Fix TYPEP transform
[sbcl.git] / src / compiler / typetran.lisp
blob85a75ccbb8e39c7695dd0d72c006a0812ee8b912
1 ;;;; This file contains stuff that implements the portable IR1
2 ;;;; semantics of type tests and coercion. The main thing we do is
3 ;;;; convert complex type operations into simpler code that can be
4 ;;;; compiled inline.
6 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; more information.
8 ;;;;
9 ;;;; This software is derived from the CMU CL system, which was
10 ;;;; written at Carnegie Mellon University and released into the
11 ;;;; public domain. The software is in the public domain and is
12 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
13 ;;;; files for more information.
15 (in-package "SB!C")
17 ;;;; type predicate translation
18 ;;;;
19 ;;;; We maintain a bidirectional association between type predicates
20 ;;;; and the tested type. The presence of a predicate in this
21 ;;;; association implies that it is desirable to implement tests of
22 ;;;; this type using the predicate. These are either predicates that
23 ;;;; the back end is likely to have special knowledge about, or
24 ;;;; predicates so complex that the only reasonable implentation is
25 ;;;; via function call.
26 ;;;;
27 ;;;; Some standard types (such as ATOM) are best tested by letting the
28 ;;;; TYPEP source transform do its thing with the expansion. These
29 ;;;; types (and corresponding predicates) are not maintained in this
30 ;;;; association. In this case, there need not be any predicate
31 ;;;; function unless it is required by the Common Lisp specification.
32 ;;;;
33 ;;;; The mapping between predicates and type structures is considered
34 ;;;; part of the backend; different backends can support different
35 ;;;; sets of predicates.
37 ;;; Establish an association between the type predicate NAME and the
38 ;;; corresponding TYPE. This causes the type predicate to be
39 ;;; recognized for purposes of optimization.
40 (defmacro define-type-predicate (name type)
41 `(%define-type-predicate ',name ',type))
42 (defun %define-type-predicate (name specifier)
43 (let ((type (specifier-type specifier)))
44 (setf (gethash name *backend-predicate-types*) type)
45 (setf *backend-type-predicates*
46 (cons (cons type name)
47 (remove name *backend-type-predicates*
48 :key #'cdr)))
49 (%deftransform name '(function (t) *) #'fold-type-predicate)
50 name))
52 ;;;; IR1 transforms
54 ;;; If we discover the type argument is constant during IR1
55 ;;; optimization, then give the source transform another chance. The
56 ;;; source transform can't pass, since we give it an explicit
57 ;;; constant. At worst, it will convert to %TYPEP, which will prevent
58 ;;; spurious attempts at transformation (and possible repeated
59 ;;; warnings.)
60 (deftransform typep ((object type &optional env) * * :node node)
61 (unless (constant-lvar-p type)
62 (give-up-ir1-transform "can't open-code test of non-constant type"))
63 (unless (or (null env)
64 (and (constant-lvar-p env) (null (lvar-value env))))
65 (give-up-ir1-transform "environment argument present and not null"))
66 (multiple-value-bind (expansion fail-p)
67 (source-transform-typep 'object (lvar-value type))
68 (if fail-p
69 (abort-ir1-transform)
70 expansion)))
72 ;;; If the lvar OBJECT definitely is or isn't of the specified
73 ;;; type, then return T or NIL as appropriate. Otherwise quietly
74 ;;; GIVE-UP-IR1-TRANSFORM.
75 (defun ir1-transform-type-predicate (object type node)
76 (declare (type lvar object) (type ctype type))
77 (let ((otype (lvar-type object)))
78 (flet ((tricky ()
79 (cond ((typep type 'alien-type-type)
80 ;; We don't transform alien type tests until here, because
81 ;; once we do that the rest of the type system can no longer
82 ;; reason about them properly -- so we'd miss out on type
83 ;; derivation, etc.
84 (delay-ir1-transform node :optimize)
85 (let ((alien-type (alien-type-type-alien-type type)))
86 ;; If it's a lisp-rep-type, the CTYPE should be one already.
87 (aver (not (compute-lisp-rep-type alien-type)))
88 `(sb!alien::alien-value-typep object ',alien-type)))
90 (give-up-ir1-transform)))))
91 (cond ((not (types-equal-or-intersect otype type))
92 nil)
93 ((csubtypep otype type)
95 ((eq type *empty-type*)
96 nil)
98 (let ((intersect (type-intersection2 type otype)))
99 (unless intersect
100 (tricky))
101 (multiple-value-bind (constantp value)
102 (type-singleton-p intersect)
103 (if constantp
104 `(eql object ',value)
105 (tricky)))))))))
107 ;;; Flush %TYPEP tests whose result is known at compile time.
108 (deftransform %typep ((object type) * * :node node)
109 (unless (constant-lvar-p type)
110 (give-up-ir1-transform))
111 (ir1-transform-type-predicate
112 object
113 (ir1-transform-specifier-type (lvar-value type))
114 node))
116 ;;; This is the IR1 transform for simple type predicates. It checks
117 ;;; whether the single argument is known to (not) be of the
118 ;;; appropriate type, expanding to T or NIL as appropriate.
119 (deftransform fold-type-predicate ((object) * * :node node :defun-only t)
120 (let ((ctype (gethash (leaf-source-name
121 (ref-leaf
122 (lvar-uses
123 (basic-combination-fun node))))
124 *backend-predicate-types*)))
125 (aver ctype)
126 (ir1-transform-type-predicate object ctype node)))
128 ;;; If FIND-CLASSOID is called on a constant class, locate the
129 ;;; CLASSOID-CELL at load time.
130 (deftransform find-classoid ((name) ((constant-arg symbol)) *)
131 (let* ((name (lvar-value name))
132 (cell (find-classoid-cell name :create t)))
133 `(or (classoid-cell-classoid ',cell)
134 (error "class not yet defined: ~S" name))))
136 (defoptimizer (%typep-wrapper constraint-propagate-if)
137 ((test-value variable type) node gen)
138 (declare (ignore test-value gen))
139 (aver (constant-lvar-p type))
140 (let ((type (lvar-value type)))
141 (values variable (if (ctype-p type)
142 type
143 (handler-case (careful-specifier-type type)
144 (t () nil))))))
146 (deftransform %typep-wrapper ((test-value variable type) * * :node node)
147 (aver (constant-lvar-p type))
148 (if (constant-lvar-p test-value)
149 `',(lvar-value test-value)
150 (let* ((type (lvar-value type))
151 (type (if (ctype-p type)
152 type
153 (handler-case (careful-specifier-type type)
154 (t () nil))))
155 (value-type (lvar-type variable)))
156 (cond ((not type)
157 'test-value)
158 ((csubtypep value-type type)
160 ((not (types-equal-or-intersect value-type type))
161 nil)
163 (delay-ir1-transform node :constraint)
164 'test-value)))))
166 ;;;; standard type predicates, i.e. those defined in package COMMON-LISP,
167 ;;;; plus at least one oddball (%INSTANCEP)
168 ;;;;
169 ;;;; Various other type predicates (e.g. low-level representation
170 ;;;; stuff like SIMPLE-ARRAY-SINGLE-FLOAT-P) are defined elsewhere.
172 ;;; FIXME: This function is only called once, at top level. Why not
173 ;;; just expand all its operations into toplevel code?
174 (defun !define-standard-type-predicates ()
175 (define-type-predicate arrayp array)
176 ; (The ATOM predicate is handled separately as (NOT CONS).)
177 (define-type-predicate bit-vector-p bit-vector)
178 (define-type-predicate characterp character)
179 (define-type-predicate compiled-function-p compiled-function)
180 (define-type-predicate complexp complex)
181 (define-type-predicate complex-rational-p (complex rational))
182 (define-type-predicate complex-float-p (complex float))
183 (define-type-predicate consp cons)
184 (define-type-predicate floatp float)
185 (define-type-predicate functionp function)
186 (define-type-predicate integerp integer)
187 (define-type-predicate keywordp keyword)
188 (define-type-predicate listp list)
189 (define-type-predicate null null)
190 (define-type-predicate numberp number)
191 (define-type-predicate rationalp rational)
192 (define-type-predicate realp real)
193 (define-type-predicate sequencep sequence)
194 (define-type-predicate extended-sequence-p extended-sequence)
195 (define-type-predicate simple-bit-vector-p simple-bit-vector)
196 (define-type-predicate simple-string-p simple-string)
197 (define-type-predicate simple-vector-p simple-vector)
198 (define-type-predicate stringp string)
199 (define-type-predicate %instancep instance)
200 (define-type-predicate simple-fun-p simple-fun)
201 (define-type-predicate closurep closure)
202 (define-type-predicate funcallable-instance-p funcallable-instance)
203 (define-type-predicate symbolp symbol)
204 (define-type-predicate vectorp vector))
205 (!define-standard-type-predicates)
207 ;;;; transforms for type predicates not implemented primitively
208 ;;;;
209 ;;;; See also VM dependent transforms.
211 (define-source-transform atom (x)
212 `(not (consp ,x)))
213 #!+sb-unicode
214 (define-source-transform base-char-p (x)
215 `(typep ,x 'base-char))
216 ;; CONS is implemented as (and list (not (eql nil))) where the 'and' is
217 ;; built-in to the consp vop. Reduce to just LISTP if possible.
218 (deftransform consp ((x) ((not null)) * :important nil) '(listp x))
220 ;;;; TYPEP source transform
222 ;;; Return a form that tests the variable N-OBJECT for being in the
223 ;;; binds specified by TYPE. BASE is the name of the base type, for
224 ;;; declaration. We make SAFETY locally 0 to inhibit any checking of
225 ;;; this assertion.
226 (defun transform-numeric-bound-test (n-object type base)
227 (declare (type numeric-type type))
228 (let ((low (numeric-type-low type))
229 (high (numeric-type-high type)))
230 `(locally
231 (declare (optimize (safety 0)))
232 (and ,@(when low
233 (if (consp low)
234 `((> (truly-the ,base ,n-object) ,(car low)))
235 `((>= (truly-the ,base ,n-object) ,low))))
236 ,@(when high
237 (if (consp high)
238 `((< (truly-the ,base ,n-object) ,(car high)))
239 `((<= (truly-the ,base ,n-object) ,high))))))))
241 ;;; Do source transformation of a test of a known numeric type. We can
242 ;;; assume that the type doesn't have a corresponding predicate, since
243 ;;; those types have already been picked off. In particular, CLASS
244 ;;; must be specified, since it is unspecified only in NUMBER and
245 ;;; COMPLEX. Similarly, we assume that COMPLEXP is always specified.
247 ;;; For non-complex types, we just test that the number belongs to the
248 ;;; base type, and then test that it is in bounds. When CLASS is
249 ;;; INTEGER, we check to see whether the range is no bigger than
250 ;;; FIXNUM. If so, we check for FIXNUM instead of INTEGER. This allows
251 ;;; us to use fixnum comparison to test the bounds.
253 ;;; For complex types, we must test for complex, then do the above on
254 ;;; both the real and imaginary parts. When CLASS is float, we need
255 ;;; only check the type of the realpart, since the format of the
256 ;;; realpart and the imagpart must be the same.
257 (defun source-transform-numeric-typep (object type)
258 (let* ((class (numeric-type-class type))
259 (base (ecase class
260 (integer (containing-integer-type
261 (if (numeric-type-complexp type)
262 (modified-numeric-type type
263 :complexp :real)
264 type)))
265 (rational 'rational)
266 (float (or (numeric-type-format type) 'float))
267 ((nil) 'real))))
268 (once-only ((n-object object))
269 (ecase (numeric-type-complexp type)
270 (:real
271 (if (and #!-(or x86 x86-64 arm) ;; Not implemented elsewhere yet
273 (eql (numeric-type-class type) 'integer)
274 (eql (numeric-type-low type) 0)
275 (fixnump (numeric-type-high type)))
276 `(fixnum-mod-p ,n-object ,(numeric-type-high type))
277 `(and (typep ,n-object ',base)
278 ,(transform-numeric-bound-test n-object type base))))
279 (:complex
280 `(and (complexp ,n-object)
281 ,(once-only ((n-real `(realpart (truly-the complex ,n-object)))
282 (n-imag `(imagpart (truly-the complex ,n-object))))
283 `(progn
284 ,n-imag ; ignorable
285 (and (typep ,n-real ',base)
286 ,@(when (eq class 'integer)
287 `((typep ,n-imag ',base)))
288 ,(transform-numeric-bound-test n-real type base)
289 ,(transform-numeric-bound-test n-imag type
290 base))))))))))
292 ;;; Do the source transformation for a test of a hairy type. AND,
293 ;;; SATISFIES and NOT are converted into the obvious code. We convert
294 ;;; unknown types to %TYPEP, emitting an efficiency note if
295 ;;; appropriate.
296 (defun source-transform-hairy-typep (object type)
297 (declare (type hairy-type type))
298 (let ((spec (hairy-type-specifier type)))
299 (cond ((unknown-type-p type)
300 (when (policy *lexenv* (> speed inhibit-warnings))
301 (compiler-notify "can't open-code test of unknown type ~S"
302 (type-specifier type)))
303 `(%typep ,object ',spec))
305 (ecase (first spec)
306 (satisfies
307 `(if (funcall (global-function ,(second spec)) ,object) t nil))
308 ((not and)
309 (once-only ((n-obj object))
310 `(,(first spec) ,@(mapcar (lambda (x)
311 `(typep ,n-obj ',x))
312 (rest spec))))))))))
314 (defun source-transform-negation-typep (object type)
315 (declare (type negation-type type))
316 (let ((spec (type-specifier (negation-type-type type))))
317 `(not (typep ,object ',spec))))
319 ;;; Do source transformation for TYPEP of a known union type. If a
320 ;;; union type contains LIST, then we pull that out and make it into a
321 ;;; single LISTP call. Note that if SYMBOL is in the union, then LIST
322 ;;; will be a subtype even without there being any (member NIL). We
323 ;;; currently just drop through to the general code in this case,
324 ;;; rather than trying to optimize it (but FIXME CSR 2004-04-05: it
325 ;;; wouldn't be hard to optimize it after all).
326 ;;; FIXME: if the CONSP|NIL -> LISTP optimization kicks in,
327 ;;; we forgo the array optimizations.
328 (defun source-transform-union-typep (object type)
329 (let* ((types (union-type-types type))
330 (type-cons (specifier-type 'cons))
331 (mtype (find-if #'member-type-p types))
332 (members (when mtype (member-type-members mtype))))
333 (once-only ((n-obj object))
334 (if (and mtype
335 (memq nil members)
336 (memq type-cons types))
337 `(or (listp ,n-obj)
338 (typep ,n-obj
339 '(or ,@(mapcar #'type-specifier
340 (remove type-cons
341 (remove mtype types)))
342 (member ,@(remove nil members)))))
343 (multiple-value-bind (widetags more-types)
344 (sb!kernel::widetags-from-union-type types)
345 `(or ,@(if widetags
346 `((%other-pointer-subtype-p ,n-obj ',widetags)))
347 ,@(mapcar (lambda (x)
348 `(typep ,n-obj ',(type-specifier x)))
349 more-types)))))))
351 ;;; Do source transformation for TYPEP of a known intersection type.
352 (defun source-transform-intersection-typep (object type)
353 (once-only ((n-obj object))
354 `(and ,@(mapcar (lambda (x)
355 `(typep ,n-obj ',(type-specifier x)))
356 (intersection-type-types type)))))
358 ;;; If necessary recurse to check the cons type.
359 (defun source-transform-cons-typep (object type)
360 (let* ((car-type (cons-type-car-type type))
361 (cdr-type (cons-type-cdr-type type))
362 (car-test-p (not (type= car-type *universal-type*)))
363 (cdr-test-p (not (type= cdr-type *universal-type*))))
364 (if (and (not car-test-p) (not cdr-test-p))
365 `(consp ,object)
366 ;; CONSP can be safely weakened to LISTP if either of the CAR
367 ;; or CDR test (or both) can distinguish LIST from CONS
368 ;; by never returning T when given an input of NIL.
369 (labels ((safely-weakened (ctype)
370 (typecase ctype
371 (member-type
372 (not (member nil (member-type-members ctype))))
373 (classoid
374 ;; can't weaken if the specifier is (CONS SYMBOL)
375 (not (ctypep nil ctype)))
376 ;; these are disjoint from NIL
377 ((or cons-type numeric-type array-type character-set-type)
379 (intersection-type
380 ;; at least one of them must not spuriously return T
381 (some #'safely-weakened (compound-type-types ctype)))
382 (union-type
383 ;; require that none spuriously return T
384 (every #'safely-weakened (compound-type-types ctype)))
385 (hairy-type
386 ;; hack - (CONS KEYWORD) is weakenable
387 ;; because NIL is not a keyword.
388 (equal (hairy-type-specifier ctype)
389 '(satisfies keywordp))))))
390 (let* ((n-obj (sb!xc:gensym))
391 (car-test
392 (and car-test-p
393 `((typep (car ,n-obj) ',(type-specifier car-type)))))
394 (cdr-test
395 (and cdr-test-p
396 `((typep (cdr ,n-obj) ',(type-specifier cdr-type))))))
397 `(let ((,n-obj ,object))
398 ;; Being paranoid, perform the safely weakenable test first
399 ;; so that the other part doesn't execute on an object that
400 ;; it would not have gotten, were the CONSP test not weakened.
401 ,(cond ((and car-test-p (safely-weakened car-type))
402 `(and (listp ,n-obj) ,@car-test ,@cdr-test))
403 ((and cdr-test-p (safely-weakened cdr-type))
404 `(and (listp ,n-obj) ,@cdr-test ,@car-test))
406 `(and (consp ,n-obj) ,@car-test ,@cdr-test)))))))))
408 (defun source-transform-character-set-typep (object type)
409 (let ((pairs (character-set-type-pairs type)))
410 (if (and (= (length pairs) 1)
411 (= (caar pairs) 0)
412 (= (cdar pairs) (1- sb!xc:char-code-limit)))
413 `(characterp ,object)
414 (once-only ((n-obj object))
415 (let ((n-code (gensym "CODE")))
416 `(and (characterp ,n-obj)
417 (let ((,n-code (sb!xc:char-code ,n-obj)))
419 ,@(loop for pair in pairs
420 collect
421 `(<= ,(car pair) ,n-code ,(cdr pair)))))))))))
423 #!+sb-simd-pack
424 (defun source-transform-simd-pack-typep (object type)
425 (if (type= type (specifier-type 'simd-pack))
426 `(simd-pack-p ,object)
427 (once-only ((n-obj object))
428 (let ((n-tag (gensym "TAG")))
429 `(and
430 (simd-pack-p ,n-obj)
431 (let ((,n-tag (%simd-pack-tag ,n-obj)))
432 (or ,@(loop
433 for type in (simd-pack-type-element-type type)
434 for index = (position type *simd-pack-element-types*)
435 collect `(eql ,n-tag ,index)))))))))
437 ;;; Return the predicate and type from the most specific entry in
438 ;;; *TYPE-PREDICATES* that is a supertype of TYPE.
439 (defun find-supertype-predicate (type)
440 (declare (type ctype type))
441 (let ((res nil)
442 (res-type nil))
443 (dolist (x *backend-type-predicates*)
444 (let ((stype (car x)))
445 (when (and (csubtypep type stype)
446 (or (not res-type)
447 (csubtypep stype res-type)))
448 (setq res-type stype)
449 (setq res (cdr x)))))
450 (values res res-type)))
452 ;;; Return forms to test that OBJ has the rank and dimensions
453 ;;; specified by TYPE, where STYPE is the type we have checked against
454 ;;; (which is the same but for dimensions and element type).
456 ;;; Secondary return value is true if passing the generated tests implies that
457 ;;; the array has a header.
458 (defun test-array-dimensions (obj type stype)
459 (declare (type array-type type stype))
460 (let ((obj `(truly-the ,(type-specifier stype) ,obj))
461 (dims (array-type-dimensions type)))
462 (unless (or (eq dims '*)
463 (equal dims (array-type-dimensions stype)))
464 (cond ((cdr dims)
465 (values `((array-header-p ,obj)
466 ,@(when (eq (array-type-dimensions stype) '*)
467 `((= (%array-rank ,obj) ,(length dims))))
468 ,@(loop for d in dims
469 for i from 0
470 unless (eq '* d)
471 collect `(= (%array-dimension ,obj ,i) ,d)))
473 ((not dims)
474 (values `((array-header-p ,obj)
475 (= (%array-rank ,obj) 0))
477 ((not (array-type-complexp type))
478 (if (csubtypep stype (specifier-type 'vector))
479 (values (unless (eq '* (car dims))
480 `((= (vector-length ,obj) ,@dims)))
481 nil)
482 (values (if (eq '* (car dims))
483 `((not (array-header-p ,obj)))
484 `((not (array-header-p ,obj))
485 (= (vector-length ,obj) ,@dims)))
486 nil)))
488 (values (unless (eq '* (car dims))
489 `((if (array-header-p ,obj)
490 (= (%array-dimension ,obj 0) ,@dims)
491 (= (vector-length ,obj) ,@dims))))
492 nil))))))
494 ;;; Return forms to test that OBJ has the element-type specified by type
495 ;;; specified by TYPE, where STYPE is the type we have checked against (which
496 ;;; is the same but for dimensions and element type). If HEADERP is true, OBJ
497 ;;; is guaranteed to be an array-header.
498 (defun test-array-element-type (obj type stype headerp)
499 (declare (type array-type type stype))
500 (let ((obj `(truly-the ,(type-specifier stype) ,obj))
501 (eltype (array-type-specialized-element-type type)))
502 (unless (or (type= eltype (array-type-specialized-element-type stype))
503 (eq eltype *wild-type*))
504 (let ((typecode (sb!vm:saetp-typecode (find-saetp-by-ctype eltype))))
505 (with-unique-names (data)
506 (if (and headerp (not (array-type-complexp stype)))
507 ;; If we know OBJ is an array header, and that the array is
508 ;; simple, we also know there is exactly one indirection to
509 ;; follow.
510 `((eq (%other-pointer-widetag (%array-data-vector ,obj)) ,typecode))
511 `((do ((,data ,(if headerp `(%array-data-vector ,obj) obj)
512 (%array-data-vector ,data)))
513 ((not (array-header-p ,data))
514 (eq (%other-pointer-widetag ,data) ,typecode))))))))))
516 ;;; If we can find a type predicate that tests for the type without
517 ;;; dimensions, then use that predicate and test for dimensions.
518 ;;; Otherwise, just do %TYPEP.
519 (defun source-transform-array-typep (obj type)
520 ;; Intercept (SIMPLE-ARRAY * (*)) because otherwise it tests
521 ;; (AND SIMPLE-ARRAY (NOT ARRAY-HEADER)) to weed out rank 0 and >1.
522 ;; By design the simple arrays of of rank 1 occupy a contiguous
523 ;; range of widetags, and unlike the arbitrary-widetags code for unions,
524 ;; this nonstandard predicate can be generically defined for all backends.
525 (if (and (not (array-type-complexp type))
526 (eq (array-type-element-type type) *wild-type*)
527 (equal (array-type-dimensions type) '(*)))
528 (return-from source-transform-array-typep
529 `(simple-rank-1-array-*-p ,obj)))
530 (multiple-value-bind (pred stype) (find-supertype-predicate type)
531 (if (and (array-type-p stype)
532 ;; (If the element type hasn't been defined yet, it's
533 ;; not safe to assume here that it will eventually
534 ;; have (UPGRADED-ARRAY-ELEMENT-TYPE type)=T, so punt.)
535 (not (unknown-type-p (array-type-element-type type)))
536 (or (eq (array-type-complexp stype) (array-type-complexp type))
537 (and (eql (array-type-complexp stype) :maybe)
538 (eql (array-type-complexp type) t))))
539 (once-only ((n-obj obj))
540 (multiple-value-bind (tests headerp)
541 (test-array-dimensions n-obj type stype)
542 `(and (,pred ,n-obj)
543 ,@(when (and (eql (array-type-complexp stype) :maybe)
544 (eql (array-type-complexp type) t))
545 ;; KLUDGE: this is a bit lame; if we get here,
546 ;; we already know that N-OBJ is an array, but
547 ;; (NOT SIMPLE-ARRAY) doesn't know that. On the
548 ;; other hand, this should get compiled down to
549 ;; two widetag tests, so it's only a bit lame.
550 `((typep ,n-obj '(not simple-array))))
551 ,@tests
552 ,@(test-array-element-type n-obj type stype headerp))))
553 `(%typep ,obj ',(type-specifier type)))))
555 ;;; Transform a type test against some instance type. The type test is
556 ;;; flushed if the result is known at compile time. If not properly
557 ;;; named, error. If sealed and has no subclasses, just test for
558 ;;; layout-EQ. If a structure then test for layout-EQ and then a
559 ;;; general test based on layout-inherits. If safety is important,
560 ;;; then we also check whether the layout for the object is invalid
561 ;;; and signal an error if so. Otherwise, look up the indirect
562 ;;; class-cell and call CLASS-CELL-TYPEP at runtime.
563 (deftransform %instance-typep ((object spec) (* *) * :node node)
564 (aver (constant-lvar-p spec))
565 (let* ((spec (lvar-value spec))
566 (class (specifier-type spec))
567 (name (classoid-name class))
568 (otype (lvar-type object))
569 (layout (let ((res (info :type :compiler-layout name)))
570 (if (and res (not (layout-invalid res)))
572 nil))))
573 (cond
574 ;; Flush tests whose result is known at compile time.
575 ((not (types-equal-or-intersect otype class))
576 nil)
577 ((csubtypep otype class)
579 ;; If not properly named, error.
580 ((not (and name (eq (find-classoid name) class)))
581 (compiler-error "can't compile TYPEP of anonymous or undefined ~
582 class:~% ~S"
583 class))
585 ;; Delay the type transform to give type propagation a chance.
586 (delay-ir1-transform node :constraint)
588 ;; Otherwise transform the type test.
589 (binding* (((pred get-layout)
590 (cond ((csubtypep class (specifier-type 'funcallable-instance))
591 (values '(funcallable-instance-p object)
592 '(%funcallable-instance-layout object)))
593 ((csubtypep class (specifier-type 'instance))
594 (values '(%instancep object)
595 '(%instance-layout object)))))
596 (get-layout-or-return-false
597 (if pred
598 ;; Test just one of %INSTANCEP or %FUNCALLABLE-INSTANCE-P
599 `(if ,pred ,get-layout (return-from typep nil))
600 ;; But if we don't know which is will be, try both.
601 ;; This is less general than LAYOUT-OF,and therefore
602 ;; a little quicker to fail, because objects with
603 ;; {LIST|OTHER}-POINTER-LOWTAG can't possibly pass.
604 `(cond ((%instancep object)
605 (%instance-layout object))
606 ((funcallable-instance-p object)
607 (%funcallable-instance-layout object))
608 (t (return-from typep nil)))))
609 (n-layout (gensym)))
610 (cond
611 ;; It's possible to seal a STANDARD-CLASS, not just a STRUCTURE-CLASS,
612 ;; though probably extremely weird. Also the PRED should be set in
613 ;; that event, but it isn't.
614 ((and (eq (classoid-state class) :sealed) layout
615 (not (classoid-subclasses class)))
616 ;; Sealed and has no subclasses.
617 ;; The crummy dual expressions for the same result are because
618 ;; (BLOCK (RETURN ...)) seems to emit a forward branch in the
619 ;; passing case, but AND emits a forward branch in the failing
620 ;; case which I believe is the better choice.
621 (if pred
622 `(and ,pred (eq ,get-layout ',layout))
623 `(block typep (eq ,get-layout-or-return-false ',layout))))
625 ((and (typep class 'structure-classoid) layout)
626 ;; structure type tests; hierarchical layout depths
627 (let* ((depthoid (layout-depthoid layout))
628 ;; If a structure is apparently an abstract base type,
629 ;; having no constructor, then no instance layout should
630 ;; be EQ to the classoid's layout. It is a slight win
631 ;; to use the depth-based check first, then do the EQ check.
632 ;; There is no loss in the case where both fail, and there
633 ;; is a benefit in a passing case. Always try both though,
634 ;; because (MAKE-INSTANCE 'x) works on any structure class.
635 (abstract-base-p
636 (let ((dd (layout-info layout)))
637 (and dd
638 (not (dd-default-constructor dd))
639 (let ((ctors (dd-constructors dd)))
640 (or (not ctors) (equal ctors '((nil))))))))
641 (hierarchy-check
642 ;; Use DATA-VECTOR-REF directly, since that's what SVREF in
643 ;; a SAFETY 0 lexenv will eventually be transformed to.
644 ;; This can give a large compilation speedup, since
645 ;; %INSTANCE-TYPEPs are frequently created during
646 ;; GENERATE-TYPE-CHECKS, and the normal aref transformation
647 ;; path is pretty heavy.
648 `(and (> (layout-depthoid ,n-layout) ,depthoid)
649 (locally (declare (optimize (safety 0)))
650 (eq (data-vector-ref (layout-inherits ,n-layout)
651 ,depthoid)
652 ',layout)))))
653 (aver (equal pred '(%instancep object)))
654 `(and ,pred
655 (let ((,n-layout ,get-layout))
656 ;; we used to check for invalid layouts here,
657 ;; but in fact that's both unnecessary and
658 ;; wrong; it's unnecessary because structure
659 ;; classes can't be redefined, and it's wrong
660 ;; because it is quite legitimate to pass an
661 ;; object with an invalid layout to a structure
662 ;; type test.
663 ,(if abstract-base-p
664 `(if ,hierarchy-check t (eq ,n-layout ',layout))
665 `(if (eq ,n-layout ',layout) t ,hierarchy-check))))))
667 ((and layout (>= (layout-depthoid layout) 0))
668 ;; hierarchical layout depths for other things (e.g.
669 ;; CONDITION, STREAM)
670 ;; The quasi-hierarchical types are abstract base types,
671 ;; so perform inheritance check first, and EQ second.
672 ;; Actually, since you can't make an abstract STREAM,
673 ;; maybe we should skip the EQ test? But you *can* make
674 ;; an instance of CONDITION for what it's worth.
675 ;; SEQUENCE is special-cased, but could be handled here.
676 (let* ((depthoid (layout-depthoid layout))
677 (n-inherits (gensym))
678 (guts
679 `((when (layout-invalid ,n-layout)
680 (setq ,n-layout (update-object-layout-or-invalid
681 object ',layout)))
682 (if (let ((,n-inherits (layout-inherits
683 (truly-the layout ,n-layout))))
684 (declare (optimize (safety 0)))
685 (and (> (vector-length ,n-inherits) ,depthoid)
686 ;; See above.
687 (eq (data-vector-ref ,n-inherits ,depthoid)
688 ',layout)))
690 (eq ,n-layout ',layout)))))
691 (if pred
692 `(and ,pred (let ((,n-layout ,get-layout)) ,@guts))
693 `(block typep
694 (let ((,n-layout ,get-layout-or-return-false)) ,@guts)))))
697 (/noshow "default case -- ,PRED and CLASS-CELL-TYPEP")
698 `(block typep
699 (classoid-cell-typep ,get-layout-or-return-false
700 ',(find-classoid-cell name :create t)
701 object)))))))))
703 ;;; If the specifier argument is a quoted constant, then we consider
704 ;;; converting into a simple predicate or other stuff. If the type is
705 ;;; constant, but we can't transform the call, then we convert to
706 ;;; %TYPEP. We only pass when the type is non-constant. This allows us
707 ;;; to recognize between calls that might later be transformed
708 ;;; successfully when a constant type is discovered. We don't give an
709 ;;; efficiency note when we pass, since the IR1 transform will give
710 ;;; one if necessary and appropriate.
712 ;;; If the type is TYPE= to a type that has a predicate, then expand
713 ;;; to that predicate. Otherwise, we dispatch off of the type's type.
714 ;;; These transformations can increase space, but it is hard to tell
715 ;;; when, so we ignore policy and always do them.
716 (defun %source-transform-typep (object type)
717 (let ((ctype (careful-specifier-type type)))
718 (or (when (not ctype)
719 (compiler-warn "illegal type specifier for TYPEP: ~S" type)
720 (return-from %source-transform-typep (values nil t)))
721 (multiple-value-bind (constantp value) (type-singleton-p ctype)
722 (and constantp
723 `(eql ,object ',value)))
724 (let ((pred (cdr (assoc ctype *backend-type-predicates*
725 :test #'type=))))
726 (when pred `(,pred ,object)))
727 (typecase ctype
728 (hairy-type
729 (source-transform-hairy-typep object ctype))
730 (negation-type
731 (source-transform-negation-typep object ctype))
732 (union-type
733 (source-transform-union-typep object ctype))
734 (intersection-type
735 (source-transform-intersection-typep object ctype))
736 (member-type
737 `(if (member ,object ',(member-type-members ctype)) t))
738 (args-type
739 (compiler-warn "illegal type specifier for TYPEP: ~S" type)
740 (return-from %source-transform-typep (values nil t)))
741 (t nil))
742 (typecase ctype
743 (numeric-type
744 (source-transform-numeric-typep object ctype))
745 (classoid
746 `(%instance-typep ,object ',type))
747 (array-type
748 (source-transform-array-typep object ctype))
749 (cons-type
750 (source-transform-cons-typep object ctype))
751 (character-set-type
752 (source-transform-character-set-typep object ctype))
753 #!+sb-simd-pack
754 (simd-pack-type
755 (source-transform-simd-pack-typep object ctype))
756 (t nil))
757 `(%typep ,object ',type))))
759 (defun source-transform-typep (object type)
760 (let ((name (gensym "OBJECT")))
761 (multiple-value-bind (transform error)
762 (%source-transform-typep name type)
763 (if error
764 (values nil t)
765 (values `(let ((,name ,object))
766 (%typep-wrapper ,transform ,name ',type)))))))
768 (define-source-transform typep (object spec &optional env)
769 ;; KLUDGE: It looks bad to only do this on explicitly quoted forms,
770 ;; since that would overlook other kinds of constants. But it turns
771 ;; out that the DEFTRANSFORM for TYPEP detects any constant
772 ;; lvar, transforms it into a quoted form, and gives this
773 ;; source transform another chance, so it all works out OK, in a
774 ;; weird roundabout way. -- WHN 2001-03-18
775 (if (and (not env)
776 (consp spec)
777 (eq (car spec) 'quote))
778 (source-transform-typep object (cadr spec))
779 (values nil t)))
781 ;;;; coercion
783 ;;; Constant-folding.
785 #-sb-xc-host
786 (defoptimizer (coerce optimizer) ((x type) node)
787 (when (and (constant-lvar-p x) (constant-lvar-p type))
788 (let ((value (lvar-value x)))
789 (when (or (numberp value) (characterp value))
790 (constant-fold-call node)
791 t))))
793 ;;; Drops dimension information from vector types.
794 (defun simplify-vector-type (type)
795 (aver (csubtypep type (specifier-type '(array * (*)))))
796 (let* ((array-type
797 (if (csubtypep type (specifier-type 'simple-array))
798 'simple-array
799 'array))
800 (complexp
801 (not
802 (or (eq 'simple-array array-type)
803 (neq *empty-type*
804 (type-intersection type (specifier-type 'simple-array)))))))
805 (dolist (etype
806 #+sb-xc-host '(t bit character)
807 #-sb-xc-host sb!kernel::*specialized-array-element-types*
808 #+sb-xc-host (values nil nil nil)
809 #-sb-xc-host (values `(,array-type * (*)) t complexp))
810 (when etype
811 (let ((simplified (specifier-type `(,array-type ,etype (*)))))
812 (when (csubtypep type simplified)
813 (return (values (type-specifier simplified)
814 etype
815 complexp))))))))
817 (deftransform coerce ((x type) (* *) * :node node)
818 (unless (constant-lvar-p type)
819 (give-up-ir1-transform))
820 (let* ((tval (lvar-value type))
821 (tspec (ir1-transform-specifier-type tval)))
822 (if (csubtypep (lvar-type x) tspec)
824 ;; Note: The THE forms we use to wrap the results make sure that
825 ;; specifiers like (SINGLE-FLOAT 0.0 1.0) can raise a TYPE-ERROR.
826 (cond
827 ((csubtypep tspec (specifier-type 'double-float))
828 `(the ,tval (%double-float x)))
829 ;; FIXME: #!+long-float (t ,(error "LONG-FLOAT case needed"))
830 ((csubtypep tspec (specifier-type 'float))
831 `(the ,tval (%single-float x)))
832 ((csubtypep tspec (specifier-type 'complex))
833 (multiple-value-bind (part-type result-type)
834 (cond ((and (numeric-type-p tspec)
835 (numeric-type-format tspec))) ; specific FLOAT type
836 ((csubtypep tspec (specifier-type '(complex float)))
837 ;; unspecific FLOAT type
838 'float)
839 ((csubtypep tspec (specifier-type '(complex rational)))
840 (values 'rational `(or ,tval rational)))
842 (values t `(or ,tval rational))))
843 (let ((result-type (or result-type tval)))
844 `(cond
845 ((not (typep x 'complex))
846 (the ,result-type (complex (coerce x ',part-type))))
847 ((typep x ',tval)
849 (t ; X is COMPLEX, but not of the requested type
850 (the ,result-type
851 (complex (coerce (realpart x) ',part-type)
852 (coerce (imagpart x) ',part-type))))))))
853 ;; Special case STRING and SIMPLE-STRING as they are union types
854 ;; in SBCL.
855 ((member tval '(string simple-string))
856 `(the ,tval
857 (if (typep x ',tval)
859 (replace (make-array (length x) :element-type 'character) x))))
860 ((eq tval 'character)
861 `(character x))
862 ;; Special case VECTOR
863 ((eq tval 'vector)
864 `(the ,tval
865 (if (vectorp x)
867 (replace (make-array (length x)) x))))
868 ;; Handle specialized element types for 1D arrays.
869 ((csubtypep tspec (specifier-type '(array * (*))))
870 ;; Can we avoid checking for dimension issues like (COERCE FOO
871 ;; '(SIMPLE-VECTOR 5)) returning a vector of length 6?
873 ;; CLHS actually allows this for all code with SAFETY < 3,
874 ;; but we're a conservative bunch.
875 (if (or (policy node (zerop safety)) ; no need in unsafe code
876 (and (array-type-p tspec) ; no need when no dimensions
877 (equal (array-type-dimensions tspec) '(*))))
878 ;; We can!
879 (multiple-value-bind (vtype etype complexp) (simplify-vector-type tspec)
880 (unless vtype
881 (give-up-ir1-transform))
882 `(the ,vtype
883 (if (typep x ',vtype)
885 (replace
886 (make-array (length x) :element-type ',etype
887 ,@(when complexp
888 (list :fill-pointer t
889 :adjustable t)))
890 x))))
891 ;; No, duh. Dimension checking required.
892 (give-up-ir1-transform
893 "~@<~S specifies dimensions other than (*) in safe code.~:@>"
894 tval)))
895 ((type= tspec (specifier-type 'list))
896 `(coerce-to-list x))
897 ((csubtypep tspec (specifier-type 'function))
898 (if (csubtypep (lvar-type x) (specifier-type 'symbol))
899 `(coerce-symbol-to-fun x)
900 `(coerce-to-fun x)))
902 (give-up-ir1-transform
903 "~@<open coding coercion to ~S not implemented.~:@>"
904 tval))))))