizeof(os_context_t));
278 os_invalidate((os_vm_address_t)regs, sizeof(mcontext_t));
280 /* Trap to restore the signal context. */
281 asm volatile (".long 0xffff0b0f"
282 : : "a" (thread_state), "c" (float_state));
285 /* Convenience wrapper for the above */
286 void call_handler_on_thread(mach_port_t thread,
287 x86_thread_state32_t *thread_state,
288 int signal,
289 siginfo_t *siginfo,
290 void (*handler)(int, siginfo_t *, void *))
292 x86_thread_state32_t new_state;
293 x86_thread_state32_t *save_thread_state;
294 x86_float_state32_t *save_float_state;
295 mach_msg_type_number_t state_count;
296 siginfo_t *save_siginfo;
297 kern_return_t ret;
298 /* Initialize the new state */
299 new_state = *thread_state;
300 open_stack_allocation(&new_state);
301 stack_allocate(&new_state, 256);
302 /* Save old state */
303 save_thread_state = (x86_thread_state32_t *)stack_allocate(&new_state, sizeof(*save_thread_state));
304 *save_thread_state = *thread_state;
305 /* Save float state */
306 save_float_state = (x86_float_state32_t *)stack_allocate(&new_state, sizeof(*save_float_state));
307 state_count = x86_FLOAT_STATE32_COUNT;
308 if ((ret = thread_get_state(thread,
309 x86_FLOAT_STATE32,
310 (thread_state_t)save_float_state,
311 &state_count)) != KERN_SUCCESS)
312 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
313 /* Set up siginfo */
314 save_siginfo = stack_allocate(&new_state, sizeof(*siginfo));
315 if (siginfo == NULL)
316 save_siginfo = siginfo;
317 else
318 *save_siginfo = *siginfo;
319 /* Prepare to call */
320 call_c_function_in_context(&new_state,
321 signal_emulation_wrapper,
323 save_thread_state,
324 save_float_state,
325 signal,
326 save_siginfo,
327 handler);
328 /* Update the thread state */
329 state_count = x86_THREAD_STATE32_COUNT;
330 if ((ret = thread_set_state(thread,
331 x86_THREAD_STATE32,
332 (thread_state_t)&new_state,
333 state_count)) != KERN_SUCCESS)
334 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
338 #if defined DUMP_CONTEXT
339 void dump_context(x86_thread_state32_t *thread_state)
341 int i;
342 u32 *stack_pointer;
344 printf("eax: %08lx ecx: %08lx edx: %08lx ebx: %08lx\n",
345 thread_state->EAX, thread_state->ECX, thread_state->EDX, thread_state->EAX);
346 printf("esp: %08lx ebp: %08lx esi: %08lx edi: %08lx\n",
347 thread_state->ESP, thread_state->EBP, thread_state->ESI, thread_state->EDI);
348 printf("eip: %08lx eflags: %08lx\n",
349 thread_state->EIP, thread_state->EFLAGS);
350 printf("cs: %04hx ds: %04hx es: %04hx "
351 "ss: %04hx fs: %04hx gs: %04hx\n",
352 thread_state->CS,
353 thread_state->DS,
354 thread_state->ES,
355 thread_state->SS,
356 thread_state->FS,
357 thread_state->GS);
359 stack_pointer = (u32 *)thread_state->ESP;
360 for (i = 0; i < 48; i+=4) {
361 printf("%08x: %08x %08x %08x %08x\n",
362 thread_state->ESP + (i * 4),
363 stack_pointer[i],
364 stack_pointer[i+1],
365 stack_pointer[i+2],
366 stack_pointer[i+3]);
369 #endif
371 void
372 control_stack_exhausted_handler(int signal, siginfo_t *siginfo,
373 os_context_t *context) {
375 unblock_signals_in_context_and_maybe_warn(context);
376 arrange_return_to_lisp_function
377 (context, StaticSymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
380 void
381 undefined_alien_handler(int signal, siginfo_t *siginfo, os_context_t *context) {
382 arrange_return_to_lisp_function
383 (context, StaticSymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
386 kern_return_t
387 catch_exception_raise(mach_port_t exception_port,
388 mach_port_t thread,
389 mach_port_t task,
390 exception_type_t exception,
391 exception_data_t code_vector,
392 mach_msg_type_number_t code_count)
394 x86_thread_state32_t thread_state;
395 mach_msg_type_number_t state_count;
396 vm_address_t region_addr;
397 vm_size_t region_size;
398 vm_region_basic_info_data_t region_info;
399 mach_msg_type_number_t info_count;
400 mach_port_t region_name;
401 void *addr = NULL;
402 int signal = 0;
403 void (*handler)(int, siginfo_t *, void *) = NULL;
404 siginfo_t siginfo;
405 kern_return_t ret, dealloc_ret;
407 struct thread *th;
409 FSHOW((stderr,"/entering catch_exception_raise with exception: %d\n", exception));
410 th = *(struct thread**)exception_port;
411 /* Get state and info */
412 state_count = x86_THREAD_STATE32_COUNT;
413 if ((ret = thread_get_state(thread,
414 x86_THREAD_STATE32,
415 (thread_state_t)&thread_state,
416 &state_count)) != KERN_SUCCESS)
417 lose("thread_get_state (x86_THREAD_STATE32) failed %d\n", ret);
418 switch (exception) {
419 case EXC_BAD_ACCESS:
420 signal = SIGBUS;
421 /* Check if write protection fault */
422 if ((code_vector[0] & OS_VM_PROT_ALL) == 0) {
423 ret = KERN_INVALID_RIGHT;
424 break;
426 addr = (void*)code_vector[1];
427 /* Undefined alien */
428 if (os_trunc_to_page(addr) == undefined_alien_address) {
429 handler = undefined_alien_handler;
430 break;
432 /* At stack guard */
433 if (os_trunc_to_page(addr) == CONTROL_STACK_GUARD_PAGE(th)) {
434 lower_thread_control_stack_guard_page(th);
435 handler = control_stack_exhausted_handler;
436 break;
438 /* Return from stack guard */
439 if (os_trunc_to_page(addr) == CONTROL_STACK_RETURN_GUARD_PAGE(th)) {
440 reset_thread_control_stack_guard_page(th);
441 break;
443 /* Regular memory fault */
444 handler = memory_fault_handler;
445 break;
446 case EXC_BAD_INSTRUCTION:
447 signal = SIGTRAP;
448 /* Check if illegal instruction trap */
449 if (code_vector[0] != EXC_I386_INVOP) {
450 ret = KERN_INVALID_RIGHT;
451 break;
453 /* Check if UD2 instruction */
454 if (*(unsigned short *)thread_state.EIP != 0x0b0f) {
455 /* KLUDGE: There are two ways we could get here:
456 * 1) We're executing data and we've hit some truly
457 * illegal opcode, of which there are a few, see
458 * Intel 64 and IA-32 Architectures
459 * Sofware Developer's Manual
460 * Volume 3A page 5-34)
461 * 2) The kernel started an unrelated signal handler
462 * before we got a chance to run. The context that
463 * caused the exception is saved in a stack frame
464 * somewhere down below.
465 * In either case we rely on the exception to retrigger,
466 * eventually bailing out if we're spinning on case 2).
468 static mach_port_t last_thread;
469 static unsigned int last_eip;
470 if (last_thread == thread && last_eip == thread_state.EIP)
471 ret = KERN_INVALID_RIGHT;
472 else
473 ret = KERN_SUCCESS;
474 last_thread = thread;
475 last_eip = thread_state.EIP;
476 break;
478 /* Skip the trap code */
479 thread_state.EIP += 2;
480 /* Return from handler? */
481 if (*(unsigned short *)thread_state.EIP == 0xffff) {
482 if ((ret = thread_set_state(thread,
483 x86_THREAD_STATE32,
484 (thread_state_t)thread_state.EAX,
485 x86_THREAD_STATE32_COUNT)) != KERN_SUCCESS)
486 lose("thread_set_state (x86_THREAD_STATE32) failed %d\n", ret);
487 if ((ret = thread_set_state(thread,
488 x86_FLOAT_STATE32,
489 (thread_state_t)thread_state.ECX,
490 x86_FLOAT_STATE32_COUNT)) != KERN_SUCCESS)
491 lose("thread_set_state (x86_FLOAT_STATE32) failed %d\n", ret);
492 break;
494 /* Trap call */
495 handler = sigtrap_handler;
496 break;
497 default:
498 ret = KERN_INVALID_RIGHT;
500 /* Call handler */
501 if (handler != 0) {
502 siginfo.si_signo = signal;
503 siginfo.si_addr = addr;
504 call_handler_on_thread(thread, &thread_state, signal, &siginfo, handler);
507 if (current_mach_task == MACH_PORT_NULL)
508 current_mach_task = mach_task_self();
510 dealloc_ret = mach_port_deallocate (current_mach_task, thread);
511 if (dealloc_ret) {
512 lose("mach_port_deallocate (thread) failed with return_code %d\n", dealloc_ret);
515 dealloc_ret = mach_port_deallocate (current_mach_task, task);
516 if (dealloc_ret) {
517 lose("mach_port_deallocate (task) failed with return_code %d\n", dealloc_ret);
520 return ret;
523 void
524 os_restore_fp_control(os_context_t *context)
526 /* KLUDGE: The x87 FPU control word is some nasty bitfield struct
527 * thing. Rather than deal with that, just grab it as a 16-bit
528 * integer. */
529 unsigned short fpu_control_word =
530 *((unsigned short *)&context->uc_mcontext->FS.FPU_FCW);
531 /* reset exception flags and restore control flags on x87 FPU */
532 asm ("fldcw %0" : : "m" (fpu_control_word));
535 #endif